1
|
Zhu F, Mao H, Du S, Zhou H, Zhang R, Li P, Xing J. CYP3A4-mediated metabolism of artemisinin to 10β-hydroxyartemisinin with comparable anti-malarial potency. Malar J 2024; 23:328. [PMID: 39501261 PMCID: PMC11539713 DOI: 10.1186/s12936-024-05163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The most widely used anti-malarial drug artemisinin (ART) is metabolized extensively, but the therapeutic capacity of its major metabolite remains unknown. Whether the major metabolite of ART (ART-M) contributes to its antiplasmodial potency was investigated in this study. METHODS The metabolite identification and enzyme phenotyping of ART were performed using human liver microsomes (HLMs). The stereostructure of the major metabolite ART-M was elucidated by spectroscopic and X-ray crystallographic analysis. The anti-malarial activity of ART-M against two reference Plasmodium strains (Pf3D7 and PfDd2) was evaluated. The pharmacokinetic profiles of ART and its metabolite ART-M were investigated in healthy Chinese subjects after a recommended two-day oral dose of ART plus piperaquine. Pharmacodynamic parameters based on minimum inhibitory concentration (MIC50) and free plasma concentration were employed to evaluate the therapeutic potency of ART-M, including fAUC0-t/MIC50, fCmax/MIC50 and T > MIC50. RESULTS A major metabolite 10β-hydroxyartemisinin (ART-M) was found for ART in human, and CYP3A4/3A5 was the major enzymes responsible for ART 10β-hydroxylation. Compared with ART (MIC50, 10.1 nM against Pf3D7), weaker antiplasmodial activity was found for ART-M (MIC50, 61.4 nM against Pf3D7). However, a 3.5-fold higher maximal free plasma concentration was achieved for ART-M (fCmax, 180.0 nM vs. 51.8 nM for ART). ART-M displayed comparable antiplasmodial potency to ART, in terms of fAUC0-t/MIC50 (12.5 h), fCmax/MIC50 (2.8) and T > MIC50 (5 h). CONCLUSIONS The major metabolite 10β-hydroxyartemisinin contributes to the antiplasmodial efficacy of ART, which should be considered when evaluation of ART dosing regimens and/or clinical outcomes.
Collapse
Affiliation(s)
- Fanping Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
- School of Environmental Science and Engineering, Shandong University, Jinan, China
| | - Huixiu Mao
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Shanshan Du
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Hongchang Zhou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Rui Zhang
- Qilu Hospital, Shandong University, Jinan, China
| | - Pingli Li
- Qilu Hospital, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Xie Y, Zhang Y, Lin F, Chen X, Xing J. The effect of malaria-induced alteration of metabolism on piperaquine disposition in Plasmodium yoelii infected mice and predicted in malaria patients. Int J Antimicrob Agents 2024; 64:107209. [PMID: 38761871 DOI: 10.1016/j.ijantimicag.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
OBJECTIVES Malaria-induced alteration of physiological parameters and pharmacokinetic properties of antimalarial drugs may be clinically relevant. Whether and how malaria alters the disposition of piperaquine (PQ) was investigated in this study. METHODS The effect of malaria on drug metabolism-related enzymes and PQ pharmacokinetic profiles was studied in Plasmodium yoelii-infected mice in vitro/in vivo. Whether the malaria effect was clinically relevant for PQ was evaluated using a validated physiologically-based pharmacokinetic model with malaria-specific scalars obtained in mice. RESULTS The infection led to a higher blood-to-plasma partitioning (Rbp) for PQ, which was concentration-dependent and correlated to parasitemia. No significant change in plasma protein binding was found for PQ. Drug metabolism-related genes (CYPs/UDP-glucuronosyltransferase/nuclear receptor, except for CYP2a5) were downregulated in infected mice, especially at the acute phase. The plasma oral clearances (CL/F) of three probe substrates for CYP enzymes were significantly decreased (by ≥35.9%) in mice even with moderate infection. The validated physiologically-based pharmacokinetic model indicated that the hepatic clearance (CLH) of PQ was the determinant of its simulated CL/F, which was predicted to slightly decrease (by ≤23.6%) in severely infected mice but not in malaria patients. The result fitted well with the plasma pharmacokinetics of PQ in infected mice and literature data on malaria patients. The blood clearance of PQ was much lower than its plasma clearance due to its high Rbp. CONCLUSIONS The malaria-induced alteration of drug metabolism was substrate-dependent, and its impact on the disposition of PQ and maybe other long-acting aminoquinoline antimalarials was not expected to be clinically relevant.
Collapse
Affiliation(s)
- Yuewu Xie
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yifan Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyue Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
3
|
Akafity G, Kumi N, Ashong J. Diagnosis and management of malaria in the intensive care unit. JOURNAL OF INTENSIVE MEDICINE 2024; 4:3-15. [PMID: 38263976 PMCID: PMC10800773 DOI: 10.1016/j.jointm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 01/25/2024]
Abstract
Malaria is responsible for approximately three-quarters of a million deaths in humans globally each year. Most of the morbidity and mortality reported are from Sub-Saharan Africa and Asia, where the disease is endemic. In non-endemic areas, malaria is the most common cause of imported infection and is associated with significant mortality despite recent advancements and investments in elimination programs. Severe malaria often requires intensive care unit admission and can be complicated by cerebral malaria, respiratory distress, acute kidney injury, bleeding complications, and co-infection. Intensive care management includes prompt diagnosis and early initiation of effective antimalarial therapy, recognition of complications, and appropriate supportive care. However, the lack of diagnostic capacities due to limited advances in equipment, personnel, and infrastructure presents a challenge to the effective diagnosis and management of malaria. This article reviews the clinical classification, diagnosis, and management of malaria as relevant to critical care clinicians, highlighting the role of diagnostic capacity, treatment options, and supportive care.
Collapse
Affiliation(s)
- George Akafity
- Department of Research, Monitoring, and Evaluation, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Nicholas Kumi
- Intensive Care Unit, Department of Critical Care and Anesthesia, Cape Coast Teaching Hospital, Cape Coast, Ghana
| | - Joyce Ashong
- Department of Paediatrics and Child Health, Cape Coast Teaching Hospital, Cape Coast, Ghana
| |
Collapse
|
4
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
5
|
Smith DJ, Bi H, Hamman J, Ma X, Mitchell C, Nyirenda K, Monera-Penduka T, Oketch-Rabah H, Paine MF, Pettit S, Pheiffer W, Van Breemen RB, Embry M. Potential pharmacokinetic interactions with concurrent use of herbal medicines and a ritonavir-boosted COVID-19 protease inhibitor in low and middle-income countries. Front Pharmacol 2023; 14:1210579. [PMID: 37502215 PMCID: PMC10368978 DOI: 10.3389/fphar.2023.1210579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The COVID-19 pandemic sparked the development of novel anti-viral drugs that have shown to be effective in reducing both fatality and hospitalization rates in patients with elevated risk for COVID-19 related morbidity or mortality. Currently, nirmatrelvir/ritonavir (Paxlovid™) fixed-dose combination is recommended by the World Health Organization for treatment of COVID-19. The ritonavir component is an inhibitor of cytochrome P450 (CYP) 3A, which is used in this combination to achieve needed therapeutic concentrations of nirmatrelvir. Because of the critical pharmacokinetic effect of this mechanism of action for Paxlovid™, co-administration with needed medications that inhibit or induce CYP3A is contraindicated, reflecting concern for interactions with the potential to alter the efficacy or safety of co-administered drugs that are also metabolized by CYP3A. Some herbal medicines are known to interact with drug metabolizing enzymes and transporters, including but not limited to inhibition or induction of CYP3A and P-glycoprotein. As access to these COVID-19 medications has increased in low- and middle-income countries (LMICs), understanding the potential for herb-drug interactions within these regions is important. Many studies have evaluated the utility of herbal medicines for COVID-19 treatments, yet information on potential herb-drug interactions involving Paxlovid™, specifically with herbal medicines commonly used in LMICs, is lacking. This review presents data on regionally-relevant herbal medicine use (particularly those promoted as treatments for COVID-19) and mechanism of action data on herbal medicines to highlight the potential for herbal medicine interaction Herb-drug interaction mediated by ritonavir-boosted antiviral protease inhibitors This work highlights potential areas for future experimental studies and data collection, identifies herbal medicines for inclusion in future listings of regionally diverse potential HDIs and underscores areas for LMIC-focused provider-patient communication. This overview is presented to support governments and health protection entities as they prepare for an increase of availability and use of Paxlovid™.
Collapse
Affiliation(s)
- Dallas J. Smith
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, United States
- COVID-19 Response International Task Force, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Huichang Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Josias Hamman
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Constance Mitchell
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Kumbukani Nyirenda
- Department of Pharmacy, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Tsitsi Monera-Penduka
- Research Unit for Safety of Herbs and Drugs, University of Zimbabwe, Harare, Zimbabwe
| | | | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Syril Pettit
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Wihan Pheiffer
- DSI/NWU Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Richard B. Van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington, DC, United States
| |
Collapse
|
6
|
Chamboko CR, Veldman W, Tata RB, Schoeberl B, Tastan Bishop Ö. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. Int J Mol Sci 2023; 24:ijms24043383. [PMID: 36834793 PMCID: PMC9961538 DOI: 10.3390/ijms24043383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Precision medicine gives individuals tailored medical treatment, with the genotype determining the therapeutic strategy, the appropriate dosage, and the likelihood of benefit or toxicity. Cytochrome P450 (CYP) enzyme families 1, 2, and 3 play a pivotal role in eliminating most drugs. Factors that affect CYP function and expression have a major impact on treatment outcomes. Therefore, polymorphisms of these enzymes result in alleles with diverse enzymatic activity and drug metabolism phenotypes. Africa has the highest CYP genetic diversity and also the highest burden of malaria and tuberculosis, and this review presents current general information on CYP enzymes together with variation data concerning antimalarial and antituberculosis drugs, while focusing on the first three CYP families. Afrocentric alleles such as CYP2A6*17, CYP2A6*23, CYP2A6*25, CYP2A6*28, CYP2B6*6, CYP2B6*18, CYP2C8*2, CYP2C9*5, CYP2C9*8, CYP2C9*9, CYP2C19*9, CYP2C19*13, CYP2C19*15, CYP2D6*2, CYP2D6*17, CYP2D6*29, and CYP3A4*15 are implicated in diverse metabolic phenotypes of different antimalarials such as artesunate, mefloquine, quinine, primaquine, and chloroquine. Moreover, CYP3A4, CYP1A1, CYP2C8, CYP2C18, CYP2C19, CYP2J2, and CYP1B1 are implicated in the metabolism of some second-line antituberculosis drugs such as bedaquiline and linezolid. Drug-drug interactions, induction/inhibition, and enzyme polymorphisms that influence the metabolism of antituberculosis, antimalarial, and other drugs, are explored. Moreover, a mapping of Afrocentric missense mutations to CYP structures and a documentation of their known effects provided structural insights, as understanding the mechanism of action of these enzymes and how the different alleles influence enzyme function is invaluable to the advancement of precision medicine.
Collapse
Affiliation(s)
- Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Rolland Bantar Tata
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| | - Birgit Schoeberl
- Translational Medicine, Novartis Institutes for BioMedical Research, 220 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
7
|
Kane NF, Kiani BH, Desrosiers MR, Towler MJ, Weathers PJ. Artemisia extracts differ from artemisinin effects on human hepatic CYP450s 2B6 and 3A4 in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115587. [PMID: 35934190 DOI: 10.1016/j.jep.2022.115587] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese medicinal herb, Artemisia annua L., has been used for >2,000 yr as traditional tea infusions to treat a variety of infectious diseases including malaria, and its use is spreading globally (along with A. afra Jacq. ex Willd.) mainly through grassroots efforts. AIM OF THE STUDY Artemisinin is more bioavailable delivered from the plant, Artemisia annua L. than the pure drug, but little is known about how delivery via a hot water infusion (tea) alters induction of hepatic CYP2B6 and CYP3A4 that metabolize artemisinin. MATERIALS AND METHODS HepaRG cells were treated with 10 μM artemisinin or rifampicin (positive control), and teas (10 g/L) of A. annua SAM, and A. afra SEN and MAL with 1.6, 0.05 and 0 mg/g DW artemisinin in the leaves, respectively; qPCR and Western blots were used to measure CYP2B6 and CYP3A4 responses. Enzymatic activity of these P450s was measured using human liver microsomes and P450-Glo assays. RESULTS All teas inhibited activity of CYP2B6 and CYP3A4. Artemisinin and the high artemisinin-containing tea infusion (SAM) induced CYP2B6 and CYP3A4 transcription, but artemisinin-deficient teas, MAL and SEN, did not. Artemisinin increased CYP2B6 and CYP3A4 protein levels, but none of the three teas did, indicating a post-transcription inhibition by all three teas. CONCLUSIONS This study showed that Artemisia teas inhibit activity and artemisinin autoinduction of CYP2B6 and CYP3A4 post transcription, a response likely the effect of other phytochemicals in these teas. Results are important for understanding Artemisia tea posology.
Collapse
Affiliation(s)
- Ndeye F Kane
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Bushra H Kiani
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Matthew R Desrosiers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Melissa J Towler
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| | - Pamela J Weathers
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, 01609, USA.
| |
Collapse
|
8
|
Xie Y, Zhang Y, Liu H, Xing J. Metabolic Retroversion of Piperaquine (PQ) via Hepatic Cytochrome P450-Mediated N-Oxidation and Reduction: Not an Important Contributor to the Prolonged Elimination of PQ. Drug Metab Dispos 2021; 49:379-388. [PMID: 33674271 DOI: 10.1124/dmd.120.000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
As a partner antimalarial with an extremely long elimination half-life (∼30 days), piperaquine (PQ) is mainly metabolized into a pharmacologically active N-oxide metabolite [piperaquine N-oxide (PN1)] in humans. In the present work, the metabolic retroversion of PQ and PN1, potentially associated with decreased clearance of PQ, was studied. The results showed that interconversion existed for PQ and its metabolite PN1. The N-oxidation of PQ to PN1 was mainly mediated by CYP3A4, and PN1 can rapidly reduce back to PQ via cytochrome P450 (P450)/flavin-containing monooxygenase enzymes. In accordance with these findings, the P450 nonselective inhibitor (1-ABT) or CYP3A4 inhibitor (ketoconazole) inhibited the N-oxidation pathway in liver microsomes (>90%), and the reduction metabolism was inhibited by 1-ABT (>90%) or methimazole (∼50%). Based on in vitro physiologic and enzyme kinetic studies, quantitative prediction of hepatic clearance (CLH) of PQ was performed, which indicated its negligible decreased elimination in humans in the presence of futile cycling, with the unbound CLH decreasing by 2.5% (0.069 l/h per kilogram); however, a minor decrease in unbound CLH (by 12.8%) was found in mice (0.024 l/h per kilogram). After an oral dose of PQ (or PN1) to mice, the parent form predominated in the blood circulation, and PN1 (or PQ) was detected as a major metabolite. Other factors probably associated with delayed elimination of PQ (intestinal metabolism and enterohepatic circulation) did not play a key role in PQ elimination. These data suggested that the metabolic interconversion of PQ and its N-oxide metabolite contributes to but may not significantly prolong its duration in humans. SIGNIFICANCE STATEMENT: This paper investigated the interconversion metabolism of piperaquine (PQ) and its N-oxide metabolite in vitro as well as in mice. The metabolic profiles of PQ were reestablished by this futile cycling, which contributes to but may not significantly prolong its elimination in humans. Enzyme phenotyping indicated a low possibility of interaction of PQ during artemisinin drug-based combination therapy treatment.
Collapse
Affiliation(s)
- Yuewu Xie
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yunrui Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huixiang Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
9
|
Chai L, Wang R, Wang Y, Guo W, Li N, Zuo H, Wang Y, Duan D, Ren G, Zheng B, Wang R, Zhang S. Auto-Induction of Intestinal First-Pass Effect Related Time-Dependent Pharmacokinetics of Artemisinin Rather than Dihydroartemisinin. J Pharm Sci 2020; 110:458-466. [PMID: 32976901 DOI: 10.1016/j.xphs.2020.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/29/2020] [Accepted: 09/16/2020] [Indexed: 11/27/2022]
Abstract
Artemisinin (ART) drugs showed declining plasma concentrations after repeated oral dosing, known as time-dependent pharmacokinetics (PK). ART and dihydroartemisinin (DHA) were adopted as representatives to evaluate the roles of first-pass effects and systemic metabolism in time-dependent PK by comparison of oral versus intravenous administration and 1 dose versus 5 consecutive doses PK in rats and dogs, respectively. The hepatic extraction ratio (ERh) and the intestinal elimination changes were further investigated in rats to distinguish the roles of hepatic first-pass effect or intestinal first-pass effect. The induction capacities of ARTs to cytochrome P450 (CYP450) in rats and human cells were evaluated as well. For ART, only the oral groups showed time-dependent PK. A fairly high ERh that obtained for ART was not sensitive to multiple oral doses. An increased elimination and CYP450 expression have also been found in the intestine. For DHA, though a significant CYP450 induction was observed, neither time-dependent PK nor changes in the first-pass effects was found. In conclusion, time-dependent PK of ART was mainly caused by the increased intestinal first-pass effect rather than hepatic first-pass effect or systemic metabolism. DHA was not involved in auto-induction elimination, thus showing no time-dependent PK.
Collapse
Affiliation(s)
- Liqing Chai
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yan Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Wenju Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Ning Li
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Hengtong Zuo
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Yidan Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Danyu Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Zheng
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
10
|
Gonsalves MD, Colizza K, Smith JL, Oxley JC. In vitro and in vivo studies of triacetone triperoxide (TATP) metabolism in humans. Forensic Toxicol 2020. [DOI: 10.1007/s11419-020-00540-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
Purpose
Triacetone triperoxide (TATP) is a volatile but powerful explosive that appeals to terrorists due to its ease of synthesis from household items. For this reason, bomb squad, canine (K9) units, and scientists must work with this material to mitigate this threat. However, no information on the metabolism of TATP is available.
Methods
In vitro experiments using human liver microsomes and recombinant enzymes were performed on TATP and TATP-OH for metabolite identification and enzyme phenotyping. Enzyme kinetics for TATP hydroxylation were also investigated. Urine from laboratory personnel collected before and after working with TATP was analyzed for TATP and its metabolites.
Results
While experiments with flavin monooxygenases were inconclusive, those with recombinant cytochrome P450s (CYPs) strongly suggested that CYP2B6 was the principle enzyme responsible for TATP hydroxylation. TATP-O-glucuronide was also identified and incubations with recombinant uridine diphosphoglucuronosyltransferases (UGTs) indicated that UGT2B7 catalyzes this reaction. Michaelis–Menten kinetics were determined for TATP hydroxylation, with Km = 1.4 µM and Vmax = 8.7 nmol/min/nmol CYP2B6. TATP-O-glucuronide was present in the urine of all three volunteers after being exposed to TATP vapors showing good in vivo correlation to in vitro data. TATP and TATP-OH were not observed.
Conclusions
Since scientists working to characterize and detect TATP to prevent terrorist attacks are constantly exposed to this volatile compound, attention should be paid to its metabolism. This paper is the first to elucidate some exposure, metabolism and excretion of TATP in humans and to identify a marker of TATP exposure, TATP-O-glucuronide in urine.
Collapse
|
11
|
Bernasconi C, Pelkonen O, Andersson TB, Strickland J, Wilk-Zasadna I, Asturiol D, Cole T, Liska R, Worth A, Müller-Vieira U, Richert L, Chesne C, Coecke S. Validation of in vitro methods for human cytochrome P450 enzyme induction: Outcome of a multi-laboratory study. Toxicol In Vitro 2019; 60:212-228. [PMID: 31158489 PMCID: PMC6718736 DOI: 10.1016/j.tiv.2019.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
CYP enzyme induction is a sensitive biomarker for phenotypic metabolic competence of in vitro test systems; it is a key event associated with thyroid disruption, and a biomarker for toxicologically relevant nuclear receptor-mediated pathways. This paper summarises the results of a multi-laboratory validation study of two in vitro methods that assess the potential of chemicals to induce cytochrome P450 (CYP) enzyme activity, in particular CYP1A2, CYP2B6, and CYP3A4. The methods are based on the use of cryopreserved primary human hepatocytes (PHH) and human HepaRG cells. The validation study was coordinated by the European Union Reference Laboratory for Alternatives to Animal Testing of the European Commission's Joint Research Centre and involved a ring trial among six laboratories. The reproducibility was assessed within and between laboratories using a validation set of 13 selected chemicals (known human inducers and non-inducers) tested under blind conditions. The ability of the two methods to predict human CYP induction potential was assessed. Chemical space analysis confirmed that the selected chemicals are broadly representative of a diverse range of chemicals. The two methods were found to be reliable and relevant in vitro tools for the assessment of human CYP induction, with the HepaRG method being better suited for routine testing. Recommendations for the practical application of the two methods are proposed.
Collapse
Affiliation(s)
| | - Olavi Pelkonen
- Research Unit of Biomedicine/Pharmacology and Toxicology, Faculty of Medicine, Aapistie 5B, University of Oulu, FIN-90014, Finland; Clinical Research Center, Oulu University Hospital, Finland
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Judy Strickland
- Integrated Laboratory Systems (contractor supporting NICEATM), Research Triangle Park, North, Carolina, 27709, USA
| | | | - David Asturiol
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Thomas Cole
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Roman Liska
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ursula Müller-Vieira
- Boehringer Ingelheim, Germany. Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, an der Riss, Germany
| | - Lysiane Richert
- KaLy-Cell, 20A, rue du Général Leclerc, 67115 Plobsheim, France(g) Biopredic International, Parc d'activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France
| | - Christophe Chesne
- Biopredic International, Parc d'activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
12
|
Abdullahi ST, Olagunju A, Soyinka JO, Bolarinwa RA, Olarewaju OJ, Bakare-Odunola MT, Owen A, Khoo S. Pharmacogenetics of artemether-lumefantrine influence on nevirapine disposition: Clinically significant drug-drug interaction? Br J Clin Pharmacol 2019; 85:540-550. [PMID: 30471138 DOI: 10.1111/bcp.13821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
AIMS In this study the influence of first-line antimalarial drug artemether-lumefantrine on the pharmacokinetics of the antiretroviral drug nevirapine was investigated in the context of selected single nucleotide polymorphisms (SNPs) in a cohort of adult HIV-infected Nigerian patients. METHODS This was a two-period, single sequence crossover study. In stage 1, 150 HIV-infected patients receiving nevirapine-based antiretroviral regimens were enrolled and genotyped for seven SNPs. Sparse pharmacokinetic sampling was conducted to identify SNPs independently associated with nevirapine plasma concentration. Patients were categorized as poor, intermediate and extensive metabolizers based on the numbers of alleles of significantly associated SNPs. Intensive sampling was conducted in selected patients from each group. In stage 2, patients received standard artemether-lumefantrine treatment with nevirapine, and intensive pharmacokinetic sampling was conducted on day 3. RESULTS No clinically significant changes were observed in key nevirapine pharmacokinetic parameters, the 90% confidence interval for the measured changes falling completely within the 0.80-1.25 no-effect boundaries. However, the number of patients with trough plasma nevirapine concentration below the 3400 ng ml-1 minimum effective concentration increased from 10% without artemether-lumefantrine (all extensive metabolizers) to 21% with artemether-lumefantrine (14% extensive, 4% intermediate, and 3% poor metabolizers). CONCLUSIONS This approach highlights additional increase in the already existing risk of suboptimal trough plasma concentration, especially in extensive metabolizers when nevirapine is co-administered with artemether-lumefantrine.
Collapse
Affiliation(s)
- Sa'ad T Abdullahi
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.,Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Adeniyi Olagunju
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.,Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Julius O Soyinka
- Department of Pharmaceutical Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rahman A Bolarinwa
- Department of Haematology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Olusola J Olarewaju
- Department of Haematology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Moji T Bakare-Odunola
- Department of Pharmaceutical and Medicinal Chemistry, University of Ilorin, Ilorin, Nigeria
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| | - Saye Khoo
- Department of Molecular and Clinical Pharmacology, University of Liverpool, 70 Pembroke Place, Liverpool, L69 3GF, UK
| |
Collapse
|
13
|
Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol 2017; 139:56-70. [DOI: 10.1016/j.bcp.2017.03.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/28/2017] [Indexed: 01/28/2023]
|
14
|
Cai TY, Zhang YR, Ji JB, Xing J. Investigation of the component in Artemisia annua L. leading to enhanced antiplasmodial potency of artemisinin via regulation of its metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2017; 207:86-91. [PMID: 28642094 DOI: 10.1016/j.jep.2017.06.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 06/09/2017] [Accepted: 06/18/2017] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The chemical matrix of the herb Artemisia annua L. (A. annua), from which artemisinin (QHS) is isolated, can enhance both the bioavailability and efficacy of QHS. However, the exact mechanism of this synergism remains unknown. The biotransformation of QHS and potential "enzyme inhibitors" in plant matrix could be of great importance in understanding the improved efficacy of QHS in A. annua, which has been limited to the synergism with flavonoid components. AIM OF THE STUDY To investigate the component in A. annua extracts (MAE) leading to enhanced antiplasmodial potency of QHS via regulation of its metabolism. The efficacy of QHS in combination with the synergistic component was also evaluated. MATERIALS AND METHODS The total MAE extract and its three MAE fractions (MAE-I eluted using 3% methanol, MAE-II eluted using 50% methanol and MAE-III eluted using 85% methanol) were obtained from dry plant materials and prepared after lyophilization. The pharmacokinetic profiles of QHS and its major phase I metabolite monohydroxylated artemisinin (QHS-M) were investigated in healthy rats after a single oral administration of QHS in each MAE extract. Major components isolated from the target MAE fraction were evaluated for their enzyme inhibition. The antimalarial activity of QHS in combination with the potential synergistic component against Plasmodium falciparum was studied in vivo (murine Plasmodium yoelii). The recrudescence and survival time of infected mice were also recorded after drug treatment. RESULTS Compared to pure QHS, a 2-fold increase in QHS exposure (AUC and Cmax) was found in healthy rats after a single oral dose of QHS in the total MAE extract or its fraction MAE-III. In addition, metabolic biotransformation of QHS to the metabolite QHS-M (mediated by CYP3A) was inhibited by MAE or MAE-III. Among nine major components isolated from MAE-III (five sesquiterpenenes, three flavonoids and one phenolic acid), only arteannuin B (AB) showed an inhibition of CYP3A4 (IC50 1.2μM). The synergism between QHS and AB was supported using in vivo antiplasmodial assay and a pharmacokinetic study in mice. Unfortunately, the synergism cannot reduce the rate of recrudescence. CONCLUSIONS AB was one of main contributors in A. annua leading to enhanced antiplasmodial potency of QHS via regulation of its metabolism. The final recrudescence indicated the careful use of A. annua for malaria treatment unless additional contributing components or antiplasmodial mechanism were found.
Collapse
Affiliation(s)
- Tian-Yu Cai
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yun-Rui Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian-Bo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
15
|
Zhang Y, Vermeulen NPE, Commandeur JNM. Characterization of human cytochrome P450 mediated bioactivation of amodiaquine and its major metabolite N-desethylamodiaquine. Br J Clin Pharmacol 2016; 83:572-583. [PMID: 27718269 DOI: 10.1111/bcp.13148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 01/12/2023] Open
Abstract
AIMS Oxidative bioactivation of amodiaquine (AQ) by cytochrome P450s to a reactive quinoneimine is considered as an important mechanism underlying its idiosyncratic hepatotoxicity. However, because internal exposure to its major metabolite N-desethylamodiaquine (DEAQ) is up to 240-fold higher than AQ, bioactivation of DEAQ might significantly contribute to covalent binding. The aim of the present study was to compare the kinetics of bioactivation of AQ and DEAQ by human liver microsomes (HLM) and to characterize the CYPs involved in bioactivation of AQ and DEAQ. METHODS Glutathione was used to trap reactive metabolites formed in incubations of AQ and DEAQ with HLM and recombinant human cytochrome P450s (hCYPs). Kinetics of bioactivation of AQ and DEAQ in HLM and involvement of hCYPs were characterized by measuring corresponding glutathione conjugates (AQ-SG and DEAQ-SG) using a high-performance liquid chromatography method. RESULTS Bioactivation of AQ and DEAQ in HLM both exhibited Michaelis-Menten kinetics. For AQ bioactivation, enzyme kinetical parameters were Km , 11.5 ± 2.0 μmol l-1 , Vmax , 59.2 ± 3.2 pmol min-1 mg-1 and CLint , 5.15 μl min-1 mg-1 . For DEAQ, parameters for bioactivation were Km , 6.1 ± 1.3 μmol l-1 , Vmax , 5.5 ± 0.4 pmol min-1 mg-1 and CLint 0.90 μl min-1 mg-1 . Recombinant hCYPs and inhibition studies with HLM showed involvement of CYP3A4, CYP2C8, CYP2C9 and CYP2D6 in bioactivation. CONCLUSIONS The major metabolite DEAQ is likely to be quantitatively more important than AQ with respect to hepatic exposure to reactive metabolites in vivo. High expression of CYP3A4, CYP2C8, CYP2C9, and CYP2D6 may be risk factors for hepatotoxicity caused by AQ-therapy.
Collapse
Affiliation(s)
- Yongjie Zhang
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Zang M, Zhu F, Zhao L, Yang A, Li X, Liu H, Xing J. The effect of UGTs polymorphism on the auto-induction phase II metabolism-mediated pharmacokinetics of dihydroartemisinin in healthy Chinese subjects after oral administration of a fixed combination of dihydroartemisinin-piperaquine. Malar J 2014; 13:478. [PMID: 25476790 PMCID: PMC4265406 DOI: 10.1186/1475-2875-13-478] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 12/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dihydroartemisinin (DHA) is a component of artemisinin-based combination therapy (ACT), which is widely recommended for treatment of uncomplicated falciparum malaria. DHA is also the main metabolite of artemether and artesunate, both of which are used in ACT. Due to auto-induction metabolism, declining plasma concentrations after the repeated dosing have been reported for artemisinin (Qing-hao-su) and artemether. This study was designed to evaluate the potential auto-induction metabolism of DHA in healthy Chinese adults after multiple oral doses of DHA. The polymorphic effects of UGT1A9 (I399C>T) and UGT2B7*2 (802C>T), the major enzymes involved in the metabolism of DHA, on the pharmacokinetic profiles of DHA and its metabolite was also studied. METHODS Sixteen healthy Chinese subjects (four I399TT/802CC, four I399CC/802TT, four I399TT/802TT and four I399CT/802CT) received four recommended oral doses of Artekin, an ACT containing DHA (80 mg/dose) and piperaquine (PQ; 640 mg/dose), at 0, 6, 24 and 32 h. Plasma samples were analysed for DHA and its metabolite using a validated liquid chromatography tandem mass spectrometric (LC-MS) method. RESULTS DHA and its glucuronidated metabolite DHA-Glu were detected in human plasma after oral administration of DHA-PQ. Compared with the first dose, the AUC0-t of the parent drug DHA decreased significantly (P<0.01) with increased oral clearance (CL/F) after each repeated dose of DHA-PQ, whereas its metabolite DHA-Glu did not change (P>0.05) in AUC(0-t) or C(max). The phase II metabolic capability, calculated by the AUC(0-t) ratio of DHA-Glu to the parent drug DHA, increased 1.5-fold (90% CI, 1.3-1.7), 1.2-fold (90% CI, 1.1-1.3) and 1.7-fold (90% CI, 1.5-1.8) after the second, third and fourth dose, respectively. No polymorphic effect was found for UGT1A9 (I399C>T) and UGT2B7*2 (802C>T) on the pharmacokinetic profiles of DHA and its metabolite DHA-Glu. CONCLUSIONS The auto-induction phase II metabolism of DHA was present in healthy Chinese subjects after the recommended two-day oral doses of DHA-PQ (Artekin). The metabolic capability could recover after a 12-h dosing interval, which suggested that the alternative common three-day regimen (once daily) for DHA-PQ could probably lead to higher bioavailability of DHA. The polymorphism of UGT1A9 (I399C>T) and UGT2B7*2 (802C>T) may not be a concern during the treatment with DHA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan 250012, P,R, China.
| |
Collapse
|
17
|
Ferreira A, Rodrigues M, Silvestre S, Falcão A, Alves G. HepaRG cell line as an in vitro model for screening drug–drug interactions mediated by metabolic induction: Amiodarone used as a model substance. Toxicol In Vitro 2014; 28:1531-5. [DOI: 10.1016/j.tiv.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 07/16/2014] [Accepted: 08/10/2014] [Indexed: 02/01/2023]
|
18
|
A cocktail approach for assessing the in vitro activity of human cytochrome P450s: An overview of current methodologies. J Pharm Biomed Anal 2014; 101:221-37. [DOI: 10.1016/j.jpba.2014.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 01/27/2023]
|
19
|
Zang M, Zhao L, Zhu F, Li X, Yang A, Xing J. Effect of CAR polymorphism on the pharmacokinetics of artemisinin in healthy Chinese subjects. Drug Metab Pharmacokinet 2014; 30:123-6. [PMID: 25760540 DOI: 10.1016/j.dmpk.2014.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/19/2014] [Accepted: 10/23/2014] [Indexed: 11/17/2022]
Abstract
Repeated pretreatment with the antimalarial drug artemisinin (QHS) could lead to reduced exposure to the parent drug, which is mainly mediated by auto-induction of CYP2B6 activity. CYP2B6 is most sensitive to the inductive effect of constitutive androstane receptor (CAR), which can be activated by QHS. CYP2B6 polymorphism has no influence on pharmacokinetics of QHS derivatives. This study aimed to investigate the effect of CAR (C540T) polymorphism on the auto-induction metabolism-mediated pharmacokinetics of QHS. Healthy Chinese subjects (six in each group with the genotypes of CAR 540C/C, 540C/T and 540T/T; all carrying the CYP2B6*1*1 genotype) received a recommended two-day oral doses of QHS-piperaquine (PQ) to assess the pharmacokinetics of QHS and its metabolite deoxyartemisinin (DQHS). The exposures to QHS and DQHS were significantly lower (p < 0.05) in subjects homozygous for the CAR 540T/T genotype than those with the 540C/C genotype after the repeated dose. QHS did not show different induction clearance in subjects homozygous for the 540C/C genotype (1.3-fold), compared with those carrying the heterozygous 540C/T (2.1-fold) or homozygous 540T/T (1.7-fold) genotype. In conclusion, the CAR (C540T) genotype contributed to the interindividual variability of QHS pharmacokinetics, and the dose regimen for QHS deserves further evaluation especially in specific populations.
Collapse
Affiliation(s)
- Meitong Zang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Lixia Zhao
- Qilu Hospital, Shandong University, Jinan, China
| | - Fanping Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xinxiu Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Aijuan Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
20
|
Carboxymefloquine, the major metabolite of the antimalarial drug mefloquine, induces drug-metabolizing enzyme and transporter expression by activation of pregnane X receptor. Antimicrob Agents Chemother 2014; 59:96-104. [PMID: 25313206 DOI: 10.1128/aac.04140-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria patients are frequently coinfected with HIV and mycobacteria causing tuberculosis, which increases the use of coadministered drugs and thereby enhances the risk of pharmacokinetic drug-drug interactions. Activation of the pregnane X receptor (PXR) by xenobiotics, which include many drugs, induces drug metabolism and transport, thereby resulting in possible attenuation or loss of the therapeutic responses to the drugs being coadministered. While several artemisinin-type antimalarial drugs have been shown to activate PXR, data on nonartemisinin-type antimalarials are still missing. Therefore, this study aimed to elucidate the potential of nonartemisinin antimalarial drugs and drug metabolites to activate PXR. We screened 16 clinically used antimalarial drugs and six major drug metabolites for binding to PXR using the two-hybrid PXR ligand binding domain assembly assay; this identified carboxymefloquine, the major and pharmacologically inactive metabolite of the antimalarial drug mefloquine, as a potential PXR ligand. Two-hybrid PXR-coactivator and -corepressor interaction assays and PXR-dependent promoter reporter gene assays confirmed carboxymefloquine to be a novel PXR agonist which specifically activated the human receptor. In the PXR-expressing intestinal LS174T cells and in primary human hepatocytes, carboxymefloquine induced the expression of drug-metabolizing enzymes and transporters on the mRNA and protein levels. The crucial role of PXR for the carboxymefloquine-dependent induction of gene expression was confirmed by small interfering RNA (siRNA)-mediated knockdown of the receptor. Thus, the clinical use of mefloquine may result in pharmacokinetic drug-drug interactions by means of its metabolite carboxymefloquine. Whether these in vitro findings are of in vivo relevance has to be addressed in future clinical drug-drug interaction studies.
Collapse
|
21
|
Zang M, Zhu F, Li X, Yang A, Xing J. Auto-induction of phase I and phase II metabolism of artemisinin in healthy Chinese subjects after oral administration of a new artemisinin-piperaquine fixed combination. Malar J 2014; 13:214. [PMID: 24889062 PMCID: PMC4055232 DOI: 10.1186/1475-2875-13-214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
Background Artequick is a relatively inexpensive artemisinin (Qing-hao-su; QHS)-based combination therapy (ACT) that contains QHS and piperaquine (PQ), which has not been widely used because of the decreased concentration level of QHS after repeated oral administrations for five to seven days as a monotherapy. This study was designed to evaluate the potential auto-induction metabolism of QHS in healthy Chinese adults after a two-day oral administration of QHS-PQ. The effect of QHS-PQ on the activity of the CYP2B6 and CYP3A4 was also investigated. Methods Fourteen healthy Chinese subjects received two-day oral doses of QHS-PQ (Artequick). A two-drug cocktail consisting of bupropion and midazolam was used to assess the activities of CYP2B6 and CYP3A, respectively. Plasma samples were analysed for QHS and its phase I/II metabolites, probe drugs and their metabolites, using a validated liquid chromatography tandem mass spectrometric (LC-MS) method. Results Four major phase I metabolites of QHS (M1-M3 and deoxy-QHS) and two subsequent phase II metabolites (M4-M5) were detected in human plasma after oral administrations of QHS-PQ. The AUC0-t of the QHS and its phase I metabolites decreased significantly (P < 0.05) with increased oral clearance (CL/F) after two-day oral doses of QHS-PQ, whereas its phase II metabolites exhibited higher AUC (P < 0.01). The phase I metabolic capability, calculated by the AUC0-t ratio of all phase I metabolites to QHS, increased 1.5-fold after the repeated dose (P < 0.01), and the phase II metabolic capability increased 1.5-fold for M4 and 3.0-fold for M5. The enzyme activity of CYP2B6 and CYP3A4 increased 2.1-fold and 3.2-fold, respectively, after two-day oral doses of QHS-PQ. Conclusions The auto-induction of both phase I and phase II metabolism of QHS was present in healthy Chinese subjects after a recommended two-day oral dose of QHS-PQ. The auto-induction metabolism also existed for phase I metabolites of QHS. The enzyme activity of CYP2B6 and CYP3A4 was induced after the two-day oral doses of QHS-PQ. Based on these results, the alternative common three-day regimen for QHS-PQ could probably lead to lower bioavailability of QHS and higher potential of drug-drug interaction caused by the induction of drug-metabolizing enzymes.
Collapse
Affiliation(s)
| | | | | | | | - Jie Xing
- School of Pharmaceutical Sciences, Shandong University, 44# West Wenhua Road, Jinan 250012, P R China.
| |
Collapse
|
22
|
Hastings IM, Hodel EM. Pharmacological considerations in the design of anti-malarial drug combination therapies - is matching half-lives enough? Malar J 2014; 13:62. [PMID: 24552440 PMCID: PMC3975950 DOI: 10.1186/1475-2875-13-62] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/15/2014] [Indexed: 11/20/2022] Open
Abstract
Anti-malarial drugs are now mainly deployed as combination therapy (CT), primarily as a mechanism to prevent or slow the spread of resistance. This strategy is justified by mathematical arguments that generally assume that drug 'resistance' is a binary all-or-nothing genetic trait. Herein, a pharmacological, rather than a purely genetic, approach is used to investigate resistance and it is argued that this provides additional insight into the design principles of anti-malarial CTs. It is usually suggested that half-lives of constituent drugs in a CT be matched: it appears more important that their post-treatment anti-malarial activity profiles be matched and strategies identified that may achieve this. In particular, the considerable variation in pharmacological parameters noted in both human and parasites populations may compromise this matching and it is, therefore, essential to accurately quantify the population pharmacokinetics of the drugs in the CTs. Increasing drug dosages will likely follow a law of diminishing returns in efficacy, i.e. a certain increase in dose will not necessarily lead to the same percent increase in efficacy. This may allow individual drug dosages to be lowered without proportional decrease in efficacy, reducing any potential toxicity, and allowing the other drug(s) in the CT to compensate for this reduced dosage; this is a dangerous strategy which is discussed further. Finally, pharmacokinetic and pharmacodynamic drug interactions and the role of resistance mechanisms are discussed. This approach generated an idealized target product profile (TPP) for anti-malarial CTs. There is a restricted pipeline of anti-malarial drugs but awareness of pharmacological design principles during the development stages could optimize CT design pre-deployment. This may help prevent changes in drug dosages and/or regimen that have previously occurred post-deployment in most current anti-malarial drugs.
Collapse
Affiliation(s)
- Ian M Hastings
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
23
|
Ericsson T, Sundell J, Torkelsson A, Hoffmann KJ, Ashton M. Effects of artemisinin antimalarials on Cytochrome P450 enzymesin vitrousing recombinant enzymes and human liver microsomes: potential implications for combination therapies. Xenobiotica 2014; 44:615-26. [DOI: 10.3109/00498254.2013.878815] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Jeong HU, Kwon SS, Kong TY, Kim JH, Lee HS. Inhibitory effects of cedrol, β-cedrene, and thujopsene on cytochrome P450 enzyme activities in human liver microsomes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1522-1532. [PMID: 25343299 DOI: 10.1080/15287394.2014.955906] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cedrol, β-cedrene, and thujopsene are bioactive sesquiterpenes found in cedar essential oil and exert antiseptic, anti-inflammatory, antispasmodic, tonic, astringent, diuretic, sedative, insecticidal, and antifungal activities. These compounds are used globally in traditional medicine and cosmetics. The aim of this study was to investigate the inhibitory effects of cedrol, β-cedrene, and thujopsene on the activities of eight major human cytochrome P-450 (CYP) enzymes using human liver microsomes to assess potential β-cedrene-, cedrol-, and thujopsene-drug interactions. Cedrol, β-cedrene, and thujopsene were found to be potent competitive inhibitors of CYP2B6-mediated bupropion hydroxylase with inhibition constant (Ki) values of 0.9, 1.6, and 0.8 μM, respectively, comparable with that of a selective CYP2B6 inhibitor, thioTEPA (Ki, 2.9 μM). Cedrol also markedly inhibited CYP3A4-mediated midazolam hydroxylation with a Ki value of 3.4 μM, whereas β-cedrene and thujopsene moderately blocked CYP3A4. Cedrol, β-cedrene, and thujopsene at 100 μM negligibly inhibited CYP1A2, CYP2A6, and CYP2D6 activities. Only thujopsene was found to be a mechanism-based inhibitor of CYP2C8, CYP2C9, and CYP2C19. Cedrol and thujopsene weakly inhibited CYP2C8, CYP2C9, and CYP2C19 activities, but β-cedrene did not. These in vitro results indicate that cedrol, β-cedrene, and thujopsene need to be examined for potential pharmacokinetic drug interactions in vivo due to their potent inhibition of CYP2B6 and CYP3A4.
Collapse
Affiliation(s)
- Hyeon-Uk Jeong
- a Drug Metabolism & Bioanalysis Laboratory, College of Pharmacy , The Catholic University of Korea , Bucheon , Korea
| | | | | | | | | |
Collapse
|
25
|
Wang HY, Huang RP, Han P, Xue DB, Li HB, Liu B, Shan P, Wang QS, Li KS, Li HL. The effects of artemisinin on the proliferation and apoptosis of vascular smooth muscle cells of rats. Cell Biochem Funct 2013; 32:201-8. [PMID: 24105880 DOI: 10.1002/cbf.2995] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/11/2013] [Accepted: 08/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Hai-yang Wang
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Ren-ping Huang
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Peng Han
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Dong-bo Xue
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Hai-bin Li
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Bing Liu
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Peng Shan
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Qing-shan Wang
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| | - Ke-shen Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases; Guangdong Medical College; Zhanjiang China
| | - Ha-li Li
- Vascular Surgery, Department of General Surgery; The First Affiliated Hospital of Harbin Medical University; Harbin Heilongjiang China
| |
Collapse
|
26
|
Zhu F, Du F, Li X, Xing J. An investigation of the auto-induction of and gender-related variability in the pharmacokinetics of dihydroartemisinin in the rat. Malar J 2012; 11:379. [PMID: 23171067 PMCID: PMC3511063 DOI: 10.1186/1475-2875-11-379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/30/2012] [Indexed: 01/27/2023] Open
Abstract
Background Artemisinin (QHS) and its derivatives dihydroartemisinin (DHA), artemether and artesunate have become the first-line anti-malarials in areas of multidrug resistance. Declining plasma concentrations during the repeated dosing have been reported for QHS, artemether and less convincingly for artesunate (ARS). However, there is limited information on whether the concentrations of their active metabolite DHA and its subsequent metabolites increased after multiple drug administrations. This study was designed to evaluate the potential auto-induction metabolism of DHA in animal species. The sex-specific effect on the pharmacokinetic profiles of DHA and its metabolites was studied. The pharmacokinetics of ARS, the prodrug of DHA, and its phase I/II metabolites were also investigated. Methods Two groups of rats received a single oral dose of DHA or ARS, and another two groups of rats were given oral doses of DHA or ARS once daily for five consecutive days. Plasma samples were analyzed for DHA, ARS and their phase I/II metabolites, using a validated liquid chromatography tandem mass spectrometric (LC-MS) method. Results DHA, monohydroxylated DHA (M1) and the glucuronide of DHA (DHA-G) were detected in rat plasma after oral administration of DHA or ARS. Neither DHA nor its metabolites (M1 and DHA-G) changed significantly (P > 0.05) in AUC0-t after 5-day oral doses of DHA or ARS. Sex difference was observed for DHA and its metabolites (M1 and DHA-G), whereas its prodrug ARS did not show similar characteristics for the corresponding metabolites (DHA, M1 and DHA-G). Conclusions The results gave the direct evidence for the absence of auto-induction of phase I and phase II metabolism of DHA and ARS in rats. The sex effect existed for DHA but not for ARS, which could be caused by the sex-specific differences in absorption of DHA.
Collapse
Affiliation(s)
- Fanping Zhu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, People's Republic of China
| | | | | | | |
Collapse
|