1
|
Song Y, Li C, Liu G, Liu R, Chen Y, Li W, Cao Z, Zhao B, Lu C, Liu Y. Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin Pharmacokinet 2021; 60:585-601. [PMID: 33723723 DOI: 10.1007/s40262-021-01001-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.
Collapse
Affiliation(s)
- Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Juvonen RO, Jokinen EM, Javaid A, Lehtonen M, Raunio H, Pentikäinen OT. Inhibition of human CYP1 enzymes by a classical inhibitor α-naphthoflavone and a novel inhibitor N-(3, 5-dichlorophenyl)cyclopropanecarboxamide: An in vitro and in silico study. Chem Biol Drug Des 2020; 95:520-533. [PMID: 32060993 DOI: 10.1111/cbdd.13669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 01/01/2023]
Abstract
Enzymes in the cytochrome P450 family 1 (CYP1) catalyze metabolic activation of procarcinogens and deactivation of certain anticancer drugs. Inhibition of these enzymes is a potential approach for cancer chemoprevention and treatment of CYP1-mediated drug resistance. We characterized inhibition of human CYP1A1, CYP1A2, and CYP1B1 enzymes by the novel inhibitor N-(3,5-dichlorophenyl)cyclopropanecarboxamide (DCPCC) and α-naphthoflavone (ANF). Depending on substrate, IC50 values of DCPCC for CYP1A1 or CYP1B1 were 10-95 times higher than for CYP1A2. IC50 of DCPCC for CYP1A2 was 100-fold lower than for enzymes in CYP2 and CYP3 families. DCPCC IC50 values were 10-680 times higher than the ones of ANF. DCPCC was a mixed-type inhibitor of CYP1A2. ANF was a competitive tight-binding inhibitor of CYP1A1, CYP1A2, and CYP1B1. CYP1A1 oxidized DCPCC more rapidly than CYP1A2 or CYP1B1 to the same metabolite. Molecular dynamics simulations and binding free energy calculations explained the differences of binding of DCPCC and ANF to the active sites of all three CYP1 enzymes. We conclude that DCPCC is a more selective inhibitor for CYP1A2 than ANF. DCPCC is a candidate structure to modulate CYP1A2-mediated metabolism of procarcinogens and anticancer drugs.
Collapse
Affiliation(s)
- Risto Olavi Juvonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Elmeri Matias Jokinen
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Adeel Javaid
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Hannu Raunio
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Olli Taneli Pentikäinen
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
A review on the druggability of a thiol-based enzymatic antioxidant thioredoxin reductase for treating filariasis and other parasitic infections. Int J Biol Macromol 2020; 142:125-141. [DOI: 10.1016/j.ijbiomac.2019.09.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 01/07/2023]
|
4
|
Verma H, Singh Bahia M, Choudhary S, Kumar Singh P, Silakari O. Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev 2019; 51:196-223. [DOI: 10.1080/03602532.2019.1632886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Himanshu Verma
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | | | - Shalki Choudhary
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Pankaj Kumar Singh
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Om Silakari
- MolecularModelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
5
|
Lepri SR, Sartori D, Semprebon SC, Baranoski A, Coatti GC, Mantovani MS. Genistein Affects Expression of Cytochrome P450 (CYP450) Genes in Hepatocellular Carcinoma (HEPG2/C3A) Cell Line. Drug Metab Lett 2019; 12:138-144. [PMID: 29984664 PMCID: PMC6350198 DOI: 10.2174/1872312812666180709150440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genistein (5,7-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is the most abundant isoflavone in soybean, which has been associated with a lower risk of development of cancer and cardiovascular diseases. Of particular interest regarding cancer preventive properties of flavonoids is their interaction with cytochrome P450 enzymes (CYPs). However, contradictory data report the effect of genistein on expression of СYPs enzymes. OBJECTIVE The aim of this study was to investigate the effects of genistein on cytochrome P450 (CYP) gene expression levels in human hepatocellular carcinoma (HepG2/C3A) and colon adenocarcinoma (HT29) cells. METHODS Real-time RT-PCR was used to examine the expression of genes families involved in xenobiotic metabolism, such as CYP1 (CYP1A1, CYP1B1), CYP2 (CYP2E1, CYP2D6), CYP3 (CYP3A4); and of a family involved in the catabolism of the all-trans-retinoic acid (ATRA), CYP26 (CYP26A1, CYP26B1). RESULTS RT-qPCR data analysis showed that after 12 h of exposure of HepG2/C3A cells to genistein (5 and 50 µM) there was an upregulation of CYP1A1 and CYP1B1 and downregulation of CYP2D6, CYP26A1 and CYP26B1 mRNA levels. There was no change in the mRNA levels of CYP P450 genes in HT29 cells. CONCLUSION Our results suggest that treatment with genistein in non-toxic concentrations may impact the expression level of CYPs involved in the biotransformation of xenobiotics and drug metabolizing enzymes. Moreover, the downregulation of ATRA metabolism-related genes opens a new research path for the study of genistein as retinoic acid metabolism blocking agent for treating cancer and other pathologies.
Collapse
Affiliation(s)
- Sandra R Lepri
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Daniele Sartori
- Departamento de Bioquimica, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Simone C Semprebon
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Adrivanio Baranoski
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| | - Giuliana C Coatti
- Instituto de Biociencias. Centro de Pesquisas sobre o Genoma Humano e Celulas-Tronco, Universidade de Sao Paulo (USP), Sao Paulo, Brazil
| | - Mario S Mantovani
- Departamento de Biologia Geral, Universidade Estadual de Londrina (UEL), Londrina, Parana, Brazil
| |
Collapse
|
6
|
Frydenvang K, Verkade-Vreeker MCA, Dohmen F, Commandeur JNM, Rafiq M, Mirza O, Jørgensen FS, Geerke DP. Structural analysis of Cytochrome P450 BM3 mutant M11 in complex with dithiothreitol. PLoS One 2019; 14:e0217292. [PMID: 31125381 PMCID: PMC6534296 DOI: 10.1371/journal.pone.0217292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/08/2019] [Indexed: 11/18/2022] Open
Abstract
The bacterial Cytochrome P450 (CYP) BM3 (CYP102A1) is one of the most active CYP isoforms. BM3 mutants can serve as a model for human drug-metabolizing CYPs and/or as biocatalyst for selective formation of drug metabolites. Hence, molecular and computational biologists have in the last two decades shown strong interest in the discovery and design of novel BM3 variants with optimized activity and selectivity for substrate conversion. This led e.g. to the discovery of mutant M11 that is able to metabolize a variety of drugs and drug-like compounds with relatively high activity. In order to further improve our understanding of CYP binding and reactions, we performed a co-crystallization study of mutant M11 and report here the three-dimensional structure M11 in complex with dithiothreitol (DTT) at a resolution of 2.16 Å. The structure shows that DTT can coordinate to the Fe atom in the heme group. UV/Vis spectroscopy and molecular dynamics simulation studies underline this finding and as first structure of the CYP BM3 mutant M11 in complex with a ligand, it offers a basis for structure-based design of novel mutants.
Collapse
Affiliation(s)
- Karla Frydenvang
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marlies C. A. Verkade-Vreeker
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Floor Dohmen
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Jan N. M. Commandeur
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
| | - Maria Rafiq
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Osman Mirza
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (FSJ); (DPG)
| | - Daan P. Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, the Netherlands
- * E-mail: (FSJ); (DPG)
| |
Collapse
|
7
|
Ramachandhiran D, Vinothkumar V, Babukumar S. Paeonol exhibits anti-tumor effects by apoptotic and anti-inflammatory activities in 7,12-dimethylbenz(a)anthracene induced oral carcinogenesis. Biotech Histochem 2018; 94:10-25. [PMID: 30101628 DOI: 10.1080/10520295.2018.1493221] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We investigated the preventive potential of paeonol on 7,12-dimethylbenz(a)anthracene (DMBA) induced oral carcinogenesis. Oral tumors were developed in the buccal pouches of Syrian golden hamsters using topical application of 0.5% DMBA three times/week for 10 weeks. DMBA treated hamsters developed hyperplasia, dysplasia and well-differentiated squamous cell carcinoma. The animals also exhibited increased lipid oxidation, decreased antioxidant status and altered levels of detoxification agents. Paeonol treatment of DMBA treated hamsters for 14 weeks decreased tumor incidence, volume and burden Paeonol treatment also increased antioxidant activity and decreased lipid oxidation to near normal levels. Histomorphology and the expression patterns of mutant p53, cyclo-oxygenase (COX-2) and caspase-9 were investigated in the oral buccal mucosa. Paeonol exhibited protective effects against DMBA induced oral carcinogenesis owing to its antitumor, antioxidant, anti-inflammatory and apoptosis inducing properties.
Collapse
Affiliation(s)
- Duraisamy Ramachandhiran
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , India
| | - Veerasamy Vinothkumar
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , India
| | - Sukumar Babukumar
- a Department of Biochemistry and Biotechnology, Faculty of Science , Annamalai University , Annamalainagar , India
| |
Collapse
|
8
|
Structure-Based Drug Design for Cytochrome P450 Family 1 Inhibitors. Bioinorg Chem Appl 2018; 2018:3924608. [PMID: 30147715 PMCID: PMC6083639 DOI: 10.1155/2018/3924608] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/17/2018] [Accepted: 06/20/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochromes P450 are a class of metalloproteins which are responsible for electron transfer in a wide spectrum of reactions including metabolic biotransformation of endogenous and exogenous substrates. The superfamily of cytochromes P450 consists of families and subfamilies which are characterized by a specific structure and substrate specificity. Cytochromes P450 family 1 (CYP1s) play a distinctive role in the metabolism of drugs and chemical procarcinogens. In recent decades, these hemoproteins have been intensively studied with the use of computational methods which have been recently developed remarkably to be used in the process of drug design by the virtual screening of compounds in order to find agents with desired properties. Moreover, the molecular modeling of proteins and ligand docking to their active sites provide an insight into the mechanism of enzyme action and enable us to predict the sites of drug metabolism. The review presents the current status of knowledge about the use of the computational approach in studies of ligand-enzyme interactions for CYP1s. Research on the metabolism of substrates and inhibitors of CYP1s and on the selectivity of their action is particularly valuable from the viewpoint of cancer chemoprevention, chemotherapy, and drug-drug interactions.
Collapse
|
9
|
Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat Rev 2017; 63:1-18. [PMID: 29197745 DOI: 10.1016/j.ctrv.2017.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Cancer chemoprevention is the use of synthetic, natural or biological agents to prevent or delay the development or progression of malignancies. Intriguingly, many phytochemicals with anti-inflammatory and anti-angiogenic effects, recently proposed as chemoprevention strategies, are inhibitors of Cytochrome P450 family 1B1 (CYP1B1), an enzyme overexpressed in a wide variety of tumors and associated with angiogenesis. In turn, pro-inflammatory cytokines were reported to boost CYP1B1 expression, suggesting a key role of CYP1B1 in a positive loop of inflammatory angiogenesis. Other well-known pro-tumorigenic activities of CYP1B1 rely on metabolic bioactivation of xenobiotics and steroid hormones into their carcinogenic derivatives. In contrast to initial in vitro observations, in vivo studies demonstrated a protecting role against cancer for the other CYP1 family members (CYP1A1 and CYP1A2), suggesting that the specificity of CYP1 family inhibitors should be carefully taken into account for developing potential chemoprevention strategies. Recent studies also proposed a role of CYP1B1 in multiple cell types found within the tumor microenvironment, including fibroblasts, endothelial and immune cells. Overall, our review of the current literature suggests a positive loop between inflammatory cytokines and CYP1B1, which in turn may play a key role in cancer angiogenesis, acting on both cancer cells and the tumor microenvironment. Strategies aiming at specific CYP1B1 inhibition in multiple cell types may translate into clinical chemoprevention and angioprevention approaches.
Collapse
|
10
|
Ezzat SK, AbuElkhair MT, Mourad MI, Helal ME, Grawish ME. Effects of aqueous cinnamon extract on chemically-induced carcinoma of hamster cheek pouch mucosa. Biochem Biophys Rep 2017; 12:72-78. [PMID: 28955794 PMCID: PMC5613231 DOI: 10.1016/j.bbrep.2017.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/28/2017] [Indexed: 01/19/2023] Open
Abstract
This study aimed to investigate the effects of aqueous cinnamon extract (ACE) on 7, 12-Dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamster cheek pouch (HCP) mucosa. Sixty male Syrian hamsters were randomly divided into six equal groups. The hamsters of groups I, II and III received no treatment, DMBA and ACE respectively, for 16 weeks. Groups IV and V were handled as group II and concomitantly treated with ACE for the same period and additionally group V received ACE for other 16 weeks after the stoppage of DMBA application. Group VI hamsters were handled as group III and additionally received DMBA for other 16 weeks after the stoppage of ACE supplementation. Hamsters of each group were euthanized according to the experimental schedule. The buccal pouches were and prepared for H&E stain, PAS reagent, CD3 and PDGF immunohistochemical reactivity. All groups showed dysplastic changes with varying degrees except groups I and III. Deep invasive carcinomas were recorded in 90% of the samples of group II, 60% of group IV, 50% of group V and 40% of group VI. From the previous results, it can be concluded that ACE has the potentiality preventing oral cancer initiation better than inhibiting oral cancer progression.
Collapse
Affiliation(s)
- Samah K. Ezzat
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mazen T. AbuElkhair
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mohamed I. Mourad
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mohamed E. Helal
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mohammed E. Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Mansoura, Egypt
- Correspondence to: Faculty of Dentistry, Mansoura University, Egypt.Faculty of Dentistry, Mansoura UniversityEgypt
| |
Collapse
|
11
|
Callero MA, Rodriguez CE, Sólimo A, Bal de Kier Joffé E, Loaiza Perez AI. The Immune System As a New Possible Cell Target for AFP 464 in a Spontaneous Mammary Cancer Mouse Model. J Cell Biochem 2017; 118:2841-2849. [DOI: 10.1002/jcb.25934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/15/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Mariana A. Callero
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| | - Cristina E. Rodriguez
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| | - Aldana Sólimo
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
| | - Elisa Bal de Kier Joffé
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| | - Andrea I. Loaiza Perez
- Universidad de Buenos Aires; Instituto de Oncología “Ángel H. Roffo”; Área Investigaciones; Ciudad de Buenos Aires; Argentina
- National Scientific Council (CONICET); CABA; CABA Argentina
| |
Collapse
|
12
|
Guengerich FP. Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions. Chem Res Toxicol 2017; 30:2-12. [PMID: 27472660 PMCID: PMC5293730 DOI: 10.1021/acs.chemrestox.6b00226] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Today much is known about cytochrome P450 (P450) enzymes and their catalytic specificity, but the range of reactions catalyzed by each still continues to surprise. Historically, P450s had been considered to be involved in either the metabolism of xenobiotics or endogenous chemicals, in the former case playing a generally protective role and in the latter case a defined physiological role. However, the line of demarcation is sometimes blurred. It is difficult to be completely specific in drug design, and some P450s involved in the metabolism of steroids and vitamins can be off-targets. In a number of cases, drugs have been developed that act on some of those P450s as primary targets, e.g., steroid aromatase inhibitors. Several of the P450s involved in the metabolism of endogenous substrates are less specific than once thought and oxidize several related structures. Some of the P450s that primarily oxidize endogenous chemicals have been shown to oxidize xenobiotic chemicals, even in a bioactivation mode.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| |
Collapse
|
13
|
Kostin VA, Zolottsev VA, Kuzikov AV, Masamrekh RA, Shumyantseva VV, Veselovsky AV, Stulov SV, Novikov RA, Timofeev VP, Misharin AY. Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids 2016; 115:114-122. [PMID: 27505042 DOI: 10.1016/j.steroids.2016.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 01/02/2023]
Abstract
Five 4,5-dihydro-1,3-oxazole derivatives of [17(20)E]-21-norpregnene, comprising 3β-hydroxy-5-ene (1), 3,6-dioxo-4-ene (2), 3-oxo-4-ene (3), 3α,5α-cyclo-6-oxo (4), 3β-hydroxy-6-oxo (5) fragments were synthesized. Synthesis was conducted with improved procedure, based on reaction of suitably protected [17(20)E]-pregnen-21-oic acids with ethanolamine in presence of triphenyl phosphine, carbon tetrachloride, and triethyl amine. Potency of the compounds 1-5 to inhibit 17α-hydroxylase/17,20-lyase (CYP17A1) activity was studied by highly sensitive electrochemical method, using the enzyme immobilization technique. Compounds 1 and 3 were found to be potent CYP17A1 inhibitors, compounds 2 and 5 were not active, compound 4 strongly and irreversibly suppressed the enzyme activity. Molecular docking of compounds 1-5 in the active site of CYP17A1 showed that positions of all compounds in the enzyme active site were similar.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sergey V Stulov
- Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology RAS, Moscow, Russia
| | | | | |
Collapse
|
14
|
Harmful effects behind the daily supplementation of a fixed vegetarian blend in the rat model. Food Chem Toxicol 2016; 97:367-374. [PMID: 27697540 DOI: 10.1016/j.fct.2016.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 12/17/2022]
Abstract
Fruit and vegetables (FV) have long been considered a panacea against major chronic diseases, including cancer. However, there is no convincing epidemiological, clinical or experimental evidence supporting FV chemopreventive ability. A daily mono-supplementation of lyophilized onion, tomato, peach, black grape or lettuce was compared with the daily combined administration of the same FV (5 a day-like diet). Ten days post-treatment, the phase-I/II xenobiotic metabolizing and antioxidant enzyme activities, protein and mRNA levels were investigated. As a marker of oxidative stress, the level of hydroperoxides was measured in rat serum samples. Here we show that a blend of FV orally administered to rats not only potentially manipulates metabolism but also disrupts systemic oxidative homeostasis. A daily combination of the five servings remarkably down-regulates the catalytic activity, protein and mRNA levels of a cohort of hepatic metabolizing enzymes, suggesting a possible depressed clearance upon exposure to ubiquitous carcinogens. Strikingly, we observed an impairment of antioxidant enzymes with a boost in systemic hydroperoxide levels. Our study identifies new potential factors of cancer risk connected with the persistent consumption of fixed servings of FV, suggesting that dietary guidance should rely on a "daily diversification" of FV.
Collapse
|
15
|
Brantley E, Callero MA, Berardi DE, Campbell P, Rowland L, Zylstra D, Amis L, Yee M, Simian M, Todaro L, Loaiza-Perez AI, Soto U. AhR ligand Aminoflavone inhibits α6-integrin expression and breast cancer sphere-initiating capacity. Cancer Lett 2016; 376:53-61. [PMID: 26996297 DOI: 10.1016/j.canlet.2016.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 01/25/2023]
Abstract
Traditional chemotherapies debulk tumors but fail to produce long-term clinical remissions due to their inability to eradicate tumor-initiating cells (TICs). This necessitates therapy with activity against the TIC niche. Αlpha6-integrin (α6-integrin) promotes TIC growth. In contrast, aryl hydrocarbon receptor (AhR) signaling activation impedes the formation of mammospheres (clusters of cells enriched for TICs). We investigated the ability of AhR agonist Aminoflavone (AF) and AF pro-drug (AFP464) to disrupt mammospheres derived from breast cancer cells and a M05 mammary mouse model of breast cancer respectively. We further examined the capacity of AF and AFP464 to exhibit anticancer activity and modulate the expression of 'stemness' genes including α6-integrin using immunofluorescence, flow cytometry and qRT-PCR analysis. AF disrupted mammospheres and prevented secondary mammosphere formation. In contrast, AF did not disrupt mammospheres derived from AhR ligand-unresponsive MCF-7 cells. AFP464 treatment suppressed M05 tumor growth and disrupted corresponding mammospheres. AF and AFP464 reduced the expression and percentage of cells that stained for 'stemness' markers including α6-integrin in vitro and in vivo respectively. These data suggest AFP464 thwarts bulk breast tumor and TIC growth via AhR agonist-mediated α6-integrin inhibition.
Collapse
Affiliation(s)
- Eileen Brantley
- Department of Basic Sciences, Loma Linda University Health School of Medicine, 11021 Campus St, Alumni Hall Room 101, Loma Linda, CA 92354, USA; Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA
| | - Mariana A Callero
- Research Area, Institute of Oncology Ángel H. Roffo, University of Buenos Aires, Avenue San Martín 5481, C1417DTB Ciudad de Buenos Aires, Argentina
| | - Damian E Berardi
- Research Area, Institute of Oncology Ángel H. Roffo, University of Buenos Aires, Avenue San Martín 5481, C1417DTB Ciudad de Buenos Aires, Argentina
| | - Petreena Campbell
- Department of Basic Sciences, Loma Linda University Health School of Medicine, 11021 Campus St, Alumni Hall Room 101, Loma Linda, CA 92354, USA
| | - Leah Rowland
- Department of Basic Sciences, Loma Linda University Health School of Medicine, 11021 Campus St, Alumni Hall Room 101, Loma Linda, CA 92354, USA
| | - Dain Zylstra
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University Health School of Pharmacy, Loma Linda, CA, USA
| | - Louisa Amis
- Department of Basic Sciences, Loma Linda University Health School of Medicine, 11021 Campus St, Alumni Hall Room 101, Loma Linda, CA 92354, USA
| | - Michael Yee
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Marina Simian
- Research Area, Institute of Oncology Ángel H. Roffo, University of Buenos Aires, Avenue San Martín 5481, C1417DTB Ciudad de Buenos Aires, Argentina
| | - Laura Todaro
- Research Area, Institute of Oncology Ángel H. Roffo, University of Buenos Aires, Avenue San Martín 5481, C1417DTB Ciudad de Buenos Aires, Argentina
| | - Andrea I Loaiza-Perez
- Research Area, Institute of Oncology Ángel H. Roffo, University of Buenos Aires, Avenue San Martín 5481, C1417DTB Ciudad de Buenos Aires, Argentina.
| | - Ubaldo Soto
- Department of Basic Sciences, Loma Linda University Health School of Medicine, 11021 Campus St, Alumni Hall Room 101, Loma Linda, CA 92354, USA.
| |
Collapse
|
16
|
Othayoth R, Mathi P, Bheemanapally K, Kakarla L, Botlagunta M. Characterization of vitamin–cisplatin-loaded chitosan nano-particles for chemoprevention and cancer fatigue. J Microencapsul 2015. [DOI: 10.3109/02652048.2015.1065921] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Hattinger CM, Serra M. Role of pharmacogenetics of drug-metabolizing enzymes in treating osteosarcoma. Expert Opin Drug Metab Toxicol 2015; 11:1449-63. [PMID: 26095223 DOI: 10.1517/17425255.2015.1060220] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) biotransform several toxins and xenobiotics in both tumor and normal cells, resulting in either their detoxification or their activation. Since DMEs also metabolize several chemotherapeutic drugs, they can significantly influence tumor response to chemotherapy and susceptibility of normal tissues to collateral toxicity of anticancer treatments. AREAS COVERED This review discusses the pharmacogenetics of DMEs involved in the metabolism of drugs which constitute the backbone of osteosarcoma (OS) chemotherapy, highlighting what is presently known for this tumor and their possible impact on the modulation of future treatment approaches. EXPERT OPINION Achieving further insight into pharmacogenetic markers and biological determinants related to treatment response in OS may ultimately lead to individualized treatment regimens, based on a combination of genotype and tumor characteristics of each patient.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- a Orthopaedic Rizzoli Institute, Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit , Via di Barbiano 1/10, I-40136 Bologna, Italy +390 516 366 762 ; +390 516 366 763 ;
| | | |
Collapse
|
18
|
Dietary Glucosinolates Sulforaphane, Phenethyl Isothiocyanate, Indole-3-Carbinol/3,3'-Diindolylmethane: Anti-Oxidative Stress/Inflammation, Nrf2, Epigenetics/Epigenomics and In Vivo Cancer Chemopreventive Efficacy. ACTA ACUST UNITED AC 2015; 1:179-196. [PMID: 26457242 DOI: 10.1007/s40495-015-0017-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glucosinolates are a group of sulfur-containing glycosides found in many plant species, including cruciferous vegetables such as broccoli, cabbage, brussels sprouts, and cauliflower. Accumulating evidence increasingly supports the beneficial effects of dietary glucosinolates on overall health, including as potential anti-cancer agents, because of their role in the prevention of the initiation of carcinogenesis via the induction of cellular defense detoxifying/antioxidant enzymes and their epigenetic mechanisms, including modification of the CpG methylation of cancer-related genes, histone modification regulation and changes in the expression of miRNAs. In this context, the defense mechanism mediated by Nrf2-antioxidative stress and anti-inflammatory signaling pathways can contribute to cellular protection against oxidative stress and reactive metabolites of carcinogens. In this review, we summarize the cancer chemopreventive role of naturally occurring glucosinolate derivatives as inhibitors of carcinogenesis, with particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo human cancer animal models.
Collapse
|
19
|
Kuzikov AV, Dugin NO, Stulov SV, Shcherbinin DS, Zharkova MS, Tkachev YV, Timofeev VP, Veselovsky AV, Shumyantseva VV, Misharin AY. Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17α-hydroxylase/17,20-lyase (CYP17A1) inhibitors. Steroids 2014; 88:66-71. [PMID: 24971814 DOI: 10.1016/j.steroids.2014.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/05/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2'-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4',5'-dihydro-1',3'-oxazole 1 and 2'-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4',4'-dimethyl-4',5'-dihydro-1',3'-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax=422 nm, λmin=386 nm) and compound 2 (λmax=416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50=0.9±0.1 μM, and IC50=1.3±0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50=13±1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4'-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4',4'-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.
Collapse
Affiliation(s)
- Alexey V Kuzikov
- Orekhovich Institute of Biomedical Chemistry RAMS, Moscow, Russia
| | - Nikita O Dugin
- Orekhovich Institute of Biomedical Chemistry RAMS, Moscow, Russia
| | - Sergey V Stulov
- Orekhovich Institute of Biomedical Chemistry RAMS, Moscow, Russia
| | | | - Maria S Zharkova
- Orekhovich Institute of Biomedical Chemistry RAMS, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
20
|
Oskarsson A, Spatafora C, Tringali C, Andersson ÅO. Inhibition of CYP17A1 activity by resveratrol, piceatannol, and synthetic resveratrol analogs. Prostate 2014; 74:839-51. [PMID: 24610083 DOI: 10.1002/pros.22801] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/13/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Resveratrol (RSV) and resveratrol analogs have a potential use in prostate cancer chemoprevention due to effects on for example, cell growth, apoptosis, angiogenesis, and metastasis. However, inhibition of CYP17A1, a key enzyme in the androgen biosynthesis and a target for prostate cancer therapy, has not been explored as a possible mechanism behind the effects on prostate cancer. METHODS Human adrenocortical carcinoma cells, H295R, were treated with RSV, piceatannol (PIC), 3,5,4'-triacetylresveratrol (RSVTA), 3,5-diacetylresveratrol (RSVDA), and 3,5,4'-trimethylresveratrol (RSVTM) for 24 hr at concentrations of 1, 5, 10, 25, and 50 µM. Steroid secretion, enzyme activities, and gene expression of key steps in steroidogenesis were investigated. RESULTS Secretion of dihydroepiandrosterone (DHEA), testosterone, and cortisol were drastically decreased by all test compounds at concentrations that did not affect cell viability. Progesterone and aldosterone secretion were increased. This steroid secretion pattern can be explained by the demonstrated inhibition of CYP17A1 enzyme activity. The most efficient CYP17A1 inhibitors were the synthetic analogs RSVTA, RSVDA, and RSVTM. Inhibition by RSVTM was more selective on the 17,20-lyase activity than hydroxylase activity of CYP17A1. Treatment of cells with all compounds, except RSVTM, caused increased estradiol levels, which could be explained by the demonstrated inhibition of estrogen sulfate conjugation, catalyzed by SULT1E1. CONCLUSIONS Our results on CYP17A1 inhibition of RSV and RSV analogs suggest a novel mechanism for chemoprevention of prostate cancer by resveratrol and the analogs. Especially RSVTM, which has a preferential inhibition on the 17,20-lyase activity of CYP17A1, may be a promising candidate for prostate cancer chemoprevention.
Collapse
Affiliation(s)
- Agneta Oskarsson
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
21
|
Su ZY, Shu L, Khor TO, Lee JH, Fuentes F, Tony Kong AN. A perspective on dietary phytochemicals and cancer chemoprevention: oxidative stress, nrf2, and epigenomics. Top Curr Chem (Cham) 2013; 329:133-62. [PMID: 22836898 PMCID: PMC3924422 DOI: 10.1007/128_2012_340] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxidative stress is caused by an imbalance of reactive oxygen species (ROS)/reactive nitrogen species (RNS) and the antioxidative stress defense systems in cells. ROS/RNS or carcinogen metabolites can attack intracellular proteins, lipids, and nucleic acids, which can result in genetic mutations, carcinogenesis, and other diseases. Nrf2 plays a critical role in the regulation of many antioxidative stress/antioxidant and detoxification enzyme genes, such as glutathione S-transferases (GSTs), NAD(P)H:quinone oxidoreductase 1 (NQO1), UDP-glucuronyl transferases (UGTs), and heme oxygenase-1 (HO-1), directly via the antioxidant response element (ARE). Recently, many studies have shown that dietary phytochemicals possess cancer chemopreventive potential through the induction of Nrf2-mediated antioxidant/detoxification enzymes and anti-inflammatory signaling pathways to protect organisms against cellular damage caused by oxidative stress. In addition, carcinogenesis can be caused by epigenetic alterations such as DNA methylation and histone modifications in tumor-suppressor genes and oncogenes. Interestingly, recent studies have shown that several naturally occurring dietary phytochemicals can epigenetically modify the chromatin, including reactivating Nrf2 via demethylation of CpG islands and the inhibition of histone deacetylases (HDACs) and/or histone acetyltransferases (HATs). The advancement and development of dietary phytochemicals in cancer chemoprevention research requires the integration of the known, and as-yet-unknown, compounds with the Nrf2-mediated antioxidant, detoxification, and anti-inflammatory systems and their in vitro and in vivo epigenetic mechanisms; human clinical efficacy studies must also be performed.
Collapse
Affiliation(s)
- Zheng-Yuan Su
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Limin Shu
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Tin Oo Khor
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Jong Hun Lee
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Francisco Fuentes
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA, Departamento de Agricultura del Desierto y Biotecnología, Universidad Arturo Prat, Casilla 121, Iquique, Chile
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Center for Cancer Prevention Research, Ernest-Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Badal S, Gallimore W, Huang G, Tzeng TRJ, Delgoda R. Cytotoxic and potent CYP1 inhibitors from the marine algae Cymopolia barbata. Org Med Chem Lett 2012; 2:21. [PMID: 22686946 PMCID: PMC3541164 DOI: 10.1186/2191-2858-2-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/13/2012] [Indexed: 11/13/2022] Open
Abstract
Background Extracts from the marine algae Cymopolia barbata have previously shown promising pharmacological activity including antifungal, antitumor, antimicrobial, and antimutagenic properties. Even though extracts have demonstrated such bioactivity, isolated ingredients responsible for such bioactivity remain unspecified. In this study, we describe chemical characterization and evaluations of biological activity of prenylated bromohydroquinones (PBQ) isolated from the marine algae C. barbata for their cytotoxic and chemopreventive potential. Methods The impact of PBQs on the viability of cell lines (MCF-7, HT29, HepG, and CCD18 Co) was evaluated using the MTS assay. In addition, their inhibitory impact on the activities of heterologously expressed cytochrome P450 (CYP) enzymes (CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, and CYP3A4) was evaluated using a fluorescent assay. Results 7-Hydroxycymopochromanone (PBQ1) and 7-hydroxycymopolone (PBQ2) were isolated using liquid and column chromatography, identified using 1 H and 13 C NMR spectra and compared with the spectra of previously isolated PBQs. PBQ2 selectively impacted the viability of HT29, colon cancer cells with similar potency to the known chemotherapeutic drug, fluorouracil (IC50, 19.82 ± 0.46 μM compared to 23.50 ± 1.12 μM, respectively) with impact toward normal colon cells also being comparable (55.65 ± 3.28 compared to 55.51 ± 3.71 μM, respectively), while PBQ1 had no impact on these cells. Both PBQs had potent inhibition against the activities of CYP1A1 and CYP1B1, the latter which is known to be a universal marker for cancer and a target for drug discovery. Inhibitors of CYP1 enzymes by virtue of the prevention of activation of carcinogens such as benzo-a-pyrene have drawn attention as potential chemopreventors. PBQ2 potently inhibited the activity of CYP1B1 (IC50 0.14 ± 0.04 μM), while both PBQ1 and PBQ2 potently inhibited the activity of CYP1A1 (IC50s of 0.39 ± 0.05 μM and 0.93 ± 0.26 μM, respectively). Further characterizations showed partial noncompetitive enzyme kinetics for PBQ2 with CYP1B1 with a Ki of 4.7 × 10–3 ± 5.1 × 10–4 μM and uncompetitive kinetics with CYP1A1 (Ki = 0.84 ± 0.07 μM); while PBQ1 displayed partial non competitive enzyme kinetics with CYP1A1 (Ki of 3.07 ± 0.69 μM), noncompetitive kinetics with CYP1A2 (Ki = 9.16 ± 4.68 μM) and uncompetitive kinetics with CYP1B1 (Ki = 0.26 ± 0.03 μM) . Conclusions We report for the first time, two isolated ingredients from C. barbata, PBQ1 and PBQ2, that show potential as valuable chemotherapeutic compounds. A hydroxyl moiety resident in PBQ2 appears to be critical for selectivity and potency against the cancer colon cells, HT29, in comparison to the three other malignant cell lines studied. PBQs also show potency against the activities of CYP1 enzyme which may be a lead in chemoprevention. This study, the first on isolates from these marine algae, exemplifies the value of searching within nature for unique structural motifs that can display multiple biological activities.
Collapse
Affiliation(s)
- Simone Badal
- Natural Products Institute, Faculty of Pure and Applied Sciences, University of the West Indies, Mona, West Indies, Jamaica.
| | | | | | | | | |
Collapse
|
23
|
Boukouvalas J, Albert V. Regiospecific synthesis of cepanolide, a cancer chemoprotective micronutrient found in green onions. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Abstract
Inflammation and angiogenesis in the tumor microenvironment are increasingly implicated in tumorigenesis. Endogenously produced lipid autacoids, locally acting small-molecule mediators, play a central role in inflammation and tissue homeostasis. These lipid mediators, collectively referred to as eicosanoids, have recently been implicated in cancer. Although eicosanoids, including prostaglandins and leukotrienes, are best known as products of arachidonic acid metabolism by cyclooxygenases and lipoxygenases, arachidonic acid is also a substrate for another enzymatic pathway, the cytochrome P450 (CYP) system. This eicosanoid pathway consists of two main branches: ω-hydroxylases which converts arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases which converts it to four regioisomeric epoxyeicosatrienoic acids (EETs; 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET). EETs regulate inflammation and vascular tone. The bioactive EETs are produced predominantly in the endothelium and are mainly metabolized by soluble epoxide hydrolase to less active dihydroxyeicosatrienoic acids. EET signaling was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology. To date, most research on eicosanoids in cancer has focused on the COX and LOX pathways. In contrast, the role of cytochrome P450-derived eicosanoids, such as EETs and HETEs, in cancer has received little attention. While CYP epoxygenases are expressed in human cancers and promote human cancer metastasis, the role of EETs (the direct products of CYP epoxygenases) in cancer remains poorly characterized. In this review, the emerging role of EET signaling in angiogenesis, inflammation, and cancer is discussed.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Vascular Biology Program, Boston Children's Hospital, Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Emily R. Greene
- Vascular Biology Program, Boston Children's Hospital, Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ambra Pozzi
- Department of Medicine and Cancer Biology, Division of Nephrology and Hypertension, Vanderbilt University, Nashville, TN, USA
| | - Dao Wen Wang
- Department of Internal Medicine and Gene Therapy Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Science, National Institute of Health, Research Triangle Park, NC, USA
| |
Collapse
|
25
|
Panigrahy D, Kaipainen A, Greene ER, Huang S. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Rev 2011; 29:723-35. [PMID: 20941528 PMCID: PMC2962793 DOI: 10.1007/s10555-010-9264-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Vascular Biology Program, Children's Hospital Boston, Boston, MA, USA.
| | | | | | | |
Collapse
|
26
|
Delvecchio C, Tiefenbach J, Krause HM. The zebrafish: a powerful platform for in vivo, HTS drug discovery. Assay Drug Dev Technol 2011; 9:354-61. [PMID: 21309713 DOI: 10.1089/adt.2010.0346] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The zebrafish (Danio rerio) is an emerging vertebrate model for drug discovery that permits whole animal drug screens with excellent throughput, combined with ease of use and low cost. This review will begin with a discussion on the background, suitability, and advantages of this vertebrate model system and then, citing specific examples, will describe the utility of zebrafish at specific stages in the drug development pipeline. We will end with a synopsis of recent drug screens based on morphological disruptions, genetic disease models, fluorescent markers, behavioral changes, and specific targets. The numerous advantages of this whole animal approach provide new promise for the discovery of safe, specific, and powerful new drugs.
Collapse
Affiliation(s)
- Chris Delvecchio
- Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | | |
Collapse
|
27
|
Roy L, Laboissière S, Abdou E, Thibault G, Hamel N, Taheri M, Boismenu D, Lanoix J, Kearney RE, Paiement J. Proteomic analysis of the transitional endoplasmic reticulum in hepatocellular carcinoma: an organelle perspective on cancer. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1869-81. [PMID: 20576523 DOI: 10.1016/j.bbapap.2010.05.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/05/2010] [Accepted: 05/18/2010] [Indexed: 02/06/2023]
Abstract
The transitional endoplasmic reticulum (tER) is composed of both rough and smooth ER membranes and thus participates in functions attributed to both these two subcellular compartments. In this paper we have compared the protein composition of tER isolated from dissected liver tumor nodules of aflatoxin B1-treated rats with that of tER from control liver. Tandem mass spectrometry (MS), peptide counts and immunoblot validation were used to identify and determine the relative expression level of proteins. Inhibitors of apoptosis (i.e. PGRMC1, tripeptidyl peptidase II), proteins involved in ribosome biogenesis (i.e. nucleophosmin, nucleolin), proteins involved in translation (i.e. eEF-2, and subunits of eIF-3), proteins involved in ubiquitin metabolism (i.e. proteasome subunits, USP10) and proteins involved in membrane traffic (i.e. SEC13-like 1, SEC23B, dynactin 1) were found overexpressed in tumor tER. Transcription factors (i.e. Pur-beta, BTF3) and molecular targets for C-Myc and NF-kappa B were observed overexpressed in tER from tumor nodules. Down-regulated proteins included cytochrome P450 proteins and enzymes involved in fatty acid metabolism and in steroid metabolism. Unexpectedly expression of the protein folding machinery (i.e. calreticulin) and proteins of the MHC class I peptide-loading complex did not change. Proteins of unknown function were detected in association with the tER and the novel proteins showing differential expression are potential new tumor markers. In many cases differential expression of proteins in tumor tER was comparable to that of corresponding genes reported in the Oncomine human database. Thus the molecular profile of tumor tER is different and this may confer survival advantage to tumor cells in cancer.
Collapse
Affiliation(s)
- Line Roy
- McGill University and Genome Quebec Innovation Centre, Proteomics Services, Genome Quebec, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|