1
|
Negoro R, Tasaka M, Deguchi S, Takayama K, Fujita T. Generation of HepG2 Cells with High Expression of Multiple Drug-Metabolizing Enzymes for Drug Discovery Research Using a PITCh System. Cells 2022; 11:cells11101677. [PMID: 35626714 PMCID: PMC9140068 DOI: 10.3390/cells11101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
HepG2 cells are an inexpensive hepatocyte model that can be used for repeated experiments, but HepG2 cells do not express major cytochrome P450s (CYPs) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1). In this study, we established CYP3A4–POR–UGT1A1–CYP1A2–CYP2C19–CYP2C9–CYP2D6 (CYPs–UGT1A1) knock-in (KI)-HepG2 cells using a PITCh system to evaluate whether they could be a new hepatocyte model for pharmaceutical studies. To evaluate whether CYPs–UGT1A1 KI-HepG2 cells express and function with CYPs and UGT1A1, gene expression levels of CYPs and UGT1A1 were analyzed by using real-time PCR, and metabolites of CYPs or UGT1A1 substrates were quantified by HPLC. The expression levels of CYPs and UGT1A1 in the CYPs–UGT1A1 KI-HepG2 cells were comparable to those in primary human hepatocytes (PHHs) cultured for 48 h. The CYPs and UGT1A1 activity levels in the CYPs–UGT1A1 KI-HepG2 cells were much higher than those in the wild-type (WT)-HepG2 cells. These results suggest that the CYPs–UGT1A1 KI-HepG2 cells expressed functional CYPs and UGT1A1. We also confirmed that the CYPs–UGT1A1 KI-HepG2 cells were more sensitive to drug-induced liver toxicity than the WT-HepG2 cells. CYPs–UGT1A1 KI-HepG2 cells could be used to predict drug metabolism and drug-induced liver toxicity, and they promise to be a helpful new hepatocyte model for drug discovery research.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Correspondence: ; Tel.: +81-77-599-3353
| | - Mitsuki Tasaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|
2
|
Golovenko M. METABOLIC PROFILE AND MECHANISMS OF GABA-TARGETED RECEPTOR PROPOXAZEPAM METABOLIZATION IN HUMAN HEPATOCYTES. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to identify the Propoxazepam metabolites, formed by suspension of cryopreserved human hepatocytes, using the precise method of mass LC-MS/MS analysis. Methods. A suitable chromatographic method was developed for the profiling of Propoxazepam and its metabolites. Samples were analyzed using a Waters Vion high resolution LC-MS/MS instrument, and data were examined using Waters Unifi software to determine the identity of the most abundant metabolites. Following a 4-hour incubation with human hepatocytes, intact Propoxazepam molecule accounted for 96.0% of the profile. Its most abundant metabolite was the oxidize. Results. Propoxazepam (3-hydroxyderivative), which accounted for approximately 2.5% of the total peak response in the 4-hour sample. Two minor components were also found, each accounting for < 10% of the total peak response. Glucuronic conjugates have not been found under the experimental conditions. All metabolites formed represented less than 10% of the total chromatographic peak response. Coclusion. The data obtained indicate the absence of reactive electrophilic derivatives among the metabolites of Propoxazepam.
Collapse
|
3
|
Influences of Corydalis decumbens on the Activities of CYP450 Enzymes in Rats with a Cocktail Approach. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9614781. [PMID: 30800683 PMCID: PMC6360625 DOI: 10.1155/2019/9614781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/09/2018] [Indexed: 12/24/2022]
Abstract
Corydalis decumbens, a Traditional Chinese Medicine, has been widely used for the alternative and/or complementary therapy of hypertension, arrhythmias rheumatoid arthritis, sciatica, stroke, hemiplegia, paraplegia, and vascular embolism. The aim of this study was to determinate the potential effects of Corydalis decumbens on the five cytochrome P450 (CYP) enzyme activities (CYP1A2, CYP3A4, CYP2C9, CYP2C19, and CYP2D6) by cocktail approach. To evaluate whether concurrent use of Corydalis decumbens interferes with the effect of several prescription drugs, saline (control group) or Corydalis decumbens (XTW group) were administrated via gavage for 7 successive days. A probe cocktail solution (phenacetin, omeprazole, metoprolol, tolbutamide, and midazolam) was given 24 h after the last dose of saline or Corydalis decumbens. A specific and sensitive UHPLC–MS/MS method was validated for the determination of five substrates and their metabolites in control group and XTW group. Our results indicated that Corydalis decumbens could have inductive effects of CYP2C19 and inhibit the activities of CYP1A2 and CYP3A4. However, Corydalis decumbens had no significant influence on CYP2C9 and CYP2D6. The herb-drug interaction should require more attention by careful monitoring and appropriate drug dosing adjustments to the concurrent use of western medications which were metabolized by CYP1A2, CYP2C19, and CYP3A4 in human—Corydalis decumbens, Cytochrome P450, Cocktail, Pharmacokinetics, herb–drug interactions.
Collapse
|
4
|
Perkins EJ, Posada M, Kellie Turner P, Chappell J, Ng WT, Twelves C. Physiologically Based Pharmacokinetic Modelling of Cytochrome P450 2C9-Related Tolbutamide Drug Interactions with Sulfaphenazole and Tasisulam. Eur J Drug Metab Pharmacokinet 2018; 43:355-367. [PMID: 29119333 PMCID: PMC5956062 DOI: 10.1007/s13318-017-0447-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background and Objectives Cytochrome P450 2C9 (CYP2C9) is involved in the biotransformation of many commonly used drugs, and significant drug interactions have been reported for CYP2C9 substrates. Previously published physiologically based pharmacokinetic (PBPK) models of tolbutamide are based on an assumption that its metabolic clearance is exclusively through CYP2C9; however, many studies indicate that CYP2C9 metabolism is only responsible for 80–90% of the total clearance. Therefore, these models are not useful for predicting the magnitude of CYP2C9 drug–drug interactions (DDIs). This paper describes the development and verification of SimCYP®-based PBPK models that accurately describe the human pharmacokinetics of tolbutamide when dosed alone or in combination with the CYP2C9 inhibitors sulfaphenazole and tasisulam. Methods A PBPK model was optimized in SimCYP® for tolbutamide as a CYP2C9 substrate, based on published in vitro and clinical data. This model was verified to replicate the magnitude of DDI reported with sulfaphenazole and was further applied to simulate the DDI with tasisulam, a small molecule investigated for the treatment of cancer. A clinical study (CT registration # NCT01185548) was conducted in patients with cancer to assess the pharmacokinetic interaction of tasisulum with tolbutamide. A PBPK model was built for tasisulam, and the clinical study design was replicated using the optimized tolbutamide model. Results The optimized tolbutamide model accurately predicted the magnitude of tolbutamide AUC increase (5.3–6.2-fold) reported for sulfaphenazole. Furthermore, the PBPK simulations in a healthy volunteer population adequately predicted the increase in plasma exposure of tolbutamide in patients with cancer (predicted AUC ratio = 4.7–5.4; measured mean AUC ratio = 5.7). Conclusions This optimized tolbutamide PBPK model was verified with two strong CYP2C9 inhibitors and can be applied to the prediction of CYP2C9 interactions for novel inhibitors. Furthermore, this work highlights the utility of mechanistic models in navigating the challenges in conducting clinical pharmacology studies in cancer patients.
Collapse
|
5
|
Modeling Drug Disposition and Drug–Drug Interactions Through Hypothesis-Driven Physiologically Based Pharmacokinetics: a Reversal Translation Perspective. Eur J Drug Metab Pharmacokinet 2017; 43:369-371. [DOI: 10.1007/s13318-017-0452-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Efficient substrate screening and inhibitor testing of human CYP4Z1 using permeabilized recombinant fission yeast. Biochem Pharmacol 2017; 146:174-187. [PMID: 28951277 DOI: 10.1016/j.bcp.2017.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 01/09/2023]
Abstract
We have established a protocol for the preparation of permeabilized fission yeast cells (enzyme bags) that recombinantly express human cytochrome P450 enzymes (CYPs). A direct comparison of CYP3A4 activity gave an eightfold higher space-time yield for enzyme bag-catalyzed biotransformation as compared to whole-cell biotransformation, even though the total number of cells employed was lower by a factor of 150. Biotransformation of the luminogenic substrate Luciferin-H using CYP2C9-containing enzyme bags proceeded efficiently and stably for 24h. CYP4Z1 is of interest because it is strongly overexpressed both in breast cancer cells and in breast cancer metastases; however, current knowledge about its catalytic properties is very limited. Screening of CYP4Z1-containing enzyme bags with 15 luminogenic substrates enabled us to identify two new hydroxylations and eleven ether cleavage reactions that are catalyzed by CYP4Z1. By far the best substrate found in this study was Luciferin benzyl ether (Luciferin-BE). On the basis of the recently published crystal structure of CYP4B1 we created a new homology model of CYP4Z1 and performed molecular docking experiments, which indicate that all active substrates show a highly similar binding geometry compared to the endogenous substrates. The model predicts that Ser113, Ser222, Asn381, and Ser383 are key hydrogen bonding residues. We also identified five new inhibitors of CYP4Z1: miconazole, econazole, aminobenzotriazole, tolazoline, and 1-benzylimidazole respectively, with the last compound being the most potent giving an IC50 value of 180nM in our test system.
Collapse
|
7
|
Jackson JP, Freeman KM, Friley WW, Herman AG, Black CB, Brouwer KR, Roe AL. Prediction of Clinically Relevant Herb-Drug Clearance Interactions Using Sandwich-Cultured Human Hepatocytes: Schisandra spp. Case Study. Drug Metab Dispos 2017; 45:1019-1026. [DOI: 10.1124/dmd.117.075408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/29/2017] [Indexed: 02/03/2023] Open
|
8
|
Palacharla RC, Uthukam V, Manoharan A, Ponnamaneni RK, Padala NP, Boggavarapu RK, Bhyrapuneni G, Ajjala DR, Nirogi R. Inhibition of cytochrome P450 enzymes by saturated and unsaturated fatty acids in human liver microsomes, characterization of enzyme kinetics in the presence of bovine serum albumin (0.1 and 1.0% w/v) and in vitro - in vivo extrapolation of hepatic clearance. Eur J Pharm Sci 2017; 101:80-89. [PMID: 28179134 DOI: 10.1016/j.ejps.2017.01.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/29/2016] [Accepted: 01/22/2017] [Indexed: 11/28/2022]
Abstract
The objective of the study was to determine the effect of fatty acids on CYP enzymes and the effect of BSA on intrinsic clearance of probe substrates. The inhibitory effect of thirteen fatty acids including saturated, mono-unsaturated and polyunsaturated fatty acids on CYP enzymes, kinetic parameters and intrinsic clearance values of nine CYP marker probe substrate reactions in the absence and presence of BSA (0.1 and 1.0% w/v) were characterized in human liver microsomes. The results demonstrate that most of the unsaturated fatty acids showed marked inhibition towards CYP2C8 mediated amodiaquine N-deethylation followed by inhibition of CYP2C9 and CYP2B6 mediated activities. The addition of 0.1% BSA in the incubation markedly improved the unbound intrinsic clearance values of probe substrates by reducing the Km values with little or no effect on maximal velocity. The addition of BSA (0.1 and 1.0% w/v) did not influence the unbound intrinsic clearance of marker reactions for CYP2A6, and CYP3A4 enzymes. The addition of 0.1% w/v BSA is sufficient to determine the intrinsic clearance of marker probe reactions by metabolite formation approach. The predicted hepatic clearance values for the substrates using the well-stirred model, in the presence of BSA (0.1% BSA), are comparable to the in vivo hepatic clearance values.
Collapse
Affiliation(s)
| | - Venkatesham Uthukam
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd, Jeedimetla, Hyderabad, India
| | - Arunkumar Manoharan
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd, Jeedimetla, Hyderabad, India
| | | | | | | | - Gopinadh Bhyrapuneni
- Drug Metabolism and Pharmacokinetics, Suven Life Sciences Ltd, Jeedimetla, Hyderabad, India
| | | | - Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd, Banjara Hills, Hyderabad, India.
| |
Collapse
|
9
|
Iwasaki S, Hirabayashi H, Funami M, Amano N. Unbound liver concentration is the true inhibitor concentration that determines cytochrome P450-mediated drug–drug interactions in rat liver. Xenobiotica 2016; 47:488-497. [DOI: 10.1080/00498254.2016.1204485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shinji Iwasaki
- Pharmaceutical Research Division, Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hideki Hirabayashi
- Pharmaceutical Research Division, Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Miyuki Funami
- Pharmaceutical Research Division, Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Nobuyuki Amano
- Pharmaceutical Research Division, Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
10
|
Schejbal J, Řemínek R, Zeman L, Mádr A, Glatz Z. On-line coupling of immobilized cytochrome P450 microreactor and capillary electrophoresis: A promising tool for drug development. J Chromatogr A 2016; 1437:234-240. [DOI: 10.1016/j.chroma.2016.01.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/13/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
|
11
|
Thomford NE, Awortwe C, Dzobo K, Adu F, Chopera D, Wonkam A, Skelton M, Blackhurst D, Dandara C. Inhibition of CYP2B6 by Medicinal Plant Extracts: Implication for Use of Efavirenz and Nevirapine-Based Highly Active Anti-Retroviral Therapy (HAART) in Resource-Limited Settings. Molecules 2016; 21:molecules21020211. [PMID: 26891286 PMCID: PMC6273559 DOI: 10.3390/molecules21020211] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 12/22/2022] Open
Abstract
Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a significant challenge. There is need to evaluate interactions between commonly used medicinal plant extracts and antiretroviral drugs used against HIV/AIDS. Efavirenz (EFV) and nevirapine (NVP) are the major components of HAART both metabolized by CYP2B6, an enzyme that can potentially be inhibited or induced by compounds found in medicinal plant extracts. The purpose of this study was to evaluate the effects of extracts of selected commonly used medicinal plants on CYP2B6 enzyme activity. Recombinant human CYP2B6 was used to evaluate inhibition, allowing the assessment of herb-drug interactions (HDI) of medicinal plants Hyptis suaveolens, Myrothamnus flabellifolius, Launaea taraxacifolia, Boerhavia diffusa and Newbouldia laevis. The potential of these medicinal extracts to cause HDI was ranked accordingly for reversible inhibition and also classified as potential time-dependent inhibitor (TDI) candidates. The most potent inhibitor for CYP2B6 was Hyptis suaveolens extract (IC50 = 19.09 ± 1.16 µg/mL), followed by Myrothamnus flabellifolius extract (IC50 = 23.66 ± 4.86 µg/mL), Launaea taraxacifolia extract (IC50 = 33.87 ± 1.54 µg/mL), and Boerhavia diffusa extract (IC50 = 34.93 ± 1.06 µg/mL). Newbouldia laevis extract, however, exhibited weak inhibitory effects (IC50 = 100 ± 8.71 µg/mL) on CYP2B6. Launaea taraxacifolia exhibited a TDI (3.17) effect on CYP2B6 and showed a high concentration of known CYP450 inhibitory phenolic compounds, chlorogenic acid and caffeic acid. The implication for these observations is that drugs that are metabolized by CYP2B6 when co-administered with these herbal medicines and when adequate amounts of the extracts reach the liver, there is a high likelihood of standard doses affecting drug plasma concentrations which could lead to toxicity.
Collapse
Affiliation(s)
- Nicholas E Thomford
- Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- School of Medical Sciences, University of Cape Coast, Cape Coast, PMB, Ghana.
| | - Charles Awortwe
- Division of Clinical Pharmacology, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town 7602, South Africa.
| | - Kevin Dzobo
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town component, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
- Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Faustina Adu
- School of Medical Sciences, University of Cape Coast, Cape Coast, PMB, Ghana.
| | - Denis Chopera
- Division of Medical Virology, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Michelle Skelton
- Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Dee Blackhurst
- Division of Chemical Pathology, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology & Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa.
| |
Collapse
|
12
|
Ford NF. Clopidogrel: What Is a Cardiologist to Do? J Clin Pharmacol 2014; 54:881-3. [DOI: 10.1002/jcph.330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/09/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Neville F. Ford
- Woodfield Clinical Consulting LLC; 5481 S. Acacia Creek Drive Green Valley AZ 85622 USA
- Rutgers; RWJ School of Medicine; New Brunswick NJ 08901 USA
| |
Collapse
|
13
|
Johannessen Landmark C, Patsalos PN. Methodologies used to identify and characterize interactions among antiepileptic drugs. Expert Rev Clin Pharmacol 2014; 5:281-92. [DOI: 10.1586/ecp.12.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Kosugi Y, Hirabayashi H, Igari T, Fujioka Y, Okuda T, Moriwaki T. Risk assessment of drug–drug interactions using hepatocytes suspended in serum during the drug discovery process. Xenobiotica 2013; 44:336-44. [DOI: 10.3109/00498254.2013.837988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Řemínek R, Zeisbergerová M, Langmajerová M, Glatz Z. New capillary electrophoretic method for on-line screenings of drug metabolism mediated by cytochrome P450 enzymes. Electrophoresis 2013; 34:2705-11. [DOI: 10.1002/elps.201300124] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Roman Řemínek
- Department of Biochemistry; Faculty of Science and CEITEC - Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| | - Marta Zeisbergerová
- Department of Biochemistry; Faculty of Science and CEITEC - Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| | - Monika Langmajerová
- Department of Biochemistry; Faculty of Science and CEITEC - Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry; Faculty of Science and CEITEC - Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| |
Collapse
|
16
|
Monoester-Diterpene Aconitum Alkaloid Metabolism in Human Liver Microsomes: Predominant Role of CYP3A4 and CYP3A5. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:941093. [PMID: 23864901 PMCID: PMC3705941 DOI: 10.1155/2013/941093] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 11/17/2022]
Abstract
Aconitum, widely used to treat rheumatoid arthritis for thousands of years, is a toxic herb that can frequently cause fatal cardiac poisoning. Aconitum toxicity could be decreased by properly hydrolyzing diester-diterpene alkaloids into monoester-diterpene alkaloids. Monoester-diterpene alkaloids, including benzoylaconine (BAC), benzoylmesaconine (BMA), and benzoylhypaconine (BHA), are the primary active and toxic constituents of processed Aconitum. Cytochrome P450 (CYP) enzymes protect the human body by functioning as the defense line that limits the invasion of toxicants. Our purposes were to identify the CYP metabolites of BAC, BMA, and BHA in human liver microsomes and to distinguish which isozymes are responsible for their metabolism through the use of chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzyme. High-resolution mass spectrometry was used to characterize the metabolites. A total of 7, 8, and 9 metabolites were detected for BAC, BMA, and BHA, respectively. The main metabolic pathways were demethylation, dehydrogenation, demethylation-dehydrogenation, hydroxylation and didemethylation, which produced less toxic metabolites by decomposing the group responsible for the toxicity of the parent compound. Taken together, the results of the chemical inhibitors, monoclonal antibodies, and cDNA-expressed CYP enzymes experiments demonstrated that CYP3A4 and CYP3A5 have essential functions in the metabolism of BAC, BMA, and BHA.
Collapse
|
17
|
Ong CE, Pan Y, Mak JW, Ismail R. In vitro approaches to investigate cytochrome P450 activities: update on current status and their applicability. Expert Opin Drug Metab Toxicol 2013; 9:1097-113. [PMID: 23682848 DOI: 10.1517/17425255.2013.800482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cytochromes P450 (CYPs) play a central role in the Phase I metabolism of drugs and other xenobiotics. It is estimated that CYPs can metabolize up to two-thirds of drugs present in humans. Over the past two decades, there have been numerous advances in in vitro methodologies to characterize drug metabolism and interaction involving CYPs. AREAS COVERED This review focuses on the use of in vitro methodologies to examine CYPs' role in drug metabolism and interaction. There is an emphasis on their current development, applicability, advantages and limitations as well as the use of in silico approaches in complementing and supporting in vitro data. The article also highlights the challenges in extrapolating in vitro data to in vivo situations. EXPERT OPINION Advances in in vitro methodologies have been made such that data can be used for in vivo prediction with comfortable degree of confidence. Improved assay designs and analytical techniques have permitted development of miniaturized assay format and automated system with improved sensitivity and throughput capacity. High-quality experimental designs and scientifically rigorous assessment/validation protocols remain crucial in developing reliable and robust in vitro models. With continued progress made in the field, in vitro methodologies will continually be employed in evaluating CYP activities in pharmaceutical industries and laboratories.
Collapse
Affiliation(s)
- Chin Eng Ong
- Monash University Sunway Campus, Jeffrey Cheah School of Medicine and Health Sciences, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor, Malaysia.
| | | | | | | |
Collapse
|
18
|
Rioux N, Batonga J, Colombo F, Massé J, Zouki C, Ribadeneira MD, Duan J, Bethell RC. A simplified approach to predict CYP3A-mediated drug–drug interactions at early drug discovery: validation with clinical data. Xenobiotica 2012; 43:592-7. [DOI: 10.3109/00498254.2012.751141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Palmgren AP, Fihn BM, Bird J, Courtney P, Grime K. A novel matrix for the short-term storage of cells: utility in drug metabolism and drug transporter studies with rat, dog and human hepatocytes. Xenobiotica 2012; 43:487-97. [DOI: 10.3109/00498254.2012.738316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Cali JJ, Ma D, Wood MG, Meisenheimer PL, Klaubert DH. Bioluminescent assays for ADME evaluation: dialing in CYP selectivity with luminogenic substrates. Expert Opin Drug Metab Toxicol 2012; 8:1115-30. [DOI: 10.1517/17425255.2012.695345] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Mao J, Mohutsky MA, Harrelson JP, Wrighton SA, Hall SD. Predictions of Cytochrome P450-Mediated Drug-Drug Interactions Using Cryopreserved Human Hepatocytes: Comparison of Plasma and Protein-Free Media Incubation Conditions. Drug Metab Dispos 2012; 40:706-16. [DOI: 10.1124/dmd.111.043158] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Kosugi Y, Hirabayashi H, Igari T, Fujioka Y, Hara Y, Okuda T, Moriwaki T. Evaluation of cytochrome P450-mediated drug–drug interactions based on the strategies recommended by regulatory authorities. Xenobiotica 2011; 42:127-38. [DOI: 10.3109/00498254.2011.626087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Moeller TA, Shukla SJ, Xia M. Assessment of compound hepatotoxicity using human plateable cryopreserved hepatocytes in a 1536-well-plate format. Assay Drug Dev Technol 2011; 10:78-87. [PMID: 22053711 DOI: 10.1089/adt.2010.0365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatotoxicity is a major concern for both drug development and toxicological evaluation of environmental chemicals. The assessment of compound-induced hepatotoxicity has traditionally relied on in vivo testing; however, it is being replaced by human in vitro models due to an emphasis on the reduction of animal testing and species-specific differences. Since most cell lines and hybridomas lack the full complement of enzymes at physiological levels found in the liver, primary hepatocytes are the gold standard to study liver toxicities in vitro due to the retention of most of their in vivo activities. Here, we optimized a cell viability assay using plateable cryopreserved human hepatocytes in a 1536-well-plate format. The assay was validated by deriving inhibitory concentration at 50% values for 12 known compounds, including tamoxifen, staurosporine, and phenylmercuric acetate, with regard to hepatotoxicity and general cytotoxicity using multiple hepatocyte donors. The assay performed well, and the cytotoxicity of these compounds was confirmed in comparison to HepG2 cells. This is the first study to report the reliability of using plateable cryopreserved human hepatocytes for cytotoxicity studies in a 1536-well-plate format. These results suggest that plateable cryopreserved human hepatocytes can be scaled up for screening a large compound library and may be amenable to other hepatocytic assays such as metabolic or drug safety studies.
Collapse
|
24
|
Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. Eur J Drug Metab Pharmacokinet 2011; 36:1-16. [PMID: 21336516 DOI: 10.1007/s13318-011-0024-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 02/01/2011] [Indexed: 01/24/2023]
Abstract
The majority of marketed small-molecule drugs undergo metabolism by hepatic Cytochrome P450 (CYP) enzymes (Rendic 2002). Since these enzymes metabolize a structurally diverse number of drugs, metabolism-based drug-drug interactions (DDIs) can potentially occur when multiple drugs are coadministered to patients. Thus, a careful in vitro assessment of the contribution of various CYP isoforms to the total metabolism is important for predicting whether such DDIs might take place. One method of CYP phenotyping involves the use of potent and selective chemical inhibitors in human liver microsomal incubations in the presence of a test compound. The selectivity of such inhibitors plays a critical role in deciphering the involvement of specific CYP isoforms. Here, we review published data on the potency and selectivity of chemical inhibitors of the major human hepatic CYP isoforms. The most selective inhibitors available are furafylline (in co-incubation and pre-incubation conditions) for CYP1A2, 2-phenyl-2-(1-piperidinyl)propane (PPP) for CYP2B6, montelukast for CYP2C8, sulfaphenazole for CYP2C9, (-)-N-3-benzyl-phenobarbital for CYP2C19 and quinidine for CYP2D6. As for CYP2A6, tranylcypromine is the most widely used inhibitor, but on the basis of initial studies, either 3-(pyridin-3-yl)-1H-pyrazol-5-yl)methanamine (PPM) and 3-(2-methyl-1H-imidazol-1-yl)pyridine (MIP) can replace tranylcypromine as the most selective CYP2A6 inhibitor. For CYP3A4, ketoconazole is widely used in phenotyping studies, although azamulin is a far more selective CYP3A inhibitor. Most of the phenotyping studies do not include CYP2E1, mostly because of the limited number of new drug candidates that are metabolized by this enzyme. Among the inhibitors for this enzyme, 4-methylpyrazole appears to be selective.
Collapse
|
25
|
Lombardo F, Obach RS, Waters NJ. Plasma Protein Binding and Volume of Distribution: Determination, Prediction and Use in Early Drug Discovery. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/9783527627448.ch9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Zi J, Liu D, Ma P, Huang H, Zhu J, Wei D, Yang J, Chen C. Effects of CYP2C9*3 and CYP2C9* 13 on Diclofenac Metabolism and Inhibition-based Drug-Drug Interactions. Drug Metab Pharmacokinet 2010; 25:343-50. [DOI: 10.2133/dmpk.dmpk-10-rg-009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Soars MG, Webborn PJH, Riley RJ. Impact of Hepatic Uptake Transporters on Pharmacokinetics and Drug−Drug Interactions: Use of Assays and Models for Decision Making in the Pharmaceutical Industry. Mol Pharm 2009; 6:1662-77. [DOI: 10.1021/mp800246x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mathew G. Soars
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| | - Peter J. H. Webborn
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| | - Robert J. Riley
- Department of Discovery DMPK, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH, U.K
| |
Collapse
|
28
|
Bachmann K. Drug–Drug Interactions with an Emphasis on Drug Metabolism and Transport. Pharmacology 2009. [DOI: 10.1016/b978-0-12-369521-5.00012-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Gómez-Lechón MJ, Castell JV, Donato MT. An update on metabolism studies using human hepatocytes in primary culture. Expert Opin Drug Metab Toxicol 2008; 4:837-54. [DOI: 10.1517/17425255.4.7.837] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Considerations and recent advances in QSAR models for cytochrome P450-mediated drug metabolism prediction. J Comput Aided Mol Des 2008; 22:843-55. [DOI: 10.1007/s10822-008-9225-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 06/08/2008] [Indexed: 02/07/2023]
|
31
|
Grime K, Webborn PJH, Riley RJ. Functional Consequences of Active Hepatic Uptake on Cytochrome P450 Inhibition in Rat and Human Hepatocytes. Drug Metab Dispos 2008; 36:1670-8. [DOI: 10.1124/dmd.108.021055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
32
|
Konečný J, Mičíková I, Řemínek R, Glatz Z. Application of micellar electrokinetic capillary chromatography for evaluation of inhibitory effects on cytochrome P450 reaction. J Chromatogr A 2008; 1189:274-7. [DOI: 10.1016/j.chroma.2007.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/29/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
33
|
Zhao P. The use of hepatocytes in evaluating time-dependent inactivation of P450 in vivo. Expert Opin Drug Metab Toxicol 2008; 4:151-64. [PMID: 18330044 DOI: 10.1517/17425255.4.2.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Time-dependent inactivation (TDI) of P450 is an important mechanism of drug interactions. The quantitative in vitro - in vivo correlation of TDI using systems such as human liver microsomes requires a comprehensive understanding of in vitro kinetics, pharmacokinetics, inhibition mechanisms, and homeostasis of the enzyme being inactivated. OBJECTIVE To evaluate the use of hepatocytes in predicting TDI. METHODS The theoretical basis of in vitro - in vivo correlation of TDI and the progress in using microsomes and hepatocytes to predict TDI in vivo are reviewed. RESULTS/CONCLUSION Factors that may impact prediction accuracy, such as nonspecific binding, metabolism of inactivator, active transport, and sequential inhibitory metabolites, can be assessed by performing 'in vitro-in vitro' correlation between microsomes and hepatocytes. Together with microsomal data and the aid of computer modeling and simulation, hepatocytes provide a powerful tool to optimize the integrated approaches aimed at quantitatively predicting TDI in vivo.
Collapse
Affiliation(s)
- Ping Zhao
- Sonus Pharmaceuticals, Bothell, WA 98021, USA.
| |
Collapse
|
34
|
McGinnity DF, Waters NJ, Tucker J, Riley RJ. Integrated in vitro analysis for the in vivo prediction of cytochrome P450-mediated drug-drug interactions. Drug Metab Dispos 2008; 36:1126-34. [PMID: 18356267 DOI: 10.1124/dmd.108.020446] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Unbound IC(50) (IC(50,u)) values of 15 drugs were determined in eight recombinantly expressed human cytochromes P450 (P450s) and human hepatocytes, and the data were used to simulate clinical area under the plasma concentration-time curve changes (deltaAUC) on coadministration with prototypic CYP2D6 substrates. Significant differences in IC(50,u) values between enzyme sources were observed for quinidine (0.02 microM in recombinant CYP2D6 versus 0.5 microM in hepatocytes) and propafenone (0.02 versus 4.1 microM). The relative contribution of individual P450s toward the oxidative metabolism of clinical probes desipramine, imipramine, tolterodine, propranolol, and metoprolol was estimated via determinations of intrinsic clearance using recombinant P450s (rP450s). Simulated deltaAUC were compared with those observed in vivo via the ratios of unbound inhibitor concentration at the entrance to the liver to inhibition constants determined against rP450s ([I](in,u)/K(i)) and incorporating parallel substrate elimination pathways. For this dataset, there were 20% false negatives (observed deltaAUC >or= 2, predicted deltaAUC < 2), 77% correct predictions, and 3% false positives. Thus, the [I](in,u)/K(i) approach appears relatively successful at estimating the degree of clinical interactions and can be incorporated into drug discovery strategies. Using a Simcyp ADME (absorption, metabolism, distribution, elimination) simulator (Simcyp Ltd., Sheffield, UK), there were 3% false negatives, 94% correct simulations, and 3% false positives. False-negative predictions were rationalized as a result of mechanism-based inhibition, production of inhibitory metabolites, and/or hepatic uptake. Integrating inhibition and reaction phenotyping data from automated rP450 screens have shown applicability to predict the occurrence and degree of in vivo drug-drug interactions, and such data may identify the clinical consequences for candidate drugs as both "perpetrators" and "victims" of P450-mediated interactions.
Collapse
Affiliation(s)
- Dermot F McGinnity
- Discovery Drug Metabolism and Pharmacokinetics, AstraZeneca R&D Charnwood, Loughborough, Leicestershire, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Abstract
Time-dependent inhibition (TDI) of CYP refers to a change in potency during an in vitro incubation or dosing period in vivo. Potential mechanisms include the formation of inhibitory metabolites and mechanism-based inhibition (MBI). In vitro experiments are configured to assess TDI and MBI is inferred, at least initially. MBI is more profound after multiple-dosing and the recovery period is independent of continued drug exposure. Advances in in vitro-in vivo extrapolations for competitive inhibition and the potential relationship between MBI and reactive metabolite-mediated toxicity, have redirected emphasis to CYP TDI. In contrast, with reversible inhibition, strategies for projecting the risks from TDI are less developed and the traditional I/K(i) model often yields a dramatic underprediction. This review explores the contribution of TDI to drug-drug interactions and idiosyncratic drug toxicity.
Collapse
Affiliation(s)
- Robert J Riley
- AstraZeneca R&D Charnwood, Department of Physical and Metabolic Science, Loughborough, Leicestershire LE11 5RH, UK.
| | | | | |
Collapse
|
36
|
Wahlstrom JL, Rock DA, Slatter JG, Wienkers LC. Advances in predicting CYP-mediated drug interactions in the drug discovery setting. Expert Opin Drug Discov 2006; 1:677-91. [DOI: 10.1517/17460441.1.7.677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Soars MG, McGinnity DF, Grime K, Riley RJ. The pivotal role of hepatocytes in drug discovery. Chem Biol Interact 2006; 168:2-15. [PMID: 17208208 DOI: 10.1016/j.cbi.2006.11.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
This review promotes the value of isolated hepatocytes in modern Drug Discovery programmes and outlines how increased understanding, particularly in the area of in vitro-in vivo extrapolation (IVIVE), has led to more widespread use. The importance of in vitro metabolic intrinsic clearance data for predicting in vivo clearance has been acknowledged for several years and the greater utility of hepatocytes, compared with hepatic microsomes and liver slices, for this application is discussed. The application of hepatocytes in predicting drug-drug interactions (DDIs) resulting from reversible and irreversible (time-dependent) inhibition is relatively novel but affords the potential to study both phase I and phase II processes together with any impact of drug efflux and/or uptake (cellular accumulation). Progress in this area is reviewed along with current opinions on the comparative use of primary hepatocytes and higher throughput reporter gene-based systems for studying cytochrome P450 (CYP) induction. The appreciation of the role of transporter proteins in drug disposition continues to evolve. The study of hepatic uptake using isolated hepatocytes and the interplay between drug transport and metabolism with respect to both clearance and DDIs and subsequent IVIVE is also considered.
Collapse
Affiliation(s)
- Matthew G Soars
- Department of Physical and Metabolic Science, AstraZeneca R&D Charnwood, Loughborough, Leicestershire LE11 5RH, UK.
| | | | | | | |
Collapse
|
38
|
Kumar V, Locuson CW, Sham YY, Tracy TS. Amiodarone analog-dependent effects on CYP2C9-mediated metabolism and kinetic profiles. Drug Metab Dispos 2006; 34:1688-96. [PMID: 16815961 DOI: 10.1124/dmd.106.010678] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP2C9 substrates can exhibit both hyperbolic and atypical kinetic profiles, and their metabolism can be activated or inhibited depending on the effector studied. CYP2C9 genetic variants can also affect both substrate turnover and kinetic profile. The present study assessed whether analogs of the effector amiodarone differentially altered the atypical kinetic profile of the substrate naproxen and whether this effect was genotype-dependent. Amiodarone, desethylamiodarone, benzbromarone, and its dimethyl analog (benz(meth)arone) were incubated with naproxen and either CYP2C9.1 or CYP2C9.3. Amiodarone activated naproxen demethylation at lower concentrations, regardless of the CYP2C9 allele, and inhibited metabolism at higher concentrations without altering the kinetic profile. Desethylamiodarone was a potent inhibitor of naproxen demethylation, irrespective of the CYP2C9 allele. Benzbromarone altered naproxen demethylation kinetics from a biphasic profile to that of a hyperbolic form in CYP2C9.1 and CYP2C9.3, resulting in inhibition and activation, respectively. In contrast, benz(meth)arone activated naproxen demethylation in both CYP2C9.1 and CYP2C9.3. In addition, the kinetic profile of naproxen demethylation became more hyperbolic at lower concentrations of benz(meth)arone and then reverted back to biphasic as the benz(meth)arone was increased further. Equilibrium binding and multiple-ligand docking studies were used to propose how such similar compounds exerted very different effects on naproxen metabolism. In summary, effectors of CYP2C9 metabolism can alter not only the degree of substrate turnover (activation or inhibition) but also the kinetic profile of metabolism of CYP2C9 substrates through effects on substrate binding and orientation. In addition, these kinetics effects are concentration- and genotype-dependent.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
39
|
McGinnity DF, Berry AJ, Kenny JR, Grime K, Riley RJ. EVALUATION OF TIME-DEPENDENT CYTOCHROME P450 INHIBITION USING CULTURED HUMAN HEPATOCYTES. Drug Metab Dispos 2006; 34:1291-300. [PMID: 16679385 DOI: 10.1124/dmd.106.009969] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary human hepatocytes in culture are commonly used to evaluate cytochrome P450 (P450) induction via an enzyme activity endpoint. However, other processes can confound data interpretation. To this end, the impact of time-dependent P450 inhibition in this system was evaluated. Using a substrate-cassette approach, P450 activities were determined after incubation with the prototypic inhibitors tienilic acid (CYP2C9), erythromycin, troleandomycin, and fluoxetine (CYP3A4). Kinetic analysis of enzyme inactivation in hepatocytes was used to describe the effect of these time-dependent inhibitors and derive the inhibition parameters kinact and KI) which generally were in good agreement with the values derived using recombinant P450s and human liver microsomes (HLMs). Tienilic acid selectively inhibited CYP2C9-dependent diclofenac 4'-hydroxylation activity, and erythromycin, troleandomycin, and fluoxetine inhibited CYP3A4-dependent midazolam 1'-hydroxylation in a time- and concentration-dependent manner. Fluoxetine also inhibited CYP2C19-dependent S-mephenytoin 4'-hydroxylation in a time- and concentration-dependent manner in hepatocytes, HLMs, and recombinant CYP2C19 (KI 0.4 microM and kinact 0.5 min(-1)). As expected, the effect of fluoxetine on CYP2D6 in hepatocytes was consistent with potent yet reversible inhibition. A very weak time-dependent CYP2C9 inhibitor (AZ1, a proprietary AstraZeneca compound; KI 30 microM and kinact 0.02 min(-1)) effectively abolished CYP2C9 activity over 24 h at low (micromolar) concentrations in primary cultured human hepatocytes. This work demonstrates that caution is warranted in the interpretation of enzyme induction studies with metabolically stable, weak time-dependent inhibitors, which may have dramatic inhibitory effects on P450 activity in this system. Therefore, in addition to enzyme activity, mRNA and/or protein levels should be measured to fully evaluate the P450 induction potential of a drug candidate.
Collapse
Affiliation(s)
- Dermot F McGinnity
- Department of Physical & Metabolic Science, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough, Leicestershire, LE11 5RH, UK.
| | | | | | | | | |
Collapse
|
40
|
Locuson CW, Gannett PM, Tracy TS. Heteroactivator effects on the coupling and spin state equilibrium of CYP2C9. Arch Biochem Biophys 2006; 449:115-29. [PMID: 16545770 DOI: 10.1016/j.abb.2006.02.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/31/2006] [Accepted: 02/02/2006] [Indexed: 12/21/2022]
Abstract
The cytochromes P450 are capable of oxidizing a variety of xenobiotics. Binding of a small molecule heteroactivator to a P450 can alter the coupling of substrate oxidation during P450 catalysis, but the degree to which coupling or shunting via one of the three catalytic cycle branch points is linked to the heteroactivator-modified position of bound substrate is unknown. Using reconstituted CYP2C9, stoichiometric measurements were gathered with three substrates and two classes of heteroactivators to further understand the mechanisms involved in heteroactivation. Heteroactivation of P450 metabolism appeared to involve, but not require, changes in coupling and that increased uncoupling to a specific byproduct like H(2)O(2) does not necessarily correlate to the degree of coupling. In addition, spectroscopy demonstrated that every heteroactivator tested influenced the spin equilibrium of the heme iron even in the presence of saturating substrate suggesting that both substrate proximity and the ability to desolvate the heme can be involved in heteroactivation.
Collapse
Affiliation(s)
- Charles W Locuson
- University of Minnesota, Department of Experimental and Clinical Pharmacology, USA
| | | | | |
Collapse
|