1
|
Small BG, Hatley O, Jamei M, Gardner I, Johnson TN. Incorporation and Performance Verification of Hepatic Portal Blood Flow Shunting in Minimal and Full PBPK Models of Liver Cirrhosis. Clin Pharmacol Ther 2023; 114:1264-1273. [PMID: 37620290 DOI: 10.1002/cpt.3032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Patho-physiological changes in liver cirrhosis create portacaval shunts that allow blood flow to bypass the hepatic portal vein into the systemic circulation affecting drug pharmacokinetics (PKs). The objectives of this work were to implement a physiologically-based pharmacokinetic (PBPK) framework describing shunted blood flows in virtual patients with differing degrees of liver cirrhosis; and to assess the minimal and full PBPK model's performance using drugs with intermediate to high hepatic extraction. Single dose concentration-time profiles and PK parameters for oral ibrutinib, midazolam, propranolol, and buspirone were simulated in healthy volunteers (HVs) and subjects with cirrhosis (Child-Pugh severity score (CP-A, CP-B, or CP-C)). Model performance was verified by comparing predicted to observed fold-changes in PK parameters between HVs and cirrhotic subjects. The verified model was used to simulate the PK changes for simvastatin in patients with cirrhosis. The predicted area under the curve ratios (AUCCirr :AUCHV ) for ibrutinib were 3.38, 6.87, and 11.46 using the minimal PBPK model with shunt and 1.61, 2.58, and 4.33 without the shunt, these compared with observed values of 4.33, 8.14, and 9.04, respectively. For ibrutinib, propranolol, and buspirone, including a shunt in the PBPK model improved the prediction of the AUCCirr :AUCHV and maximum plasma concentration ratios (CmaxCirr :CmaxHV ). For midazolam, an intermediate extraction drug, the differences were less clear. Simulated simvastatin dose adjustments in cirrhosis suggested that 20 mg in CP-A and 10 mg in CP-B could be used clinically. A mechanistic model-informed understanding of the anatomic and pathophysiology of cirrhosis will facilitate improved dose prediction and adjustment in this vulnerable population.
Collapse
Affiliation(s)
- Ben G Small
- Certara UK Limited (Simcyp Division), Sheffield, UK
| | | | - Masoud Jamei
- Certara UK Limited (Simcyp Division), Sheffield, UK
| | - Iain Gardner
- Certara UK Limited (Simcyp Division), Sheffield, UK
| | | |
Collapse
|
2
|
Miyake T, Tsutsui H, Hirabayashi M, Tachibana T. Quantitative Prediction of OATP-Mediated Disposition and Biliary Clearance Using Human Liver Chimeric Mice. J Pharmacol Exp Ther 2023; 387:135-149. [PMID: 37142442 DOI: 10.1124/jpet.123.001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
Drug biliary clearance (CLbile) in vivo is among the most difficult pharmacokinetic parameters to predict accurately and quantitatively because biliary excretion is influenced by metabolic enzymes, transporters, and passive diffusion across hepatocyte membranes. The purpose of this study is to demonstrate the use of Hu-FRG mice [Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice transplanted with human-derived hepatocytes] to quantitatively predict human organic anion transporting polypeptide (OATP)-mediated drug disposition and CLbile To predict OATP-mediated disposition, six OATP substrates (atorvastatin, fexofenadine, glibenclamide, pitavastatin, pravastatin, and rosuvastatin) were administered intravenously to Hu-FRG and Mu-FRG mice (FRG mice transplanted with mouse hepatocytes) with or without rifampicin as an OATP inhibitor. We calculated the hepatic intrinsic clearance (CLh,int) and the change of hepatic clearance (CLh) caused by rifampicin (CLh ratio). We compared the CLh,int of humans with that of Hu-FRG mice and the CLh ratio of humans with that of Hu-FRG and Mu-FRG mice. For predicting CLbile, 20 compounds (two cassette doses of 10 compounds) were administered intravenously to gallbladder-cannulated Hu-FRG and Mu-FRG mice. We evaluated the CLbile and investigated the correlation of human CLbile with that of Hu-FRG and Mu-FRG mice. We found good correlations between humans and Hu-FRG mice in CLh,int (100% within threefold) and CLh ratio (R2 = 0.94). Moreover, we observed a much better relationship between humans and Hu-FRG mice in CLbile (75% within threefold). Our results suggest that OATP-mediated disposition and CLbile can be predicted using Hu-FRG mice, making them a useful in vivo drug discovery tool for quantitatively predicting human liver disposition. SIGNIFICANCE STATEMENT: OATP-mediated disposition and biliary clearance of drugs are likely quantitatively predictable using Hu-FRG mice. The findings can enable the selection of better drug candidates and the development of more effective strategies for managing OATP-mediated DDIs in clinical studies.
Collapse
Affiliation(s)
- Taiji Miyake
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Haruka Tsutsui
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Manabu Hirabayashi
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Division (T.M., T.T.) and Discovery Biologics Department, Research Division (H.T.), Chugai Pharmaceutical Co., Ltd., Shizuoka, Gotemba, Japan and Chugai Research Institute for Medical Science Inc., Shizuoka, Gotemba, Japan (M.H.)
| |
Collapse
|
3
|
Humeniuk R, Mathias A, Kirby BJ, Lutz JD, Cao H, Osinusi A, Babusis D, Porter D, Wei X, Ling J, Reddy YS, German P. Pharmacokinetic, Pharmacodynamic, and Drug-Interaction Profile of Remdesivir, a SARS-CoV-2 Replication Inhibitor. Clin Pharmacokinet 2021; 60:569-583. [PMID: 33782830 PMCID: PMC8007387 DOI: 10.1007/s40262-021-00984-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 12/27/2022]
Abstract
Remdesivir (RDV, Veklury®) is a once-daily, nucleoside ribonucleic acid polymerase inhibitor of severe acute respiratory syndrome coronavirus 2 replication. Remdesivir has been granted approvals in several countries for use in adults and children hospitalized with severe coronavirus disease 2019 (COVID-19). Inside the cell, remdesivir undergoes metabolic activation to form the intracellular active triphosphate metabolite, GS-443902 (detected in peripheral blood mononuclear cells), and ultimately, the renally eliminated plasma metabolite GS-441524. This review discusses the pre-clinical pharmacology of RDV, clinical pharmacokinetics, pharmacodynamics/concentration-QT analysis, rationale for dose selection for treatment of patients with COVID-19, and drug-drug interaction potential based on available in vitro and clinical data in healthy volunteers. Following single-dose intravenous administration over 2 h of an RDV solution formulation across the dose range of 3-225 mg in healthy participants, RDV and its metabolites (GS-704277and GS-441524) exhibit linear pharmacokinetics. Following multiple doses of RDV 150 mg once daily for 7 or 14 days, major metabolite GS-441524 accumulates approximately 1.9-fold in plasma. Based on pharmacokinetic bridging from animal data and available human data in healthy volunteers, the RDV clinical dose regimen of a 200-mg loading dose on day 1 followed by 100-mg maintenance doses for 4 or 9 days was selected for further evaluation of pharmacokinetics and safety. Results showed high intracellular concentrations of GS-443902 suggestive of efficient conversion from RDV into the triphosphate form, and further supporting this clinical dosing regimen for the treatment of COVID-19. Mathematical drug-drug interaction liability predictions, based on in vitro and phase I data, suggest RDV has low potential for drug-drug interactions, as the impact of inducers or inhibitors on RDV disposition is minimized by the parenteral route of administration and extensive extraction. Using physiologically based pharmacokinetic modeling, RDV is not predicted to be a clinically significant inhibitor of drug-metabolizing enzymes or transporters in patients infected with COVID-19 at therapeutic RDV doses.
Collapse
Affiliation(s)
- Rita Humeniuk
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA.
| | - Anita Mathias
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Brian J Kirby
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Justin D Lutz
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Huyen Cao
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Anu Osinusi
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Darius Babusis
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Danielle Porter
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Xuelian Wei
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - John Ling
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Y Sunila Reddy
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Polina German
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA, 94404, USA
| |
Collapse
|
4
|
Disease-drug and drug-drug interaction in COVID-19: Risk and assessment. Biomed Pharmacother 2021; 139:111642. [PMID: 33940506 PMCID: PMC8078916 DOI: 10.1016/j.biopha.2021.111642] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/11/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is announced as a global pandemic in 2020. Its mortality and morbidity rate are rapidly increasing, with limited medications. The emergent outbreak of COVID-19 prompted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) keeps spreading. In this infection, a patient's immune response plays pivotal role in the pathogenesis. This inflammatory factor was shown by its mediators that, in severe cases, reach the cytokine at peaks. Hyperinflammatory state may sparks significant imbalances in transporters and drug metabolic machinery, and subsequent alteration of drug pharmacokinetics may result in unexpected therapeutic response. The present scenario has accounted for the requirement for therapeutic opportunities to relive and overcome this pandemic. Despite the diminishing developments of COVID-19, there is no drug still approved to have significant effects with no side effect on the treatment for COVID-19 patients. Based on the evidence, many antiviral and anti-inflammatory drugs have been authorized by the Food and Drug Administration (FDA) to treat the COVID-19 patients even though not knowing the possible drug-drug interactions (DDI). Remdesivir, favipiravir, and molnupiravir are deemed the most hopeful antiviral agents by improving infected patient’s health. Dexamethasone is the first known steroid medicine that saved the lives of seriously ill patients. Some oligopeptides and proteins have also been using. The current review summarizes medication updates to treat COVID-19 patients in an inflammatory state and their interaction with drug transporters and drug-metabolizing enzymes. It gives an opinion on the potential DDI that may permit the individualization of these drugs, thereby enhancing the safety and efficacy.
Collapse
|
5
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
6
|
Zhang N, Liu J, Chen Z, Dou W. In vitro inhibitory effects of kaempferitrin on human liver cytochrome P450 enzymes. PHARMACEUTICAL BIOLOGY 2019; 57:571-576. [PMID: 31456483 PMCID: PMC6720019 DOI: 10.1080/13880209.2019.1656257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context: Kaempferitrinis (KF) is a bioactive flavonoid and possesses numerous pharmacological activities. However, whether KF affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. Objective: This study investigates the effects of KF on eight major CYP isoforms in human liver microsomes (HLMs). Materials and methods: In vitro, HLMs were used to investigate the inhibitory effects of KF (100 μM) on the eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8), and corresponding probe substrates were used. Enzyme kinetic studies (0-50 μM of KF) were conducted to determine the inhibition mode of KF on CYP enzymes. Results: The results showed that KF inhibited the activity of CYP1A2, 3A4, and 2C9, with IC50 values of 20.56, 13.87, and 14.62 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that KF was not only a noncompetitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP1A2 and 2C9, with Ki values of 7.11, 10.24, and 7.58 μM, respectively. In addition, KF is a time-dependent inhibitor for CYP3A4 with KI/Kinact value of 10.85/0.036 min/μM. Discussion: The in vitro studies of KF with CYP isoforms indicate that KF has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, 3A4, and 2C9. Conclusion: It is recommended that KF should not be used with other drugs metabolized by CYP1A2, 3A4, and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Neonatology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
- CONTACT Ning Zhang Department of Neonatology, Yidu Central Hospital of Weifang, No.4138, South Linglongshan Road, Shandong 262500, China
| | - Jing Liu
- Department of Pediatric Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Zhixia Chen
- Department of Orthopaedics, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Wenwen Dou
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, China
- Wenwen Dou Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Road, Kuiwen District, Weifang 261031, Shandong Province, China
| |
Collapse
|
7
|
Song YQ, Weng ZM, Dou TY, Finel M, Wang YQ, Ding LL, Jin Q, Wang DD, Fang SQ, Cao YF, Hou J, Ge GB. Inhibition of human carboxylesterases by magnolol: Kinetic analyses and mechanism. Chem Biol Interact 2019; 308:339-349. [DOI: 10.1016/j.cbi.2019.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
|
8
|
Loganathan P, Gajendran M, McCallum R. Current and future treatment management strategies for gastroparesis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1617694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Priyadarshini Loganathan
- Department of Internal Medicine, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Mahesh Gajendran
- Department of Internal Medicine, Texas Tech University Health Sciences Center Paul L. Foster School of Medicine, El Paso, TX, USA
| | - Richard McCallum
- Division of Gastroenterology, Texas Tech University Health Sciences Center, Paul L Foster School of Medicine, El Paso, TX, USA
| |
Collapse
|
9
|
Li JN, Cao YF, He RR, Ge GB, Guo B, Wu JJ. Evidence for Shikonin acting as an active inhibitor of human carboxylesterases 2: Implications for herb-drug combination. Phytother Res 2018; 32:1311-1319. [PMID: 29468758 DOI: 10.1002/ptr.6062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jia-Nan Li
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
- Department of Pharmacy; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou 121001 China
| | - Yun-Feng Cao
- Key Laborotary of Liaoning Tumor Clinical Metabolomics; Jinzhou 121001 China
- RSKT Biopharma Inc.; Dalian 116023 China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Guangzhou 510632 China
| | - Guang-Bo Ge
- Institute of Interdisciplinary Medicine; Shanghai University of Traditional Chinese Medicine; Shanghai 201203 China
| | - Bin Guo
- Department of Pharmacy; The First Affiliated Hospital of Jinzhou Medical University; Jinzhou 121001 China
| | - Jing-Jing Wu
- Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
10
|
Cheng X, Lv X, Qu H, Li D, Hu M, Guo W, Ge G, Dong R. Comparison of the inhibition potentials of icotinib and erlotinib against human UDP-glucuronosyltransferase 1A1. Acta Pharm Sin B 2017; 7:657-664. [PMID: 29159025 PMCID: PMC5687316 DOI: 10.1016/j.apsb.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/15/2017] [Accepted: 06/30/2017] [Indexed: 01/29/2023] Open
Abstract
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role in detoxification of many potentially harmful compounds and drugs. UGT1A1 inhibition may bring risks of drug–drug interactions (DDIs), hyperbilirubinemia and drug-induced liver injury. This study aimed to investigate and compare the inhibitory effects of icotinib and erlotinib against UGT1A1, as well as to evaluate their potential DDI risks via UGT1A1 inhibition. The results demonstrated that both icotinib and erlotinib are UGT1A1 inhibitors, but the inhibitory effect of icotinib on UGT1A1 is weaker than that of erlotinib. The IC50 values of icotinib and erlotinib against UGT1A1-mediated NCHN-O-glucuronidation in human liver microsomes (HLMs) were 5.15 and 0.68 μmol/L, respectively. Inhibition kinetic analyses demonstrated that both icotinib and erlotinib were non-competitive inhibitors against UGT1A1-mediated glucuronidation of NCHN in HLMs, with the Ki values of 8.55 and 1.23 μmol/L, respectively. Furthermore, their potential DDI risks via UGT1A1 inhibition were quantitatively predicted by the ratio of the areas under the concentration–time curve (AUC) of NCHN. These findings are helpful for the medicinal chemists to design and develop next generation tyrosine kinase inhibitors with improved safety, as well as to guide reasonable applications of icotinib and erlotinib in clinic, especially for avoiding their potential DDI risks via UGT1A1 inhibition.
Collapse
Affiliation(s)
- Xuewei Cheng
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xia Lv
- College of Life Science, Dalian Nationalities University, Dalian 116600, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hengyan Qu
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
| | - Dandan Li
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
| | - Mengmeng Hu
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Guangbo Ge
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Institute of Interdisciplinary Medicine, Shanghai University of Traditional Medicine, Shanghai 201203, China
- Corresponding authors. Tel.: +86 411 843793171, +86 10 66947482.
| | - Ruihua Dong
- Clinical Pharmacology Laboratory, Military Academy of Medical Science Hospital, Beijing 100071, China
- Corresponding authors. Tel.: +86 411 843793171, +86 10 66947482.
| |
Collapse
|
11
|
Zhao J, Sun T, Wu JJ, Cao YF, Fang ZZ, Sun HZ, Zhu ZT, Yang K, Liu YZ, Gonzalez FJ, Yin J. Inhibition of human CYP3A4 and CYP3A5 enzymes by gomisin C and gomisin G, two lignan analogs derived from Schisandra chinensis. Fitoterapia 2017; 119:26-31. [PMID: 28344076 DOI: 10.1016/j.fitote.2017.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/13/2017] [Accepted: 03/23/2017] [Indexed: 11/30/2022]
Abstract
Gomisin C (GC) and gomisin G (GG) are two lignan analogs isolated from the Traditional Chinese Medicine Schisandra chinensis which possesses multiple pharmacological activities. However, the potential herb-drug interactions (HDI) between these lignans and other drugs through inhibiting human cytochrome P450 3A4 (CYP3A4) and CYP3A5 remains unclear. In the present study, the inhibitory action of GC and GG on CYP3A4 and CYP3A5 were investigated. The results demonstrated that both GC and GG strongly inhibited CYP3A-mediated midazolam 1'-hydroxylation, nifedipine oxidation and testosterone 6β-hydroxylation. Notably, the inhibitory intensity of GC towards CYP3A4 was stronger than CYP3A5 when using midazolam and nifedipine as substrates. While inhibition of GC towards CYP3A5 was weaker than CYP3A4 when using testosterone as substrate. In contrast, GG showed a stronger inhibitory activity on CYP3A5 than CYP3A4 without substrate-dependent behavior. In addition, docking simulations indicated that the π-π interaction between CYP3A4 and GC, and hydrogen-bond interaction between CYP3A5 and GG might result in their different inhibitory actions. Furthermore, the AUC of drugs metabolized by CYP3A was estimated to increase by 8%-321% and 2%-3190% in the presence of GC and GG, respectively. These findings strongly suggested that GC and GG showed high HDI potentials, and the position of methylenedioxy group determined their different inhibitory effect towards CYP3A4 and CYP3A5, which are of significance for the application of Schisandra chinensis-containing herbs.
Collapse
Affiliation(s)
- Jin Zhao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tao Sun
- Department of Breast Medicine, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jing-Jing Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.; Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Yun-Feng Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.; Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China.; Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zhong-Ze Fang
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China.; Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hong-Zhi Sun
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Zhi-Tu Zhu
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China
| | - Kun Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Jun Yin
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
12
|
Lv X, Wang XX, Hou J, Fang ZZ, Wu JJ, Cao YF, Liu SW, Ge GB, Yang L. Comparison of the inhibitory effects of tolcapone and entacapone against human UDP-glucuronosyltransferases. Toxicol Appl Pharmacol 2016; 301:42-9. [PMID: 27089846 DOI: 10.1016/j.taap.2016.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/15/2023]
Abstract
Tolcapone and entacapone are two potent catechol-O-methyltransferase (COMT) inhibitors with a similar skeleton and displaying similar pharmacological activities. However, entacapone is a very safe drug used widely in the treatment of Parkinson's disease, while tolcapone is only in limited use for Parkinson's patients and needs careful monitoring of hepatic functions due to hepatotoxicity. This study aims to investigate and compare the inhibitory effects of entacapone and tolcapone on human UDP-glucosyltransferases (UGTs), as well as to evaluate the potential risks from the view of drug-drug interactions (DDI). The results demonstrated that both tolcapone and entacapone exhibited inhibitory effects on UGT1A1, UGT1A7, UGT1A9 and UGT1A10. In contrast to entacapone, tolcapone exhibited more potent inhibitory effects on UGT1A1, UGT1A7, and UGT1A10, while their inhibitory potentials against UGT1A9 were comparable. It is noteworthy that the inhibition constants (Ki) of tolcapone and entacapone against bilirubin-O-glucuronidation in human liver microsomes (HLM) are determined as 0.68μM and 30.82μM, respectively, which means that the inhibition potency of tolcapone on UGT1A1 mediated bilirubin-O-glucuronidation in HLM is much higher than that of entacapone. Furthermore, the potential risks of tolcapone or entacapone via inhibition of human UGT1A1 were quantitatively predicted by the ratio of the areas under the plasma drug concentration-time curve (AUC). The results indicate that tolcapone may result in significant increase in AUC of bilirubin or the drugs primarily metabolized by UGT1A1, while entacapone is unlikely to cause a significant DDI through inhibition of UGT1A1.
Collapse
Affiliation(s)
- Xia Lv
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | | | - Jie Hou
- Dalian Medical University, Dalian 116044, China
| | | | - Jing-Jing Wu
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | | | - Shu-Wen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China
| | - Guang-Bo Ge
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China.
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| |
Collapse
|
13
|
Xin H, Qi XY, Wu JJ, Wang XX, Li Y, Hong JY, He W, Xu W, Ge GB, Yang L. Assessment of the inhibition potential of Licochalcone A against human UDP-glucuronosyltransferases. Food Chem Toxicol 2016; 90:112-22. [DOI: 10.1016/j.fct.2016.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 01/24/2016] [Accepted: 02/05/2016] [Indexed: 01/19/2023]
|
14
|
Waters NJ. Evaluation of drug-drug interactions for oncology therapies: in vitro-in vivo extrapolation model-based risk assessment. Br J Clin Pharmacol 2016; 79:946-58. [PMID: 25443889 DOI: 10.1111/bcp.12563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022] Open
Abstract
AIMS Understanding drug-drug interactions (DDI) is a critical part of the drug development process as polypharmacy has become commonplace in many therapeutic areas including the cancer patient population. The objectives of this study were to investigate cytochrome P450 (CYP)-mediated DDI profiles available for therapies used in the oncology setting and evaluate how models based on in vitro-in vivo extrapolation performed in predicting CYP-mediated DDI risk. METHODS A dataset of 125 oncology therapies was collated using drug label and approval history information, incorporating in vitro and clinical PK data. The predictive accuracy of the basic and net effect mechanistic static models was assessed using this oncology drug dataset, for both victim and perpetrator potential of CYP3A-mediated DDI. RESULTS The incidence of CYP3A-mediated interaction potential was 47%, 22% and 11% for substrates, inhibitors and inducers, respectively. The basic models for precipitants gave conservative predictions with no false negatives, whilst the mechanistic static models provided reasonable quantitative predictions (2.3-3-fold error). Further analysis revealed that incorporating DDI at the level of the intestine was in most cases over-predicting interaction magnitude due to overestimates of the rate and extent of oral absorption of the precipitant. Quantifying victim DDI potential was also demonstrated using fmCYP3A estimates from ketoconazole clinical DDI studies to predict the magnitude of interaction on co-administration with the CYP3A inducer, rifampicin (1.6-3.3 fold error). CONCLUSIONS This work illustrates the utility and limitations of current DDI risk assessment approaches applied to a range of contemporary anti-cancer agents, and discusses the implications for therapeutic combination strategies.
Collapse
Affiliation(s)
- Nigel J Waters
- Epizyme, Inc., 400 Technology Square, Cambridge, MA, USA
| |
Collapse
|
15
|
He W, Wu JJ, Ning J, Hou J, Xin H, He YQ, Ge GB, Xu W. Inhibition of human cytochrome P450 enzymes by licochalcone A, a naturally occurring constituent of licorice. Toxicol In Vitro 2015; 29:1569-76. [DOI: 10.1016/j.tiv.2015.06.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 01/28/2023]
|
16
|
Wang Y, Wang M, Qi H, Pan P, Hou T, Li J, He G, Zhang H. Pathway-Dependent Inhibition of Paclitaxel Hydroxylation by Kinase Inhibitors and Assessment of Drug–Drug Interaction Potentials. Drug Metab Dispos 2014; 42:782-95. [DOI: 10.1124/dmd.113.053793] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
17
|
Kharasch ED, Bedynek PS, Hoffer C, Walker A, Whittington D. Lack of indinavir effects on methadone disposition despite inhibition of hepatic and intestinal cytochrome P4503A (CYP3A). Anesthesiology 2012; 116:432-47. [PMID: 22273859 PMCID: PMC3586934 DOI: 10.1097/aln.0b013e3182423478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Methadone disposition and pharmacodynamics are highly susceptible to interactions with antiretroviral drugs. Methadone clearance and drug interactions have been attributed to cytochrome P4503A4 (CYP3A4), but actual mechanisms are unknown. Drug interactions can be clinically and mechanistically informative. This investigation assessed effects of the protease inhibitor indinavir on methadone pharmacokinetics and pharmacodynamics, hepatic and intestinal CYP3A4/5 activity (using alfentanil), and intestinal transporter activity (using fexofenadine). METHODS Twelve healthy volunteers underwent a sequential crossover. On three consecutive days they received oral alfentanil plus fexofenadine, intravenous alfentanil, and intravenous plus oral (deuterium-labeled) methadone. This was repeated after 2 weeks of indinavir. Plasma and urine analytes were measured by mass spectrometry. Opioid effects were measured by miosis. RESULTS Indinavir significantly inhibited hepatic and first-pass CYP3A activity. Intravenous alfentanil systemic clearance and hepatic extraction were reduced to 40-50% of control, apparent oral clearance to 30% of control, and intestinal extraction decreased by half, indicating 50% and 70% inhibition of hepatic and first-pass CYP3A activity. Indinavir increased fexofenadine area under the plasma concentration-time curve 3-fold, suggesting significant P-glycoprotein inhibition. Indinavir had no significant effects on methadone plasma concentrations, methadone N-demethylation, systemic or apparent oral clearance, renal clearance, hepatic extraction or clearance, or bioavailability. Methadone plasma concentration-effect relationships were unaffected by indinavir. CONCLUSIONS Despite significant inhibition of hepatic and intestinal CYP3A activity, indinavir had no effect on methadone N-demethylation and clearance, suggesting little or no role for CYP3A in clinical disposition of single-dose methadone. Inhibition of gastrointestinal transporter activity had no influence of methadone bioavailability.
Collapse
Affiliation(s)
- Evan D Kharasch
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri 63110-1093, USA.
| | | | | | | | | |
Collapse
|
18
|
Templeton IE, Houston JB, Galetin A. Predictive utility of in vitro rifampin induction data generated in fresh and cryopreserved human hepatocytes, Fa2N-4, and HepaRG cells. Drug Metab Dispos 2011; 39:1921-9. [PMID: 21771933 DOI: 10.1124/dmd.111.040824] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rifampin is a potent inducer of CYP3A4 in vitro and precipitates numerous drug-drug interactions (DDIs) when coadministered with CYP3A4 substrates. In the current study, we have critically assessed reported rifampin in vitro CYP3A4 induction data in Fa2N-4, HepaRG, and cryopreserved or primary human hepatocytes, using either CYP3A4 mRNA or probe substrate metabolism as induction endpoints. An in vivo data base of intravenously administered victim drugs (assuming hepatic induction only) was collated (n = 18) to assess the predictive utility of these in vitro systems and to optimize rifampin in vivo E(max). In addition, the effect of substrate hepatic extraction ratio on prediction accuracy was investigated using prediction boundaries proposed recently (Drug Metab Dispos 39:170-173). Incorporation of hepatic extraction ratio in the prediction model resulted in accurate prediction of 89% of intravenous induction DDIs (n = 18), regardless of the in vitro system or induction endpoint (mRNA or CYP3A4 activity). Effects of in vitro parameters from different cellular systems, and optimized in vivo E(max), on the prediction of 21 oral DDIs were assessed. Use of mRNA data resulted in pronounced overprediction across all systems, with 86 to 100% of DDIs outside the acceptable prediction limits; in contrast, CYP3A4 activity predicted up to 62% of the oral DDIs within limits. Although prediction accuracy of oral DDIs was improved when using intravenous optimized rifampin E(max), >35% of DDIs were incorrectly assigned, suggesting potential differential E(max) between intestine and liver. Implications of the findings and recommendations for prediction of rifampin DDIs are discussed.
Collapse
Affiliation(s)
- Ian E Templeton
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
19
|
Venkatakrishnan K, Pickard MD, von Moltke LL. A quantitative framework and strategies for management and evaluation of metabolic drug-drug interactions in oncology drug development: new molecular entities as object drugs. Clin Pharmacokinet 2011; 49:703-27. [PMID: 20923246 DOI: 10.2165/11536740-000000000-00000] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This article outlines general strategies for the management and evaluation of pharmacokinetic drug-drug interactions (DDIs) resulting from perturbation of clearance of investigational anticancer drug candidates by concomitantly administered agents in a drug development setting, with a focus on drug candidates that cannot be evaluated in first-in-human studies in healthy subjects. A risk level classification is proposed, based on quantitative integration of knowledge derived from preclinical drug-metabolism studies evaluating the projected percentage contribution [f(i)(%)] of individual molecular determinants (e.g. cytochrome P450 isoenzymes) to the overall human clearance of the investigational agent. The following classification is proposed with respect to susceptibility to DDIs with metabolic inhibitors: a projected maximum DDI expected to result in a ≤1.33-fold increase in exposure, representing a low level of risk; a projected maximum DDI expected to result in a >1.33-fold but <2-fold increase in exposure, representing a moderate level of risk; and a projected maximum DDI expected to result in a ≥2-fold increase in exposure, representing a potentially high level of risk. For DDIs with metabolic inducers, the following operational classification is proposed, based on the sum of the percentage contributions of enzymes that are inducible via a common mechanism to the overall clearance of the investigational drug: <<25%, representing a low level of risk; <50%, representing a moderate level of risk; and ≥50%, representing a potentially high level of risk. To ensure patient safety and to minimize bias in determination of the recommended phase II dose (RP2D), it is recommended that strong and moderate inhibitors and inducers of the major contributing enzyme are excluded in phase I dose-escalation studies of high-risk compounds, whereas exclusion of strong inhibitors and inducers of the contributing enzyme(s) is recommended as being sufficient for moderate-risk compounds. For drugs that will be investigated in diseases such as glioblastoma, where there may be relatively frequent use of enzyme-inducing antiepileptic agents (EIAEDs), a separate dose-escalation study in this subpopulation is recommended to define the RP2D. For compounds in the high-risk category, if genetic deficiencies in the activity of the major drug-metabolizing enzyme are known, it is recommended that poor metabolizers be studied separately to define the RP2D for this subpopulation. Whereas concomitant medication exclusion criteria that are utilized in the phase I dose-escalation studies will probably also need to be maintained for high-risk compounds in phase II studies unless the results of a clinical DDI study indicate the absence of a clinically relevant interaction, these exclusion criteria can potentially be relaxed beyond phase I for moderate-risk compounds, if supported by the nature of clinical toxicities and the understanding of the therapeutic index in phase I. Adequately designed clinical DDI studies will not only inform potential relaxation of concomitant medication exclusion criteria in later-phase studies but, importantly, will also inform the development of pharmacokinetically derived dose-modification guidelines for use in clinical practice when coupled with adequate safety monitoring, as illustrated in the prescribing guidance for many recently approved oncology therapeutics.
Collapse
Affiliation(s)
- Karthik Venkatakrishnan
- Department of Clinical Pharmacology, Millennium Pharmaceuticals Inc., Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
20
|
Cubitt HE, Yeo KR, Howgate EM, Rostami-Hodjegan A, Barter ZE. Sources of interindividual variability in IVIVE of clearance: an investigation into the prediction of benzodiazepine clearance using a mechanistic population-based pharmacokinetic model. Xenobiotica 2011; 41:623-38. [DOI: 10.3109/00498254.2011.560294] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos 2011; 39:1070-8. [PMID: 21406602 DOI: 10.1124/dmd.110.037523] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Conflicting drug-drug interaction (DDI) studies with the HIV protease inhibitors (PIs) suggest net induction or inhibition of intestinal or hepatic CYP3A. As part of a larger DDI study in healthy volunteers, we determined the effect of extended administration of two PIs, ritonavir (RTV) or nelfinavir (NFV), or the induction-positive control rifampin on intestinal and hepatic CYP3A activity as measured by midazolam (MDZ) disposition after a 14-day treatment with the PI in either staggered (MDZ ∼12 h after PI) or simultaneous (MDZ and PI coadministered) manner. Oral and intravenous MDZ areas under the plasma concentration-time curves were significantly increased by RTV or NFV and were decreased by rifampin. Irrespective of method of administration, RTV decreased net intestinal and hepatic CYP3A activity, whereas NFV decreased hepatic but not intestinal CYP3A activity. The magnitude of these DDIs was more accurately predicted using PI CYP3A inactivation parameters generated in sandwich-cultured human hepatocytes rather than human liver microsomes.
Collapse
Affiliation(s)
- Brian J Kirby
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
22
|
Mao J, Mohutsky MA, Harrelson JP, Wrighton SA, Hall SD. Prediction of CYP3A-Mediated Drug-Drug Interactions Using Human Hepatocytes Suspended in Human Plasma. Drug Metab Dispos 2011; 39:591-602. [DOI: 10.1124/dmd.110.036400] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
23
|
Metabolic-based drug-drug interactions prediction, recent approaches for risk assessment along drug development. ACTA ACUST UNITED AC 2011; 26:147-68. [DOI: 10.1515/dmdi.2011.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|