1
|
Chambers RK, Weaver JD, Kim J, Hoar JL, Krska SW, White MC. A preparative small-molecule mimic of liver CYP450 enzymes in the aliphatic C-H oxidation of carbocyclic N-heterocycles. Proc Natl Acad Sci U S A 2023; 120:e2300315120. [PMID: 37428920 PMCID: PMC10629554 DOI: 10.1073/pnas.2300315120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023] Open
Abstract
An emerging trend in small-molecule pharmaceuticals, generally composed of nitrogen heterocycles (N-heterocycles), is the incorporation of aliphatic fragments. Derivatization of the aliphatic fragments to improve drug properties or identify metabolites often requires lengthy de novo syntheses. Cytochrome P450 (CYP450) enzymes are capable of direct site- and chemo-selective oxidation of a broad range of substrates but are not preparative. A chemoinformatic analysis underscored limited structural diversity of N-heterocyclic substrates oxidized using chemical methods relative to pharmaceutical chemical space. Here, we describe a preparative chemical method for direct aliphatic oxidation that tolerates a wide range of nitrogen functionality (chemoselective) and matches the site of oxidation (site-selective) of liver CYP450 enzymes. Commercial small-molecule catalyst Mn(CF3-PDP) selectively effects direct methylene oxidation in compounds bearing 25 distinct heterocycles including 14 out of 27 of the most frequent N-heterocycles found in U.S. Food and Drug Administration (FDA)-approved drugs. Mn(CF3-PDP) oxidations of carbocyclic bioisostere drug candidates (for example, HCV NS5B and COX-2 inhibitors including valdecoxib and celecoxib derivatives) and precursors of antipsychotic drugs blonanserin, buspirone, and tiospirone and the fungicide penconazole are demonstrated to match the major site of aliphatic metabolism obtained with liver microsomes. Oxidations are demonstrated at low Mn(CF3-PDP) loadings (2.5 to 5 mol%) on gram scales of substrate to furnish preparative amounts of oxidized products. A chemoinformatic analysis supports that Mn(CF3-PDP) significantly expands the pharmaceutical chemical space accessible to small-molecule C-H oxidation catalysis.
Collapse
Affiliation(s)
- Rachel K. Chambers
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| | - Jacob D. Weaver
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| | - Jinho Kim
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| | - Jason L. Hoar
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ07065
| | - Shane W. Krska
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, NJ07065
| | - M. Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL61801
| |
Collapse
|
2
|
High-Throughput Metabolic Soft-Spot Identification in Liver Microsomes by LC/UV/MS: Application of a Single Variable Incubation Time Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228058. [PMID: 36432161 PMCID: PMC9693510 DOI: 10.3390/molecules27228058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022]
Abstract
CYP-mediated fast metabolism may lead to poor bioavailability, fast drug clearance and significant drug interaction. Thus, metabolic stability screening in human liver microsomes (HLM) followed by metabolic soft-spot identification (MSSID) is routinely conducted in drug discovery. Liver microsomal incubations of testing compounds with fixed single or multiple incubation time(s) and quantitative and qualitative analysis of metabolites using high-resolution mass spectrometry are routinely employed in MSSID assays. The major objective of this study was to develop and validate a simple, effective, and high-throughput assay for determining metabolic soft-spots of testing compounds in liver microsomes using a single variable incubation time and LC/UV/MS. Model compounds (verapamil, dextromethorphan, buspirone, mirtazapine, saquinavir, midazolam, amodiaquine) were incubated at 3 or 5 µM with HLM for a single variable incubation time between 1 and 60 min based on predetermined metabolic stability data. As a result, disappearances of the parents were around 20-40%, and only one or a few primary metabolites were generated as major metabolite(s) without notable formation of secondary metabolites. The unique metabolite profiles generated from the optimal incubation conditions enabled LC/UV to perform direct quantitative estimation for identifying major metabolites. Consequently, structural characterization by LC/MS focused on one or a few major primary metabolite(s) rather than many metabolites including secondary metabolites. Furthermore, generic data-dependent acquisition methods were utilized to enable Q-TOF and Qtrap to continuously record full MS and MS/MS spectral data of major metabolites for post-acquisition data-mining and interpretation. Results from analyzing metabolic soft-spots of the seven model compounds demonstrated that the novel MSSID assay can substantially simplify metabolic soft-spot identification and is well suited for high-throughput analysis in lead optimization.
Collapse
|
3
|
Zhang BW, Pang NH, Xu RA, Qu GE, Tang CR. Inhibition of Axitinib on Buspirone Metabolism in vitro and in vivo. Drug Des Devel Ther 2022; 16:2031-2042. [PMID: 35795848 PMCID: PMC9252588 DOI: 10.2147/dddt.s359451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To evaluate the effect of axitinib on buspirone metabolism in vitro and in vivo. Methods A microsome incubation assay was performed to study the effect and mechanism of axitinib on buspirone metabolizing. In vivo, buspirone was administered with or without axitinib to Sprague–Dawley rats. Plasma samples were collected and subjected to ultra-performance liquid chromatography–tandem mass spectrometry. Results In both human liver microsomes (HLMs) and rat liver microsomes (RLMs), axitinib (100 μM) decreased buspirone hydroxylation and N-dealkylation by >85%. Axitinib inhibited buspirone hydroxylation and N-dealkylation, with an IC50 of 15.76 and 9.74 for RLMs, and 10.63 and 9.902 for HLMs. Axitinib showed noncompetitive inhibition of both 6′-hydroxylation and N-dealkylation. Moreover, coadministration of axitinib and buspirone led to an increase in the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of buspirone by 4.3- and 5.3-fold, respectively, compared with the control group. Conclusion Axitinib inhibited buspirone metabolism in vivo and in vitro, which increases the risk of the side effects of buspirone in the clinic. When coadministered with axitinib, a lower dosage of buspirone should be defined to avoid a toxic response. Axitinib is suspected to function as an inhibitor of CYP3A4.
Collapse
Affiliation(s)
- Bo-Wen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Ni-Hong Pang
- Department of Pharmacy, The Third Affiliated Hospital of Shanghai University (Wenzhou People’s Hospital), Wenzhou, People’s Republic of China
| | - Ren-Ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
| | - Gao-Er Qu
- Department of Pharmacy, Health Service Community of Yueqing Third People’s Hospital, Wenzhou, People’s Republic of China
| | - Cong-Rong Tang
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China
- Correspondence: Cong-Rong Tang, Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People’s Republic of China, Tel +86 13867722688, Email
| |
Collapse
|
4
|
Zemanova N, Anzenbacher P, Anzenbacherova E. The role of cytochromes P450 in metabolism of selected antidepressants and anxiolytics under psychological stress. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:140-149. [PMID: 35438085 DOI: 10.5507/bp.2022.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
In today's modern society, it seems to be more and more challenging to cope with life stresses. The effect of psychological stress on emotional and physical health can be devastating, and increased stress is associated with increased rates of heart attack, hypertension, obesity, addiction, anxiety and depression. This review focuses on the possibility of an influence of psychological stress on the metabolism of selected antidepressants (TCAs, SSRIs, SNRIs, SARIs, NDRIs a MMAs) and anxiolytics (benzodiazepines and azapirone), as patients treated with antidepressants and/or anxiolytics can still suffer from psychological stress. Emphasis is placed on the drug metabolism mediated by the enzymes of Phase I, typically cytochromes P450 (CYPs), which are the major enzymes involved in drug metabolism, as the majority of psychoactive substances are metabolized by numerous CYPs (such as CYP1A2, CYP2B6, CYP2C19, CYP2C9, CYP2A6, CYP2D6, CYP3A4). As the data on the effect of stress on human enzymes are extremely rare, modulation of the efficacy and even regulation of the biotransformation pathways of drugs by psychological stress can be expected to play a significant role, as there is increasing evidence that stress can alter drug metabolism, hence there is a risk of less effective drug metabolism and increased side effects.
Collapse
Affiliation(s)
- Nina Zemanova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
5
|
Identification of Erythromycin and Clarithromycin Metabolites Formed in Chicken Liver Microsomes Using Liquid Chromatography-High-Resolution Mass Spectrometry. Foods 2021; 10:foods10071504. [PMID: 34209740 PMCID: PMC8304660 DOI: 10.3390/foods10071504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Nontargeted analysis can be used for the rapid screening and confirmatory analysis of veterinary drugs and their metabolites, which are important for the comprehensive safety evaluation of animal-derived foods. Here, a novel nontargeted screening approach based on liquid chromatography coupled with electrospray ionization-high-resolution mass spectrometry (LC/ESI-HR-MS) was developed to determine erythromycin, clarithromycin, and their metabolites in chicken liver microsomes. Erythromycin and clarithromycin were incubated in vitro in the presence of NADPH for 60 min to generate metabolites in chicken liver microsomes. After the incubation, the supernatant was extracted using ultrasonic shaking, orbital shaking, and centrifugation before analysis using LC/ESI-HR-MS in positive ion mode on an Agilent Eclipse Plus C18 column (100 mm × 2.1 mm; i.d. 3.5 µm) with 0.1 percent formic acid-water and acetonitrile as the mobile phases for gradient elution at 0.4 mL/min. The results show that erythromycin can produce N-desmethyl-erythromycin A in chicken liver microsomes, but clarithromycin cannot produce N-desmethyl-clarithromycin in chicken liver microsomes. The N-desmethyl-erythromycin A and N-desmethyl-clarithromycin were tentatively identified in chicken liver microsomes using the established quick analytic method, which will provide a theoretical foundation for future research on pharmacokinetics and drug elimination in poultry.
Collapse
|
6
|
Saito M, Kawamata Y, Meanwell M, Navratil R, Chiodi D, Carlson E, Hu P, Chen L, Udyavara S, Kingston C, Tanwar M, Tyagi S, McKillican BP, Gichinga MG, Schmidt MA, Eastgate MD, Lamberto M, He C, Tang T, Malapit CA, Sigman MS, Minteer SD, Neurock M, Baran PS. N-Ammonium Ylide Mediators for Electrochemical C-H Oxidation. J Am Chem Soc 2021; 143:7859-7867. [PMID: 33983721 DOI: 10.1021/jacs.1c03780] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The site-specific oxidation of strong C(sp3)-H bonds is of uncontested utility in organic synthesis. From simplifying access to metabolites and late-stage diversification of lead compounds to truncating retrosynthetic plans, there is a growing need for new reagents and methods for achieving such a transformation in both academic and industrial circles. One main drawback of current chemical reagents is the lack of diversity with regard to structure and reactivity that prevents a combinatorial approach for rapid screening to be employed. In that regard, directed evolution still holds the greatest promise for achieving complex C-H oxidations in a variety of complex settings. Herein we present a rationally designed platform that provides a step toward this challenge using N-ammonium ylides as electrochemically driven oxidants for site-specific, chemoselective C(sp3)-H oxidation. By taking a first-principles approach guided by computation, these new mediators were identified and rapidly expanded into a library using ubiquitous building blocks and trivial synthesis techniques. The ylide-based approach to C-H oxidation exhibits tunable selectivity that is often exclusive to this class of oxidants and can be applied to real-world problems in the agricultural and pharmaceutical sectors.
Collapse
Affiliation(s)
- Masato Saito
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yu Kawamata
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael Meanwell
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Rafael Navratil
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debora Chiodi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ethan Carlson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pengfei Hu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Longrui Chen
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sagar Udyavara
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Cian Kingston
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mayank Tanwar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sameer Tyagi
- Product Metabolism and Analytical Science, Syngenta Crop Protection, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Bruce P McKillican
- Product Metabolism and Analytical Science, Syngenta Crop Protection, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Moses G Gichinga
- Product Metabolism and Analytical Science, Syngenta Crop Protection, 410 Swing Road, Greensboro, North Carolina 27409, United States
| | - Michael A Schmidt
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Martin D Eastgate
- Chemical Process Development, Bristol Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Massimiliano Lamberto
- Department of Chemistry & Physics, Monmouth University, West Long Branch, New Jersey 07740, United States
| | - Chi He
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tianhua Tang
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Christian A Malapit
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Giannoni A, Borrelli C, Mirizzi G, Richerson GB, Emdin M, Passino C. Benefit of buspirone on chemoreflex and central apnoeas in heart failure: a randomized controlled crossover trial. Eur J Heart Fail 2021; 23:312-320. [PMID: 32441857 DOI: 10.1002/ejhf.1854] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS Increased chemosensitivity to carbon dioxide (CO2 ) is an important trigger of central apnoeas (CA) in heart failure (HF), with negative impact on outcome. We hypothesized that buspirone, a 5HT1A receptor agonist that inhibits serotonergic chemoreceptor neuron firing in animals, can decrease CO2 chemosensitivity and CA in HF. METHODS AND RESULTS The BREATH study was a randomized, double-blind, placebo-controlled, crossover study (EudraCT-code 2015-005383-42). Outpatients with systolic HF (left ventricular ejection fraction <50%) and moderate-severe CA [nocturnal apnoea-hypopnoea index (AHI) ≥15 events/h] were randomly assigned to either oral buspirone (15 mg thrice daily) or placebo for 1 week, with a crossover design (1 week of wash-out). The primary effectiveness endpoint was a decrease in CO2 chemosensitivity >0.5 L/min/mmHg. The primary safety endpoint was freedom from serious adverse events. Sixteen patients (age 71.3 ± 5.8 years, all males, left ventricular ejection fraction 29.8 ± 7.8%) were enrolled. In the intention-to-treat analysis, more patients treated with buspirone (8/16, 50%) had a CO2 chemosensitivity reduction >0.5 L/min/mmHg from baseline than those treated with placebo (1/16, 6.7%) (difference between groups 43%, 95% confidence interval 14-73%, P = 0.016). Buspirone compared to baseline led to a 41% reduction in CO2 chemosensitivity (P = 0.001) and to a reduction in the AHI, central apnoea index and oxygen desaturation index of 42%, 79%, 77% at nighttime and 50%, 78%, 86% at daytime (all P < 0.01); no difference was observed after placebo administration (all P > 0.05). No patient reported buspirone-related serious adverse events. CONCLUSIONS Buspirone reduces CO2 chemosensitivity and improves CA and oxygen saturation across the 24 h in patients with HF.
Collapse
Affiliation(s)
- Alberto Giannoni
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Gianluca Mirizzi
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | - Michele Emdin
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Claudio Passino
- Fondazione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
8
|
Davies M, Peramuhendige P, King L, Golding M, Kotian A, Penney M, Shah S, Manevski N. Evaluation of In Vitro Models for Assessment of Human Intestinal Metabolism in Drug Discovery. Drug Metab Dispos 2020; 48:1169-1182. [DOI: 10.1124/dmd.120.000111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
|
9
|
Zhang XD, Li YH, Chen DX, You WW, Hu XX, Chen BB, Hu GX, Qian JC. The effect of apatinib on pharmacokinetic profile of buspirone both in vivo and in vitro. J Pharm Pharmacol 2020; 72:1405-1411. [PMID: 32608074 DOI: 10.1111/jphp.13320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/30/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the potential interaction of apatinib and buspirone and underlying mechanism. METHODS UPLC-MS/MS assay was applied to determine the concentrations of buspirone and its main metabolites (1-PP and 6-OH buspirone) after incubated with liver microsomes. Moreover, the connection of in vitro and in vivo was further determined. Sprague Dawley rats were randomly divided into two groups: group A (20 mg/kg buspirone) and group B (buspirone vs 40 mg/kg apatinib). Tail vein blood was collected and subjected to the UPLC-MS/MS detection. KEY FINDINGS Apatinib inhibited the generations of 1-PP and 6-OH buspirone dose-dependently with IC50 of 1.76 and 2.23 μm in RLMs, and 1.51 and 1.48 μm in HLMs, respectively. There was a mixed mechanism underlying such an inhibition effect. In rat, AUC(0- t ) , AUC(0-∞) , Tmax and Cmax of buspirone and 6-OH buspirone increased significantly while co-administering with apatinib, but Vz/F and CLz/F decreased obviously while comparing group A with group B . CONCLUSIONS Apatinib suppresses the CYP450 based metabolism of buspirone in a mixed mechanism and boosted the blood exposure of prototype drug and 6-OH buspirone dramatically. Therefore, extra caution should be taken when combining apatinib with buspirone in clinic.
Collapse
Affiliation(s)
- Xiao-Dan Zhang
- The Seventh People's Hospital of Wenzhou, Wenzhou, Zhejiang, China
| | - Ying-Hui Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dao-Xing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wei-Wei You
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Xia Hu
- Jinhua Hospital of Zhejiang University and Jinhua Municipal Central Hospital, Jinhua, Zhejiang, China
| | - Bing-Bing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Chang Qian
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Fuscoe JC, Vijay V, Hanig JP, Han T, Ren L, Greenhaw JJ, Beger RD, Pence LM, Shi Q. Hepatic Transcript Profiles of Cytochrome P450 Genes Predict Sex Differences in Drug Metabolism. Drug Metab Dispos 2020; 48:447-458. [PMID: 32193355 PMCID: PMC7250365 DOI: 10.1124/dmd.119.089367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P450) enzymes can be used to predict sex-associated differences in drug metabolism and possible adverse events. Comprehensive hepatic transcript profiles were generated for F344 rats of both sexes at nine ages, from 2 weeks (preweaning) to 104 weeks (elderly). Large differences in the transcript profiles of 29 drug metabolizing enzymes and transporters were found between adult males and females (8-52 weeks). Using the PharmaPendium data base, 41 drugs were found to be metabolized by one or two P450 enzymes encoded by sexually dimorphic mRNAs and thus were candidates for evaluation of possible sexually dimorphic metabolism and/or toxicities. Suspension cultures of primary hepatocytes from three male and three female adult rats (10-13 weeks old) were used to evaluate the metabolism of 11 drugs predicted to have sexually dimorphic metabolism. The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%-400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT: The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events.
Collapse
Affiliation(s)
- James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - Vikrant Vijay
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - Joseph P Hanig
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - Lijun Ren
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - James J Greenhaw
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - Lisa M Pence
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| | - Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas (J.C.F., V.V., T.H., L.R., J.J.G., R.D.B., L.M.P., Q.S.); and Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland (J.P.H.)
| |
Collapse
|
11
|
van Geenen FAMG, Franssen MCR, Miikkulainen V, Ritala M, Zuilhof H, Kostiainen R, Nielen MWF. TiO 2 Photocatalyzed Oxidation of Drugs Studied by Laser Ablation Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:639-646. [PMID: 30617860 PMCID: PMC6445813 DOI: 10.1007/s13361-018-2120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/27/2018] [Accepted: 12/02/2018] [Indexed: 05/04/2023]
Abstract
In drug discovery, it is important to identify phase I metabolic modifications as early as possible to screen for inactivation of drugs and/or activation of prodrugs. As the major class of reactions in phase I metabolism is oxidation reactions, oxidation of drugs with TiO2 photocatalysis can be used as a simple non-biological method to initially eliminate (pro)drug candidates with an undesired phase I oxidation metabolism. Analysis of reaction products is commonly achieved with mass spectrometry coupled to chromatography. However, sample throughput can be substantially increased by eliminating pretreatment steps and exploiting the potential of ambient ionization mass spectrometry (MS). Furthermore, online monitoring of reactions in a time-resolved way would identify sequential modification steps. Here, we introduce a novel (time-resolved) TiO2-photocatalysis laser ablation electrospray ionization (LAESI) MS method for the analysis of drug candidates. This method was proven to be compatible with both TiO2-coated glass slides as well as solutions containing suspended TiO2 nanoparticles, and the results were in excellent agreement with studies on biological oxidation of verapamil, buspirone, testosterone, andarine, and ostarine. Finally, a time-resolved LAESI MS setup was developed and initial results for verapamil showed excellent analytical stability for online photocatalyzed oxidation reactions within the set-up up to at least 1 h. Graphical Abstract.
Collapse
Affiliation(s)
- Fred A M G van Geenen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- TI-COAST, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ville Miikkulainen
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Mikko Ritala
- Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki, Finland
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, People's Republic of China
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Risto Kostiainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Michel W F Nielen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
- RIKILT, Wageningen University & Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Maeng HJ, Doan TNK, Yoon IS. Differential regulation of intestinal and hepatic CYP3A by 1α,25-dihydroxyvitamin D 3 : Effects on in vivo oral absorption and disposition of buspirone in rats. Drug Dev Res 2018; 80:333-342. [PMID: 30537097 DOI: 10.1002/ddr.21505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
1α,25-Dihydroxyvitamin D3 (also called 1,25(OH)2 D3 or calcitriol) is the biologically active form of vitamin D, which functions as a ligand to the vitamin D receptor (VDR). It was previously reported that intestinal cytochrome P450 3A (CYP3A) expression was altered by 1,25(OH)2 D3 -mediated VDR activation. However, to clarify whether the change in CYP3A subfamily expression by VDR activation can affect metabolic function, further evidence is needed to prove the effect of 1,25(OH)2 D3 treatment on CYP3A-mediated drug metabolism and pharmacokinetics. Here, we report the effects of 1,25(OH)2 D3 on CYP3A activity and in vivo pharmacokinetics of buspirone in Sprague-Dawley rats. CYP3A mRNA expression and CYP3A-mediated testosterone metabolism were enhanced in the intestine but were unaffected in the livers of rats treated with 1,25(OH)2 D3 . Notably, the oral pharmacokinetic profile of buspirone (CYP3A substrate drug) and 6'-hydroxybuspirone (major active metabolite of buspirone formed via CYP3A-mediated metabolism) was significantly altered, while its intravenous pharmacokinetic profile was not affected by 1,25(OH)2 D3 treatment. To the best of our knowledge, this study provides the first reported data regarding the effects of 1,25(OH)2 D3 treatment on the in vivo pharmacokinetics of intravenous and oral buspirone in rats, by the differential modulation of hepatic and intestinal CYP3A activity. Our present results could lead to further studies in clinically significant CYP3A-mediated drug-nutrient interactions with 1,25(OH)2 D3 , including 1,25(OH)2 D3 -buspirone interaction. Preclinical Research & Development.
Collapse
Affiliation(s)
- Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, South Korea
| | | | - In-Soo Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan, South Korea
| |
Collapse
|
13
|
Zagórska A, Partyka A, Bucki A, Kołaczkowski M, Jastrzębska‐Więsek M, Czopek A, Siwek A, Głuch‐Lutwin M, Bednarski M, Bajda M, Jończyk J, Piska K, Koczurkiewicz P, Wesołowska A, Pawłowski M. Characteristics of metabolic stability and the cell permeability of 2‐pyrimidinyl‐piperazinyl‐alkyl derivatives of 1H‐imidazo[2,1
‐f
]purine‐2,4(3
H
,8
H
)‐dione with antidepressant‐ and anxiolytic‐like activities. Chem Biol Drug Des 2018; 93:511-521. [DOI: 10.1111/cbdd.13442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/29/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Anna Partyka
- Department of Clinical PharmacyJagiellonian University Medical College Kraków Poland
| | - Adam Bucki
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Marcin Kołaczkowski
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | | | - Anna Czopek
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| | - Agata Siwek
- Department of PharmacobiologyJagiellonian University Medical College Kraków Poland
| | - Monika Głuch‐Lutwin
- Department of PharmacodynamicsJagiellonian University Medical College Kraków Poland
| | - Marek Bednarski
- Department of PharmacodynamicsJagiellonian University Medical College Kraków Poland
| | - Marek Bajda
- Department of Physicochemical Drug AnalysisJagiellonian University Medical College Kraków Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug AnalysisJagiellonian University Medical College Kraków Poland
| | - Kamil Piska
- Department of Pharmaceutical BiochemistryJagiellonian University Medical College Kraków Poland
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical BiochemistryJagiellonian University Medical College Kraków Poland
| | - Anna Wesołowska
- Department of Clinical PharmacyJagiellonian University Medical College Kraków Poland
| | - Maciej Pawłowski
- Department of Medicinal ChemistryJagiellonian University Medical College Kraków Poland
| |
Collapse
|
14
|
Ruokolainen M, Miikkulainen V, Ritala M, Sikanen T, Kotiaho T, Kostiainen R. TiO 2 Photocatalysis-DESI-MS Rotating Array Platform for High-Throughput Investigation of Oxidation Reactions. Anal Chem 2017; 89:11214-11218. [PMID: 28972369 DOI: 10.1021/acs.analchem.7b01638] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present a new high-throughput platform for studying titanium dioxide (TiO2) photocatalytic oxidation reactions by performing reactions on a TiO2-coated surface, followed by direct analysis of oxidation products from the surface by desorption electrospray ionization mass spectrometry (DESI-MS). For this purpose, we coated a round glass wafer with photocatalytically active anatase-phase TiO2 using atomic layer deposition. Approximately 70 aqueous 1 μL samples can be injected onto the rim of the TiO2-coated glass wafer, before the entire wafer is exposed to UV irradiation. After evaporation of water, the oxidation products can be directly analyzed from the sample spots by DESI-MS, using a commercial rotating sample platform. The method was shown to provide fast photocatalytic oxidation reactions and analysis with throughput of about four samples per minute. The feasibility of the method was examined for mimicking phase I metabolism reactions of amodiaquine, buspirone and verapamil. Their main photocatalytic reaction products were mostly similar to the products observed earlier in TiO2 photocatalysis and in in vitro phase I metabolism assays performed using human liver microsomes.
Collapse
Affiliation(s)
- Miina Ruokolainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Ville Miikkulainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Mikko Ritala
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Tiina Sikanen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Tapio Kotiaho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| | - Risto Kostiainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, and ‡Department of Chemistry, University of Helsinki , Helsinki, 00014 Finland
| |
Collapse
|
15
|
Kim KT, Lee JY, Park JH, Kim MH, Kim JS, Shin HJ, Kang N, Cho HJ, Yoon IS, Kim DD. Development of HPLC Method for the Determination of Buspirone in Rat Plasma Using Fluorescence Detection and Its Application to a Pharmacokinetic Study. Chem Pharm Bull (Tokyo) 2017; 64:1582-1588. [PMID: 27803469 DOI: 10.1248/cpb.c16-00405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A simple and sensitive analytical method for the quantitative determination of buspirone in rat plasma by HPLC with fluorescence detection was developed and validated using naproxen as an internal standard. A relatively small-volume (150 µL) aliquot of rat plasma sample was prepared by a simple deproteinization procedure using acetonitrile as a precipitating organic solvent. Chromatographic separation was performed using Kinetex® C8 column with an isocratic mobile phase consisting of acetonitrile and 10-mM potassium phosphate buffer (pH 6.0) at a flow rate of 1.0 mL/min. The eluent was monitored by fluorescence detector at a wavelength pair of 237/380 nm (excitation/emission). The linearity was established at 20.0-5000 ng/mL, and the limit of detection was 6.51 ng/mL. The precision (≤14.6%), accuracy (89.2-108%), and stability (89.1-101%) were within acceptable ranges. The newly developed method was successfully applied to intravenous and oral pharmacokinetic studies of buspirone in rats.
Collapse
Affiliation(s)
- Ki Taek Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sison-Young RL, Lauschke VM, Johann E, Alexandre E, Antherieu S, Aerts H, Gerets HHJ, Labbe G, Hoët D, Dorau M, Schofield CA, Lovatt CA, Holder JC, Stahl SH, Richert L, Kitteringham NR, Jones RP, Elmasry M, Weaver RJ, Hewitt PG, Ingelman-Sundberg M, Goldring CE, Park BK. A multicenter assessment of single-cell models aligned to standard measures of cell health for prediction of acute hepatotoxicity. Arch Toxicol 2016; 91:1385-1400. [PMID: 27344343 PMCID: PMC5316403 DOI: 10.1007/s00204-016-1745-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Abstract
Assessing the potential of a new drug to cause drug-induced liver injury (DILI) is a challenge for the pharmaceutical industry. We therefore determined whether cell models currently used in safety assessment (HepG2, HepaRG, Upcyte and primary human hepatocytes in conjunction with basic but commonly used endpoints) are actually able to distinguish between novel chemical entities (NCEs) with respect to their potential to cause DILI. A panel of thirteen compounds (nine DILI implicated and four non-DILI implicated in man) were selected for our study, which was conducted, for the first time, across multiple laboratories. None of the cell models could distinguish faithfully between DILI and non-DILI compounds. Only when nominal in vitro concentrations were adjusted for in vivo exposure levels were primary human hepatocytes (PHH) found to be the most accurate cell model, closely followed by HepG2. From a practical perspective, this study revealed significant inter-laboratory variation in the response of PHH, HepG2 and Upcyte cells, but not HepaRG cells. This variation was also observed to be compound dependent. Interestingly, differences between donors (hepatocytes), clones (HepG2) and the effect of cryopreservation (HepaRG and hepatocytes) were less important than differences between the cell models per se. In summary, these results demonstrate that basic cell health endpoints will not predict hepatotoxic risk in simple hepatic cells in the absence of pharmacokinetic data and that a multicenter assessment of more sophisticated signals of molecular initiating events is required to determine whether these cells can be incorporated in early safety assessment.
Collapse
Affiliation(s)
- Rowena L Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Esther Johann
- Early Non-Clinical Safety, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | | | | | - Hélène Aerts
- Biologie Servier, 905 Rue de Saran, 45520, Gidy, France
| | - Helga H J Gerets
- UCB BioPharma SPRL, Non-Clinical Development, Chemin du Foriest, 1420, Braine-l'Alleud, Belgium
| | - Gilles Labbe
- Sanofi-Aventis Recherche and Développement, Drug Safety Evaluation, Alfortville, France
| | - Delphine Hoët
- Sanofi-Aventis Recherche and Développement, Drug Safety Evaluation, Alfortville, France
| | - Martina Dorau
- Sanofi-Aventis Deutschland GmbH, R&D DSAR, Preclinical Safety FF, Industriepark Hoechst, Building H823, Room 104, 65926, Frankfurt am Main, Germany
| | | | - Cerys A Lovatt
- GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Julie C Holder
- GSK, David Jack Centre for R&D, Park Road, Ware, Hertfordshire, SG12 0DP, UK
| | - Simone H Stahl
- AstraZeneca, Innovative Medicines and Early Development, Drug Safety and Metabolism, ADME Transporters, Unit 310 - Darwin Building, Cambridge Science Park, Milton Road, Cambridge, CB4 0FZ, UK
| | - Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115, Plobsheim, France.,Université de Franche-Comté, EA 4267, 25030, Besançon, France
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Robert P Jones
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.,North Western Hepatobiliary Unit, Aintree University Hospital NHS Foundation Trust, Longmoor Lane, Liverpool, L9 7AL, UK
| | - Mohamed Elmasry
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.,North Western Hepatobiliary Unit, Aintree University Hospital NHS Foundation Trust, Longmoor Lane, Liverpool, L9 7AL, UK
| | | | - Philip G Hewitt
- Early Non-Clinical Safety, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Chris E Goldring
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| |
Collapse
|
17
|
Hohmann N, Haefeli WE, Mikus G. CYP3A activity: towards dose adaptation to the individual. Expert Opin Drug Metab Toxicol 2016; 12:479-97. [PMID: 26950050 DOI: 10.1517/17425255.2016.1163337] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Co-medication, gene polymorphisms and co-morbidity are main causes for high variability in expression and function of the CYP3A isoenzymes. Pharmacokinetic variability is a major source of interindividual variability of drug effect and response of CYP3A substrates. While CYP3A genotyping is of limited use, direct testing of enzyme function ('phenotyping') may be more promising to achieve individualized dosing of CYP3A substrates. AREAS COVERED We will discuss available phenotyping strategies for CYP3A isoenzymes and causes of intra- and interindividual variability of CYP3A. The impact of phenotyping on the dose selection and pharmacokinetics of CYP3A substrates (docetaxel, irinotecan, tyrosine kinase inhibitors, ciclosporin, tacrolimus) are reviewed. Pubmed searches were conducted during March-November 2015 to retrieve articles related to CYP3A enzyme, phenotyping, drug interactions with CYP3A probe substrates, and phenotyping-guided dosing algorithms. EXPERT OPINION While ample data is available on the choice appropriate phenotyping drugs (midazolam, alfentanil, aplrazolam, buspirone, triazolam), less clinical trial data is available concerning strategies to usefully guide dosing in the clinical practice. Implementation into the clinical routine necessitates further research to identify (1) an easy-to-use and cheap test for CYP3A activity that (2) adequately predicts drug exposure to (3) allow a sound decision on dose adaptation and hence (4) improve clinical outcome and/or reduce the intensity or frequency of adverse drug effects.
Collapse
Affiliation(s)
- Nicolas Hohmann
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| | - Walter E Haefeli
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| | - Gerd Mikus
- a Department of Clinical Pharmacology and Pharmacoepidemiology , University Hospital Heidelberg , Heidelberg , Germany
| |
Collapse
|
18
|
Kim SB, Cho SS, Cho HJ, Yoon IS. Modulation of Hepatic Cytochrome P450 Enzymes by Curcumin and its Pharmacokinetic Consequences in Sprague-dawley Rats. Pharmacogn Mag 2016; 11:S580-4. [PMID: 27013798 PMCID: PMC4787092 DOI: 10.4103/0973-1296.172965] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background: Curcumin (CUR) is a polyphenolic component derived from an herbal remedy and dietary spice turmeric (Curcuma longa). Objective: The aim of this study was to investigate inhibitory effects of CUR on in vitro cytochrome P450 (CYP) activity and in vivo pharmacokinetic consequences of single CUR dose in rats. Materials and Methods: An in vitro CYP inhibition study in rat liver microsomes (RLM) was conducted using probe substrates for CYPs. Then, an in vivo pharmacokinetics of intravenous buspirone (BUS), a probe substrate for CYP3A, was studied with the concurrent administration of oral CUR in rats. Results: In the in vitro CYP inhibition study, CUR inhibited the CYP3A-mediated metabolism of testosterone (TES) with a half maximal inhibitory concentration of 11.0 ± 3.3 μM. However, the impact of a single oral CUR dose on the pharmacokinetics of BUS in rats is limited, showing that CUR cannot function as an inhibitor for CYP3A-mediated drug metabolism in vivo. Conclusion: To the best of our knowledge, our results are the first reported data regarding the inhibition of in vitro CYP3A-mediated metabolism of TES and the in vivo impact of a single CUR dose on the pharmacokinetics of BUS in rats. Further study is required to draw a confirmative conclusion on whether CUR can be a clinically relevant CYP3A4 inhibitor. SUMMARY CUR can inhibit the in vitro CYP3A-mediated metabolism of TES in RLM. However, the impact of a single oral CUR dose on the pharmacokinetics of BUS in rats is limited, showing that CUR cannot function as an inhibitor for CYP3A-mediated drug metabolism in vivo.
Collapse
Affiliation(s)
- Sang-Bum Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 701-310, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - In-Soo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 534-729, Republic of Korea
| |
Collapse
|
19
|
High-throughput quantitative and qualitative analysis of microsomal incubations by cocktail analysis with an ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometer system. Bioanalysis 2015; 7:671-83. [DOI: 10.4155/bio.14.314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Metabolite identification studies are very resource intensive and also are rarely performed in early discovery. Here, we report the validation of an ultraperformance liquid chromatography–high-resolution mass spectrometry (UPLC-HRMS) platform for generating high-throughput stability data with structure elucidation in a single injection. Materials & methods: Tandem mass spectrometry spectra were obtained for quantitative analysis using a generic information-dependent acquisition method from pooled microsomal samples incubated at low compound concentrations. Results: A good correlation was observed between clearance determined using UPLC-HRMS and UPLC–triple-quadrupole analysis. Structural elucidation performed with MassMetaSite™ (Molecular Discovery, Perugia, Italy) software identified 85% of the major metabolites of eight marketed drugs and over 100 internal compounds under these conditions. Conclusion: For the first time, a high-throughput quantitative–qualitative workflow was established using a cocktail approach for sample analysis with UPLC-HRMS in order to enable metabolite identification in early discovery projects.
Collapse
|
20
|
Ulenberg S, Belka M, Król M, Herold F, Hewelt-Belka W, Kot-Wasik A, Bączek T. Prediction of overall in vitro microsomal stability of drug candidates based on molecular modeling and support vector machines. Case study of novel arylpiperazines derivatives. PLoS One 2015; 10:e0122772. [PMID: 25826401 PMCID: PMC4380424 DOI: 10.1371/journal.pone.0122772] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/18/2015] [Indexed: 11/23/2022] Open
Abstract
Other than efficacy of interaction with the molecular target, metabolic stability is the primary factor responsible for the failure or success of a compound in the drug development pipeline. The ideal drug candidate should be stable enough to reach its therapeutic site of action. Despite many recent excellent achievements in the field of computational methods supporting drug metabolism studies, a well-recognized procedure to model and predict metabolic stability quantitatively is still lacking. This study proposes a workflow for developing quantitative metabolic stability-structure relationships, taking a set of 30 arylpiperazine derivatives as an example. The metabolic stability of the compounds was assessed in in vitro incubations in the presence of human liver microsomes and NADPH and subsequently quantified by liquid chromatography-mass spectrometry (LC-MS). Density functional theory (DFT) calculations were used to obtain 30 models of the molecules, and Dragon software served as a source of structure-based molecular descriptors. For modeling structure-metabolic stability relationships, Support Vector Machines (SVM), a non-linear machine learning technique, were found to be more effective than a regression technique, based on the validation parameters obtained. Moreover, for the first time, general sites of metabolism for arylpiperazines bearing the 4-aryl-2H-pyrido[1,2-c]pyrimidine-1,3-dione system were defined by analysis of Q-TOF-MS/MS spectra. The results indicated that the application of one of the most advanced chemometric techniques combined with a simple and quick in vitro procedure and LC-MS analysis provides a novel and valuable tool for predicting metabolic half-life values. Given the reduced time and simplicity of analysis, together with the accuracy of the predictions obtained, this is a valid approach for predicting metabolic stability using structural data. The approach presented provides a novel, comprehensive and reliable tool for investigating metabolic stability, factors that affect it, and the proposed structures of metabolites at the same time. The performance of the DFT-SVM-based approach provides an opportunity to implement it in a standard drug development pipeline.
Collapse
Affiliation(s)
- Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Marek Król
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Warsaw, Poland
| | - Franciszek Herold
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, Poland
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
- * E-mail:
| |
Collapse
|
21
|
Olivares-Morales A, Kamiyama Y, Darwich AS, Aarons L, Rostami-Hodjegan A. Analysis of the impact of controlled release formulations on oral drug absorption, gut wall metabolism and relative bioavailability of CYP3A substrates using a physiologically-based pharmacokinetic model. Eur J Pharm Sci 2014; 67:32-44. [PMID: 25444842 DOI: 10.1016/j.ejps.2014.10.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 12/11/2022]
Abstract
Controlled release (CR) formulations are usually designed to achieve similar exposure (AUC) levels as the marketed immediate release (IR) formulation. However, the AUC is often lower following CR compared to IR formulations. There are a few exceptions when the CR formulations have shown higher AUC. This study investigated the impact of CR formulations on oral drug absorption and CYP3A4-mediated gut wall metabolism. A review of the current literature on relative bioavailability (Frel) between CR and IR formulations of CYP3A substrates was conducted. This was followed by a systematic analysis to assess the impact of the release characteristics and the drug-specific factors (including metabolism and permeability) on oral bioavailability employing a physiologically-based pharmacokinetic (PBPK) modelling and simulation approach. From the literature review, only three CYP3A4 substrates showed higher Frel when formulated as CR. Several scenarios were investigated using the PBPK approach; in most of them, the oral absorption of CR formulations was lower as compared to the IR formulations. However, for highly permeable compounds that were CYP3A4 substrates the reduction in absorption was compensated by an increase in the fraction that escapes from first pass metabolism in the gut wall (FG), where the magnitude was dependent on CYP3A4 affinity. The systematic simulations of various interplays between different parameters demonstrated that BCS class 1 highly-cleared CYP3A4 substrates can display up to 220% higher relative bioavailability when formulated as CR compared to IR, in agreement with the observed data collected from the literature. The results and methodology of this study can be employed during the formulation development process in order to optimize drug absorption, especially for CYP3A4 substrates.
Collapse
Affiliation(s)
- Andrés Olivares-Morales
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, UK.
| | - Yoshiteru Kamiyama
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, UK; Discovery Drug Metabolism & Pharmacokinetics Management, Analysis & Pharmacokinetics Research Labs., Astellas Pharma Inc., Ibaraki, Japan
| | - Adam S Darwich
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, UK
| | - Leon Aarons
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, UK; Simcyp Limited, Blades Enterprise Centre, Sheffield, UK.
| |
Collapse
|
22
|
Quantitative Assessment of Intestinal First-pass Metabolism of Oral Drugs Using Portal-vein Cannulated Rats. Pharm Res 2014; 32:604-16. [DOI: 10.1007/s11095-014-1489-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/15/2014] [Indexed: 01/09/2023]
|
23
|
Hanley MJ, Masse G, Harmatz JS, Cancalon PF, Dolnikowski GG, Court MH, Greenblatt DJ. Effect of blueberry juice on clearance of buspirone and flurbiprofen in human volunteers. Br J Clin Pharmacol 2013; 75:1041-52. [PMID: 22943633 DOI: 10.1111/j.1365-2125.2012.04450.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/26/2012] [Indexed: 12/20/2022] Open
Abstract
AIM The present study evaluated the possibility of drug interactions involving blueberry juice (BBJ) and substrate drugs whose clearance is dependent on cytochromes P4503A (CYP3A) and P4502C9 (CYP2C9). METHODS A 50:50 mixture of lowbush and highbush BBJ was evaluated in vitro as an inhibitor of CYP3A activity (hydroxylation of triazolam and dealkylation of buspirone) and of CYP2C9 activity (flurbiprofen hydroxylation) using human liver microsomes. In clinical studies, clearance of oral buspirone and oral flurbiprofen was studied in healthy volunteers with and without co-treatment with BBJ. RESULTS BBJ inhibited CYP3A and CYP2C9 activity in vitro, with 50% inhibitory concentrations (IC50 ) of less than 2%, but without evidence of mechanism-based (irreversible) inhibition. Grapefruit juice (GFJ) also inhibited CYP3A activity, but inhibitory potency was increased by pre-incubation, consistent with mechanism-based inhibition. In clinical studies, GFJ significantly increased area under the plasma concentration-time curve (AUC) for the CYP3A substrate buspirone. The geometric mean ratio (GMR = AUC with GFJ divided by AUC with water) was 2.12. In contrast, the effect of BBJ (GMR = 1.39) was not significant. In the study of flurbiprofen (CYP2C9 substrate), the positive control inhibitor fluconazole significantly increased flurbiprofen AUC (GMR = 1.71), but BBJ had no significant effect (GMR = 1.03). CONCLUSION The increased buspirone AUC associated with BBJ is quantitatively small and could have occurred by chance. BBJ has no effect on flurbiprofen AUC. The studies provide no evidence for concern about clinically important pharmacokinetic drug interactions of BBJ with substrate drugs metabolized by CYP3A or CYP2C9.
Collapse
Affiliation(s)
- Michael J Hanley
- Sackler Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Altamura AC, Moliterno D, Paletta S, Maffini M, Mauri MC, Bareggi S. Understanding the pharmacokinetics of anxiolytic drugs. Expert Opin Drug Metab Toxicol 2013; 9:423-40. [PMID: 23330992 DOI: 10.1517/17425255.2013.759209] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Anxiety disorders are considered the most common mental disorders and they can increase the risk for comorbid mood and substance use disorders, significantly contributing to the global burden of disease. For this reason, anxiolytics are the most prescribed psychoactive drugs, particularly in the Western world. AREAS COVERED This review aims to analyze pharmacokinetic profile, plasma level variations so as the metabolism, interactions and possible relation to clinical effect of several drugs which are used primarily as anxiolytics. The drugs analyzed include benzodiazepines, anticonvulsants (pregabalin, gabapentin), buspirone, β-blockers and antihistamines (hydroxyzine). Regarding the most frequently used anxiolytic benzodiazepines, data on alprazolam, bromazepam, chlordesmethyldiazepam, chlordiazepoxide, clotiazepam, diazepam, etizolam, lorazepam, oxazepam, prazepam and clonazepam have been detailed. EXPERT OPINION There is a need for a more balanced assessment of the benefits and risks associated with benzodiazepine use, particularly considering pharmacokinetic profile of the drugs to ensure that patients, who would truly benefit from these agents, are not denied appropriate treatment. An optimal pharmacological approach involving an integrative pharmacokinetic and pharmacodynamic optimization strategy would ensure better treatment and personalization of anxiety disorders. So it would be desirable for the development of new anxiolytic drug(s) that are more selective, fast acting and free from the unwanted effects associated with the traditional benzodiazepines as tolerance or dependence.
Collapse
Affiliation(s)
- Alfredo Carlo Altamura
- University of Milan, IRCCS Foundation Ca' Granda, Ospedale Maggiore Policlinico, Department of Clinical Psychiatry, Via F. Sforza 35, 20122 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Resolving the microcosmos of complex samples: UPLC/travelling wave ion mobility separation high resolution mass spectrometry for the analysis of in vivo drug metabolism studies. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s12127-012-0113-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Di Nardo G, Gilardi G. Optimization of the bacterial cytochrome P450 BM3 system for the production of human drug metabolites. Int J Mol Sci 2012; 13:15901-24. [PMID: 23443101 PMCID: PMC3546669 DOI: 10.3390/ijms131215901] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 12/28/2022] Open
Abstract
Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported.
Collapse
Affiliation(s)
- Giovanna Di Nardo
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; E-Mail:
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123 Torino, Italy; E-Mail:
| |
Collapse
|
27
|
Zhu L, Yang X, Zhou J, Tang L, Xia B, Hu M, Zhou F, Liu Z. The exposure of highly toxic aconitine does not significantly impact the activity and expression of cytochrome P450 3A in rats determined by a novel ultra performance liquid chromatography-tandem mass spectrometric method of a specific probe buspirone. Food Chem Toxicol 2012; 51:396-403. [PMID: 23085095 DOI: 10.1016/j.fct.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/30/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Aconitum species are widely used to treat rheumatism, cardiovascular diseases, and tumors in China and other Asian countries. The herbs are always used with drugs such as paclitaxel. Aconitine (AC) is one of the main bioactive/high-toxic alkaloids of Aconitum roots. AC is metabolized by cytochrome P450 (CYP) 3A. However, whether AC inhibits/induces CYP3A, which causes drug-drug interaction (DDI) is unclear. Our study aims to explore the potent effects of AC, as a marker component of Aconitum, on CYP3A using the probe buspirone in rats. The effects of oral AC on pharmacokinetics of buspirone were evaluated. CYP3A activity and protein levels in rat liver microsomes pretreated with oral AC were also measured using in vitro buspirone metabolism and Western blot. Buspirone and its major metabolites 1-(2-pyrimidinyl)piperazine and 6'-hydroxybuspirone were determined using a newly validated UPLC-MS/MS method. Single dose and 7-day AC administration at 0.125mg/kg had no effect on CYP3A activity since no change in the formation of 1-(2-pyrimidinyl)piperazine and 6'-hydroxybuspirone. CYP3A activity and protein levels in liver microsomes were also not affected by 7-day AC pretreatment at 0.125mg/kg. Therefore, AC neither inhibits nor induces CYP3A in rats, indicating AC does not cause CYP3A-related DDI in the liver.
Collapse
Affiliation(s)
- Lijun Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
A semi-automated method for the integrated evaluation of half-life and metabolic soft spots of discovery compounds. Bioanalysis 2012; 4:1747-61. [DOI: 10.4155/bio.12.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: An integrated method that provides rates of both parent disappearance and metabolite formation was developed. Results: Buspirone, mirtazapine and verapamil were used as model compounds in developing the method. Incubations were carried out on a robotic platform. Qualitative analysis of metabolites in 30 µM samples was conducted by data-dependent HPLC–MS/MS on a high-resolution instrument. Quantitative analysis of the parent compound and metabolites in 0.5 µM samples was conducted by full-scan MS2 with product ion extraction using an ion trap mass spectrometer. Data generated for the compounds included half-life and intrinsic clearance of the parent molecule, characterization of metabolites and relative rates of metabolite formation. A correction factor was used to convert MS responses of metabolites in 0.5 µM samples to UV areas in order to compare relative metabolite concentrations. Conclusion: The approach allows for the investigation of a set of six compounds simultaneously, with a turnaround time of 1 week or less.
Collapse
|
29
|
Li CSW, Zhang L, Haske T, Dounay A, Gray D, Barta N, Brodfuehrer J, Lepsy C, Campbell B. Mechanism-based pharmacokinetic/pharmacodynamic modeling of rat prefrontal cortical dopamine response to dual acting norepinephrine reuptake inhibitor and 5-HT1A partial agonist. AAPS JOURNAL 2012; 14:365-76. [PMID: 22454087 DOI: 10.1208/s12248-012-9343-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 03/02/2012] [Indexed: 11/30/2022]
Abstract
Evidence suggests that compounds possessing both norepinephrine reuptake inhibition and 5-HT(1A) partial agonism (NRI/5-HT(1A)) activities may have a greater efficacy in treating neuropsychiatric disorders than compounds possessing either activity alone. The objectives of the present study were first to characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship of the plasma concentrations of atomoxetine (NRI) and buspirone (5-HT(1A) partial agonist), administered alone and in combination, on the prefrontal cortex dopamine levels in rats, and second to use the model developed to characterize the PK/PD relationship of novel NRI/5-HT(1A) compounds, PF-04269339 and PF-03529936, in a NRI/5-HT(1A) drug discovery program. Maximal dopamine elevation was twofold higher after administration of atomoxetine and buspirone in combination, PF-04269339, or PF-03529936 than after administration of atomoxetine or buspirone alone. A mechanism-based extended indirect response model characterized the time profiles of the prefrontal cortex dopamine response to atomoxetine and buspirone, administered alone or in combination. After fixing three mechanism-specific pharmacodynamic parameters (I (max) and γ2 for NRI and γ1 for 5-HT(1A)) based on the model for atomoxetine and/or buspirone, the model fitted the exposure-response profiles of PF-04269339 and PF-03529936 well. Good in vitro-to-in vivo correlation was demonstrated with the compound-specific pharmacodynamic parameters (IC(50) for NRI and SC(50) and S (max) for 5-HT(1A)) across the compounds. In summary, a piecewise modeling approach was used successfully for the characterization of the PK/PD relationship of novel NRI/5-HT(1A) compounds on prefrontal cortex dopamine levels in rats. The application and value of the mechanism-based modeling in the dual pharmacology drug discovery program are also discussed.
Collapse
Affiliation(s)
- Cheryl Shuang-wu Li
- Department of Pharmacokinetics Dynamics and Metabolism, Global Research and Development, Pfizer Inc., Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Integrated quantitative and qualitative workflow for in vivo bioanalytical support in drug discovery using hybrid Q-TOF-MS. Bioanalysis 2012; 4:511-28. [DOI: 10.4155/bio.12.13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background: UHPLC coupled with orthogonal acceleration hybrid quadrupole-TOF (Q-TOF)-MS is an emerging technique offering new strategies for the efficient screening of new chemical entities and related molecules at the early discovery stage within the pharmaceutical industry. In the first part of this article, we examine the main instrumental parameters that are critical for the integration of UHPLC–Q-TOF technology to existing bioanalytical workflows, in order to provide simultaneous quantitative and qualitative bioanalysis of samples generated following in vivo studies. Material & Methods: Three modern Q-TOF mass spectrometers, including Bruker maXis™, Agilent 6540 and Sciex TripleTOF™ 5600, all interfaced with UHPLC systems, are evaluated in the second part of the article. The scope of this work is to demonstrate the potential of Q-TOF for the analysis of typical small molecules, therapeutic peptides (molecular weight <6000 Da), and enzymatically (i.e., trypsin, chymotrypsin and pepsin) cleaved peptides from larger proteins. Results & Discussion: This work focuses mainly on full-scan TOF data obtained under ESI conditions, the major mode of TOF operation in discovery bioanalytical research, where the compounds are selected based on their pharmacokinetic/pharmacodynamic behaviors using animal models prior to selecting a few desirable candidates for further development. Finally, important emerging TOF technologies that could potentially benefit bioanalytical research in the semi-quantification of metabolites without synthesized standards are discussed. Particularly, the utility of captive spray ionization coupled with TripleTOF 5600 was evaluated for improving sensitivity and providing normalized MS response for drugs and their metabolites. The workflow proposed compromises neither the efficiency, nor the quality of pharmacokinetic data in support of early drug discovery programs.
Collapse
|
31
|
Gertz M, Houston JB, Galetin A. Physiologically Based Pharmacokinetic Modeling of Intestinal First-Pass Metabolism of CYP3A Substrates with High Intestinal Extraction. Drug Metab Dispos 2011; 39:1633-42. [DOI: 10.1124/dmd.111.039248] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
32
|
Reinen J, Ferman S, Vottero E, Vermeulen NPE, Commandeur JNM. Application of a fluorescence-based continuous-flow bioassay to screen for diversity of cytochrome P450 BM3 mutant libraries. ACTA ACUST UNITED AC 2011; 16:239-50. [PMID: 21297109 DOI: 10.1177/1087057110394180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fluorescence-based continuous-flow enzyme affinity detection (EAD) setup was used to screen cytochrome P450 BM3 mutants on-line for diversity. The flow-injection screening assay is based on the BM3-mediated O-dealkylation of alkoxyresorufins forming the highly fluorescent product resorufin, and can be used in different configurations, namely injection of ligands, enzymes and substrates. Screening conditions were optimized and the activity of a library of 32 BM3 mutants towards the recently synthesized new probe substrate allyloxyresorufin was measured in flow-injection analysis (FIA) mode and it was shown that large activity differences between the mutants existed. Next, six BM3 mutants containing mutations at different positions in the active site were selected for which on-line enzyme kinetics were determined. Subsequently, for these six BM3 mutants affinity towards a set of 30 xenobiotics was determined in FIA EAD mode. It was demonstrated that significant differences existed for the affinity profiles of the mutants tested and that these differences correlated to alterations in the BM3 mutant-generated metabolic profiles of the drug buspirone. In conclusion, the developed FIA EAD approach is suitable to screen for diversity within BM3 mutants and this alternative screening technology offers new perspectives for rapid and sensitive screening of compound libraries towards BM3 mutants.
Collapse
Affiliation(s)
- Jelle Reinen
- LACDR-Division of Molecular Toxicology, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Barros A, Ly VT, Chando TJ, Ruan Q, Donenfeld SL, Holub DP, Christopher LJ. Development and evaluation of a multiple-plate fraction collector for sample processing: Application to radioprofiling in drug metabolism studies. J Pharm Biomed Anal 2011; 54:979-86. [DOI: 10.1016/j.jpba.2010.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 11/30/2022]
|
34
|
Hao H, Lai L, Zheng C, Wang Q, Yu G, Zhou X, Wu L, Gong P, Wang G. Microsomal cytochrome p450-mediated metabolism of protopanaxatriol ginsenosides: metabolite profile, reaction phenotyping, and structure-metabolism relationship. Drug Metab Dispos 2010; 38:1731-9. [PMID: 20639434 DOI: 10.1124/dmd.110.033845] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although the biotransformation of ginsenosides in the gastrointestinal tract has been extensively studied, much less is known about hepatic cytochrome P450 (P450)-catalyzed metabolism. The major aims of this study were to clarify the metabolic pathway and P450 isoforms involved and to explore the structure-metabolism relationship of protopanaxatriol (PPT)-type ginsenosides in hepatic microsomes. Efficient depletion of ginsenoside Rh1, Rg2, Rf, and PPT was found, whereas the elimination of Re and Rg1, characterized by a glucose substitution at the C20 hydroxy group, was negligible in microsomal incubation systems. Based on high-performance liquid chromatography hybrid ion trap and time-of-flight mass spectrometry analysis, the oxygenation metabolism on the C20 aliphatic branch chain was identified as the predominant metabolic pathway of PPT ginsenosides in both human and rat hepatic microsomes. By a comparison with authentic standards, the C24-25 double bond was identified as one of the oxygenation sites to produce the metabolites of C20-24 epoxide (ocotillol-type ginsenosides). Both chemical inhibition and human recombinant P450 isoform assays indicated that CYP3A4 was the predominant isozyme responsible for the oxygenation metabolism of PPT ginsenosides. Enzyme kinetic evaluations in rat and human hepatic microsomes and human recombinant CYP3A4 isozyme incubation systems showed generally consistent results in that the intrinsic clearance ranked as Rf ≤ Rg2 < Rh1 < PPT, closely correlating with logP values and the number of glycosyl substitutions. Results obtained from this study suggest that CYP3A4-catalyzed oxygenation metabolism plays an important role in the hepatic disposition of ginsenosides and that glycosyl substitution, especially at the C20 hydroxy group, determines their intrinsic clearances by CYP3A4.
Collapse
Affiliation(s)
- Haiping Hao
- China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
To improve patient safety and to help avoid costly late-stage failures, the pharmaceutical industry, along with the US FDA and International Committee on Harmonization (ICH), recommends the identification of differences in drug metabolism between animals used in nonclinical safety assessments and humans as early as possible during the drug-development process. LC–MS is the technique of choice for detection and characterization of metabolites, however, the widely different LC–MS response observed for a new chemical entity (NCE) and its structurally related metabolites limits the direct use of LC–MS responses for quantitative determination of NCEs and metabolites. While no method provides completely accurate universal response, UV, corona charged aerosol detection (CAD), radioactivity, NMR and low-flow (<20 µl/min) nanospray approaches provide opportunities to quantify metabolites in the absence of reference standards or radiolabeled material with enough precision to meet the needs of early clinical development.
Collapse
|
36
|
Niwa T, Murayama N, Yamazaki H. Comparison of the Contributions of Cytochromes P450 3A4 and 3A5 in Drug Oxidation Rates and Substrate Inhibition. ACTA ACUST UNITED AC 2010. [DOI: 10.1248/jhs.56.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Toshiro Niwa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University
| |
Collapse
|
37
|
Hisaka A, Ohno Y, Yamamoto T, Suzuki H. Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol Ther 2009; 125:230-48. [PMID: 19951720 DOI: 10.1016/j.pharmthera.2009.10.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Accepted: 10/21/2009] [Indexed: 02/07/2023]
Abstract
The aim of the present paper was to present an overview of the current status of the methods used to predict the magnitude of pharmacokinetic drug-drug interactions (DDIs) which are caused by apparent changes in cytochrome P450 (CYP) activity with an emphasis on a method using in vivo information. In addition, more than a hundred representative CYP substrates, inhibitor and inducer drugs involved in significant pharmacokinetic DDIs were selected from the literature and are listed. Although the magnitude of DDIs has been conventionally predicted based on in vitro experiments, their predictability is restricted occasionally due to several difficulties, including a precise determination of the unbound inhibitor concentrations at the enzyme site and a reliable in vitro measurement of the inhibition constant (K(i)). Alternatively, a simple method has been recently proposed for the prediction of the magnitude of DDIs based on information fully available from in vivo clinical studies. The new in vivo-based method would be applicable to the adjustment of dose regimens in actual pharmacotherapy situations although it requires a prior clinical study for the prediction. In this review, theoretical and quantitative relationships between the in vivo- and the in vitro-based prediction methods are considered. One of the interesting outcomes of the consideration is that the K(i)-normalized dose (dose/in vitro K(i)) of larger than approximately 20L (2-200L, when variability is considered) may be a pragmatic index which predicts significant in vivo DDIs. In the last part of the article, the relevance of the inclusion of the in vivo-based method into the process of new drug development is discussed for good prediction of in vivo DDIs.
Collapse
Affiliation(s)
- Akihiro Hisaka
- Pharmacology and Pharmacokinetics, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | |
Collapse
|
38
|
Li AC, Ding J, Jiang X, Denissen J. Two-injection workflow for a liquid chromatography/LTQ-Orbitrap system to complete in vivo biotransformation characterization: demonstration with buspirone metabolite identification. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3003-3012. [PMID: 19681099 DOI: 10.1002/rcm.4207] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The relatively high background matrix in in vivo samples typically poses difficulties in drug metabolite identification, and causes repeated analytical runs on unit resolution liquid chromatography/mass spectrometry (LC/MS) systems before the completion of biotransformation characterization. Ballpark parameter settings for the LTQ-Orbitrap are reported herein that enable complete in vivo metabolite identification within two HPLC/MS injections on the hybrid LTQ-Orbitrap data collection system. By setting the FT survey full scan at 60K resolution to trigger five dependent LTQ MS(2) scans, and proper parameters of Repeat Duration, Exclusion Duration and Repeat Count for the first run (exploratory), the Orbitrap achieved the optimal parallel data acquisition capability and collected maximum number of product ion scans. Biotransformation knowledge based prediction played the key role in exact mass ion extraction and multiple mass defect filtration when the initial data was processed. Meanwhile, product ion extraction and neutral loss extraction of the initial dependent data provided additional bonus in identifying metabolites. With updated parent mass list and the data-dependent setting to let only the ions on the parent mass list trigger dependent scans, the second run (confirmatory) ensures that all precursor ions of identified metabolites trigger not only dependent product ion scans, but also at or close to the highest concentration of the eluted metabolite peaks. This workflow has been developed for metabolite identification of in vivo or ADME studies, of which the samples typically contain a high level of complex matrix. However, due to the proprietary nature of the in vivo studies, this workflow is presented herein with in vitro buspirone sample incubated with human liver microsomes (HLM). The major HLM-mediated biotransformation on buspirone was identified as oxidation or hydroxylation since five mono- (+16 Da), seven di- (+32 Da) and at least three tri-oxygenated (+48 Da) metabolites were identified. Besides the metabolites 1-pyrimidinylpiperazine (1-PP) and hydroxylated 1-PP that formed by N-dealkylation, a new metabolite M308 was identified as the result of a second N-dealkylation of the pyrimidine unit. Two new metabolites containing the 8-butyl-8-azaspiro[4,5]decane-7,9-dione partial structure, M240 and M254, were also identified that were formed apparently due to the first N-dealkylation of the 1-PP moiety.
Collapse
Affiliation(s)
- Austin C Li
- Covance Laboratories Inc., 3301 Kinsman Boulevard, Madison, WI 53704-2523, USA.
| | | | | | | |
Collapse
|
39
|
Badhan R, Penny J, Galetin A, Houston JB. Methodology for development of a physiological model incorporating CYP3A and P-glycoprotein for the prediction of intestinal drug absorption. J Pharm Sci 2009; 98:2180-97. [DOI: 10.1002/jps.21572] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Zhang H, Grubb M, Wu W, Josephs J, Humphreys WG. Algorithm for thorough background subtraction of high-resolution LC/MS data: application to obtain clean product ion spectra from nonselective collision-induced dissociation experiments. Anal Chem 2009; 81:2695-700. [PMID: 19254033 DOI: 10.1021/ac8027189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonselective collision-induced dissociation (CID) is a technique for producing fragmentation products for all ions generated in an ion source. It is typical of liquid chromatography/mass spectrometry (LC/MS) analysis of complex samples that matrix-related components may contribute to the resulting product ion spectra and confound the usefulness of this technique for structure interpretation. In this proof-of-principle study, a high-resolution LC/MS-based background subtraction algorithm was used to process the nonselective CID data to obtain clean product ion spectra for metabolites in human plasma samples. With buspirone and clozapine metabolites in human plasma as examples, this approach allowed for not only facile detection of metabolites of interest but also generation of their respective product ion spectra that were clean and free of matrix-related interferences. This was demonstrated with both an MS(E) technique (where E represents collision energy) with a quadrupole time-of-flight (QTOF) instrument and an in-source fragmentation technique with an LTQ Orbitrap instrument. The combined nonselective CID and background subtraction approach should allow for detection and structural interpretation of other types of sample analyses where control samples are obtained.
Collapse
Affiliation(s)
- Haiying Zhang
- Biotransformation, Bristol-Myers Squibb Research and Development, 311 Pennington-Rocky Hill Road, Pennington, New Jersey 08534, USA.
| | | | | | | | | |
Collapse
|
41
|
Pharmacogenetics of anxiolytic drugs. J Neural Transm (Vienna) 2009; 116:667-77. [DOI: 10.1007/s00702-009-0229-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 04/14/2009] [Indexed: 12/15/2022]
|
42
|
Obach RS, Dobo KL. Comparison of metabolite profiles generated in Aroclor-induced rat liver and human liver subcellular fractions: considerations for in vitro genotoxicity hazard assessment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:631-641. [PMID: 18626997 DOI: 10.1002/em.20416] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Because it is well known that metabolites of chemicals and drugs are frequently the ultimate species responsible for genotoxicity and carcinogenicity, in vitro testing to identify the human genotoxicity hazard potential of new chemicals and drugs routinely utilizes liver S-9 fraction from rats treated with Aroclor 1254 as a system that can generate metabolites. However, it is frequently questioned as to whether such an in vitro metabolite generation system is the most relevant for human risk, or whether the assay would be better served by using a human-derived in vitro system. To address this, 16 common drugs have been examined for profiles of metabolites in Aroclor-induced rat liver S-9 and pooled human liver S-9. Metabolite profiles were compared using high pressure liquid chromatography coupled with ion trap mass spectrometry, in line with ultraviolet or radiometric detection to help make semiquantitative comparisons. Results showed that, with few exceptions, metabolites generated in the human system were also generated in the rat system. Also, in several cases the rat system generated considerably more metabolites, suggesting that there is a potential that positive genotoxicity findings could be caused by metabolites that have no relevance to humans. These findings suggest that when conducting in vitro genotoxicity testing using the Aroclor-induced rat liver S-9 system, knowledge of the metabolite profile in the system is important, and a comparison to the profile generated in human liver S-9 could be of value when interpreting the genotoxicity results.
Collapse
Affiliation(s)
- R Scott Obach
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Pfizer, Inc., Groton, Connecticut 06340, USA.
| | | |
Collapse
|
43
|
Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol 2008; 82:667-715. [PMID: 18618097 DOI: 10.1007/s00204-008-0332-8] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 06/16/2008] [Indexed: 02/07/2023]
Abstract
Variability of drug metabolism, especially that of the most important phase I enzymes or cytochrome P450 (CYP) enzymes, is an important complicating factor in many areas of pharmacology and toxicology, in drug development, preclinical toxicity studies, clinical trials, drug therapy, environmental exposures and risk assessment. These frequently enormous consequences in mind, predictive and pre-emptying measures have been a top priority in both pharmacology and toxicology. This means the development of predictive in vitro approaches. The sound prediction is always based on the firm background of basic research on the phenomena of inhibition and induction and their underlying mechanisms; consequently the description of these aspects is the purpose of this review. We cover both inhibition and induction of CYP enzymes, always keeping in mind the basic mechanisms on which to build predictive and preventive in vitro approaches. Just because validation is an essential part of any in vitro-in vivo extrapolation scenario, we cover also necessary in vivo research and findings in order to provide a proper view to justify in vitro approaches and observations.
Collapse
Affiliation(s)
- Olavi Pelkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, PO Box 5000 (Aapistie 5 B), 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
44
|
Ridder L, Wagener M. SyGMa: Combining Expert Knowledge and Empirical Scoring in the Prediction of Metabolites. ChemMedChem 2008; 3:821-32. [DOI: 10.1002/cmdc.200700312] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Minato K, Suzuki R, Asagarasu A, Matsui T, Sato M. Biotransformation of 3-amino-5,6,7,8-tetrahydro-2-{4-[4-(quinolin-2-yl)piperazin-1-yl]butyl}quinazolin-4(3H)-one (TZB-30878), a novel 5-hydroxytryptamine (5-HT)1A agonist/5-HT3 antagonist, in human hepatic cytochrome P450 enzymes. Drug Metab Dispos 2008; 36:831-40. [PMID: 18238859 DOI: 10.1124/dmd.107.018168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
3-Amino-5,6,7,8-tetrahydro-2-{4-[4-(quinolin-2-yl)piperazin-1-yl]-butyl}quinazolin-4(3H)-one (TZB-30878), a novel 5-hydroxytryptamine (5-HT)(1A) agonist/5-HT(3) antagonist, is currently under development for the treatment of irritable bowel syndrome. The objective of this investigation was to obtain information on the biotransformation of TZB-30878. This compound has quinazoline, piperazine, and quinoline rings. Metabolites of [quinazoline-2-(14)C]TZB-30878 were determined using radio high-performance liquid chromatography on samples obtained after incubation with human hepatic microsomes. Eight metabolites were detected in the microsomal incubation mixture, and their structures were proposed by mass spectrometry techniques using TZB-30878 and two stable labeled TZB-30878 analogs, [quinoline-deuterium (D)(6)]TZB-30878 and [piperazin-D(8)]TZB-30878. Liquid chromatography/tandem mass spectrometry analyses suggested that the eight metabolites consisted of a cyclic metabolite (M6), four hydroxylated metabolites (M1, M2, M3, and M4) (three on quinoline ring and one on quinazoline ring), a deaminated metabolite (M5), and two metabolites (M7 and M8) that were presumably intermediates leading to the formation of the cyclic metabolite M6. Hydroxylation sites in the quinoline and quinazoline rings were predicted by electron density calculations and confirmed by comparison with authentic standards. To the best of our knowledge, N-deamination by microsomes leading to the formation of M5 appears to be novel. In addition, in vitro experiments in human liver microsomes with cytochrome P450 (P450)-specific inhibitors revealed that CYP3A4 was the major enzyme responsible for the metabolism of TZB-30878. Other P450 enzymes, such as a CYP2D6, played a minor role in its metabolism.
Collapse
Affiliation(s)
- Kouichi Minato
- Pharmacokinetics Research Department, ASKA Pharmaceutical Co., Ltd., 1604 Shimosakunobe, Takatsu-ku, Kawasaki, 213-8522, Japan.
| | | | | | | | | |
Collapse
|
46
|
Dockens RC, Tran AQ, Zeng J, Croop R. Pharmacokinetics of 6-hydroxybuspirone and its enantiomers administered individually or following buspirone administration in humans. Biopharm Drug Dispos 2008; 28:393-402. [PMID: 17668416 DOI: 10.1002/bdd.566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The objective of this study was to assess the pharmacokinetics of 6-hydroxybuspirone (6OHB) when given orally via three forms: racemate (BMS-528215), S-enantiomer (BMS-442606) and R-enantiomer (BMS-442608), versus following the administration of buspirone. A double-blind, randomized, four-period, four-treatment, crossover study balanced for residual effects in healthy subjects was conducted (n=20). Subjects received single 10 mg doses of each compound in a randomized fashion with pharmacokinetics determined over a 24 h period. There was a 4-day washout between each dosing period. All three forms of 6OHB (racemate, S-enantiomer and R-enantiomer) were well tolerated. There was nterconversion between enantiomers. The dominant enantiomer was the S-enantiomer no matter which form of 6OHB was administered. All three forms of 6OHB produced approximately 2- to 3-fold greater exposure to total 6OHB than did buspirone. All three forms produced equal exposure to 1-(2-pyrimidinyl)-piperazine (1-PP) which was approximately 30% less than the 1-PP exposure derived from buspirone administration. All three forms of 6OHB produced approximately 3-fold higher 6OHB:1-PP ratios and approximately 2.5-fold higher total 6OHB exposures than did buspirone administration. All compounds were well tolerated. There seemed to be no advantage of one of the enantiomers of 6OHB over the racemate. Therefore, the racemate was chosen for further clinical development.
Collapse
Affiliation(s)
- Randy C Dockens
- Clinical Discovery, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA.
| | | | | | | |
Collapse
|
47
|
Natsui K, Mizuno Y, Tani N, Yabuki M, Komuro S. Identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes. Eur J Drug Metab Pharmacokinet 2007; 32:131-7. [PMID: 18062405 DOI: 10.1007/bf03190475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The present study was carried out to characterize the human P450 isoforms involved in the metabolism of tandospirone, an anxiolytic agent known for its superior efficacy and safety. Among 11 yeast-expressed recombinant P450 isoforms tested, CYP2D6 and CYP3A4 exhibited the highest tandospirone metabolic activity. Although there was no qualitative difference between the two isoforms, a quantitative difference in metabolite profiling was found i.e., M4 (hydroxylation of the pyrimidine ring) was the major metabolite formed with CYP2D6 while M2 (hydroxylation of the norbornan ring) and 1-PP (oxidative cleavage of the butyl chain) predominated with CYP3A4. The metabolite profile on incubation with CYP3A4 was qualitatively and quantitatively similar to that obtained with human liver microsomes. In vitro intrinsic clearance (CLint) values derived from kinetic analysis using both P450 isoforms were similar (2.2 and 1.6 ml/min/nmol P450), but the hepatic content of CYP3A4 was found to be more abundant than that of CYP2D6. The in vitro metabolism of tandospirone by human liver microsomes was markedly inhibited by ketoconazole (a CYP3A4 inhibitor) but not by quinidine (a CYP2D6 inhibitor). These results indicate that the metabolism of tandospirone by human liver microsomes primarily involves CYP3A4, and to a lesser extent CYP2D6.
Collapse
Affiliation(s)
- Kiyohi Natsui
- Pharmacokinetics Research Laboratories, Dainippon Sumitomo Pharma Co. Ltd, 1-98 Kasugade-naka 3-chome, Konohana-ku, Osaka, 554-0022, Japan
| | | | | | | | | |
Collapse
|
48
|
Identification of CYP3A4 as the primary cytochrome P450 responsible for the metabolism of tandospirone by human liver microsomes. Eur J Drug Metab Pharmacokinet 2007; 32:233-40. [DOI: 10.1007/bf03191009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Yun CH, Kim KH, Kim DH, Jung HC, Pan JG. The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities. Trends Biotechnol 2007; 25:289-98. [PMID: 17532492 DOI: 10.1016/j.tibtech.2007.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 03/20/2007] [Accepted: 05/09/2007] [Indexed: 11/18/2022]
Abstract
The use of cytochrome P450 (P450 or CYP) enzymes as biocatalysts for the production of fine chemicals, including pharmaceuticals, has been of increasing interest, primarily owing to their catalytic diversity and broad substrate range. CYP102A1 (P450 BM3) from Bacillus megaterium integrates an entire monooxygenase system into one polypeptide and represents an appropriate prokaryotic model for industrial applications of mammalian P450 activities. CYP102A1 not only exhibits the highest catalytic activity ever detected in a P450 monooxygenase but also provides a potentially versatile biocatalyst for the production of human P450 metabolites. CYP102A1 can be further engineered to be a drug-metabolizing enzyme, making it a promising candidate to use as a biocatalyst in drug discovery and synthesis.
Collapse
Affiliation(s)
- Chul-Ho Yun
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | | | | | | | | |
Collapse
|
50
|
Wong H, Dockens RC, Pajor L, Yeola S, Grace JE, Stark AD, Taub RA, Yocca FD, Zaczek RC, Li YW. 6-Hydroxybuspirone Is a Major Active Metabolite of Buspirone: Assessment of Pharmacokinetics and 5-Hydroxytryptamine1AReceptor Occupancy in Rats. Drug Metab Dispos 2007; 35:1387-92. [PMID: 17494642 DOI: 10.1124/dmd.107.015768] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pharmacokinetics and in vivo potency of 6-hydroxybuspirone (6-OH-buspirone), a major metabolite of buspirone, were investigated. The plasma clearance (47.3 +/- 3.5 ml/min/kg), volume of distribution (2.6 +/- 0.3 l/kg), and half-life (1.2 +/- 0.2 h) of 6-OH-buspirone in rats were similar to those for buspirone. Bioavailability was higher for 6-OH-buspirone (19%) compared with that for buspirone (1.4%). After intravenous infusions to steady-state levels in plasma, 6-OH-buspirone and buspirone increased 5-hydroxytryptamine (HT)(1A) receptor occupancy in a concentration-dependent manner with EC(50) values of 1.0 +/- 0.3 and 0.38 +/- 0.06 microM in the dorsal raphe and 4.0 +/- 0.6 and 1.5 +/- 0.3 microM in the hippocampus, respectively. Both compounds appeared to be approximately 4-fold more potent in occupying presynaptic 5-HT(1A) receptors in the dorsal raphe than the postsynaptic receptors in the hippocampus. Oral dosing of buspirone in rats resulted in exposures (area under the concentration-time profile) of 6-OH-buspirone and 1-(2-pyrimidinyl)-piperazine (1-PP), another major metabolite of buspirone, that were approximately 12 (6-OH-buspirone)- and 49 (1-PP)-fold higher than the exposure of the parent compound. As a whole, these preclinical data suggest that 6-OH-buspirone probably contributes to the clinical efficacy of buspirone as an anxiolytic agent.
Collapse
Affiliation(s)
- Harvey Wong
- Department of Metabolism and Pharmacokinetics, Pharmaceutical Research Institute, Bristol-Myers Squibb, Wallingford, Connecticut 06492-7660, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|