1
|
Shen H, Huo R, Zhang Y, Wang L, Tong N, Chen W, Paris AJ, Mensah K, Chen M, Xue Y, Li W, Sinz M. A Pilot Study To Assess the Suitability of Riboflavin As a Surrogate Marker of Breast Cancer Resistance Protein in Healthy Participants. J Pharmacol Exp Ther 2024; 390:162-173. [PMID: 38296646 DOI: 10.1124/jpet.123.002015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 02/02/2024] Open
Abstract
We recently showed that riboflavin is a selected substrate of breast cancer resistance protein (BCRP) over P-glycoprotein (P-gp) and demonstrated its prediction performance in preclinical drug-drug interaction (DDI) studies. The aim of this study was to investigate the suitability of riboflavin to assess BCRP inhibition in humans. First, we assessed the substrate potential of riboflavin toward other major drug transporters using established transfected cell systems. Riboflavin is a substrate for organic anion transporter (OAT)1, OAT3, and multidrug and toxin extrusion protein (MATE)2-K, with uptake ratios ranging from 2.69 to 11.6, but riboflavin is not a substrate of organic anion-transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)2, and MATE1. The effects of BMS-986371, a potent in vitro inhibitor of BCRP (IC 50 0.40 μM), on the pharmacokinetics of riboflavin, isobutyryl carnitine, and arginine were then examined in healthy male adults (N = 14 or 16) after oral administration of methotrexate (MTX) (7.5 mg) and enteric-coated (EC) sulfasalazine (SSZ) (1000 mg) alone or in combination with BMS-986371 (150 mg). Oral administration of BMS-986371 increased the area under the plasma concentration-time curves (AUCs) of rosuvastatin and immediate-release (IR) SSZ to 1.38- and 1.51-fold, respectively, and significantly increased AUC(0-4h), AUC(0-24h), and C max of riboflavin by 1.25-, 1.14-, and 1.11-fold (P-values of 0.003, 0.009, and 0.025, respectively) compared with the MTX/SSZ EC alone group. In contrast, BMS-986371 did not significantly influence the AUC(0-24h) and C max values of isobutyryl carnitine and arginine (0.96- to 1.07-fold, respectively; P > 0.05). Overall, these data indicate that plasma riboflavin is a promising biomarker of BCRP that may offer a possibility to assess drug candidate as a BCRP modulator in early drug development. SIGNIFICANCE STATEMENT: Endogenous compounds that serve as biomarkers for clinical inhibition of breast cancer resistance protein (BCRP) are not currently available. This study provides the initial evidence that riboflavin is a promising BCRP biomarker in humans. For the first time, the value of leveraging the substrate of BCRP with acceptable prediction performance in clinical studies is shown. Additional clinical investigations with known BCRP inhibitors are needed to fully validate and showcase the utility of this biomarker.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Runlan Huo
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yueping Zhang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Linna Wang
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Nian Tong
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Weiqi Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Andrew J Paris
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Kofi Mensah
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Min Chen
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Yongjun Xue
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Wenying Li
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| | - Michael Sinz
- Departments of Drug Metabolism and Pharmacokinetics (H.S., Y.Z., M.S.), Clinical Pharmacology, Pharmacometrics, and Bioanalysis (R.H., L.W., M.C., Y.X.), Development Biotransformation (N.T., W.C., W.L.), and Early Clinical Development (A.J.P., K.M.), Bristol Myers Squibb, Princeton, New Jersey
| |
Collapse
|
2
|
Schoretsanitis G, Deligiannidis KM, Paulzen M, Spina E, de Leon J. Drug-drug interactions between psychotropic medications and oral contraceptives. Expert Opin Drug Metab Toxicol 2022; 18:395-411. [DOI: 10.1080/17425255.2022.2106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York. USA
- Department of Psychiatry at the Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | - Kristina M. Deligiannidis
- The Zucker Hillside Hospital, Psychiatry Research, Northwell Health, Glen Oaks, New York. USA
- Department of Psychiatry at the Donald and Barbara Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
- The Departments of Obstetrics & Gynecology and Molecular Medicine at the Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Michael Paulzen
- Alexianer Hospital Aachen, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA– Translational Brain Medicine, Aachen, Germany
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Jose de Leon
- Mental Health Research Center at Eastern State Hospital, Lexington, KY, USA
- Biomedical Research Centre in Mental Health Net (CIBERSAM), Santiago Apostol Hospital, University of the Basque Country, Vitoria, Spain
| |
Collapse
|
3
|
Järvinen E, Deng F, Kiander W, Sinokki A, Kidron H, Sjöstedt N. The Role of Uptake and Efflux Transporters in the Disposition of Glucuronide and Sulfate Conjugates. Front Pharmacol 2022; 12:802539. [PMID: 35095509 PMCID: PMC8793843 DOI: 10.3389/fphar.2021.802539] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Glucuronidation and sulfation are the most typical phase II metabolic reactions of drugs. The resulting glucuronide and sulfate conjugates are generally considered inactive and safe. They may, however, be the most prominent drug-related material in the circulation and excreta of humans. The glucuronide and sulfate metabolites of drugs typically have limited cell membrane permeability and subsequently, their distribution and excretion from the human body requires transport proteins. Uptake transporters, such as organic anion transporters (OATs and OATPs), mediate the uptake of conjugates into the liver and kidney, while efflux transporters, such as multidrug resistance proteins (MRPs) and breast cancer resistance protein (BCRP), mediate expulsion of conjugates into bile, urine and the intestinal lumen. Understanding the active transport of conjugated drug metabolites is important for predicting the fate of a drug in the body and its safety and efficacy. The aim of this review is to compile the understanding of transporter-mediated disposition of phase II conjugates. We review the literature on hepatic, intestinal and renal uptake transporters participating in the transport of glucuronide and sulfate metabolites of drugs, other xenobiotics and endobiotics. In addition, we provide an update on the involvement of efflux transporters in the disposition of glucuronide and sulfate metabolites. Finally, we discuss the interplay between uptake and efflux transport in the intestine, liver and kidneys as well as the role of transporters in glucuronide and sulfate conjugate toxicity, drug interactions, pharmacogenetics and species differences.
Collapse
Affiliation(s)
- Erkka Järvinen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Wilma Kiander
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alli Sinokki
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Fashe M, Yi M, Sueyoshi T, Negishi M. Sex-specific expression mechanism of hepatic estrogen inactivating enzyme and transporters in diabetic women. Biochem Pharmacol 2021; 190:114662. [PMID: 34157297 DOI: 10.1016/j.bcp.2021.114662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/21/2022]
Abstract
Circulating estrogens levels significantly decrease in menopause and levels off in postmenopausal women. Accordingly, the liver represses levels of enzymes and membrane transporters, thereby decreasing capability of inactivating and excreting estrogens. Women increasingly develop type 2 diabetes during or after menopause. Estrogens are known to promote liver diseases in these women. Here, we have found that the estrogen inactivating sulfotransferase (SULT1E1) and an ATP-binding cassette subfamily G member 2 (ABCG2), a gene encoding breast cancer resistance protein that exports sulfated estrogens, increased their expression levels in diabetic women but not men. For the sulfotransferase gene, phosphorylated nuclear receptors ERα and RORα, at Ser212 and Ser100, respectively, bind their response elements to activate the SULT1E1 promoter in women. This coordinated increase in estrogen inactivation and excretion, and the phosphorylated nuclear receptor-mediated gene activation could be a defense mechanism against toxicities of estrogens through inactivation and excretion in the livers of women.
Collapse
Affiliation(s)
- Muluneh Fashe
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | - MyeongJin Yi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
5
|
Kinzi J, Grube M, Meyer Zu Schwabedissen HE. OATP2B1 - The underrated member of the organic anion transporting polypeptide family of drug transporters? Biochem Pharmacol 2021; 188:114534. [PMID: 33794186 DOI: 10.1016/j.bcp.2021.114534] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022]
Abstract
The organic anion transporting polypeptide 2B1 (OATP2B1) was one of the first cloned members of the SLCO family. However, its physiological and pharmacological role is still poorly understood, and object of a current debate on the transporter's relevance. Within this commentary, we summarize the data currently available on the transporter's expression and its substrates and highlight the strength and difficulties of the methods that have been applied to gather these data. The conclusion drawn from these findings was that OATP2B1 due to its intestinal expression is most likely involved in oral drug absorption of its substrate and therefore prone for interactions. This has been tested in in vivo drug interaction and/or pharmacogenetic studies. While some of these support the notion of OATP2B1 being of relevance in drug absorption, the pharmacogenetic findings are rather inconclusive. We will explain our thoughts why OATP2B1 may not influence the general systemic pharmacokinetic of certain substrates, but possibly local distribution processes, like the transfer across the blood-brain-barrier. Besides the pharmacokinetic aspects, there are data on endogenous molecules like coproporphyrins and sulfated steroids. Therefore, we will also highlight possible physiological roles of OATP2B1, which are driven by its expression pattern in the tubular cells of the kidney as well as its expression in the blood brain barrier. Finally we also deal with the advantages and disadvantages in the use of animal models to decipher the role of OATP2B1 in pharmacokinetics of its substrates and beyond.
Collapse
Affiliation(s)
- Jonny Kinzi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Markus Grube
- Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
6
|
Hubbard WJ, Yang S, Chaudry IH. Ethinyl estradiol sulfate acts without fluid resuscitation through estrogen receptors to rapidly protect the cardiovascular system from severe hemorrhage. J Trauma Acute Care Surg 2021; 90:353-359. [PMID: 33048911 DOI: 10.1097/ta.0000000000002978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Our in vivo rodent and pig model evidenced that estrogen and its derivative, ethinyl estradiol sulfate (EES), promote survival following hemorrhagic shock. To determine its mechanism, we first confirmed EES binding to estrogen receptor (ER) and improving/restoring cellular signaling, countering the assumption that EES, an ethinyl estradiol metabolite, is inactive. In addition, we examined if EES acts rapidly, consistent with nongenomic signaling. We selected the biomarkers of cardiovascular performance, reduction of apoptosis and proinflammatory responses, and elaboration of nitric oxide (NO) to validate efficacy. METHODS A rat trauma-hemorrhage model, consisting of a midline laparotomy and controlled bleeding (60% blood loss) without fluid resuscitation, was used. At 30 minutes after hemorrhage, heart performance was monitored, and Western blots were used to quantify biochemical analytes. The specificity of EES for ER was profiled with ER antagonists. Binding studies by Sekisui XenoTech (Kansas City, KS) determined an LD50 value for EES binding the rat ER. RESULTS The EES IC50 value was 1.52 × 10-8 Mol/L, consistent with pharmacologic efficacy. Ethinyl estradiol sulfate raised mean arterial pressure and ±derivative of pressure over time (dP/dT) significantly (but did not fully restore) within a 30-minute window. Levels of apoptosis and activation of NF-κB were dramatically reduced, as was elaboration of nitric oxide (NO) by inducible nitric oxide synthase. Phospho-endothelial nitric oxide synthase (eNOS) was restored to physiological levels. The restoration of cellular signaling occurs before restoration of cardiac contractility. CONCLUSION Ethinyl estradiol sulfate is a potent drug for improving heart performance, which also dramatically reduces damage by apoptosis, proinflammatory activity, and NO production, validating that EES can blunt multiple harmful outcomes arising from hypoxia and hypovolemia. The actions are dependent on receptor engagement, where specificity is confirmed by ER antagonists. The constraint of a 30-minute sampling window affirms that the responses are nongenomic and very likely restricted to cell-surface receptor engagement. The rapidity of these responses makes EES promising for intervention in the "golden hour."
Collapse
Affiliation(s)
- William J Hubbard
- From the Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | |
Collapse
|
7
|
Hu Y, Gruber KA, Smith DE. Characterization of the cellular transport mechanisms for the anti-cachexia candidate compound TCMCB07. J Cachexia Sarcopenia Muscle 2020; 11:1677-1687. [PMID: 32725770 PMCID: PMC7749613 DOI: 10.1002/jcsm.12602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cachexia is a debilitating, life-threatening condition whose pathology includes reduced food intake accompanied by hypermetabolism, leading to a catabolic state. The hypothalamic melanocortin system is a critical regulator of metabolic rate with effects being mediated through the melanocortin-4 receptor (MC4R). MC4R activation is also critical to the initiation and maintenance of cachexia. A major problem in the design of anti-cachexia drugs has been the need to cross the blood-brain barrier to access the metabolic rate-controlling centres in the hypothalamus. The overwhelming majority of anti-cachexia drugs are only effective when administered intracerebroventricularly. TCMCB07 is a cyclic nonapeptide peptide MC4R antagonist with parenteral anti-cachexia activity in both small and large animal models. This suggests it can cross the blood-brain barrier. The aim of this study was to examine potential transport mechanisms of TCMCB07 furthering its preclinical development for subsequent studies in humans. METHODS In vitro studies were performed in transporter-transfected cells to study whether or not TCMCB07 was an inhibitor as well as substrate for OATP1A2, OATP1B1, OATP1B3, OATP2B1, OCT2, OAT1, OAT3, MATE1, MATE2-K, P-gp (MDR1), and BCRP. In vivo mass balance studies were also performed in mice to evaluate the absorption and disposition of TCMCB07 after oral and intravenous bolus administrations. RESULTS TCMCB07 inhibited the uptake of prototypical substrates in cells transfected with OATP1A2 (IC50 24.0 μM), OATP1B1 (IC50 6.8 μM), OATP1B3 (IC50 307 μM), OATP2B1 (IC50 524 μM), OCT2 (IC50 1,169 μM), MATE1 (IC50 8.7 μM), and MATE2-K (IC50 20.7 μM) but not in cells transfected with OAT1 and OAT3. TCMCB07 did not affect the P-gp (MDR1)-mediated and BCRP-mediated permeability of prototypical substrates in transfected cells. Importantly, direct evidence was shown for the uptake of TCMCB07 in OATP1A2-transfected cells (i.e. Vmax 236 pmol/mg, Km 58.4 μM, and Kd 0.39 μL/mg), demonstrating that the nonapeptide was a substrate for this transporter. Mass balance studies demonstrated that 24.2% of TCMCB07 was absorbed orally in vivo (P = 0.0033) and excreted primarily in the bile after both oral and intravenous administrations. CONCLUSIONS OATP1A2 is the transporter responsible for the oral absorption of TCMCB07 in the intestine and for its pharmacologic response in the brain.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of MichiganAnn ArborMIUSA
| | | | - David E. Smith
- Department of Pharmaceutical Sciences, College of PharmacyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
8
|
Zhang Y, Holenarsipur VK, Kandoussi H, Zeng J, Mariappan TT, Sinz M, Shen H. Detection of Weak Organic Anion–Transporting Polypeptide 1B Inhibition by Probenecid with Plasma-Based Coproporphyrin in Humans. Drug Metab Dispos 2020; 48:841-848. [DOI: 10.1124/dmd.120.000076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023] Open
|
9
|
|
10
|
Panfen E, Chen W, Zhang Y, Sinz M, Marathe P, Gan J, Shen H. Enhanced and Persistent Inhibition of Organic Cation Transporter 1 Activity by Preincubation of Cyclosporine A. Drug Metab Dispos 2019; 47:1352-1360. [PMID: 31427432 DOI: 10.1124/dmd.119.087197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 08/16/2019] [Indexed: 01/18/2023] Open
Abstract
Recent pharmacogenetic evidence indicates that hepatic organic cation transporter (OCT) 1 can serve as the locus of drug-drug interactions (DDIs) with significant pharmacokinetic and pharmacodynamic consequences. We examined the impact of preincubation on the extent of OCT1 inhibition in transfected human embryonic kidney 293 (HEK293) cells. Following 30-minute preincubation with an inhibitor, approximately 50-fold higher inhibition potency was observed for cyclosporine A (CsA) against OCT1-mediated uptake of metformin compared with coincubation, with IC50 values of 0.43 ± 0.12 and 21.6 ± 4.5 µM, respectively. By comparison, only small shifts (≤2-fold) in preincubation IC50 versus coincubation were observed for quinidine, pyrimethamine, ritonavir, and trimethoprim. The shift in CsA OCT1 IC50 was substrate dependent since it ranged from >1.2- to 50.2-fold using different experimental substrates. The inhibition potential of CsA toward OCT1 was confirmed by fenoterol hepatocyte uptake experiment. Furthermore, no shift in CsA IC50 was observed with HEK293 cells transfected with OCT2 and organic anion transporter (OAT) 1 and OAT3. Short exposure (30 minutes) to 10 µM CsA produced long-lasting inhibition (at least 120 minutes) of the OCT1-mediated uptake of metformin in OCT1-HEK293 cells, which was likely attributable to the retention of CsA in the cells, as shown by the fact that inhibitory cellular concentrations of CsA were maintained long after the removal of the compound from the incubation buffer. The potent and persistent inhibitory effect after exposure to CsA warrants careful consideration in the design and interpretation of clinical OCT1 DDI studies. SIGNIFICANCE STATEMENT: Preincubation of OATP1B1 and OATP1B3 with their inhibitor may result in the enhancement of the inhibitory potency in a cell-based assay. However, limited data are available on potentiation of OCT1 inhibition by preincubation, which is a clinically relevant drug transporter. For the first time, we observed a 50-fold increase in CsA inhibitory potency against OCT1-mediated transport of metformin following a preincubation step. The CsA preincubation effect on OCT1 inhibition is substrate dependent. Moreover, the inhibition potential of CsA toward OCT1 is confirmed by hepatocyte uptake experiment. This study delivers clear evidences about the potent and persistent inhibitory effect on OCT1 after exposure to CsA. Further studies are needed to assess the effect of CsA on OCT1 drug substrates in vivo.
Collapse
Affiliation(s)
- Erika Panfen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Weiqi Chen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Jinping Gan
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
11
|
Zhang Y, Panfen E, Fancher M, Sinz M, Marathe P, Shen H. Dissecting the Contribution of OATP1B1 to Hepatic Uptake of Statins Using the OATP1B1 Selective Inhibitor Estropipate. Mol Pharm 2019; 16:2342-2353. [DOI: 10.1021/acs.molpharmaceut.8b01226] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yueping Zhang
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Erika Panfen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Marcus Fancher
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Michael Sinz
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Punit Marathe
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Hong Shen
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb Company, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
12
|
Järvinen E, Deng F, Kidron H, Finel M. Efflux transport of estrogen glucuronides by human MRP2, MRP3, MRP4 and BCRP. J Steroid Biochem Mol Biol 2018; 178:99-107. [PMID: 29175180 DOI: 10.1016/j.jsbmb.2017.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 01/01/2023]
Abstract
Estrone, estradiol and estriol are endogenous human estrogens that are rapidly conjugated with glucuronic acid in both intestinal and hepatic epithelial cells. The resulting glucuronides, estrone-3-glucuronide (E1-G), estradiol-3- and 17-glucuronides (E2-3G and E2-17G), as well as estriol-3- and 16-glucuronides (E3-3G and E3-16G) are found in human plasma and urine. Unlike E2-17G, the efflux transport of other estrogen glucuronides by human transporters has not yet been investigated comprehensively. We have studied the transport of E1-G, E2-3G, E3-3G, E3-16G and estrone-3-sulfate (E1-S), another important estrogen conjugate, using the vesicular transport assay with recombinant human MRP2, MRP3, MRP4, MDR1 and BCRP that were expressed in insect cells. The transport screening assays revealed that whereas E1-S was a good and specific substrate for BCRP, the less transporter-specific conjugates, E1-G and E2-3G, were still transported by BCRP at 10-fold higher rates than E1-S. BCRP also transported E3-16G at higher rates than the studied MRPs, while it transported E3-3G at lower rates than MRP3. MRP2 exhibited lower or equal transport rates of E1-G, E2-3G, E3-3G and E3-16G in comparison to MRP3 and BCRP in the screening assays, mainly due to its high Km values, between 180 and 790 μM. MRP3 transported all the tested glucuronides at rather similar rates, at Km values below 20 μM, but lower Vmax values than other transporters. In the case of E3-3G, MRP3 was the most active transporter in the screening assay. MRP4 transported only E3-16G at considerable rates, while none of the tested estrogen conjugates was transported by MDR1 at higher rates than control vesicles. These new results, in combination with previously reported in vivo human data, stimulate our understanding on the substrate specificity and role of efflux transporters in disposition of estrogen glucuronides in humans.
Collapse
Affiliation(s)
- Erkka Järvinen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Feng Deng
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Heidi Kidron
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Finland
| | - Moshe Finel
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| |
Collapse
|
13
|
Mathialagan S, Costales C, Tylaska L, Kimoto E, Vildhede A, Johnson J, Johnson N, Sarashina T, Hashizume K, Isringhausen CD, Vermeer LMM, Wolff AR, Rodrigues AD. In vitro studies with two human organic anion transporters: OAT2 and OAT7. Xenobiotica 2017; 48:1037-1049. [DOI: 10.1080/00498254.2017.1384595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sumathy Mathialagan
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Chester Costales
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Emi Kimoto
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Anna Vildhede
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Jillian Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | - Nathaniel Johnson
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| | | | | | | | | | | | - A. David Rodrigues
- Pharmacokinetics, Dynamics, & Metabolism, Medicine Design, Pfizer Inc, Groton, CT, USA,
| |
Collapse
|
14
|
Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J Pharm Sci 2017; 106:2312-2325. [DOI: 10.1016/j.xphs.2017.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
15
|
Mendes P, Oliver SG, Kell DB. Fitting Transporter Activities to Cellular Drug Concentrations and Fluxes: Why the Bumblebee Can Fly. Trends Pharmacol Sci 2015; 36:710-723. [PMID: 26538313 PMCID: PMC4642801 DOI: 10.1016/j.tips.2015.07.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
A recent paper in this journal argued that reported expression levels, kcat and Km for drug transporters could be used to estimate the likelihood that drug fluxes through Caco-2 cells could be accounted for solely by protein transporters. It was in fact concluded that if five such transporters contributed ‘randomly’ they could account for the flux of the most permeable drug tested (verapamil) 35% of the time. However, the values of permeability cited for verapamil were unusually high; this and other drugs have much lower permeabilities. Even for the claimed permeabilities, we found that a single ‘random’ transporter could account for the flux 42% of the time, and that two transporters can achieve 10 · 10−6 cm·s−1 90% of the time. Parameter optimisation methods show that even a single transporter can account for Caco-2 drug uptake of the most permeable drug. Overall, the proposal that ‘phospholipid bilayer diffusion (of drugs) is negligible’ is not disproved by the calculations of ‘likely’ transporter-based fluxes. There has been recent debate as to the relative extents to which cellular transmembrane drug transports occur through any phospholipid bilayer region or is transporter-mediated only. Much recent evidence suggests (perhaps surprisingly) that phospholipid bilayer diffusion is negligible. A recent article in this journal suggested that the expression profile and kinetics of known transporters might not be adequate to explain the most active drug fluxes (of verapamil and propranolol) in Caco-2 cells via transporters only. We show with our own simulations that this is not in fact the case, especially when evolutionary selection is taken into account, and that the Haldane relation accounts straightforwardly for directional differences, even for equilibrative transporters. Typical protein transporters alone can easily account for measured drug fluxes in Caco-2 cells.
Collapse
Affiliation(s)
- Pedro Mendes
- School of Computer Science; Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131, Princess St, Manchester M1 7DN, United Kingdom; Center for Quantitative Medicine, University of Connecticut, UConn Health, 263 Farmington Avenue, Farmington, CT 06030-6033, USA
| | - Stephen G Oliver
- Cambridge Systems Biology Centre; Dept of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131, Princess St, Manchester M1 7DN, United Kingdom; School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
16
|
Efflux transport of chrysin and apigenin sulfates in HEK293 cells overexpressing SULT1A3: The role of multidrug resistance-associated protein 4 (MRP4/ABCC4). Biochem Pharmacol 2015; 98:203-14. [DOI: 10.1016/j.bcp.2015.08.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/11/2015] [Indexed: 11/20/2022]
|
17
|
Lee CA, O’Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ. Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metab Dispos 2015; 43:490-509. [DOI: 10.1124/dmd.114.062174] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
Hubbard W, Keith J, Berman J, Miller M, Scott C, Peck C, Chaudry IH. 17α-ethynylestradiol-3-sulfate treatment of severe blood loss in rats. J Surg Res 2015; 193:355-60. [DOI: 10.1016/j.jss.2014.06.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/12/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
|
19
|
Eley T, Han YH, Huang SP, He B, Li W, Bedford W, Stonier M, Gardiner D, Sims K, Rodrigues AD, Bertz RJ. Organic Anion Transporting Polypeptide-Mediated Transport of, and Inhibition by, Asunaprevir, an Inhibitor of Hepatitis C Virus NS3 Protease. Clin Pharmacol Ther 2014; 97:159-66. [DOI: 10.1002/cpt.4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/04/2014] [Indexed: 11/09/2022]
Affiliation(s)
- T Eley
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - Y-H Han
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - S-P Huang
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - B He
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - W Li
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - W Bedford
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - M Stonier
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - D Gardiner
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - K Sims
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| | - AD Rodrigues
- Pfizer; Research and Development; Groton Connecticut USA
| | - RJ Bertz
- Bristol-Myers Squibb; Research and Development; Princeton New Jersey USA
| |
Collapse
|
20
|
Schweigmann H, Sánchez-Guijo A, Ugele B, Hartmann K, Hartmann MF, Bergmann M, Pfarrer C, Döring B, Wudy SA, Petzinger E, Geyer J, Grosser G. Transport of the placental estriol precursor 16α-hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) by stably transfected OAT4-, SOAT-, and NTCP-HEK293 cells. J Steroid Biochem Mol Biol 2014; 143:259-65. [PMID: 24717977 DOI: 10.1016/j.jsbmb.2014.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022]
Abstract
16α-Hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) mainly originates from the fetus and serves as precursor for placental estriol biosynthesis. For conversion of 16α-OH-DHEAS to estriol several intracellular enzymes are required. However, prior to enzymatic conversion, 16α-OH-DHEAS must enter the cells by carrier mediated transport. To identify these carriers, uptake of 16α-OH-DHEAS by the candidate carriers organic anion transporter OAT4, sodium-dependent organic anion transporter SOAT, Na(+)-taurocholate cotransporting polypeptide NTCP, and organic anion transporting polypeptide OATP2B1 was measured in stably transfected HEK293 cells by LC-MS-MS. Furthermore, the study aimed to localize SOAT in the human placenta. Stably transfected OAT4-HEK293 cells revealed a partly sodium-dependent transport for 16α-OH-DHEAS with an apparent Km of 23.1 ± 5.1 μM and Vmax of 485.0 ± 39.1 pmol/mg protein/min, while stably transfected SOAT- and NTCP-HEK293 cells showed uptake only under sodium conditions with Km of 319.0 ± 59.5 μM and Vmax of 1465.8 ± 118.8 pmol/mg protein/min for SOAT and Km of 51.4 ± 9.9 μM and Vmax of 1423.3 ± 109.6 pmol/mg protein/min for NTCP. In contrast, stably transfected OATP2B1-HEK293 cells did not transport 16α-OH-DHEAS at all. Immunohistochemical studies and in situ hybridization of formalin fixed and paraffin embedded sections of human late term placenta showed expression of SOAT in syncytiotrophoblasts, predominantly at the apical membrane as well as in the vessel endothelium. In conclusion, OAT4, SOAT, and NTCP were identified as carriers for the estriol precursor 16α-OH-DHEAS. At least SOAT and OAT4 seem to play a functional role for the placental estriol synthesis as both are expressed in the syncytiotrophoblast of human placenta.
Collapse
Affiliation(s)
- H Schweigmann
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - B Ugele
- University Hospital, Ludwig Maximilians University of Munich, 80337 Munich, Germany
| | - K Hartmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - M Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - C Pfarrer
- Department of Anatomy, University of Veterinary Medicine, 30173 Hannover, Germany
| | - B Döring
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - E Petzinger
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - J Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, 35392 Giessen, Germany
| | - G Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, 35392 Giessen, Germany.
| |
Collapse
|
21
|
Do MDR1 and SLCO1B1 polymorphisms influence the therapeutic response to atorvastatin? A study on a cohort of Egyptian patients with hypercholesterolemia. Mol Diagn Ther 2014; 17:299-309. [PMID: 23677857 DOI: 10.1007/s40291-013-0038-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Statins are among the most prescribed drugs worldwide to reduce the risk of cardiovascular events. Interindividual variability in drug response is a major clinical problem and is of concern during drug development. Statins, such as atorvastatin, are taken orally and access to their site of action in the liver is greatly facilitated by both intestinal and hepatic transporters. OBJECTIVE To examine the impact of polymorphisms of the multidrug resistance 1(MDR1) and solute carrier organic anion transporter 1B1 (SLCO1B1) genes on the therapeutic response to atorvastatin as well as the presence of gender-gene interaction. METHODS Serum lipid levels were determined at baseline and 4 weeks following 40 mg/day atorvastatin treatment in 50 Egyptian hypercholesterolemic patients (27 males and 23 females). Identification of MDR1 C3435T and SLCO1B1 A388G gene polymorphisms was performed using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS Treatment with atorvastatin resulted in a mean reduction of total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) of 8.7 %, 9.2 %, and 4.1 %, respectively, and a mean increase of high density lipoprotein cholesterol (HDL-C) of 1 %. Baseline and post-treatment HDL-C levels were statistically significantly higher in the MDR 1 TT homozygotes when compared with the CC wild type. The percentage change in TC, LDL-C, TG, and HDL-C did not show any statistically significant difference when compared among the different MDR 1 C3435T or SLCO1B1 A388G genotypes. The SLCO1B1 GG homozygotes showed a decrease in TG, whereas there was an increase in TG following atorvastatin treatment in AA and AG carriers in females; however, males did not show any statistically significant difference. There was no statistically significant association between either the coronary artery disease (CAD) risk factors (family history of CAD, hypertension, diabetes mellitus, smoking) or concomitant medications with the percentage change in different lipid parameters. CONCLUSION MDR1 C3435T was associated with baseline and post-treatment HDL-C variation. SLCO1B1 A388G showed gender-related effects on TG change following atorvastatin treatment. None of the comorbidities or the concomitant medications influenced the percentage change of lipid parameters following atorvastatin treatment. The results of this study may lead to an improved understanding of the genetic determinants of lipid response to atorvastatin treatment.
Collapse
|
22
|
Scola PM, Wang AX, Good AC, Sun LQ, Combrink KD, Campbell JA, Chen J, Tu Y, Sin N, Venables BL, Sit SY, Chen Y, Cocuzza A, Bilder DM, D’Andrea S, Zheng B, Hewawasam P, Ding M, Thuring J, Li J, Hernandez D, Yu F, Falk P, Zhai G, Sheaffer AK, Chen C, Lee MS, Barry D, Knipe JO, Li W, Han YH, Jenkins S, Gesenberg C, Gao Q, Sinz MW, Santone KS, Zvyaga T, Rajamani R, Klei HE, Colonno RJ, Grasela DM, Hughes E, Chien C, Adams S, Levesque PC, Li D, Zhu J, Meanwell NA, McPhee F. Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection. J Med Chem 2014; 57:1708-29. [DOI: 10.1021/jm401840s] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul M. Scola
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Alan Xiangdong Wang
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Andrew C. Good
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Li-Qiang Sun
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Keith D. Combrink
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jeffrey A. Campbell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yong Tu
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brian L. Venables
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Anthony Cocuzza
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Donna M. Bilder
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Stanley D’Andrea
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Barbara Zheng
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Piyasena Hewawasam
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Min Ding
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jan Thuring
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jianqing Li
- Department
of Discovery Chemical Synthesis, Bristol-Myers Squibb Research and Development, P.O.
Box 4000, Princeton, New Jersey 08543, United States
| | - Dennis Hernandez
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Fei Yu
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Paul Falk
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Guangzhi Zhai
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Amy K. Sheaffer
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Chaoqun Chen
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Min S. Lee
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Diana Barry
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jay O. Knipe
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wenying Li
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yong-Hae Han
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Susan Jenkins
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Christoph Gesenberg
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Qi Gao
- Department of Pharmaceutical Development, Bristol-Myers Squibb Research and Development, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael W. Sinz
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S. Santone
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Tatyana Zvyaga
- Department of
Lead Discovery and Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ramkumar Rajamani
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Herbert E. Klei
- Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Richard J. Colonno
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Dennis M. Grasela
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Eric Hughes
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Caly Chien
- Department of Early Clinical and Translational
Research, Discovery Medicine—Virology, Bristol-Myers Squibb Research and Development, Hopewell, New Jersey 08543, United States
| | - Stephen Adams
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Paul C. Levesque
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Danshi Li
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jialong Zhu
- Department
of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Fiona McPhee
- Department
of Virology Discovery Biology, Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
23
|
Zamek-Gliszczynski MJ, Chu X, Polli JW, Paine MF, Galetin A. Understanding the Transport Properties of Metabolites: Case Studies and Considerations for Drug Development. Drug Metab Dispos 2013; 42:650-64. [DOI: 10.1124/dmd.113.055558] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
24
|
Tang H, Shen DR, Han YH, Kong Y, Balimane P, Marino A, Gao M, Wu S, Xie D, Soars MG, O’Connell JC, Rodrigues AD, Zhang L, Cvijic ME. Development of Novel, 384-Well High-Throughput Assay Panels for Human Drug Transporters. ACTA ACUST UNITED AC 2013; 18:1072-83. [DOI: 10.1177/1087057113494807] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transporter proteins are known to play a critical role in affecting the overall absorption, distribution, metabolism, and excretion characteristics of drug candidates. In addition to efflux transporters (P-gp, BCRP, MRP2, etc.) that limit absorption, there has been a renewed interest in influx transporters at the renal (OATs, OCTs) and hepatic (OATPs, BSEP, NTCP, etc.) organ level that can cause significant clinical drug-drug interactions (DDIs). Several of these transporters are also critical for hepatobiliary disposition of bilirubin and bile acid/salts, and their inhibition is directly implicated in hepatic toxicities. Regulatory agencies took action to address transporter-mediated DDI with the goal of ensuring drug safety in the clinic and on the market. To meet regulatory requirements, advanced bioassay technology and automation solutions were implemented for high-throughput transporter screening to provide structure-activity relationship within lead optimization. To enhance capacity, several functional assay formats were miniaturized to 384-well throughput including novel fluorescence-based uptake and efflux inhibition assays using high-content image analysis as well as cell-based radioactive uptake and vesicle-based efflux inhibition assays. This high-throughput capability enabled a paradigm shift from studying transporter-related issues in the development space to identifying and dialing out these concerns early on in discovery for enhanced mechanism-based efficacy while circumventing DDIs and transporter toxicities.
Collapse
Affiliation(s)
- Huaping Tang
- Department of Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Ding Ren Shen
- Department of Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yong-Hae Han
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yan Kong
- Department of Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Praveen Balimane
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Anthony Marino
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Mian Gao
- Department of Protein Science, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Sophie Wu
- Department of Protein Science, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Dianlin Xie
- Department of Protein Science, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Matthew G. Soars
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Jonathan C. O’Connell
- Department of Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - A. David Rodrigues
- Department of Metabolism and Pharmacokinetics, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Litao Zhang
- Department of Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Mary Ellen Cvijic
- Department of Leads Discovery and Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| |
Collapse
|
25
|
Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 carrier family: transport functions and molecular structure. CURRENT TOPICS IN MEMBRANES 2013. [PMID: 23177985 DOI: 10.1016/b978-0-12-394316-3.00004-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The SLC10 family represents seven genes containing 1-12 exons that encode proteins in humans with sequence lengths of 348-477 amino acids. Although termed solute carriers (SLCs), only three out of seven (i.e. SLC10A1, SLC10A2, and SLC10A6) show sodium-dependent uptake of organic substrates across the cell membrane. These include the uptake of bile salts, sulfated steroids, sulfated thyroidal hormones, and certain statin drugs by SLC10A1 (Na(+)-taurocholate cotransporting polypeptide (NTCP)), the uptake of bile salts by SLC10A2 (apical sodium-dependent bile acid transporter (ASBT)), and uptake of sulfated steroids and sulfated taurolithocholate by SLC10A6 (sodium-dependent organic anion transporter (SOAT)). The other members of the family are orphan carriers not all localized in the cell membrane. The name "bile acid transporter family" arose because the first two SLC10 members (NTCP and ASBT) are carriers for bile salts that establish their enterohepatic circulation. In recent years, information has been obtained on their 2D and 3D membrane topology, structure-transport relationships, and on the ligand and sodium-binding sites. For SLC10A2, the putative 3D morphology was deduced from the crystal structure of a bacterial SLC10A2 analog, ASBT(NM). This information was used in this chapter to calculate the putative 3D structure of NTCP. This review provides first an introduction to recent knowledge about bile acid synthesis and newly found bile acid hormonal functions, and then describes step-by-step each individual member of the family in terms of expression, localization, substrate pattern, as well as protein topology with emphasis on the three functional SLC10 carrier members.
Collapse
Affiliation(s)
- Barbara Döring
- SLC10 family research group, Institute of Pharmacology and Toxicology, Justus Liebig University Giessen, Biomedical Research Center (BFS), Giessen, Germany
| | | | | | | |
Collapse
|
26
|
Shen H, Yang Z, Mintier G, Han YH, Chen C, Balimane P, Jemal M, Zhao W, Zhang R, Kallipatti S, Selvam S, Sukrutharaj S, Krishnamurthy P, Marathe P, Rodrigues AD. Cynomolgus monkey as a potential model to assess drug interactions involving hepatic organic anion transporting polypeptides: in vitro, in vivo, and in vitro-to-in vivo extrapolation. J Pharmacol Exp Ther 2013; 344:673-85. [PMID: 23297161 DOI: 10.1124/jpet.112.200691] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Organic anion-transporting polypeptides (OATP) 1B1, 1B3, and 2B1 can serve as the loci of drug-drug interactions (DDIs). In the present work, the cynomolgus monkey was evaluated as a potential model for studying OATP-mediated DDIs. Three cynomolgus monkey OATPs (cOATPs), with a high degree of amino acid sequence identity (91.9, 93.5, and 96.6% for OATP1B1, 1B3, and 2B1, respectively) to their human counterparts, were cloned, expressed, and characterized. The cOATPs were stably transfected in human embryonic kidney cells and were functionally similar to the corresponding human OATPs (hOATPs), as evident from the similar uptake rate of typical substrates (estradiol-17β-d-glucuronide, cholecystokinin octapeptide, and estrone-3-sulfate). Moreover, six known hOATP inhibitors exhibited similar IC(50) values against cOATPs. To further evaluate the appropriateness of the cynomolgus monkey as a model, a known hOATP substrate [rosuvastatin (RSV)]-inhibitor [rifampicin (RIF)] pair was examined in vitro; the monkey-derived parameters (RSV K(m) and RIF IC(50)) were similar (within 3.5-fold) to those obtained with hOATPs and human primary hepatocytes. In vivo, the area under the plasma concentration-time curve of RSV (3 mg/kg, oral) given 1 hour after a single RIF dose (15 mg/kg, oral) was increased 2.9-fold in cynomolgus monkeys, consistent with the value (3.0-fold) reported in humans. A number of in vitro-in vivo extrapolation approaches, considering the fraction of the pathways affected and free versus total inhibitor concentrations, were also explored. It is concluded that the cynomolgus monkey has the potential to serve as a useful model for the assessment of OATP-mediated DDIs in a nonclinical setting.
Collapse
Affiliation(s)
- Hong Shen
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research and Development, Princeton, New Jersey, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li L, Nouraldeen A, Wilson AGE. Evaluation of transporter-mediated hepatic uptake in a non-radioactive high-throughput assay: a study of kinetics, species difference and plasma protein effect. Xenobiotica 2012; 43:253-62. [DOI: 10.3109/00498254.2012.713146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
28
|
Gao C, Zhang H, Guo Z, You T, Chen X, Zhong D. Mechanistic Studies on the Absorption and Disposition of Scutellarin in Humans: Selective OATP2B1-Mediated Hepatic Uptake Is a Likely Key Determinant for Its Unique Pharmacokinetic Characteristics. Drug Metab Dispos 2012; 40:2009-20. [DOI: 10.1124/dmd.112.047183] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Kolhatkar V, Polli JE. Structural requirements of bile acid transporters: C-3 and C-7 modifications of steroidal hydroxyl groups. Eur J Pharm Sci 2012; 46:86-99. [PMID: 22387310 DOI: 10.1016/j.ejps.2012.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/27/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
The apical sodium dependent bile acid transporter (ASBT) and sodium-taurocholate cotransporting polypeptide (NTCP) are potential prodrug targets, but the structural requirements for these transporters are incompletely defined. The objective of this study was to evaluate the effect of C-3 and C-7 substitution on bile acid interaction with these bile acid transporters. Nineteen bile acid analogs were tested against ASBT and NTCP for binding, as well as translocation. Results indicated that ASBT and NTCP accommodated a wide range of substituents for binding, but all major C-7 modifications resulted in analogs that did not demonstrate active uptake by either ASBT or NTCP. A C-3 modification that was not tolerated at C-7 still afforded translocation via ASBT and NTCP, confirming the relative unacceptability of C-7 modification. Both ASBT and NTCP demonstrated a generally similar binding potency. Results suggest that drug conjugation to the C-3 hydroxyl group, rather than C-7, has potential to lead to a successful prodrug targeting ASBT and NTCP.
Collapse
Affiliation(s)
- Vidula Kolhatkar
- Univerisity of Maryland, School of Pharmacy, Baltimore, MD 21201, USA
| | | |
Collapse
|
30
|
Zamek-Gliszczynski MJ, Day JS, Hillgren KM, Phillips DL. Efflux Transport Is an Important Determinant of Ethinylestradiol Glucuronide and Ethinylestradiol Sulfate Pharmacokinetics. Drug Metab Dispos 2011; 39:1794-800. [DOI: 10.1124/dmd.111.040162] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Niemi M, Pasanen MK, Neuvonen PJ. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63:157-81. [PMID: 21245207 DOI: 10.1124/pr.110.002857] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The importance of membrane transporters for drug pharmacokinetics has been increasingly recognized during the last decade. Organic anion transporting polypeptide 1B1 (OATP1B1) is a genetically polymorphic influx transporter expressed on the sinusoidal membrane of human hepatocytes, and it mediates the hepatic uptake of many endogenous compounds and xenobiotics. Recent studies have demonstrated that OATP1B1 plays a major, clinically important role in the hepatic uptake of many drugs. A common single-nucleotide variation (coding DNA c.521T>C, protein p.V174A, rs4149056) in the SLCO1B1 gene encoding OATP1B1 decreases the transporting activity of OATP1B1, resulting in markedly increased plasma concentrations of, for example, many statins, particularly of active simvastatin acid. The variant thereby enhances the risk of statin-induced myopathy and decreases the therapeutic indexes of statins. However, the effect of the SLCO1B1 c.521T>C variant is different on different statins. The same variant also markedly affects the pharmacokinetics of several other drugs. Furthermore, certain SLCO1B1 variants associated with an enhanced clearance of methotrexate increase the risk of gastrointestinal toxicity by methotrexate in the treatment of children with acute lymphoblastic leukemia. Certain drugs (e.g., cyclosporine) potently inhibit OATP1B1, causing clinically significant drug interactions. Thus, OATP1B1 plays a major role in the hepatic uptake of drugs, and genetic variants and drug interactions affecting OATP1B1 activity are important determinants of individual drug responses. In this article, we review the current knowledge about the expression, function, substrate characteristics, and pharmacogenetics of OATP1B1 as well as its role in drug interactions, in parts comparing with those of other hepatocyte-expressed organic anion transporting polypeptides, OATP1B3 and OATP2B1.
Collapse
Affiliation(s)
- Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, PO Box 20, Helsinki, FI-00014, Finland.
| | | | | |
Collapse
|
32
|
Han YH, Busler D, Hong Y, Tian Y, Chen C, Rodrigues AD. Transporter Studies with the 3-O-Sulfate Conjugate of 17α-Ethinylestradiol: Assessment of Human Kidney Drug Transporters. Drug Metab Dispos 2010; 38:1064-71. [DOI: 10.1124/dmd.109.031526] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|