1
|
Das R, Ragagnin G, Sjöstedt J, Johansson M, Haage D, Druzin M, Johansson S, Bäckström T. Medroxyprogesterone acetate positively modulates specific GABA A-receptor subtypes - affecting memory and cognition. Psychoneuroendocrinology 2022; 141:105754. [PMID: 35395561 DOI: 10.1016/j.psyneuen.2022.105754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Medroxyprogesterone acetate (MPA) is a progestin widely used in humans as hormone replacement therapy and at other indications. Many progestin metabolites, as the progesterone metabolite allopregnanolone, have GABAA-receptor modulatory effects and are known to affect memory, learning, appetite, and mood. In women, 4 years chronic treatment with MPA doubles the frequency of dementia and in rats, MPA causes cognitive impairment related to the GABAergic system. Activation of the membrane bound GABAA receptor results in a chloride ion flux that can be studied by whole-cell patch-clamp electrophysiological recordings. The purpose of this study was to clarify the modulatory effects of MPA and specific MPA metabolites, with structures like known GABAA-receptor modulators, on different GABAA-receptor subtypes. An additional aim was to verify the results as steroid effects on GABA response in single cells taken from rat hypothalamus. HEK-293 cell-lines permanently expressing the recombinant human GABAA-receptor subtype α1β2γ2L or α5β3γ2L or α2β3γ2S were created. The MPA metabolites 3α5α-MPA,3β5α-MPA and 3β5β-MPA were synthesised and purified for electrophysiological patch-clamp measurements with a Dynaflow system. The effects of MPA and tetrahydrodeoxycorticosterone were also studied. None of the studied MPA metabolites affected the responses mediated by α1β2γ2L or α5β3γ2L GABAA receptors. Contrary, MPA clearly acted both as a positive modulator and as a direct activator of the α5β3γ2L and α2β3γ2S GABAA receptors. However, in concentrations up to 10 μM, MPA was inactive at the α1β2γ2L GABAA receptor. In the patch-clamp recordings from dissociated cells of the preoptic area in rats, MPA increased the amplitude of responses to GABA. In addition, MPA alone without added GABA, evoked a current response. In conclusion, MPA acts as a positive modulator of specific GABAA receptor subtypes expressed in HEK cells and at native GABA receptors in single cells from the hypothalamic preoptic area.
Collapse
Affiliation(s)
- Roshni Das
- Department of Integrative medical biology, Umeå University, SE-901 87 Umeå, Sweden; Umecrine AB, Norrlands University Hospital Umeå, Building 6 M 4th floor, Sweden
| | - Gianna Ragagnin
- Umeå Neurosteroid Research Center, Department of Clinical sciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Jessica Sjöstedt
- Umeå Neurosteroid Research Center, Department of Clinical sciences, Umeå University, SE-901 85 Umeå, Sweden
| | - Maja Johansson
- Umeå Neurosteroid Research Center, Department of Clinical sciences, Umeå University, SE-901 85 Umeå, Sweden; Umecrine AB, Norrlands University Hospital Umeå, Building 6 M 4th floor, Sweden
| | - David Haage
- Umeå Neurosteroid Research Center, Department of Clinical sciences, Umeå University, SE-901 85 Umeå, Sweden; Department of Nursing Sciences, Mid Sweden University, Sundsvall, Sweden; Umecrine AB, Norrlands University Hospital Umeå, Building 6 M 4th floor, Sweden
| | - Michael Druzin
- Department of Integrative medical biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Staffan Johansson
- Department of Integrative medical biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Torbjörn Bäckström
- Umeå Neurosteroid Research Center, Department of Clinical sciences, Umeå University, SE-901 85 Umeå, Sweden; Umecrine AB, Norrlands University Hospital Umeå, Building 6 M 4th floor, Sweden.
| |
Collapse
|
2
|
Bick AJ, Louw-du Toit R, Skosana SB, Africander D, Hapgood JP. Pharmacokinetics, metabolism and serum concentrations of progestins used in contraception. Pharmacol Ther 2021; 222:107789. [PMID: 33316287 PMCID: PMC8122039 DOI: 10.1016/j.pharmthera.2020.107789] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Many different forms of hormonal contraception are used by millions of women worldwide. These contraceptives differ in the dose and type of synthetic progestogenic compound (progestin) used, as well as the route of administration and whether or not they contain estrogenic compounds. There is an increasing awareness that different forms of contraception and different progestins have different side-effect profiles, in particular their cardiovascular effects, effects on reproductive cancers and susceptibility to infectious diseases. There is a need to develop new methods to suit different needs and with minimal risks, especially in under-resourced areas. This requires a better understanding of the pharmacokinetics, metabolism, serum and tissue concentrations of progestins used in contraception as well as the biological activities of progestins and their metabolites via steroid receptors. Here we review the current knowledge on these topics and identify the research gaps. We show that there is a paucity of research on most of these topics for most progestins. We find that major impediments to clear conclusions on these topics include a lack of standardized methodologies, comparisons between non-parallel clinical studies and variability of data on serum concentrations between and within studies. The latter is most likely due, at least in part, to differences in intrinsic characteristics of participants. The review highlights the importance of insight on these topics in order to provide the best contraceptive options to women with minimal risks.
Collapse
Affiliation(s)
- Alexis J Bick
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7700, South Africa
| | - Renate Louw-du Toit
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Salndave B Skosana
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7700, South Africa
| | - Donita Africander
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch 7700, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
3
|
Coombes Z, Yadav V, E. McCoubrey L, Freire C, W. Basit A, Conlan RS, Gonzalez D. Progestogens Are Metabolized by the Gut Microbiota: Implications for Colonic Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12080760. [PMID: 32806503 PMCID: PMC7464400 DOI: 10.3390/pharmaceutics12080760] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023] Open
Abstract
Following oral administration, the bioavailability of progestogens is very low and highly variable, in part due to metabolism by cytochrome P450 enzymes found in the mucosa of the small intestine. Conversely, the mucosa in the colon contains much lower levels of cytochrome P450 enzymes, thus, colonic delivery of progestogens may be beneficial. Microbiota in the colon are known to metabolize a great number of drugs, therefore, it is important to understand the stability of these hormones in the presence of colonic flora before developing formulations. The aim of this study was to investigate the stability of three progestogens: progesterone, and its two synthetic analogues, medroxyprogesterone acetate (MPA) and levonorgestrel (LNG), in the presence of human colonic microbiota. Progesterone, MPA, and LNG were incubated in mixed fecal inoculum (simulated human colonic fluid) under anerobic conditions. Progesterone was completely degraded after 2 h, whereas levels of MPA and LNG were still detectable after 24 h. The half-lives of progesterone, MPA, and LNG in fecal inoculum were 28, 644, and 240 min, respectively. This study describes the kinetics of colonic microbial metabolism of these hormones for the first time. MPA and LNG show promise for delivery to the colon, potentially improving pharmacokinetics over current oral delivery methods.
Collapse
Affiliation(s)
- Zoe Coombes
- Institute of Life Science 2, Swansea University Medical School, Swansea University, Singleton, Swansea SA28PP, UK;
- Correspondence: (Z.C.); (A.W.B.); (D.G.); Tel.: +44-1792-295384 (Z.C.); +44-1792-602339 (A.W.B.); +44-2077-535865 (D.G.)
| | - Vipul Yadav
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, UK; (V.Y.); (L.E.M.); (C.F.)
| | - Laura E. McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, UK; (V.Y.); (L.E.M.); (C.F.)
| | - Cristina Freire
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, UK; (V.Y.); (L.E.M.); (C.F.)
- Kuecept Limited, Potters Bar, Hertfordshire EN6 1TL, UK
| | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, UK; (V.Y.); (L.E.M.); (C.F.)
- Correspondence: (Z.C.); (A.W.B.); (D.G.); Tel.: +44-1792-295384 (Z.C.); +44-1792-602339 (A.W.B.); +44-2077-535865 (D.G.)
| | - R. Steven Conlan
- Institute of Life Science 2, Swansea University Medical School, Swansea University, Singleton, Swansea SA28PP, UK;
| | - Deyarina Gonzalez
- Institute of Life Science 2, Swansea University Medical School, Swansea University, Singleton, Swansea SA28PP, UK;
- Correspondence: (Z.C.); (A.W.B.); (D.G.); Tel.: +44-1792-295384 (Z.C.); +44-1792-602339 (A.W.B.); +44-2077-535865 (D.G.)
| |
Collapse
|
4
|
Jenkins D, Harmon CL, Jia X, Kesselring A, Hatcher D, Grayson K, Ayres J. Forced degradation studies of medroxyprogesterone acetate injectable suspensions (150 mg/ml) with implementation of HPLC, mass spectrometry, and QSAR techniques. J Pharm Biomed Anal 2020; 187:113352. [PMID: 32480200 PMCID: PMC7322552 DOI: 10.1016/j.jpba.2020.113352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 11/21/2022]
Abstract
Medroxyprogesterone acetate (MPA) injectable products are a key commodity for reproductive health and are available in the global market from a variety of manufacturing sources. Depending on the climatic zone conditions of the destination country for product use, MPA injectables are at risk of exposure to adverse transport and storage conditions. Analytical methods are available that quantify impurity levels in MPA and MPA injectable products, but minimal information is publicly available on the source of impurity and degradation product generation or the safety risk of these compounds. Forced degradation studies were conducted on MPA and MPA injectables to gain a better understanding of potential sources of impurities and degradation products. Furthermore, QSAR analysis was conducted to assess the toxicity risk of known impurities. More impurities were generated under acidic, basic, light, and oxidative forced degradation conditions relative to thermal degradation, however thermal exposure is the most likely adverse condition to be experienced by these products. Even if impurities are present in MPA injectables, QSAR analysis found that known impurities for MPA are apparently no more of a safety risk than MPA.
Collapse
Affiliation(s)
- David Jenkins
- Product Quality and Compliance, FHI 360, 2810 Meridian Parkway, Suite 160, Durham, NC 27713, USA.
| | - Christopher L Harmon
- Product Development and Introduction, FHI 360, 359 Blackwell Street, Suite 200, Durham, NC 27701, USA.
| | - Xiao Jia
- EKG Life Science Solutions, 4633 World Parkway Circle, St. Louis, MO 63134, USA.
| | - Allen Kesselring
- EKG Life Science Solutions, 4633 World Parkway Circle, St. Louis, MO 63134, USA.
| | - Danielle Hatcher
- EKG Life Science Solutions, 4633 World Parkway Circle, St. Louis, MO 63134, USA.
| | - Katie Grayson
- EKG Life Science Solutions, 4633 World Parkway Circle, St. Louis, MO 63134, USA.
| | - Jennifer Ayres
- Product Development and Introduction, FHI 360, 359 Blackwell Street, Suite 200, Durham, NC 27701, USA.
| |
Collapse
|
5
|
Ghasemi S, Heidary M, Habibi Z. The 11α-hydroxylation of medroxyprogesterone acetate by Absidia griseolla var. igachii and Acremonium chrysogenum. Steroids 2019; 149:108427. [PMID: 31228485 DOI: 10.1016/j.steroids.2019.108427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/08/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022]
Abstract
Medroxyprogesterone acetate (MPA) (1) has been transformed by two filamentous fungi, including Absidia griseolla var. igachii and Acremonium chrysogenum, into 11α-hydroxy-medroxyprogesterone acetate (2) as the major metabolite. The structure of the product was identified by different spectroscopic methods (1D- and 2D-NMR, EI-MS, and elemental analysis). Moreover, a time course study determined by HPLC showed 63% and 48% yields for the metabolite by using the two mentioned fungi, respectively. Finally, the effect of the temperature and concentration of the substrate were investigated, which the optimal fermentation conditions were found to be 25 °C with a substrate concentration of 0.1% (w/v). This study reports for the first time the production of 11α-hydroxy-medroxyprogesterone acetate as a fungal biotransformation product.
Collapse
Affiliation(s)
- Saba Ghasemi
- Department of Chemistry, Ilam Branch, Islamic Azad University, Ilam, Iran.
| | - Marjan Heidary
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran
| | - Zohreh Habibi
- Department of Pure Chemistry, Faculty of Chemistry, Shahid Beheshti University, G.C., Tehran, Iran.
| |
Collapse
|
6
|
Goto T, Tohkin M, Yamazoe Y. Solving the interactions of steroidal ligands with CYP3A4 using a grid-base template system. Drug Metab Pharmacokinet 2019; 34:351-364. [PMID: 31563329 DOI: 10.1016/j.dmpk.2019.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 02/03/2023]
Abstract
Using over fifty steroidal ligands, CYP3A4 Template system established in our previous study (DMPK 34: 113-125, 2019) has been evaluated for the applicability for prediction of regioselective metabolisms of steroids in the present study. Plural regional interactions near Site of Oxidation of CYP3A4 (Slide-down and Adaptation) are newly defined for steroid ligands in addition to previously characterized Trigger- and IJL-interactions on Template. Interaction of steroids at ring-A with CYP3A4 residue (Front-residue), at the facial side of Ring B of Template, determined the availability of ligand sitting at Rings A and B of Template. Steroids having 3-one-4-ene structures, which are not stacked on Front-residue, thus slide down for their 6-oxidations. Some steroids with 3β-ol structures undergo the further right-side movement (Adaptation) for their 7-oxidations. Similar overpassing phenomena are also expected for steroid 15/16-oxidations and 2/1-oxidations. Allowable width on ligand accommodation was also defined as Width-gauge of Template. Reciprocal comparison of sittings of steroids on Template with experimental data offered idea of CYP3A4-mediated oxidations of steroids through seven distinct types of placements on Template and of the relationship with their usage abundance. The present system would offer practical way for structural identification and verification of CYP3A4-mediated metabolisms of various types of steroids.
Collapse
Affiliation(s)
- Takahiro Goto
- Essential Medicines and Health Products, Access to Medicines, Vaccines and Pharmaceuticals, World Health Organization, Avenue Appia 20, 1211 Geneva 27, Switzerland; Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Masahiro Tohkin
- Regulatory Science, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Food Safety Commission, Cabinet Office, Government of Japan, Akasaka Park Bldg. 22F 5-2-20 Akasaka, Minato-ku, Tokyo, 107-6122 Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kanagawa, 210-9501, Japan.
| |
Collapse
|
7
|
Yamazoe Y, Goto T, Tohkin M. Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition. Drug Metab Pharmacokinet 2019; 34:113-125. [DOI: 10.1016/j.dmpk.2018.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023]
|
8
|
Dai ZR, Ning J, Sun GB, Wang P, Zhang F, Ma HY, Zou LW, Hou J, Wu JJ, Ge GB, Sun XB, Yang L. Cytochrome P450 3A Enzymes Are Key Contributors for Hepatic Metabolism of Bufotalin, a Natural Constitute in Chinese Medicine Chansu. Front Pharmacol 2019; 10:52. [PMID: 30778299 PMCID: PMC6369212 DOI: 10.3389/fphar.2019.00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022] Open
Abstract
Bufotalin (BFT), one of the naturally occurring bufodienolides, has multiple pharmacological and toxicological effects including antitumor activity and cardiotoxicity. This study aimed to character the metabolic pathway(s) of BFT and to identify the key drug metabolizing enzyme(s) responsible for hepatic metabolism of BFT in human, as well as to explore the related molecular mechanism of enzymatic selectivity. The major metabolite of BFT in human liver microsomes (HLMs) was fully identified as 5β-hydroxylbufotalin by LC-MS/MS and NMR techniques. Reaction phenotyping and chemical inhibition assays showed that CYP3A4 and CYP3A5 were key enzymes responsible for BFT 5β-hydroxylation. Kinetic analyses demonstrated that BFT 5β-hydroxylation in both HLMs and human CYP3A4 followed the biphasic kinetics, while BFT 5β-hydroxylation in CYP3A5 followed substrate inhibition kinetics. Furthermore, molecular docking simulations showed that BFT could bind on two different ligand-binding sites on both CYP3A4 and CYP3A5, which partially explained the different kinetic behaviors of BFT in CYP3A4 and CYP3A5. These findings are very helpful for elucidating the phase I metabolism of BFT in human and for deeper understanding the key interactions between CYP3A enzymes and bufadienolides, as well as for the development of bufadienolide-type drugs with improved pharmacokinetic and safety profiles.
Collapse
Affiliation(s)
- Zi-Ru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Ning
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Gui-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Ying Ma
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Wei Zou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Hou
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jing-Jing Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiao-Bo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Identification of Human UDP-Glucuronosyltransferase 1A4 as the Major Isozyme Responsible for the Glucuronidation of 20(S)-Protopanaxadiol in Human Liver Microsomes. Int J Mol Sci 2016; 17:205. [PMID: 27005621 PMCID: PMC4813125 DOI: 10.3390/ijms17030205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/17/2016] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
20(S)-protopanaxadiol (PPD), one of the representative aglycones of ginsenosides, has a broad spectrum of pharmacological activities. Although phase I metabolism has been investigated extensively, information regarding phase II metabolism of this compound remains to be elucidated. Here, a glucuronidated metabolite of PPD in human liver microsomes (HLMs) and rat liver microsomes (RLMs) was unambiguously identified as PPD-3-O-β-d-glucuronide by nuclear magnetic resonance spectroscopy and high resolution mass spectrometry. The chemical inhibition and recombinant human UDP-Glucuronosyltransferase (UGT) isoforms assay showed that the PPD glucuronidation was mainly catalyzed by UGT1A4 in HLM, whereas UGT1A3 showed weak catalytic activity. In conclusion, PPD-3-O-β-d-glucuronide was first identified as the principal glucuronidation metabolite of PPD in HLMs, which was catalyzed by UGT1A4.
Collapse
|
10
|
Stanczyk FZ, Bhavnani BR. Reprint of "Use of medroxyprogesterone acetate for hormone therapy in postmenopausal women: Is it safe?". J Steroid Biochem Mol Biol 2015; 153:151-9. [PMID: 26291834 DOI: 10.1016/j.jsbmb.2015.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 11/18/2013] [Indexed: 10/23/2022]
Abstract
Medroxyprogesterone acetate (MPA) has been in clinical use for over 30 years, and was generally considered to be safe until the results of long-term studies of postmenopausal hormone therapy (HT) using treatment with conjugated equine estrogens (CEE) combined with MPA and CEE alone suggested that MPA, and perhaps other progestogens, may play a role in the increased risk of breast cancer and cardiovascular diseases. This review examines critically the safety of MPA in terms of breast cancer and cardiovascular disease risk, and its effects on brain function. Research into mechanisms by which MPA might cause adverse effects in these areas, combined with the available clinical evidence, suggests a small increase in relative risk for breast cancer and stroke, and a decline in cognitive function, in older women using MPA with an estrogen for postmenopausal HT. However, short-term (less than 5 years) use of MPA with an estrogen in the years immediately after the onset of menopause for the management of vasomotor symptoms does not appear to be associated with any increased risk of these disorders.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto and The Keenan Research Center of Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ont., Canada M5B 1W8
| |
Collapse
|
11
|
Dai ZR, Ai CZ, Ge GB, He YQ, Wu JJ, Wang JY, Man HZ, Jia Y, Yang L. A Mechanism-Based Model for the Prediction of the Metabolic Sites of Steroids Mediated by Cytochrome P450 3A4. Int J Mol Sci 2015; 16:14677-94. [PMID: 26133240 PMCID: PMC4519866 DOI: 10.3390/ijms160714677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 11/16/2022] Open
Abstract
Early prediction of xenobiotic metabolism is essential for drug discovery and development. As the most important human drug-metabolizing enzyme, cytochrome P450 3A4 has a large active cavity and metabolizes a broad spectrum of substrates. The poor substrate specificity of CYP3A4 makes it a huge challenge to predict the metabolic site(s) on its substrates. This study aimed to develop a mechanism-based prediction model based on two key parameters, including the binding conformation and the reaction activity of ligands, which could reveal the process of real metabolic reaction(s) and the site(s) of modification. The newly established model was applied to predict the metabolic site(s) of steroids; a class of CYP3A4-preferred substrates. 38 steroids and 12 non-steroids were randomly divided into training and test sets. Two major metabolic reactions, including aliphatic hydroxylation and N-dealkylation, were involved in this study. At least one of the top three predicted metabolic sites was validated by the experimental data. The overall accuracy for the training and test were 82.14% and 86.36%, respectively. In summary, a mechanism-based prediction model was established for the first time, which could be used to predict the metabolic site(s) of CYP3A4 on steroids with high predictive accuracy.
Collapse
Affiliation(s)
- Zi-Ru Dai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chun-Zhi Ai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guang-Bo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yu-Qi He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jing-Jing Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jia-Yue Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Hui-Zi Man
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yan Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- Graduate School of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ling Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
12
|
Stanczyk FZ, Bhavnani BR. Use of medroxyprogesterone acetate for hormone therapy in postmenopausal women: is it safe? J Steroid Biochem Mol Biol 2014; 142:30-8. [PMID: 24291402 DOI: 10.1016/j.jsbmb.2013.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Medroxyprogesterone acetate (MPA) has been in clinical use for over 30 years, and was generally considered to be safe until the results of long-term studies of postmenopausal hormone therapy (HT) using treatment with conjugated equine estrogens (CEE) combined with MPA and CEE alone suggested that MPA, and perhaps other progestogens, may play a role in the increased risk of breast cancer and cardiovascular diseases. This review examines critically the safety of MPA in terms of breast cancer and cardiovascular disease risk, and its effects on brain function. Research into mechanisms by which MPA might cause adverse effects in these areas, combined with the available clinical evidence, suggests a small increase in relative risk for breast cancer and stroke, and a decline in cognitive function, in older women using MPA with an estrogen for postmenopausal HT. However, short-term (less than 5 years) use of MPA with an estrogen in the years immediately after the onset of menopause for the management of vasomotor symptoms does not appear to be associated with any increased risk of these disorders.
Collapse
Affiliation(s)
- Frank Z Stanczyk
- Department of Obstetrics and Gynecology, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA; Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Bhagu R Bhavnani
- Department of Obstetrics and Gynecology, University of Toronto and The Keenan Research Center of Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ont., Canada M5B 1W8
| |
Collapse
|
13
|
Sun D, Zhu L, Xiao L, Xia Y, Ge G, Cao Y, Wu Y, Yin J, Yang L. In vitroglucuronidation of Armillarisin A: UDP-glucuronosyltransferase 1A9 acts as a major contributor and significant species differences. Xenobiotica 2014; 44:988-95. [DOI: 10.3109/00498254.2014.927084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Ge GB, Ning J, Hu LH, Dai ZR, Hou J, Cao YF, Yu ZW, Ai CZ, Gu JK, Ma XC, Yang L. A highly selective probe for human cytochrome P450 3A4: isoform selectivity, kinetic characterization and its applications. Chem Commun (Camb) 2013; 49:9779-81. [DOI: 10.1039/c3cc45250f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Zhu L, Ge G, Liu Y, Guo Z, Peng C, Zhang F, Cao Y, Wu J, Fang Z, Liang X, Yang L. Characterization of UDP-Glucuronosyltransferases Involved in Glucuronidation of Diethylstilbestrol in Human Liver and Intestine. Chem Res Toxicol 2012; 25:2663-9. [DOI: 10.1021/tx300310k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Liangliang Zhu
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangbo Ge
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| | - Yong Liu
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| | - Zhimou Guo
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| | - Chengcheng Peng
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| | - Feng Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Yunfeng Cao
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| | - Jingjing Wu
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| | - Zhongze Fang
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
- Graduate School of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinmiao Liang
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| | - Ling Yang
- Dalian Institute
of Chemical
Physics, Chinese Academy of Sciences, Dalian,
116023, China
| |
Collapse
|
16
|
Sahu K, Shaharyar M, Siddiqui AA. Effect of Morin on pharmacokinetics of Piracetam in rats,in vitroenzyme kinetics and metabolic stability assay using rapid UPLC method. Drug Test Anal 2012; 5:581-8. [DOI: 10.1002/dta.1382] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/10/2012] [Accepted: 05/15/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Kapendra Sahu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); Hamdard Nagar; New Delhi; INDIA; 110062
| | - Mohammad Shaharyar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); Hamdard Nagar; New Delhi; INDIA; 110062
| | - Anees A. Siddiqui
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); Hamdard Nagar; New Delhi; INDIA; 110062
| |
Collapse
|
17
|
Liang SC, Ge GB, Liu HX, Zhang YY, Wang LM, Zhang JW, Yin L, Li W, Fang ZZ, Wu JJ, Li GH, Yang L. Identification and characterization of human UDP-glucuronosyltransferases responsible for the in vitro glucuronidation of daphnetin. Drug Metab Dispos 2010; 38:973-80. [PMID: 20176691 DOI: 10.1124/dmd.109.030734] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Daphnetin has been developed as an oral medicine for treatment of coagulation disorders and rheumatoid arthritis in China, but its in vitro metabolism remains unknown. In the present study, the UDP-glucuronosyltransferase (UGT) conjugation pathways of daphnetin were characterized. Two metabolites, 7-O-monoglucuronide daphnetin (M-1) and 8-O-monoglucuronide daphnetin (M-2), were identified by liquid chromatography/mass spectrometry and NMR when daphnetin was incubated, respectively, with liver microsomes from human (HLM), rat (RLM), and minipig (PLM) and human intestinal microsomes (HIM) in the presence of UDP-glucuronic acid. Screening assays with 12 human recombinant UGTs demonstrated that the formations of M-1 and M-2 were almost exclusively catalyzed by UGT1A9 and UGT1A6, whereas M-1 was formed to a minor extent by UGT1A3, 1A4, 1A7, 1A8, and 1A10 at a high substrate concentration. Kinetics studies, chemical inhibition, and correlation analysis were used to demonstrate that human UGT1A9 and UGT1A6 were major isoforms involved in the daphnetin glucuronidations in HLM and HIM. By in vitro-in vivo extrapolation of the kinetic data measured in HLM, the hepatic clearance and the corresponding hepatic extraction ratio were estimated to be 19.3 ml/min/kg b.wt. and 0.93, respectively, suggesting that human clearance of daphnetin via the glucuronidation is extensive. Chemical inhibition of daphnetin glucuronidation in HLM, RLM, and PLM showed large species differences although the metabolites were formed similarly among the species. In conclusion, the UGT conjugation pathways of daphnetin were fully elucidated and its C-8 phenol group was more selectively catalyzed by UGTs than by the C-7 phenol.
Collapse
Affiliation(s)
- Si-Cheng Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cao YF, Zhang YY, Li J, Ge GB, Hu D, Liu HX, Huang T, Wang YC, Fang ZZ, Sun DX, Huo H, Yin J, Yang L. CYP3A catalyses schizandrin biotransformation in human, minipig and rat liver microsomes. Xenobiotica 2009; 40:38-47. [DOI: 10.3109/00498250903366052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Zhang YY, Liu Y, Zhang JW, Ge GB, Liu HX, Wang LM, Sun J, Yang L. C-7 configuration as one of determinants in taxanes metabolism by human cytochrome P450 enzymes. Xenobiotica 2009; 39:903-14. [DOI: 10.3109/00498250903271989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Liu HX, Hu Y, Liu Y, He YQ, Li W, Yang L. CYP1A2 is the major isoform responsible for paeonolO-demethylation in human liver microsomes. Xenobiotica 2009; 39:672-9. [DOI: 10.1080/00498250902998681] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhang YY, Yang L. Interactions between human cytochrome P450 enzymes and steroids: physiological and pharmacological implications. Expert Opin Drug Metab Toxicol 2009; 5:621-9. [DOI: 10.1517/17425250902967648] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Liu HX, Hu Y, Liu Y, He YQ, Li W, Yang L. Hydroxylation of tanshinone IIa in human liver microsomes is specifically catalysed by cytochrome P4502A6. Xenobiotica 2009; 39:382-90. [DOI: 10.1080/00498250902818335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Chen J, Zhang JW, Yang L, Li W. Structure Elucidation of Major Metabolites from Medroxyprogesterone Acetate by P450. Chem Pharm Bull (Tokyo) 2009; 57:835-9. [DOI: 10.1248/cpb.57.835] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jianjun Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center
| | - Jiang-Wei Zhang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center
| |
Collapse
|