1
|
Jonvik KL, King M, Rollo I, Stellingwerff T, Pitsiladis Y. New Opportunities to Advance the Field of Sports Nutrition. Front Sports Act Living 2022; 4:852230. [PMID: 35252862 PMCID: PMC8891369 DOI: 10.3389/fspor.2022.852230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
Sports nutrition is a relatively new discipline; with ~100 published papers/year in the 1990s to ~3,500+ papers/year today. Historically, sports nutrition research was primarily initiated by university-based exercise physiologists who developed new methodologies that could be impacted by nutrition interventions (e.g., carbohydrate/fat oxidation by whole body calorimetry and muscle glycogen by muscle biopsies). Application of these methods in seminal studies helped develop current sports nutrition guidelines as compiled in several expert consensus statements. Despite this wealth of knowledge, a limitation of the current evidence is the lack of appropriate intervention studies (e.g., randomized controlled clinical trials) in elite athlete populations that are ecologically valid (e.g., in real-life training and competition settings). Over the last decade, there has been an explosion of sports science technologies, methodologies, and innovations. Some of these recent advances are field-based, thus, providing the opportunity to accelerate the application of ecologically valid personalized sports nutrition interventions. Conversely, the acceleration of novel technologies and commercial solutions, especially in the field of biotechnology and software/app development, has far outstripped the scientific communities' ability to validate the effectiveness and utility of the vast majority of these new commercial technologies. This mini-review will highlight historical and present innovations with particular focus on technological innovations in sports nutrition that are expected to advance the field into the future. Indeed, the development and sharing of more “big data,” integrating field-based measurements, resulting in more ecologically valid evidence for efficacy and personalized prescriptions, are all future key opportunities to further advance the field of sports nutrition.
Collapse
Affiliation(s)
- Kristin L. Jonvik
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Michelle King
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Barrington, IL, United States
| | - Ian Rollo
- Gatorade Sports Science Institute, PepsiCo Life Sciences, Global R&D, Leicestershire, United Kingdom
| | - Trent Stellingwerff
- Canadian Sport Institute-Pacific, Victoria, BC, Canada
- Exercise Science, Physical and Health Education, University of Victoria, Victoria, BC, Canada
| | - Yannis Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- *Correspondence: Yannis Pitsiladis
| |
Collapse
|
2
|
Sutehall S, Muniz-Pardos B, Bosch AN, Galloway SD, Pitsiladis Y. The Impact of Sodium Alginate Hydrogel on Exogenous Glucose Oxidation Rate and Gastrointestinal Comfort in Well-Trained Runners. Front Nutr 2022; 8:810041. [PMID: 35127792 PMCID: PMC8811475 DOI: 10.3389/fnut.2021.810041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study is to quantify the effect of adding sodium alginate and pectin to a carbohydrate (CHO) beverage on exogenous glucose (ExGluc) oxidation rate compared with an isocaloric CHO beverage. Methods Following familiarization, eight well-trained endurance athletes performed four bouts of prolonged running (105 min; 71 ± 4% of VO2max) while ingesting 175 mL of one of the experimental beverages every 15 min. In randomized order, participants consumed either 70 g.h−1 of maltodextrin and fructose (10% CHO; NORM), 70 g.h−1 of maltodextrin, fructose, sodium alginate, and pectin (10% CHO; ENCAP), 180 g.h−1 of maltodextrin, fructose, sodium alginate, and pectin (26% CHO; HiENCAP), or water (WAT). All CHO beverages had a maltodextrin:fructose ratio of 1:0.7 and contained 1.5 g.L−1 of sodium chloride. Total substrate oxidation, ExGluc oxidation rate, blood glucose, blood lactate, serum non-esterified fatty acid (NEFA) concentration, and RPE were measured for every 15 min. Every 30 min participants provided information regarding their gastrointestinal discomfort (GID). Results There was no significant difference in peak ExGluc oxidation between NORM and ENCAP (0.63 ± 0.07 and 0.64 ± 0.11 g.min−1, respectively; p > 0.5), both of which were significantly lower than HiENCAP (1.13 ± 0.13 g.min−1, p < 0.01). Both NORM and HiENCAP demonstrated higher total CHO oxidation than WAT from 60 and 75 min, respectively, until the end of exercise, with no differences between CHO trials. During the first 60 min, blood glucose was significantly lower in WAT compared with NORM and HiENCAP, but no differences were found between CHO beverages. Both ENCAP and HiENCAP demonstrated a higher blood glucose concentration from 60–105 min than WAT, and ENCAP was significantly higher than HiENCAP. There were no significant differences in reported GID symptoms between the trials. Conclusions At moderate ingestion rates (i.e., 70 g.h−1), the addition of sodium alginate and pectin did not influence the ExGluc oxidation rate compared with an isocaloric CHO beverage. At very high ingestion rates (i.e., 180 g.h−1), high rates of ExGluc oxidation were achieved in line with the literature.
Collapse
Affiliation(s)
- Shaun Sutehall
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Andrew N. Bosch
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Stuart D. Galloway
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Yannis Pitsiladis
- School of Sport and Health Sciences, University of Brighton, Eastbourne, United Kingdom
- *Correspondence: Yannis Pitsiladis
| |
Collapse
|
3
|
Rauch CE, McCubbin AJ, Gaskell SK, Costa RJS. Feeding Tolerance, Glucose Availability, and Whole-Body Total Carbohydrate and Fat Oxidation in Male Endurance and Ultra-Endurance Runners in Response to Prolonged Exercise, Consuming a Habitual Mixed Macronutrient Diet and Carbohydrate Feeding During Exercise. Front Physiol 2022; 12:773054. [PMID: 35058795 PMCID: PMC8764139 DOI: 10.3389/fphys.2021.773054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022] Open
Abstract
Using metadata from previously published research, this investigation sought to explore: (1) whole-body total carbohydrate and fat oxidation rates of endurance (e.g., half and full marathon) and ultra-endurance runners during an incremental exercise test to volitional exhaustion and steady-state exercise while consuming a mixed macronutrient diet and consuming carbohydrate during steady-state running and (2) feeding tolerance and glucose availability while consuming different carbohydrate regimes during steady-state running. Competitively trained male endurance and ultra-endurance runners (n = 28) consuming a balanced macronutrient diet (57 ± 6% carbohydrate, 21 ± 16% protein, and 22 ± 9% fat) performed an incremental exercise test to exhaustion and one of three 3 h steady-state running protocols involving a carbohydrate feeding regime (76-90 g/h). Indirect calorimetry was used to determine maximum fat oxidation (MFO) in the incremental exercise and carbohydrate and fat oxidation rates during steady-state running. Gastrointestinal symptoms (GIS), breath hydrogen (H2), and blood glucose responses were measured throughout the steady-state running protocols. Despite high variability between participants, high rates of MFO [mean (range): 0.66 (0.22-1.89) g/min], Fatmax [63 (40-94) % V̇O2max], and Fatmin [94 (77-100) % V̇O2max] were observed in the majority of participants in response to the incremental exercise test to volitional exhaustion. Whole-body total fat oxidation rate was 0.8 ± 0.3 g/min at the end of steady-state exercise, with 43% of participants presenting rates of ≥1.0 g/min, despite the state of hyperglycemia above resting homeostatic range [mean (95%CI): 6.9 (6.7-7.2) mmol/L]. In response to the carbohydrate feeding interventions of 90 g/h 2:1 glucose-fructose formulation, 38% of participants showed breath H2 responses indicative of carbohydrate malabsorption. Greater gastrointestinal symptom severity and feeding intolerance was observed with higher carbohydrate intakes (90 vs. 76 g/h) during steady-state exercise and was greatest when high exercise intensity was performed (i.e., performance test). Endurance and ultra-endurance runners can attain relatively high rates of whole-body fat oxidation during exercise in a post-prandial state and with carbohydrate provisions during exercise, despite consuming a mixed macronutrient diet. Higher carbohydrate intake during exercise may lead to greater gastrointestinal symptom severity and feeding intolerance.
Collapse
Affiliation(s)
| | | | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Rowe JT, King RFGJ, King AJ, Morrison DJ, Preston T, Wilson OJ, O'Hara JP. Glucose and Fructose Hydrogel Enhances Running Performance, Exogenous Carbohydrate Oxidation, and Gastrointestinal Tolerance. Med Sci Sports Exerc 2022; 54:129-140. [PMID: 34334720 DOI: 10.1249/mss.0000000000002764] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Beneficial effects of carbohydrate (CHO) ingestion on exogenous CHO oxidation and endurance performance require a well-functioning gastrointestinal (GI) tract. However, GI complaints are common during endurance running. This study investigated the effect of a CHO solution-containing sodium alginate and pectin (hydrogel) on endurance running performance, exogenous and endogenous CHO oxidation, and GI symptoms. METHODS Eleven trained male runners, using a randomized, double-blind design, completed three 120-min steady-state runs at 68% V˙O2max, followed by a 5-km time-trial. Participants ingested 90 g·h-1 of 2:1 glucose-fructose (13C enriched) as a CHO hydrogel, a standard CHO solution (nonhydrogel), or a CHO-free placebo during the 120 min. Fat oxidation, total and exogenous CHO oxidation, plasma glucose oxidation, and endogenous glucose oxidation from liver and muscle glycogen were calculated using indirect calorimetry and isotope ratio mass spectrometry. GI symptoms were recorded throughout the trial. RESULTS Time-trial performance was 7.6% and 5.6% faster after hydrogel ([min:s] 19:29 ± 2:24, P < 0.001) and nonhydrogel (19:54 ± 2:23, P = 0.002), respectively, versus placebo (21:05 ± 2:34). Time-trial performance after hydrogel was 2.1% faster (P = 0.033) than nonhydrogel. Absolute and relative exogenous CHO oxidation was greater with hydrogel (68.6 ± 10.8 g, 31.9% ± 2.7%; P = 0.01) versus nonhydrogel (63.4 ± 8.1 g, 29.3% ± 2.0%; P = 0.003). Absolute and relative endogenous CHO oxidation was lower in both CHO conditions compared with placebo (P < 0.001), with no difference between CHO conditions. Absolute and relative liver glucose oxidation and muscle glycogen oxidation were not different between CHO conditions. Total GI symptoms were not different between hydrogel and placebo, but GI symptoms were higher in nonhydrogel compared with placebo and hydrogel (P < 0.001). CONCLUSION The ingestion of glucose and fructose in hydrogel form during running benefited endurance performance, exogenous CHO oxidation, and GI symptoms compared with a standard CHO solution.
Collapse
Affiliation(s)
| | | | - Andy J King
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, AUSTRALIA
| | - Douglas J Morrison
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UNITED KINGDOM
| | - Thomas Preston
- Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UNITED KINGDOM
| | - Oliver J Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| | - John P O'Hara
- Carnegie School of Sport, Leeds Beckett University, Leeds, UNITED KINGDOM
| |
Collapse
|
5
|
Gaskell SK, Rauch CE, Costa RJS. Gastrointestinal Assessment and Therapeutic Intervention for the Management of Exercise-Associated Gastrointestinal Symptoms: A Case Series Translational and Professional Practice Approach. Front Physiol 2021; 12:719142. [PMID: 34557109 PMCID: PMC8452991 DOI: 10.3389/fphys.2021.719142] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022] Open
Abstract
This translational research case series describes the implementation of a gastrointestinal assessment protocol during exercise (GastroAxEx) to inform individualised therapeutic intervention of endurance athletes affected by exercise-induced gastrointestinal syndrome (EIGS) and associated gastrointestinal symptoms (GIS). A four-phase approach was applied. Phase 1: Clinical assessment and exploring background history of exercise-associated gastrointestinal symptoms. Phase 2: Individual tailored GastroAxEx laboratory simulation designed to mirror exercise stress, highlighted in phase 1, that promotes EIGS and GIS during exercise. Phase 3: Individually programmed therapeutic intervention, based on the outcomes of Phase 2. Phase 4: Monitoring and readjustment of intervention based on outcomes from field testing under training and race conditions. Nine endurance athletes presenting with EIGS, and two control athletes not presenting with EIGS, completed Phase 2. Two athletes experienced significant thermoregulatory strain (peak core temperature attained > 40°C) during the GastroAxEx. Plasma cortisol increased substantially pre- to post-exercise in n = 6/7 (Δ > 500 nmol/L). Plasma I-FABP concentration increased substantially pre- to post-exercise in n = 2/8 (Δ > 1,000 pg/ml). No substantial change was observed in pre- to post-exercise for systemic endotoxin and inflammatory profiles in all athletes. Breath H2 responses showed that orocecal transit time (OCTT) was delayed in n = 5/9 (90-150 min post-exercise) athletes, with the remaining athletes (n = 4/9) showing no H2 turning point by 180 min post-exercise. Severe GIS during exercise was experienced in n = 5/9 athletes, of which n = 2/9 had to dramatically reduce work output or cease exercise. Based on each athlete's identified proposed causal factors of EIGS and GIS during exercise (i.e., n = 9/9 neuroendocrine-gastrointestinal pathway of EIGS), an individualised gastrointestinal therapeutic intervention was programmed and advised, adjusted from a standard EIGS prevention and management template that included established strategies with evidence of attenuating EIGS primary causal pathways, exacerbation factors, and GIS during exercise. All participants reported qualitative data on their progress, which included their previously presenting GIS during exercise, such as nausea and vomiting, either being eliminated or diminished resulting in work output improving (i.e., completing competition and/or not slowing down during training or competition as a result of GIS during exercise). These outcomes suggest GIS during exercise in endurance athletes are predominantly related to gastrointestinal functional and feeding tolerance issues, and not necessarily gastrointestinal integrity and/or systemic issues. GastroAxEx allows for informed identification of potential causal pathway(s) and exacerbation factor(s) of EIGS and GIS during exercise at an individual level, providing a valuable informed individualised therapeutic intervention approach.
Collapse
Affiliation(s)
| | | | - Ricardo J. S. Costa
- Department of Nutrition, Dietetics and Food, Monash University, Notting Hill, VIC, Australia
| |
Collapse
|
6
|
Malone JJ, Hulton AT, MacLaren DPM. Exogenous carbohydrate and regulation of muscle carbohydrate utilisation during exercise. Eur J Appl Physiol 2021; 121:1255-1269. [PMID: 33544230 PMCID: PMC8064975 DOI: 10.1007/s00421-021-04609-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/17/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Carbohydrates (CHO) are one of the fundamental energy sources during prolonged steady state and intermittent exercise. The consumption of exogenous CHO during exercise is common place, with the aim to enhance sporting performance. Despite the popularity around exogenous CHO use, the process by which CHO is regulated from intake to its use in the working muscle is still not fully appreciated. Recent studies utilizing the hyperglycaemic glucose clamp technique have shed light on some of the potential barriers to CHO utilisation during exercise. The present review addresses the role of exogenous CHO utilisation during exercise, with a focus on potential mechanisms involved, from glucose uptake to glucose delivery and oxidation at the different stages of regulation. METHODS Narrative review. RESULTS A number of potential barriers were identified, including gastric emptying, intestinal absorption, blood flow (splanchnic and muscle), muscle uptake and oxidation. The relocation of glucose transporters plays a key role in the regulation of CHO, particularly in epithelial cells and subsequent transport into the blood. Limitations are also apparent when CHO is infused, particularly with regards to blood flow and uptake within the muscle. CONCLUSION We highlight a number of potential barriers involved with the regulation of both ingested and infused CHO during exercise. Future work on the influence of longitudinal training within the regulation processes (such as the gut) is warranted to further understand the optimal type, dose and method of CHO delivery to enhance sporting performance.
Collapse
Affiliation(s)
- James J Malone
- School of Health Sciences, Liverpool Hope University, Taggart Avenue, Liverpool, L16 9JD, UK.
| | - Andrew T Hulton
- Department of Nutritional Sciences, University of Surrey, Guildford, UK
| | - Don P M MacLaren
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
7
|
Baur DA, Saunders MJ. Carbohydrate supplementation: a critical review of recent innovations. Eur J Appl Physiol 2020; 121:23-66. [PMID: 33106933 DOI: 10.1007/s00421-020-04534-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To critically examine the research on novel supplements and strategies designed to enhance carbohydrate delivery and/or availability. METHODS Narrative review. RESULTS Available data would suggest that there are varying levels of effectiveness based on the supplement/supplementation strategy in question and mechanism of action. Novel carbohydrate supplements including multiple transportable carbohydrate (MTC), modified carbohydrate (MC), and hydrogels (HGEL) have been generally effective at modifying gastric emptying and/or intestinal absorption. Moreover, these effects often correlate with altered fuel utilization patterns and/or glycogen storage. Nevertheless, performance effects differ widely based on supplement and study design. MTC consistently enhances performance, but the magnitude of the effect is yet to be fully elucidated. MC and HGEL seem unlikely to be beneficial when compared to supplementation strategies that align with current sport nutrition recommendations. Combining carbohydrate with other ergogenic substances may, in some cases, result in additive or synergistic effects on metabolism and/or performance; however, data are often lacking and results vary based on the quantity, timing, and inter-individual responses to different treatments. Altering dietary carbohydrate intake likely influences absorption, oxidation, and and/or storage of acutely ingested carbohydrate, but how this affects the ergogenicity of carbohydrate is still mostly unknown. CONCLUSIONS In conclusion, novel carbohydrate supplements and strategies alter carbohydrate delivery through various mechanisms. However, more research is needed to determine if/when interventions are ergogenic based on different contexts, populations, and applications.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA.
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|
8
|
Carbohydrate Hydrogel Products Do Not Improve Performance or Gastrointestinal Distress During Moderate-Intensity Endurance Exercise. Int J Sport Nutr Exerc Metab 2020; 30:305-314. [PMID: 32707564 DOI: 10.1123/ijsnem.2020-0102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 11/18/2022]
Abstract
The benefits of ingesting exogenous carbohydrate (CHO) during prolonged exercise performance are well established. A recent food technology innovation has seen sodium alginate and pectin included in solutions of multiple transportable CHO, to encapsulate them at pH levels found in the stomach. Marketing claims include enhanced gastric emptying and delivery of CHO to the muscle with less gastrointestinal distress, leading to better sports performance. Emerging literature around such claims was identified by searching electronic databases; inclusion criteria were randomized controlled trials investigating metabolic and/or exercise performance parameters during endurance exercise >1 hr, with CHO hydrogels versus traditional CHO fluids and/or noncaloric hydrogels. Limitations associated with the heterogeneity of exercise protocols and control comparisons are noted. To date, improvements in exercise performance/capacity have not been clearly demonstrated with ingestion of CHO hydrogels above traditional CHO fluids. Studies utilizing isotopic tracers demonstrate similar rates of exogenous CHO oxidation, and subjective ratings of gastrointestinal distress do not appear to be different. Overall, data do not support any metabolic or performance advantages to exogenous CHO delivery in hydrogel form over traditional CHO preparations; although, one study demonstrates a possible glycogen sparing effect. The authors note that the current literature has largely failed to investigate the conditions under which maximal CHO availability is needed; high-performance athletes undertaking prolonged events at high relative and absolute exercise intensities. Although investigations are needed to better target the testimonials provided about CHO hydrogels, current evidence suggests that they are similar in outcome and a benefit to traditional CHO sources.
Collapse
|
9
|
Pettersson S, Ahnoff M, Edin F, Lingström P, Simark Mattsson C, Andersson-Hall U. A Hydrogel Drink With High Fructose Content Generates Higher Exogenous Carbohydrate Oxidation and Lower Dental Biofilm pH Compared to Two Other, Commercially Available, Carbohydrate Sports Drinks. Front Nutr 2020; 7:88. [PMID: 32596251 PMCID: PMC7303329 DOI: 10.3389/fnut.2020.00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to evaluate the substrate oxidation of three commercially available, 14%-carbohydrate sports drinks with different compositions, osmolality, and pH for their impact on dental exposure to low pH. In a cross-over, randomized double-blinded design, 12 endurance athletes (age 31. 2 ± 7.7 years, V ˙ O2max 65.6 ± 5.0 mL·kg-1) completed 180 min of cycling at 55% Wmax. During the first 100 min of cycling, athletes consumed amylopectin starch (AP), maltodextrin+sucrose (MD+SUC), or maltodextrin+fructose hydrogel (MD+FRU) drinks providing 95 g carbohydrate·h-1, followed by water intake only at 120 and 160 min. Fuel use was determined using indirect calorimetry and stable-isotope techniques. Additionally, dental biofilm pH was measured using the microtouch method in a subsample of participants (n = 6) during resting conditions before, and at different time intervals up to 45 min following a single bolus of drink. Exogenous carbohydrate oxidation (CHOEXO) during the 2nd hour of exercise was significantly (P < 0.05) different between all three drinks: MD+FRU (1.17 ± 0.17 g·min-1), MD+SUC (1.01 ± 0.13 g·min-1), and AP (0.84 ± 0.11 g·min-1). At the end of exercise, CHOEXO and blood glucose concentrations (3.54 ± 0.50, 4.07 ± 0.67, and 4.28 ± 0.47 mmol·L-1, respectively) were significantly lower post MD+FRU consumption than post MD+SUC and AP consumption (P < 0.05). Biofilm acidogenicity at rest demonstrated a less pronounced pH fall for MD+FRU compared to the acidulant-containing MD+SUC and AP (P < 0.05). In conclusion, while total intake of MD+FRU showed signs of completed uptake before end of monitoring, this was less so for MD+SUC, and not at all the case for AP. Thus, this study showed that despite carbohydrates being encapsulated in a hydrogel, a higher CHOEXO was observed following MD+FRU drink ingestion compared to AP and MD+SUC consumption upon exposure to the acidic environment of the stomach. This finding may be related to the higher fructose content of the MD+FRU drink compared with the MD+SUC and AP drinks. Furthermore, a carbohydrate solution without added acidulants, which are commonly included in commercial sport drinks, may have less deleterious effects on oral health.
Collapse
Affiliation(s)
- Stefan Pettersson
- Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Martin Ahnoff
- Maurten AB, Research and Development, Gothenburg, Sweden
| | - Fredrik Edin
- Department of Food and Nutrition, and Sport Science, Center for Health and Performance, University of Gothenburg, Gothenburg, Sweden
| | - Peter Lingström
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte Simark Mattsson
- Department of Cariology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulrika Andersson-Hall
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Flood TR, Montanari S, Wicks M, Blanchard J, Sharp H, Taylor L, Kuennen MR, Lee BJ. Addition of pectin-alginate to a carbohydrate beverage does not maintain gastrointestinal barrier function during exercise in hot-humid conditions better than carbohydrate ingestion alone. Appl Physiol Nutr Metab 2020; 45:1145-1155. [PMID: 32365303 DOI: 10.1139/apnm-2020-0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The objective of this study was to compare the effects of consuming a 16% maltodextrin+fructose+pectin-alginate (MAL+FRU+PEC+ALG) drink against a nutrient-matched maltodextrin+fructose (MAL+FRU) drink on enterocyte damage and gastrointestinal permeability after cycling in hot and humid conditions. Fourteen recreational cyclists (7 men) completed 3 experimental trials in a randomized placebo-controlled design. Participants cycled for 90 min (45% maximal aerobic capacity) and completed a 15-min time-trial in hot (32 °C) humid (70% relative humidity) conditions. Every 15 min, cyclists consumed 143 mL of either (i) water; (ii) MAL+FRU+PEC+ALG (90 g·h-1 CHO/16% w/v); or (iii) a ratio-matched MAL+FRU drink (90 g·h-1 CHO/16% w/v). Blood was sampled before and after exercise and gastrointestinal (GI) permeability, which was determined by serum measurements of intestinal fatty acid binding protein (I-FABP) and the percent ratio of lactulose (5 g) to rhamnose (2 g) recovered in postexercise urine. Compared with water, I-FABP decreased by 349 ± 67pg·mL-1 with MAL+FRU+PEC+ALG (p = 0.007) and by 427 ± 56 pg·mL-1 with MAL+FRU (p = 0.02). GI permeability was reduced in both the MAL+FRU+PEC+ALG (by 0.019 ± 0.01, p = 0.0003) and MAL+FRU (by 0.014 ± 0.01, p = 0.002) conditions relative to water. In conclusion, both CHO beverages attenuated GI barrier damage to a similar extent relative to water. No metabolic, cardiovascular, thermoregulatory, or performance differences were observed between the CHO beverages. Novelty Consumption of multiple-transportable CHO, with or without hydrogel properties, preserves GI barrier integrity and reduces enterocyte damage during prolonged cycling in hot-humid conditions.
Collapse
Affiliation(s)
- Tessa R Flood
- Institute of Sport, Occupational Performance Research Group, University of Chichester, West Sussex, PO10 6PE, UK
| | - Stefano Montanari
- Institute of Sport, Occupational Performance Research Group, University of Chichester, West Sussex, PO10 6PE, UK
| | - Marley Wicks
- Institute of Sport, Occupational Performance Research Group, University of Chichester, West Sussex, PO10 6PE, UK
| | - Jack Blanchard
- Institute of Sport, Occupational Performance Research Group, University of Chichester, West Sussex, PO10 6PE, UK
| | - Holly Sharp
- Institute of Sport, Occupational Performance Research Group, University of Chichester, West Sussex, PO10 6PE, UK
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,Sport & Exercise Discipline Group, University of Technology Sydney (UTS), Faculty of Health, Ultimo, NSW 2007, Australia.,Human Performance Research Centre, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia
| | - Matthew R Kuennen
- Department of Exercise Science, High Point University, High Point, NC 27268, USA
| | - Ben J Lee
- Institute of Sport, Occupational Performance Research Group, University of Chichester, West Sussex, PO10 6PE, UK.,Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|
11
|
Mears SA, Worley J, Mason GS, Hulston CJ, James LJ. Addition of sodium alginate and pectin to a carbohydrate-electrolyte solution does not influence substrate oxidation, gastrointestinal comfort, or cycling performance. Appl Physiol Nutr Metab 2020; 45:675-678. [PMID: 31967853 DOI: 10.1139/apnm-2019-0802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eight well-trained cyclists ingested 68 g·h-1 of a carbohydrate-electrolyte solution with sodium alginate and pectin (CHO-ALG) or a taste and carbohydrate type-matched carbohydrate-electrolyte solution (CHO) during 120 min of cycling at 55% maximal power followed by an ∼20 min time trial. Oxygen uptake, carbon dioxide production, blood glucose concentration, substrate oxidation, gastrointestinal symptoms, and time trial performance (CHO-ALG: 1219 ± 84 s, CHO: 1267 ± 102 s; P = 0.185) were not different between trials. Novelty Inclusion of sodium alginate and pectin in a carbohydrate drink does not influence blood glucose, substrate oxidation, gastrointestinal comfort, or performance in cyclists.
Collapse
Affiliation(s)
- Stephen A Mears
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - James Worley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - George S Mason
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Carl J Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
12
|
Baur DA, Toney HR, Saunders MJ, Baur KG, Luden ND, Womack CJ. Carbohydrate hydrogel beverage provides no additional cycling performance benefit versus carbohydrate alone. Eur J Appl Physiol 2019; 119:2599-2608. [PMID: 31598781 DOI: 10.1007/s00421-019-04240-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/01/2019] [Indexed: 12/01/2022]
Abstract
PURPOSE This study examined the effects of a novel maltodextrin-fructose hydrogel supplement (MF-H) on cycling performance and gastrointestinal distress symptoms. METHODS Nine endurance-trained male cyclists (age = 26.1 ± 6.6, mass = 80.9 ± 10.4 kg, VO2max = 55.5 ± 3.6 mL·kg·min-1) completed three experimental trials consisting of a 98-min varied-intensity cycling protocol followed by a performance test of ten consecutive sprint intervals. In a cross-over design, subjects consumed 250 mL of a treatment beverage every 15 min of cycling. Treatments consisted of 78 g·hr-1 of either (a) MF-H, (b) isocaloric maltodextrin-fructose (ratio-matched 2:1; MF), and (c) isocaloric maltodextrin only (MD). RESULTS There were no differences in average sprint power between treatments (MF-H, 284 ± 51 W; MF, 281 ± 46 W; and MD, 277 ± 48 W), or power output for any individual sprint. Subjective ratings of gastrointestinal distress symptoms (nausea, fullness, and abdominal cramping) increased significantly over time during the cycling trials, but few individuals exceeded moderate levels in any trial with no systematic differences in gastrointestinal discomfort symptoms observed between treatments. CONCLUSIONS In conclusion, ingestion of a maltodextrin/fructose hydrogel beverage during high-intensity cycling does not improve gastrointestinal comfort or performance compared to MF or MD beverages.
Collapse
Affiliation(s)
- Daniel A Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA. .,Department of Exercise Science, Elon University, Elon, NC, 27244, USA.
| | - Harrison R Toney
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| | - Michael J Saunders
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| | - Katherine G Baur
- Department of Physical Education, Virginia Military Institute, 208 Cormack Hall, Lexington, VA, 24450, USA
| | - Nicholas D Luden
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| | - Christopher J Womack
- Department of Kinesiology, James Madison University, Harrisonburg, VA, 22801, USA
| |
Collapse
|