1
|
Bellman J, Sjöros T, Hägg D, Atencio Herre E, Hieta J, Eskola O, Laitinen K, Nuutila P, Jansson JO, Jansson PA, Kalliokoski K, Roivainen A, Ohlsson C. Loading Enhances Glucose Uptake in Muscles, Bones, and Bone Marrow of Lower Extremities in Humans. J Clin Endocrinol Metab 2024; 109:3126-3136. [PMID: 38753869 PMCID: PMC11570666 DOI: 10.1210/clinem/dgae344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Increased standing time has been associated with improved health, but the underlying mechanism is unclear. OBJECTIVES We herein investigate if increased weight loading increases energy demand and thereby glucose uptake (GU) locally in bone and/or muscle in the lower extremities. METHODS In this single-center clinical trial with a randomized crossover design (ClinicalTrials.gov ID, NCT05443620), we enrolled 10 men with body mass index between 30 and 35 kg/m2. Participants were treated with both high load (standing with weight vest weighing 11% of body weight) and no load (sitting) on the lower extremities. GU was measured using whole-body quantitative positron emission tomography/computed tomography imaging. The primary endpoint was the change in GU ratio between loaded bones (ie, femur and tibia) and nonloaded bones (ie, humerus). RESULTS High load increased the GU ratio between lower and upper extremities in cortical diaphyseal bone (eg, femur/humerus ratio increased by 19%, P = .029), muscles (eg, m. quadriceps femoris/m. triceps brachii ratio increased by 28%, P = .014), and certain bone marrow regions (femur/humerus diaphyseal bone marrow region ratio increased by 17%, P = .041). Unexpectedly, we observed the highest GU in the bone marrow region of vertebral bodies, but its GU was not affected by high load. CONCLUSION Increased weight-bearing loading enhances GU in muscles, cortical bone, and bone marrow of the exposed lower extremities. This could be interpreted as increased local energy demand in bone and muscle caused by increased loading. The physiological importance of the increased local GU by static loading remains to be determined.
Collapse
Affiliation(s)
- Jakob Bellman
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Tanja Sjöros
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
| | - Daniel Hägg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Erika Atencio Herre
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
| | - Janina Hieta
- Nutrition and Food Research Center and Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, Faculty of Medicine, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Olli Eskola
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Kirsi Laitinen
- Nutrition and Food Research Center and Institute of Biomedicine, Integrative Physiology and Pharmacology Unit, Faculty of Medicine, University of Turku, FI-20014 Turun yliopisto, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
- Department of Endocrinology, Turku University Hospital, FI-20520 Turku, Finland
| | - John-Olov Jansson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, SE-41390 Gothenburg, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
- Gothia Forum, Region Västra Götaland, Sahlgrenska University Hospital, SE-41346 Gothenburg, Sweden
| | - Kari Kalliokoski
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, FI-20014 Turun yliopisto, Finland
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland
- InFLAMES Research Flagship, University of Turku, FI-20014 Turku, Finland
| | - Claes Ohlsson
- Sahlgrenska Osteoporosis Centre, Center for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
- Department of Drug Treatment, Region Västra Götaland, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden
| |
Collapse
|
2
|
Bermudez B, Ishii T, Wu YH, Carpenter RD, Sherk VD. Energy Balance and Bone Health: a Nutrient Availability Perspective. Curr Osteoporos Rep 2023; 21:77-84. [PMID: 36542294 DOI: 10.1007/s11914-022-00765-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Obesity is highly prevalent and is associated with bone fragility and fracture. The changing nutrient availability to bone in obesity is an important facet of bone health. The goal of this article is to summarize current knowledge on the effects of carbohydrate and dietary fat availability on bone, particularly in the context of other tissues. RECENT FINDINGS The skeleton is a primary site for fatty acid and glucose uptake. The trafficking of carbohydrates and fats into tissues changes with weight loss and periods of weight gain. Exercise acutely influences nutrient uptake into bone and may affect nutrient partitioning to bone. Bone cells secrete hormones that signal to the brain and other tissues information about its energetic state, which may alter whole-body nutrient trafficking. There is a critical need for studies to address the changes that metabolic perturbations have on nutrient availability in bone.
Collapse
Affiliation(s)
- Beatriz Bermudez
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Toru Ishii
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuan-Haw Wu
- Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Denver, Denver, CO, USA
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Division of Translational and Clinical Sciences, Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Viggers R, Al-Mashhadi Z, Fuglsang-Nielsen R, Gregersen S, Starup-Linde J. The Impact of Exercise on Bone Health in Type 2 Diabetes Mellitus-a Systematic Review. Curr Osteoporos Rep 2020; 18:357-370. [PMID: 32529455 DOI: 10.1007/s11914-020-00597-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Type 2 diabetes mellitus (T2DM) is associated with an increased fracture risk. Weight loss in T2DM management may result in lowering of bone mass. In this systematic literature review, we aimed to investigate how exercise affects bone health in people with T2DM. Furthermore, we examined the types of exercise with the potential to prevent and treat bone fragility in people with T2DM. RECENT FINDINGS Exercise differs in type, mechanical load, and intensity, as does the osteogenic response to exercise. Aerobic exercise improves metabolic health in people with T2DM. However, the weight-bearing component of exercise is essential to bone health. Weight loss interventions in T2DM induce a loss of bone mass that may be attenuated if accompanied by resistance or weight-bearing exercise. Combination of weight-bearing aerobic and resistance exercise seems to be preventive against excessive bone loss in people with T2DM. However, evidence is sparse and clinical trials investigating the effects of exercise on bone health in people with T2DM are warranted.
Collapse
Affiliation(s)
- R Viggers
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Mølleparkvej 4, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| | - Z Al-Mashhadi
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - R Fuglsang-Nielsen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Internal Medicine, Regional Hospital Randers, Randers, Denmark
| | - S Gregersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - J Starup-Linde
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus C, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| |
Collapse
|
4
|
Abstract
The skeleton is highly vascularized due to the various roles blood vessels play in the homeostasis of bone and marrow. For example, blood vessels provide nutrients, remove metabolic by-products, deliver systemic hormones, and circulate precursor cells to bone and marrow. In addition to these roles, bone blood vessels participate in a variety of other functions. This article provides an overview of the afferent, exchange and efferent vessels in bone and marrow and presents the morphological layout of these blood vessels regarding blood flow dynamics. In addition, this article discusses how bone blood vessels participate in bone development, maintenance, and repair. Further, mechanical loading-induced bone adaptation is presented regarding interstitial fluid flow and pressure, as regulated by the vascular system. The role of the sympathetic nervous system is discussed in relation to blood vessels and bone. Finally, vascular participation in bone accrual with intermittent parathyroid hormone administration, a medication prescribed to combat age-related bone loss, is described and age- and disease-related impairments in blood vessels are discussed in relation to bone and marrow dysfunction. © 2020 American Physiological Society. Compr Physiol 10:1009-1046, 2020.
Collapse
Affiliation(s)
- Rhonda D Prisby
- Bone Vascular and Microcirculation Laboratory, Department of Kinesiology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
5
|
Haddock B, Fan AP, Uhlrich SD, Jørgensen NR, Suetta C, Gold GE, Kogan F. Assessment of acute bone loading in humans using [ 18F]NaF PET/MRI. Eur J Nucl Med Mol Imaging 2019; 46:2452-2463. [PMID: 31385012 PMCID: PMC6813760 DOI: 10.1007/s00259-019-04424-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE The acute effect of loading on bone tissue and physiology can offer important information with regard to joint function in diseases such as osteoarthritis. Imaging studies using [18F]-sodium fluoride ([18F]NaF) have found changes in tracer kinetics in animals after subjecting bones to strain, indicating an acute physiological response. The aim of this study is to measure acute changes in NaF uptake in human bone due to exercise-induced loading. METHODS Twelve healthy subjects underwent two consecutive 50-min [18F]NaF PET/MRI examinations of the knees, one baseline followed by one post-exercise scan. Quantification of tracer kinetics was performed using an image-derived input function from the popliteal artery. For both scans, kinetic parameters of KiNLR, K1, k2, k3, and blood volume were mapped parametrically using nonlinear regression with the Hawkins model. The kinetic parameters along with mean SUV and SUVmax were compared between the pre- and post-exercise examinations. Differences in response to exercise were analysed between bone tissue types (subchondral, cortical, and trabecular bone) and between regional subsections of knee subchondral bone. RESULTS Exercise induced a significant (p < <0.001) increase in [18F]NaF uptake in all bone tissues in both knees, with mean SUV increases ranging from 47% in trabecular bone tissue to 131% in subchondral bone tissue. Kinetic parameters involving vascularization (K1 and blood volume) increased, whereas the NaF extraction fraction [k3/(k2 + k3)] was reduced. CONCLUSIONS Bone loading induces an acute response in bone physiology as quantified by [18F]NaF PET kinetics. Dynamic imaging after bone loading using [18F]NaF PET is a promising diagnostic tool in bone physiology and imaging of biomechanics.
Collapse
Affiliation(s)
- Bryan Haddock
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Valdemar Hansens Vej 3-13, 2600, Glostrup, Denmark.
| | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Scott D Uhlrich
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, København, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Charlotte Suetta
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Valdemar Hansens Vej 3-13, 2600, Glostrup, Denmark.,Geriatric Research Unit, Bispebjerg-Frederiksberg and Herlev-Gentofte Hospitals, Copenhagen University Hospital, København, Denmark
| | - Garry Evan Gold
- Department of Radiology, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Feliks Kogan
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|