1
|
Mwacalimba K, Sheehy J, Adolph C, Savadelis M, Kryda K, Poulsen Nautrup B. A review of moxidectin vs. other macrocyclic lactones for prevention of heartworm disease in dogs with an appraisal of two commercial formulations. Front Vet Sci 2024; 11:1377718. [PMID: 38978634 PMCID: PMC11229481 DOI: 10.3389/fvets.2024.1377718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Macrocyclic lactones (MLs) are the only drug class currently licensed for heartworm disease prophylaxis. Macrocyclic lactones kill third- and fourth-stage larvae of Dirofilaria immitis, thus preventing the development of adult worms in dogs, which are responsible for heartworm disease, a potentially life-threatening condition. Despite considerable overlap in terms of endectocide spectrum, several important differences distinguish moxidectin from other MLs. Moxidectin has beneficial pharmacokinetic characteristics, such as a longer half-life and greater tissue distribution compared to ivermectin. Additionally, moxidectin has a greater margin of safety compared to ivermectin in dogs with ABCB1 (previously MDR1) gene-defect, which is commonly recognized in collies and other breeds. Multiple laboratory studies have shown that moxidectin is more effective than other commonly used heartworm preventives against resistant strains of D. immitis. This improved efficacy benefits individual dogs and helps reduce the risk of spreading resistant strains within the community. Despite the presence of proven resistant strains in the United States, non-compliance with preventive measures remains a major factor contributing to the diagnosis of heartworm disease in dogs. In retrospective analyses, the oral moxidectin combination product Simparica Trio® (sarolaner, moxidectin, and pyrantel) was associated with increased compliance, resulting in more time of protection compared to dogs receiving flea/tick and heartworm preventive products separately. Compliance with the extended-release moxidectin injectables ProHeart® 6 and ProHeart® 12 was higher than with monthly heartworm preventives, as they provide 6 months or a full year of protection with one single injection, respectively, and revenues remain in the veterinary clinics as injectable moxidectin cannot be sourced through online retailers.
Collapse
Affiliation(s)
| | - Jenifer Sheehy
- Veterinary Professional Services, Zoetis, Parsippany, NJ, United States
| | | | - Molly Savadelis
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | - Kristina Kryda
- Veterinary Medicine Research and Development, Zoetis, Kalamazoo, MI, United States
| | | |
Collapse
|
2
|
Vaidhya A, Ghildiyal K, Rajawat D, Nayak SS, Parida S, Panigrahi M. Relevance of pharmacogenetics and pharmacogenomics in veterinary clinical practice: A review. Anim Genet 2024; 55:3-19. [PMID: 37990577 DOI: 10.1111/age.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
The recent advances in high-throughput next-generation sequencing technologies have heralded the arrival of the Big Data era. As a result, the use of pharmacogenetics in drug discovery and individualized drug therapy has transformed the field of precision medicine. This paradigm shift in drug development programs has effectively reshaped the old drug development practices, which were primarily concerned with the physiological status of patients for drug development. Pharmacogenomics bridges the gap between pharmacodynamics and pharmacokinetics, advancing current diagnostic and treatment strategies and enabling personalized and targeted drug therapy. The primary goals of pharmacogenetic studies are to improve drug efficacy and minimize toxicities, to identify novel drug targets, to estimate drug dosage for personalized medicine, and to incorporate it as a routine diagnostic for disease susceptibility. Although pharmacogenetics has numerous applications in individualized drug therapy and drug development, it is in its infancy in veterinary medicine. The objective of this review is to present an overview of historical landmarks, current developments in various animal species, challenges and future perspectives of genomics in drug development and dosage optimization for individualized medicine in veterinary subjects.
Collapse
Affiliation(s)
- Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
3
|
Mealey KL, Owens JG, Freeman E. Canine and feline P-glycoprotein deficiency: What we know and where we need to go. J Vet Pharmacol Ther 2023; 46:1-16. [PMID: 36326478 PMCID: PMC10092536 DOI: 10.1111/jvp.13102] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
In 2001 the molecular genetic basis of so-called "ivermectin sensitivity" in herding breed dogs was determined to be a P-glycoprotein deficiency caused by a genetic variant of the MDR1 (ABCB1) gene often called "the MDR1 mutation." We have learned a great deal about P-glycoprotein's role in drug disposition since that discovery, namely that P-glycoprotein transports many more drugs than just macrocyclic lactones that P-glycoprotein mediated drug transport is present in more places than just the blood brain barrier, that some cats have a genetic variant of MDR1 that results in P-glycoprotein deficiency, that P-glycoprotein dysfunction can occur as a result of drug-drug interactions in any dog or cat, and that the concept of P-glycoprotein "inhibitors" versus P-glycoprotein substrates is somewhat arbitrary and artificial. This paper will review these discoveries and discuss how they impact drug selection and dosing in dogs and cats with genetically mediated P-glycoprotein deficiency or P-glycoprotein dysfunction resulting from drug-drug interactions.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
4
|
Cen Y, Shan Y, Zhao J, Xu X, Nie Z, Zhang J. Multiple drug transporters contribute to the brain transfer of levofloxacin. CNS Neurosci Ther 2022; 29:445-457. [PMID: 36253925 PMCID: PMC9804084 DOI: 10.1111/cns.13989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS The aim of this study was to assess the influence of the major transporters at blood-brain barrier and blood-cerebrospinal fluid barrier on levofloxacin (LVFX) pharmacokinetics in rat. To explore the different effects of transporters on drug concentrations in cerebrospinal fluid (CSF) and brain extracellular fluid (ECF). METHODS High-performance liquid chromatography coupled with microdialysis was used to continuously and synchronously measure unbound concentrations of LVFX in rat blood, hippocampal ECF, and lateral ventricle CSF for comprehensive characterization of brain pharmacokinetics. The role of transporters in the brain efflux mechanism of LVFX was analyzed in the absence and presence of various transporter inhibitors. RESULTS Following LVFX (50 mg/kg) administration, the unbound partition coefficient of LVFX in brain ECF and CSF (Kp,uu,ECF and Kp,uu,CSF ) were 34.0 ± 1.7% and 41.2 ± 2.4%, respectively. When probenecid was coadministered with LVFX, the AUC and the mean residence time (MRT) in rat blood increased significantly (p < 0.05). After MK571 intervention, 1.35-fold and 1.16-fold increases in Kp,uu,ECF and Kp,uu,CSF were observed, respectively (p < 0.05). Treatment with Ko143 increased the levels of LVFX in brain ECF. The difference in LVFX concentration in brain ECF and CSF was <3-fold with or without treatment with transporter inhibitors. CONCLUSION Efflux of LVFX from the central nervous system (CNS) involves multidrug resistance-associated proteins (MRPs), breast cancer resistance protein (BCRP), and organic anion transporters (OATs). MRPs play an important role in mediating the brain/CSF-to-blood efflux of LVFX. LVFX concentrations in CSF can be used as a surrogate to predict the concentrations inside brain parenchyma.
Collapse
Affiliation(s)
- Yuying Cen
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Yuheng Shan
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Jiahua Zhao
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Xiaojiao Xu
- Medical School of Chinese PLABeijingChina,Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| | - Zhiyong Nie
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and ToxicologyAcademy of Military Medical SciencesBeijingChina
| | - Jiatang Zhang
- Department of Neurology, The First Medical CentreChinese PLA General HospitalBeijingChina
| |
Collapse
|
5
|
Noack S, Harrington J, Carithers DS, Kaminsky R, Selzer PM. Heartworm disease - Overview, intervention, and industry perspective. Int J Parasitol Drugs Drug Resist 2021; 16:65-89. [PMID: 34030109 PMCID: PMC8163879 DOI: 10.1016/j.ijpddr.2021.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Dirofilaria immitis, also known as heartworm, is a major parasitic threat for dogs and cats around the world. Because of its impact on the health and welfare of companion animals, heartworm disease is of huge veterinary and economic importance especially in North America, Europe, Asia and Australia. Within the animal health market many different heartworm preventive products are available, all of which contain active components of the same drug class, the macrocyclic lactones. In addition to compliance issues, such as under-dosing or irregular treatment intervals, the occurrence of drug-resistant heartworms within the populations in the Mississippi River areas adds to the failure of preventive treatments. The objective of this review is to provide an overview of the disease, summarize the current disease control measures and highlight potential new avenues and best practices for treatment and prevention.
Collapse
Affiliation(s)
- Sandra Noack
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany
| | - John Harrington
- Boehringer Ingelheim Animal Health, 1730 Olympic Drive, 30601, Athens, GA, USA
| | - Douglas S Carithers
- Boehringer Ingelheim Animal Health, 3239 Satellite Blvd, 30096, Duluth, GA, USA
| | - Ronald Kaminsky
- paraC Consulting, Altenstein 13, 79685, Häg-Ehrsberg, Germany
| | - Paul M Selzer
- Boehringer Ingelheim Animal Health, Binger Str. 173, 55216, Ingelheim am Rhein, Germany.
| |
Collapse
|
6
|
Heit MC, Mealey KL, King SB. Tolerance and Pharmacokinetics of Galliprant™ Administered Orally to Collies Homozygous for MDR1-1Δ. J Vet Pharmacol Ther 2021; 44:705-713. [PMID: 34219249 PMCID: PMC9292342 DOI: 10.1111/jvp.12984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
The objectives of the study were to evaluate the pharmacokinetics and tolerance of grapiprant, a substrate of the human P-gp transporter, in collies homozygous for MDR1-1Δ when administered at the labeled dosage of 2 mg/kg once daily for 28 days. Twelve collie dogs with homozygous for MDR1-1Δ genotype from a commercial colony were used in the study, eight in the treated group and four as placebo-treated controls. The only treatment-related clinical sign was self-limiting vomiting (in 2/8 treated animals) and the only treatment-related clinical pathological changes seen were a slight decrease in serum albumin in one dog (2.6 g/dL; reference 2.7 to 3.9 g/dL) and total protein (5.1 g/dL; reference 5.5 to 7.7 g/dL). Absorption of grapiprant was rapid with a median Tmax of 1 h, Cmax of 5.2 μg/mL, AUC0-24 of 17.3 ± 7.1 h* μg/mL and median terminal t½ of 4.3 h after the first dose. To determine whether MDR1-1Δ animals handle grapiprant differently from normal dogs, a population pharmacokinetic analysis was performed utilizing data from the collies and historical beagle data. Volume of the peripheral compartment of collies was estimated to be 45% that of beagles, and clearance from the central compartment was 71% less in collies than in beagles. Self-liming vomiting events occurred at a numerically higher rate (2/8; 25%) in this group of P-gp-deficient dogs than seen in a clinical study (17%) composed of various dog breeds but limited numbers in this PK study make comparisons difficult. Grapiprant was otherwise well tolerated in collies homozygous for MDR1-1Δ despite increased drug exposure compared to dogs without this mutation.
Collapse
Affiliation(s)
- Mark C Heit
- Elanco Animal Health, Inc, Greenfield, IN, USA
| | - Katrina L Mealey
- Progam in Individualized Medicine (PrIMe), College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
7
|
Mealey KL, Burke NS, Connors RL. Role of an ABCB11930_1931del TC gene mutation in a temporal cluster of macrocyclic lactone-induced neurologic toxicosis in cats associated with products labeled for companion animal use. J Am Vet Med Assoc 2021; 259:72-76. [PMID: 34125616 DOI: 10.2460/javma.259.1.72] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether ABCB11930_1931del TC predisposed cats to macrocyclic-lactone toxicosis and the frequency of the ABCB11930_1931del TC gene mutation in banked feline DNA samples. SAMPLE DNA samples from 5 cats presented for neurologic clinical signs presumed to be caused by exposure to macrocyclic lactones and 1,006 banked feline DNA samples. PROCEDURES The medical history pertaining to 5 cats was obtained from veterinarians who examined, treated, or performed necropsies on them. The DNA from these 5 cats and 1,006 banked feline samples were analyzed for the presence of the ABCB11930_1931del TC genotype. RESULTS 4 of the 5 cats with neurologic signs presumed to be associated with macrocyclic-lactone exposure were homozygous for ABCB11930_1931del TC. The other cat had unilateral vestibular signs not typical of macrocyclic-lactone toxicosis. The distribution of genotypes from the banked feline DNA samples was as follows: 0 homozygous for ABCB11930_1931del TC, 47 heterozygous for ABCB11930_1931del TC, and 959 homozygous for the wild-type ABCB1 allele. Among the 47 cats with the mutant ABCB1 allele, only 3 were purebred (Ragdoll, Russian Blue, and Siamese). CONCLUSIONS AND CLINICAL RELEVANCE Results suggested a strong relationship between homozygosity for ABCB11930_1931del TC and neurologic toxicosis after topical application with eprinomectin-containing antiparasitic products labeled for use in cats. Although this genotype is likely rare in the general cat population, veterinarians should be aware of this genetic mutation in cats and its potential for enhancing susceptibility to adverse drug reactions.
Collapse
|
8
|
Ghadi M, Hosseinimehr SJ, Amiri FT, Mardanshahi A, Noaparast Z. Itraconazole synergistically increases therapeutic effect of paclitaxel and 99mTc-MIBI accumulation, as a probe of P-gp activity, in HT-29 tumor-bearing nude mice. Eur J Pharmacol 2021; 895:173892. [PMID: 33497608 DOI: 10.1016/j.ejphar.2021.173892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
P-glycoprotein (P-gp), is an important efflux pump involved in chemotherapy resistance in human colon cancer. We investigated the efficacy of itraconazole as a P-gp inhibitor and its therapeutic synergistic relationship to paclitaxel through 99mTc-MIBI accumulation in HT-29 tumor-bearing nude mice. Histopathological screening along with in vitro experiments was done for further assessment. Itraconazole successfully inhibited P-gp mediated 99mTc-MIBI efflux, increasing its in vitro accumulation in itraconazole-receiving dishes. Notably, the co-administration of itraconazole with paclitaxel significantly enhanced the in vitro cytotoxicity effect of paclitaxel in itraconazole + paclitaxel wells containing HT-29 cells. Compared to the control, tumor volume in mice treated with itraconazole, paclitaxel and itraconazole +paclitaxel showed growth suppression approximately by 36.21, 60.02, and 73.3% respectively. And compared to paclitaxel group, the nude mice co-treated with paclitaxel and itraconazole showed suppression of tumor growth by about 33.31 % at the end of the treatment period. Also the biodistribution result showed that the co-administration of itraconazole with paclitaxel raised the mean tumor radioactivity accumulation compared to control and paclitaxel group. When given paclitaxel alone, the ID% of hepatic and cardiac tissue was reduced while co-administration of itraconazole with paclitaxel increased 99mTc-MIBI accumulation in these organs. Furthermore, the histopathological findings confirmed the biodistribution results. These results demonstrate that although monotherapy with itraconazole or paclitaxel has anti-tumor activity against HT-29 human colorectal cancer, a synergistic anti-tumor activity can be achieved when itraconazole is co-administered with paclitaxel. Also, 99mTc-MIBI is an effective radiotracer for monitoring response to treatment in MDR tumors.
Collapse
Affiliation(s)
- Mahdi Ghadi
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zohreh Noaparast
- Department of Radiopharmacy, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
9
|
Huang L, Wells MC, Zhao Z. A Practical Perspective on the Evaluation of Small Molecule CNS Penetration in Drug Discovery. Drug Metab Lett 2020; 13:78-94. [PMID: 30854983 DOI: 10.2174/1872312813666190311125652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 01/16/2023]
Abstract
The separation of the brain from blood by the blood-brain barrier and the bloodcerebrospinal fluid (CSF) barrier poses unique challenges for the discovery and development of drugs targeting the central nervous system (CNS). This review will describe the role of transporters in CNS penetration and examine the relationship between unbound brain (Cu-brain) and unbound plasma (Cu-plasma) or CSF (CCSF) concentration. Published data demonstrate that the relationship between Cu-brain and Cu-plasma or CCSF can be affected by transporter status and passive permeability of a drug and CCSF may not be a reliable surrogate for CNS penetration. Indeed, CCSF usually over-estimates Cu-brain for efflux substrates and it provides no additional value over Cu-plasma as the surrogate of Cu-brain for highly permeable non-efflux substrates. A strategy described here for the evaluation of CNS penetration is to use in vitro permeability, P-glycoprotein (Pgp) and breast cancer resistance protein efflux assays and Cu-brain/Cu-plasma in preclinical species. Cu-plasma should be used as the surrogate of Cu-brain for highly permeable non-efflux substrates with no evidence of impaired distribution into the brain. When drug penetration into the brain is impaired, we recommend using (total brain concentration * unbound fraction in the brain) as Cu-brain in preclinical species or Cu-plasma/in vitro Pgp efflux ratio if Pgp is the major limiting mechanism for brain penetration.
Collapse
Affiliation(s)
- Liyue Huang
- Epizyme Inc, 400 Technology Square, Cambridge, MA-02139, United States
| | - Mary C Wells
- Vertex Pharmaceuticals, 50 Northern Ave, Boston, MA-02210, United States
| | - Zhiyang Zhao
- Alliance Pharma, Inc. 17 Lee Blvd. Malvern, PA-19355, United States
| |
Collapse
|
10
|
Mealey KL, Martinez SE, Villarino NF, Court MH. Personalized medicine: going to the dogs? Hum Genet 2019; 138:467-481. [PMID: 31032534 DOI: 10.1007/s00439-019-02020-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
Interindividual variation in drug response occurs in canine patients just as it does in human patients. Although canine pharmacogenetics still lags behind human pharmacogenetics, significant life-saving discoveries in the field have been made over the last 20 years, but much remains to be done. This article summarizes the available published data about the presence and impact of genetic polymorphisms on canine drug transporters, drug-metabolizing enzymes, drug receptors/targets, and plasma protein binding while comparing them to their human counterparts when applicable. In addition, precision medicine in cancer treatment as an application of canine pharmacogenetics and pertinent considerations for canine pharmacogenetics testing is reviewed. The field is poised to transition from single pharmacogene-based studies, pharmacogenetics, to pharmacogenomic-based studies to enhance our understanding of interindividual variation of drug response in dogs. Advances made in the field of canine pharmacogenetics will not only improve the health and well-being of dogs and dog breeds, but may provide insight into individual drug efficacy and toxicity in human patients as well.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA.
| | - Stephanie E Martinez
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Nicolas F Villarino
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
11
|
Toxicology of Avermectins and Milbemycins (Macrocyclic Lactones) and the Role of P-Glycoprotein in Dogs and Cats. Vet Clin North Am Small Anim Pract 2018; 48:991-1012. [PMID: 30139545 DOI: 10.1016/j.cvsm.2018.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Overdoses of macrocyclic lactones in dogs and cats can result in such signs as tremors, ataxia, seizures, coma, and blindness. Dogs with the ABCB1-1Δ gene defect are predisposed to macrocyclic lactone toxicosis at lower dosages than dogs without the defect. Intravenous lipid emulsion therapy has been suggested for treatment of macrocyclic lactone toxicosis but evidence of efficacy is limited. Initial decontamination and supportive care remain the mainstays of therapy for macrocyclic lactone toxicosis.
Collapse
|
12
|
Myers MJ, Martinez M, Li F, Howard K, Yancy HF, Troutman L, Sharkey M. Impact of ABCB1 genotype in Collies on the pharmacokinetics of R- and S-fexofenadine. J Vet Pharmacol Ther 2018; 41:805-814. [PMID: 30020547 DOI: 10.1111/jvp.12696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/18/2018] [Indexed: 11/28/2022]
Abstract
Thirty-two Collies were used to determine the impact of ABCB1 genotype and phenotype on the plasma pharmacokinetics of fexofenadine's (Fex) R- and S-enantiomers after bolus Fex administration, as human P-gp exhibits stereoselectivity. Each Collie's ABCB1 genotype and ivermectin (IVM) sensitivity (phenotype) was determined prior to study enrolment. Wild-type (WT) Collies had lower plasma concentrations of the individual enantiomers as compared to heterozygous IVM nonsensitive (HNS), heterozygous IVM-sensitive (HS) and homozygous mutant (MUT) Collies. Based on pairwise statistical comparison, WT Collies had statistically significantly lower (AUC0-last ) and peak (Cmax ) values compared to HS, HNS and MUT Collies. Tmax was not influenced by genotype/phenotype. Inter-individual variability in PK metrics tended to be largest for WT Collies. Although the influence of genotype/phenotype on Fex PK occurred with the individual isomers, impairment of S-Fex absorption, particularly in the MUT dogs, exceeded that associated with R-Fex. Since Fex elimination occurs primarily via biliary excretion via a transporter other than P-glycoprotein, and based upon our understanding of Fex absorption kinetics, we attributed these differences primarily to the absorption portion of the profile. These differences are expressed in a stereo-specific manner. These results demonstrate the potential negative impact on estimates of drug effectiveness and toxicity, especially for P-gp substrates that do not exhibit Central Nervous System toxicities.
Collapse
Affiliation(s)
- Michael J Myers
- Office of Research, Division of Applied Veterinary Research, US Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland
| | - Marilyn Martinez
- Office of New Animal Drug Evaluation, US Food and Drug Administration, Center for Veterinary Medicine, Rockville, Maryland
| | - Fei Li
- Office of Research, Division of Applied Veterinary Research, US Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland
| | - Karyn Howard
- Office of Research, Division of Applied Veterinary Research, US Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland
| | - Haile F Yancy
- Office of Research, Division of Applied Veterinary Research, US Food and Drug Administration, Center for Veterinary Medicine, Laurel, Maryland
| | - Lisa Troutman
- Office of New Animal Drug Evaluation, Division of Therapeutic Drugs for Non-food Animals, US Food and Drug Administration, Center for Veterinary Medicine, Rockville, Maryland
| | - Michele Sharkey
- Office of New Animal Drug Evaluation, Division of Therapeutic Drugs for Non-food Animals, US Food and Drug Administration, Center for Veterinary Medicine, Rockville, Maryland
| |
Collapse
|
13
|
Martinez MN, Court MH, Fink-Gremmels J, Mealey KL. Population variability in animal health: Influence on dose-exposure-response relationships: Part I: Drug metabolism and transporter systems. J Vet Pharmacol Ther 2018; 41:E57-E67. [PMID: 29917248 DOI: 10.1111/jvp.12670] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 01/03/2023]
Abstract
There is an increasing effort to understand the many sources of population variability that can influence drug absorption, metabolism, disposition, and clearance in veterinary species. This growing interest reflects the recognition that this diversity can influence dose-exposure-response relationships and can affect the drug residues present in the edible tissues of food-producing animals. To appreciate the pharmacokinetic diversity that may exist across a population of potential drug product recipients, both endogenous and exogenous variables need to be considered. The American Academy of Veterinary Pharmacology and Therapeutics hosted a 1-day session during the 2017 Biennial meeting to explore the sources of population variability recognized to impact veterinary medicine. The following review highlights the information shared during that session. In Part I of this workshop report, we consider sources of population variability associated with drug metabolism and membrane transport. Part II of this report highlights the use of modeling and simulation to support an appreciation of the variability in dose-exposure-response relationships.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Center for Veterinary Medicine, US Food and Drug Administration, Rockville, Maryland
| | - Michael H Court
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Johanna Fink-Gremmels
- Division of Pharmacology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| |
Collapse
|
14
|
Kongara K. Pharmacogenetics of opioid analgesics in dogs. J Vet Pharmacol Ther 2017; 41:195-204. [DOI: 10.1111/jvp.12452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/28/2017] [Indexed: 02/03/2023]
Affiliation(s)
- K. Kongara
- Animal Welfare Science and Bioethics Centre; Institute of Veterinary, Animal and Biomedical Sciences, Massey University; Palmerston North New Zealand
| |
Collapse
|
15
|
Mealey KL, Dassanayake S, Burke NS. Establishment of a cell line for assessing drugs as canine P-glycoprotein substrates: proof of principle. J Vet Pharmacol Ther 2017; 40:545-551. [PMID: 28093773 DOI: 10.1111/jvp.12390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/23/2016] [Indexed: 11/27/2022]
Abstract
P-glycoprotein (P-gp), encoded by the ABCB1 (MDR1) gene, dramatically impacts drug disposition. P-gp is expressed in the intestines, biliary canaliculi, renal tubules, and brain capillaries where it functions to efflux substrate drugs. In this capacity, P-gp restricts oral absorption, enhances biliary and renal excretion, and inhibits central nervous system entry of substrate drugs. Many drugs commonly used in veterinary medicine are known substrates for canine P-gp (vincristine, loperamide, ivermectin, others). Because these drugs have a narrow therapeutic index, defective P-gp function can cause serious adverse drug reactions due to enhanced brain penetration and/or decreased clearance. P-gp dysfunction in dogs can be intrinsic (dogs harboring ABCB1-1Δ) or acquired (drug interactions between a P-gp inhibitor and P-gp substrate). New human drug candidates are required to undergo assessment for P-gp interactions according to FDA and EMA regulations to avoid adverse drug reactions and drug-drug interactions. Similar information regarding canine P-gp could prevent adverse drug reactions in dogs. Because differences in P-gp substrates have been documented between species, one should not presume that human or murine P-gp substrates are necessarily canine P-gp substrates. Thus, our goal was to develop a cell line for assessing drugs as canine P-gp substrates.
Collapse
Affiliation(s)
- K L Mealey
- Program in Individualized Medicine (PrIMe), College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - S Dassanayake
- Program in Individualized Medicine (PrIMe), College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - N S Burke
- Program in Individualized Medicine (PrIMe), College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
16
|
Deshpande D, Hill KE, Mealey KL, Chambers JP, Gieseg MA. The Effect of the Canine ABCB1-1Δ Mutation on Sedation after Intravenous Administration of Acepromazine. J Vet Intern Med 2016; 30:636-41. [PMID: 26822006 PMCID: PMC4913601 DOI: 10.1111/jvim.13827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/14/2015] [Accepted: 12/16/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Dog breeds with the ABCB1-1Δ mutation have substantially truncated nonfunctional P-glycoprotein. Dogs homozygous for this mutation (mut/mut) are susceptible to the toxic adverse effects of ivermectin, loperamide, and vincristine. Anecdotal reports suggested ABCB1 mut/mut dogs showed increased depth and duration of acepromazine sedation. HYPOTHESIS/OBJECTIVES That ABCB1 mut/mut dogs have increased depth and duration of sedation after acepromazine IV compared to normal dogs (nor/nor). ANIMALS Twenty-nine rough-coated collies were divided into 3 groups of dogs based on their ABCB1 genotype: 10 mut/mut, 10 mut/nor, and 9 nor/nor. METHODS Dogs were given 0.04 mg/kg of acepromazine IV. Level of sedation, heart rate, respiratory rate, and blood pressure were recorded for 6 hours after acepromazine administration. Area under the curves (AUCs) of the normalized sedation score results were calculated and compared. RESULTS The median sedation scores for ABCB1 mut/mut dogs were higher than nor/nor dogs at all time points and were higher in mut/nor dogs for the first 2 hours. These differences were not found to be significant for any individual time point (P > .05). The median sedation score AUC for mut/mut dogs was significantly higher than nor/nor dogs (P = .028), but the AUC for mut/nor dogs was not (P = .45). There were no significant differences between groups for heart rate, respiratory rate, and blood pressure (P > .05). CONCLUSIONS AND CLINICAL IMPORTANCE In ABCB1 mut/mut dogs acepromazine dose rates should be reduced and careful monitoring performed during sedation.
Collapse
Affiliation(s)
- D Deshpande
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - K E Hill
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - K L Mealey
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA
| | - J P Chambers
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - M A Gieseg
- Veterinary Health Research, Waikato Innovation Park, Hamilton, New Zealand
| |
Collapse
|
17
|
Mealey KL, Fidel J. P-glycoprotein mediated drug interactions in animals and humans with cancer. J Vet Intern Med 2015; 29:1-6. [PMID: 25619511 PMCID: PMC4858061 DOI: 10.1111/jvim.12525] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/08/2014] [Accepted: 11/17/2014] [Indexed: 02/05/2023] Open
Abstract
Drug–drug interactions can cause unanticipated patient morbidity and mortality. The consequences of drug–drug interactions can be especially severe when anticancer drugs are involved because of their narrow therapeutic index. Veterinary clinicians have traditionally been taught that drug–drug interactions result from alterations in drug metabolism, renal excretion or protein binding. More recently, drug–drug interactions resulting from inhibition of P‐glycoprotein‐mediated drug transport have been identified in both human and veterinary patients. Many drugs commonly used in veterinary patients are capable of inhibiting P‐glycoprotein function and thereby causing an interaction that results in severe chemotherapeutic drug toxicity. The intent of this review is to describe the mechanism and clinical implications of drug–drug interactions involving P‐glycoprotein and anticancer drugs. Equipped with this information, veterinarians can prevent serious drug–drug interactions by selecting alternate drugs or adjusting the dose of interacting drugs.
Collapse
Affiliation(s)
- K L Mealey
- Program in Individualized Medicine (PrIMe), Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA
| | | |
Collapse
|
18
|
Zhu M, Yancy HF, Deaver C, Jones YL, Myers MJ. Loperamide-induced expression of immune and inflammatory genes in Collies associated with ivermectin sensitivity. J Vet Pharmacol Ther 2015; 39:131-7. [PMID: 26471945 DOI: 10.1111/jvp.12268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/11/2015] [Indexed: 12/16/2022]
Abstract
This study evaluated the impact of the ABCB1-1Δ mutation in Collies which exhibited toxicity toward ivermectin, on changes in gene expression when given the unrelated ABCB1 substrate loperamide, to identify potential biomarkers predictive of drug safety. Thirty-two healthy intact Collies consisting of dogs with either a wild-type, heterozygous mutant, or homozygous mutant genotype were used. Whole blood samples were collected from Collies at 0 or 5 h following administration of loperamide at a dose of 0.10 mg/kg. Whole-genome gene expression microarray was conducted to examine for changes in gene expression. Microarray analysis identified loperamide-induced changes in gene expression which were specifically associated with ivermectin-sensitive phenotypes in Collies possessing the ABCB1-1Δ mutation. Gene pathway analysis further demonstrated that the altered genes are involved in immunological disease, cell death and survival, and cellular development. Thirteen genes, including CCL8 and IL-8, were identified. Collie dogs harboring ABCB1-1Δ mutation which also exhibited toxicity toward ivermectin demonstrated systematic responses following loperamide treatment exhibited by altered expression of genes involved in immune and inflammatory signaling pathways. Genes such as CCL8 and IL-8 are potential biomarkers in whole blood that may predict the safety of loperamide in dogs with ABCB1-1∆ mutation associated with ivermectin sensitivity.
Collapse
Affiliation(s)
- M Zhu
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| | - H F Yancy
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| | - C Deaver
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| | - Y L Jones
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| | - M J Myers
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Office of Research, Laurel, MD, USA
| |
Collapse
|
19
|
Myers MJ, Martinez M, Li H, Qiu J, Troutman L, Sharkey M, Yancy HF. Influence of ABCB1 Genotype in Collies on the Pharmacokinetics and Pharmacodynamics of Loperamide in a Dose-Escalation Study. Drug Metab Dispos 2015; 43:1392-407. [DOI: 10.1124/dmd.115.063735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/07/2015] [Indexed: 11/22/2022] Open
|
20
|
Mealey KL, Burke NS. Identification of a nonsense mutation in feline ABCB1. J Vet Pharmacol Ther 2015; 38:429-33. [PMID: 25660379 DOI: 10.1111/jvp.12212] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/16/2015] [Indexed: 11/29/2022]
Abstract
The aim of this study was to sequence all exons of the ABCB1 (MDR1) gene in cats that had experienced adverse reactions to P-glycoprotein substrate drugs (phenotyped cats). Eight phenotyped cats were included in the study consisting of eight cats that experienced central nervous system toxicosis after receiving ivermectin (n = 2), a combination product containing moxidectin and imidacloprid (n = 3), a combination product containing praziquantel and emodepside (n = 1) or selamectin (n = 2), and 1 cat that received the product containing praziquantel and emodepside but did not experience toxicity (n = 1). Fifteen exons contained polymorphisms and twelve exons showed no variation from the reference sequence. The most significant finding was a nonsense mutation (ABCB11930_1931del TC) in one of the ivermectin-treated cats. This cat was homozygous for the deletion mutation. All of the other phenotyped cats were homozygous for the wild-type allele. However, 14 missense mutations were identified in one or more phenotyped cats. ABCB11930_1931del TC was also identified in four nonphenotyped cats (one homozygous and three heterozygous for the mutant allele). Cats affected by ABCB11930_1931del TC would be expected to have a similar phenotype as dogs with the previously characterized ABCB1-1Δ mutation.
Collapse
Affiliation(s)
- K L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - N S Burke
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol 2014; 74:1023-8. [PMID: 25205428 DOI: 10.1007/s00280-014-2578-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/29/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE The clinical efficacy of the anaplastic lymphoma kinase (ALK) inhibitor crizotinib has been demonstrated in ALK fusion-positive non-small cell lung cancer (NSCLC); however, brain metastases are frequent sites of initial failure in patients due to poor penetration of the central nervous system by crizotinib. Here, we examined the efficacy of a selective ALK inhibitor alectinib/CH5424802 in preclinical models of intracranial tumors. METHODS We established intracranial tumor implantation mouse models of EML4-ALK-positive NSCLC NCI-H2228 and examined the antitumor activity of alectinib in this model. Plasma distribution and brain distribution of alectinib were examined by quantitative whole-body autoradiography administrating a single oral dose of (14)C-labeled alectinib to rats. The drug permeability of alectinib was evaluated in Caco-2 cell. RESULTS Alectinib resulted in regression of NCI-H2228 tumor in mouse brain and provided a survival benefit. In a pharmacokinetic study using rats, alectinib showed a high brain-to-plasma ratio, and in an in vitro drug permeability study using Caco-2 cells, alectinib was not transported by P-glycoprotein efflux transporter that is a key factor in blood-brain barrier penetration. CONCLUSIONS We established intracranial tumor implantation models of EML4-ALK-positive NSCLC. Alectinib showed potent efficacy against intracranial EML4-ALK-positive tumor. These results demonstrated that alectinib might provide therapeutic opportunities for crizotinib-treated patients with brain metastases.
Collapse
|
22
|
Mealey KL. Adverse Drug Reactions in Veterinary Patients Associated with Drug Transporters. Vet Clin North Am Small Anim Pract 2013; 43:1067-78. [DOI: 10.1016/j.cvsm.2013.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Muñana K, Nettifee-Osborne J, Bergman R, Mealey K. Association between ABCB1 Genotype and Seizure Outcome in Collies with Epilepsy. J Vet Intern Med 2012; 26:1358-64. [DOI: 10.1111/j.1939-1676.2012.01006.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 06/13/2012] [Accepted: 08/15/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
- K.R. Muñana
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University; Raleigh; NC
| | - J.A. Nettifee-Osborne
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University; Raleigh; NC
| | - R.L. Bergman
- Department of Clinical Sciences; College of Veterinary Medicine, North Carolina State University; Raleigh; NC
| | - K.L. Mealey
- Department of Veterinary Clinical Sciences; College of Veterinary Medicine, Washington State University; Pullman; WA
| |
Collapse
|
24
|
MacKay CS, Mattoon JS, Roberts GD, Tucker RL, Morimoto TR, Mealey KL. Evaluation of the biliary and brain distribution of technetium Tc 99m sestamibi in healthy dogs with the ABCB1 wildtype genotype before and after treatment with spinosad. Am J Vet Res 2012; 73:814-20. [DOI: 10.2460/ajvr.73.6.814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Merola VM, Eubig PA. Toxicology of avermectins and milbemycins (macrocylic lactones) and the role of P-glycoprotein in dogs and cats. Vet Clin North Am Small Anim Pract 2012; 42:313-33, vii. [PMID: 22381182 DOI: 10.1016/j.cvsm.2011.12.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The macrocyclic lactones (MLs) are parasiticides able to kill a wide variety of arthropods and nematodes. They have a high margin of safety for labeled indications, and ivermectin has become the best-selling antiparasitic in the world. Dogs of certain breeds and mixtures of those breeds have a defect in the ABCB1 gene (formerly MDR1 gene) that results in a lack of functional P-glycoprotein, which leads to accumulation of the MLs in the central nervous system and a higher risk of adverse effects when exposed. There is no specific antidote for ML toxicosis so the most important part of treatment is good supportive care.
Collapse
Affiliation(s)
- Valentina M Merola
- ASPCA Animal Poison Control Center, 1717 South Philo Road, Suite 36, Urbana, IL 61802, USA.
| | | |
Collapse
|
26
|
Xiao G, Black C, Hetu G, Sands E, Wang J, Caputo R, Rohde E, Gan LSL. Cerebrospinal Fluid Can Be Used as a Surrogate to Assess Brain Exposures of Breast Cancer Resistance Protein and P-Glycoprotein Substrates. Drug Metab Dispos 2012; 40:779-87. [DOI: 10.1124/dmd.111.043703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Krugman L, Bryan JN, Mealey KL, Chen A. Vincristine-induced central neurotoxicity in a collie homozygous for the ABCB1Δ mutation. J Small Anim Pract 2011; 53:185-7. [PMID: 22122243 DOI: 10.1111/j.1748-5827.2011.01155.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A six-year-old, neutered, female collie was presented to an oncology specialty service after developing tetraparesis and self-mutilation that progressively worsened while receiving chemotherapy for lymphoma. Neurologic examination revealed ataxia, paresis and diminished conscious proprioception in all limbs with entire spinal reflexes. Magnetic resonance imaging of the brain and spinal cord was normal. Electromyography of the limbs ruled out a vincristine-induced peripheral neuropathy. Cerebrospinal fluid analysis and cerebrospinal fluid and serum testing for Neospora and Toxoplasma were normal. Results of MDR1 genotyping revealed that the dog was homozygous for the ABCB1-1Δ (MDR1) mutation. This clinical presentation strongly resembled the effects seen from inadvertent intrathecal administration of vincristine in humans. Dogs that are homozygous for the ABCB1-1Δ (MDR1) mutation should not receive standard dosages of chemotherapy drugs known to be eliminated by P-glycoprotein, the gene product of ABCB1. Testing for this mutation is strongly recommended before chemotherapy initiation for at-risk breeds.
Collapse
Affiliation(s)
- L Krugman
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | | | | | | |
Collapse
|
28
|
Keep RF, Smith DE. Choroid plexus transport: gene deletion studies. Fluids Barriers CNS 2011; 8:26. [PMID: 22053861 PMCID: PMC3231976 DOI: 10.1186/2045-8118-8-26] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 11/04/2011] [Indexed: 11/26/2022] Open
Abstract
This review examines the use of transporter knockout (KO) animals to evaluate transporter function at the choroid plexus (the blood-CSF barrier; BCSFB). Compared to the blood-brain barrier, there have been few such studies on choroid plexus (CP) function. These have primarily focused on Pept2 (an oligopeptide transporter), ATP-binding cassette (ABC) transporters, Oat3 (an organic anion transporter), Svct2 (an ascorbic acid transporter), transthyretin, ion transporters, and ion and water channels. This review focuses on the knowledge gained from such studies, both with respect to specific transporters and in general to the role of the CP and its impact on brain parenchyma. It also discusses the pros and cons of using KO animals in such studies and the technical approaches that can be used.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, R5018 BSRB, University of Michigan, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
29
|
Wager TT, Villalobos A, Verhoest PR, Hou X, Shaffer CL. Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opin Drug Discov 2011; 6:371-81. [DOI: 10.1517/17460441.2011.564158] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
MEALEY KL, WAITING D, RAUNIG DL, SCHMIDT KR, NELSON FR. Oral bioavailability of P-glycoprotein substrate drugs do not differ between ABCB1-1Δ and ABCB1 wild type dogs. J Vet Pharmacol Ther 2010; 33:453-60. [DOI: 10.1111/j.1365-2885.2010.01170.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Abstract
Delivery of biologically active agents to animals is often perceived to be the poor relation of human drug delivery. Yet this field has a long and successful history of species-specific device and formulation development, ranging from simple approaches and devices used in production animals to more sophisticated formulations and approaches for a wide range of species. While several technologies using biodegradable polymers have been successfully marketed in a range of veterinary and human products, the transfer of delivery technologies has not been similarly applied across species. This may be due to a combination of specific technical requirements for use of devices in different species, inter-species pharmacokinetic, pharmacodynamic and physiological differences, and distinct market drivers for drug classes used in companion and food-producing animals. This chapter reviews selected commercialised and research-based parenteral and non-parenteral veterinary drug delivery technologies in selected domestic species. Emphasis is also placed on the impact of endogenous drug transporters on drug distribution characteristics in different species. In vitro models used to investigate carrier-dependent transport are reviewed. Species-specific expression of transporters in several tissues can account for inter-animal or inter-species pharmacokinetic variability, lack of predictability of drug efficacy, and potential drug-drug interactions.
Collapse
Affiliation(s)
- David J Brayden
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin (UCD) and UCD Conway Institute, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
32
|
Abstract
Pharmacogenomics is the study of the impact of genetic variation on drug effects, with the ultimate goal of achieving "personalised medicine". Since the completion of the Human Genome Project, great strides have been made towards the goal of personalised dosing of drugs in people, as exemplified by the development of gene-guided dosing of the anticoagulant drug, warfarin. Although the pharmacogenomics of domestic animals is still at an early stage of development, there is great potential for advances in the coming years as the direct result of complete genome sequences currently being derived for many of the species of significance to veterinary and comparative medicine. This sequence information is being used to discover sequence variants in candidate genes associated with altered drug response, as well as to develop whole genome high density single nucleotide polymorphism arrays for genotype-phenotype linkage analysis. This review summarises the current state of veterinary pharmacogenomics research, including drug response variability phenotypes with either known genetic aetiology or strong circumstantial evidence for genetic involvement. Polymorphisms and rarer gene variants affecting drug disposition (pharmacokinetics) and drug effect (pharmacodynamics) are discussed. In addition to providing the veterinary clinician with useful information for the practise of therapeutics, it is envisaged that the increasing knowledge base will also provide a resource for individuals involved in veterinary and comparative biomedical research.
Collapse
Affiliation(s)
- Carrie M Mosher
- Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
33
|
COELHO JC, TUCKER R, MATTOON J, ROBERTS G, WAITING DK, MEALEY KL. Biliary excretion of technetium-99m-sestamibi in wild-type dogs and in dogs with intrinsic (ABCB1-1Δ mutation) and extrinsic (ketoconazole treated) P-glycoprotein deficiency. J Vet Pharmacol Ther 2009; 32:417-21. [DOI: 10.1111/j.1365-2885.2009.01068.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Swed A, Eyal S, Madar I, Zohar-Kontante H, Weiss L, Hoffman A. The Role of P-Glycoprotein in Intestinal Transport versus the BBB Transport of Tetraphenylphosphonium. Mol Pharm 2009; 6:1883-90. [DOI: 10.1021/mp900170y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Avi Swed
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, and Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, and Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Igal Madar
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, and Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hila Zohar-Kontante
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, and Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lola Weiss
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, and Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amnon Hoffman
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel, Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, and Department of Bone Marrow Transplantation, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
35
|
Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 2009; 123:80-104. [PMID: 19393264 DOI: 10.1016/j.pharmthera.2009.03.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 12/24/2022]
Abstract
There is considerable interest in the therapeutic and adverse outcomes of drug interactions at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). These include altered efficacy of drugs used in the treatment of CNS disorders, such as AIDS dementia and malignant tumors, and enhanced neurotoxicity of drugs that normally penetrate poorly into the brain. BBB- and BCSFB-mediated interactions are possible because these interfaces are not only passive anatomical barriers, but are also dynamic in that they express a variety of influx and efflux transporters and drug metabolizing enzymes. Based on studies in rodents, it has been widely postulated that efflux transporters play an important role at the human BBB in terms of drug delivery. Furthermore, it is assumed that chemical inhibition of transporters or their genetic ablation in rodents is predictive of the magnitude of interaction to be expected at the human BBB. However, studies in humans challenge this well-established paradigm and claim that such drug interactions will be lesser in magnitude but yet may be clinically significant. This review focuses on current known mechanisms of drug interactions at the blood-brain and blood-CSF barriers and the potential impact of such interactions in humans. We also explore whether such drug interactions can be predicted from preclinical studies. Defining the mechanisms and the impact of drug-drug interactions at the BBB is important for improving efficacy of drugs used in the treatment of CNS disorders while minimizing their toxicity as well as minimizing neurotoxicity of non-CNS drugs.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
36
|
Roberts DJ, Goralski KB. A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Expert Opin Drug Metab Toxicol 2008; 4:1245-64. [DOI: 10.1517/17425255.4.10.1245] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|