1
|
Tess D, Chang GC, Keefer C, Carlo A, Jones R, Di L. In Vitro-In Vivo Extrapolation and Scaling Factors for Clearance of Human and Preclinical Species with Liver Microsomes and Hepatocytes. AAPS J 2023; 25:40. [PMID: 37052732 DOI: 10.1208/s12248-023-00800-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 04/14/2023] Open
Abstract
In vitro-in vivo extrapolation ((IVIVE) and empirical scaling factors (SF) of human intrinsic clearance (CLint) were developed using one of the largest dataset of 455 compounds with data from human liver microsomes (HLM) and human hepatocytes (HHEP). For extended clearance classification system (ECCS) class 2/4 compounds, linear SFs (SFlin) are approximately 1, suggesting enzyme activities in HLM and HHEP are similar to those in vivo under physiological conditions. For ECCS class 1A/1B compounds, a unified set of SFs was developed for CLint. These SFs contain both SFlin and an exponential SF (SFβ) of fraction unbound in plasma (fu,p). The unified SFs for class 1A/1B eliminate the need to identify the transporters involved prior to clearance prediction. The underlying mechanisms of these SFs are not entirely clear at this point, but they serve practical purposes to reduce biases and increase prediction accuracy. Similar SFs have also been developed for preclinical species. For HLM-HHEP disconnect (HLM > HHEP) ECCS class 2/4 compounds that are mainly metabolized by cytochrome P450s/FMO, HLM significantly overpredicted in vivo CLint, while HHEP slightly underpredicted and geometric mean of HLM and HHEP slightly overpredicted in vivo CLint. This observation is different than in rats, where rat liver microsomal CLint correlates well with in vivo CLint for compounds demonstrating permeability-limited metabolism. The good CLint IVIVE developed using HLM and HHEP helps build confidence for prospective predictions of human clearance and supports the continued utilization of these assays to guide structure-activity relationships to improve metabolic stability.
Collapse
Affiliation(s)
- David Tess
- Modeling and Simulation, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - George C Chang
- Modeling and Simulation, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Christopher Keefer
- Modeling and Simulation, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Anthony Carlo
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Rhys Jones
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, La Jolla, CA, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, 06340, USA.
| |
Collapse
|
2
|
Karlsson M, Simonsson C, Dahlström N, Cedersund G, Lundberg P. Mathematical models for biomarker calculation of drug-induced liver injury in humans and experimental models based on gadoxetate enhanced magnetic resonance imaging. PLoS One 2023; 18:e0279168. [PMID: 36608050 PMCID: PMC9821424 DOI: 10.1371/journal.pone.0279168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/01/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Drug induced liver injury (DILI) is a major concern when developing new drugs. A promising biomarker for DILI is the hepatic uptake rate of the contrast agent gadoxetate. This rate can be estimated using a novel approach combining magnetic resonance imaging and mathematical modeling. However, previous work has used different mathematical models to describe liver function in humans or rats, and no comparative study has assessed which model is most optimal to use, or focused on possible translatability between the two species. AIMS Our aim was therefore to do a comparison and assessment of models for DILI biomarker assessment, and to develop a conceptual basis for a translational framework between the species. METHODS AND RESULTS We first established which of the available pharmacokinetic models to use by identifying the most simple and identifiable model that can describe data from both human and rats. We then developed an extension of this model for how to estimate the effects of a hepatotoxic drug in rats. Finally, we illustrated how such a framework could be useful for drug dosage selection, and how it potentially can be applied in personalized treatments designed to avoid DILI. CONCLUSION Our analysis provides clear guidelines of which mathematical model to use for model-based assessment of biomarkers for liver function, and it also suggests a hypothetical path to a translational framework for DILI.
Collapse
Affiliation(s)
- Markus Karlsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
3
|
Vugler A, O’Connell J, Nguyen MA, Weitz D, Leeuw T, Hickford E, Verbitsky A, Ying X, Rehberg M, Carrington B, Merriman M, Moss A, Nicholas JM, Stanley P, Wright S, Bourne T, Foricher Y, Zhu Z, Brookings D, Horsley H, Heer J, Schio L, Herrmann M, Rao S, Kohlmann M, Florian P. An orally available small molecule that targets soluble TNF to deliver anti-TNF biologic-like efficacy in rheumatoid arthritis. Front Pharmacol 2022; 13:1037983. [PMID: 36467083 PMCID: PMC9709720 DOI: 10.3389/fphar.2022.1037983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Tumor necrosis factor (TNF) is a pleiotropic cytokine belonging to a family of trimeric proteins with both proinflammatory and immunoregulatory functions. TNF is a key mediator in autoimmune diseases and during the last couple of decades several biologic drugs have delivered new therapeutic options for patients suffering from chronic autoimmune diseases such as rheumatoid arthritis and chronic inflammatory bowel disease. Attempts to design small molecule therapies directed to this cytokine have not led to approved products yet. Here we report the discovery and development of a potent small molecule inhibitor of TNF that was recently moved into phase 1 clinical trials. The molecule, SAR441566, stabilizes an asymmetrical form of the soluble TNF trimer, compromises downstream signaling and inhibits the functions of TNF in vitro and in vivo. With SAR441566 being studied in healthy volunteers we hope to deliver a more convenient orally bioavailable and effective treatment option for patients suffering with chronic autoimmune diseases compared to established biologic drugs targeting TNF.
Collapse
Affiliation(s)
- Alexander Vugler
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - James O’Connell
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mai Anh Nguyen
- Sanofi R&D, TMED Pharmacokinetics Dynamics and Metabolism, Frankfurt am Main, Germany
| | - Dietmar Weitz
- Sanofi R&D, Drug Metabolism and Pharmacokinetics, Frankfurt am Main, Germany
| | - Thomas Leeuw
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Elizabeth Hickford
- Development Science, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | | | - Xiaoyou Ying
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Rehberg
- Sanofi R&D, Translational Disease Modelling, Frankfurt am Main, Germany
| | - Bruce Carrington
- Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Mark Merriman
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Andrew Moss
- Translational Medicine Immunology, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jean-Marie Nicholas
- Development Science, Drug Metabolism and Pharmacokinetics, UCB Pharma, Braine-I’Alleud, Belgium
| | - Phil Stanley
- Immunology Therapeutic Area, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Sara Wright
- Early PV Missions, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Tim Bourne
- Milvuswood Consultancy, Penn, United Kingdom
| | - Yann Foricher
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Zhaoning Zhu
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Daniel Brookings
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Helen Horsley
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Jag Heer
- Global Chemistry, Discovery Sciences, PV Early Solutions, UCB Pharma, Slough, United Kingdom
| | - Laurent Schio
- Sanofi R&D, Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Matthias Herrmann
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| | - Srinivas Rao
- Sanofi R&D, Translation In vivo Models, Cambridge, MA, United States
| | - Markus Kohlmann
- Sanofi R&D, Early Clinical Development, Therapeutic Area Immunology and Inflammation, Frankfurt am Main, Germany
| | - Peter Florian
- Sanofi R&D, Type 1/17 Immunology, Immunology & Inflammation Research TA, Frankfurt, Germany
| |
Collapse
|
4
|
Wright SH, Secomb TW. Novel method for kinetic analysis applied to transport by the uniporter OCT2. Am J Physiol Renal Physiol 2022; 323:F370-F387. [PMID: 35862650 PMCID: PMC9423780 DOI: 10.1152/ajprenal.00106.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022] Open
Abstract
The kinetics of solute transport shed light on the roles these processes play in cellular physiology, and the absolute values of the kinetic parameters that quantitatively describe transport are increasingly used to model its impact on drug clearance. However, accurate assessment of transport kinetics is challenging. Although most carrier-mediated transport is adequately described by the Michaelis-Menten equation, its use presupposes that the rates of uptake used in the analysis of maximal rates of transport (Jmax) and half-saturation constants (Kt) reflect true unidirectional rates of influx from known concentrations of substrate. Most experimental protocols estimate the initial rate of transport from net substrate accumulation determined at a single time point (typically between 0.5 and 5 min) and assume it reflects unidirectional influx. However, this approach generally results in systematic underestimates of Jmax and overestimates of Kt; the former primarily due to the unaccounted impact of efflux of accumulated substrate, and the latter due to the influence of unstirred water layers. Here, we describe the bases of these time-dependent effects and introduce a computational model that analyzes the time course of net substrate uptake at several concentrations to calculate Jmax and Kt for unidirectional influx, taking into account the influence of unstirred water layers and mediated efflux. This method was then applied to calculate the kinetics of transport of 1-methyl-4-phenylpryridinium and metformin by renal organic cation transporter 2 as expressed in cultured Chinese hamster ovary cells.NEW & NOTEWORTHY Here, we describe a mathematical model that uses the time course of net substrate uptake into cells from several increasing concentrations to calculate unique kinetic parameters [maximal rates of transport (Jmax) and half-saturation constants (Kt)] of the process. The method is the first to take into consideration the common complicating factors of unstirred layers and carrier-mediated efflux in the experimental determination of transport kinetics.
Collapse
Affiliation(s)
- Stephen H Wright
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Timothy W Secomb
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Takita H, Scotcher D, Chu X, Yee KL, Ogungbenro K, Galetin A. Coproporphyrin I as an Endogenous Biomarker to Detect Reduced OATP1B Activity and Shift in Elimination Route in Chronic Kidney Disease. Clin Pharmacol Ther 2022; 112:615-626. [PMID: 35652251 PMCID: PMC9540787 DOI: 10.1002/cpt.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/22/2022] [Indexed: 01/29/2023]
Abstract
Coproporphyrin I (CPI) is an endogenous biomarker of organic anion transporting polypeptide 1B transporter (OATP1B). CPI plasma baseline was reported to increase with severity of chronic kidney disease (CKD). Further, ratio of CPI area under the plasma concentration-time curve (AUCR) in the presence/absence of OATP1B inhibitor rifampin was higher in patients with CKD compared with healthy participants, in contrast to pitavastatin (a clinical OATP1B probe). This study investigated mechanism(s) contributing to altered CPI baseline in patients with CKD by extending a previously developed physiologically-based pharmacokinetic (PBPK) model to this patient population. CKD-related covariates were evaluated in a stepwise manner on CPI fraction unbound in plasma (fu,p ), OATP1B-mediated hepatic uptake clearance (CLactive ), renal clearance (CLR ), and endogenous synthesis (ksyn ). The CPI model successfully recovered increased baseline and rifampin-mediated AUCR in patients with CKD by accounting for the following disease-related changes: 13% increase in fu,p , 29% and 39% decrease in CLactive in mild and moderate to severe CKD, respectively, decrease in CLR proportional to decline in glomerular filtration rate, and 27% decrease in ksyn in severe CKD. Almost complete decline in CPI renal elimination in severe CKD increased its fraction transported by OATP1B, rationalizing differences in the CPI-rifampin interaction observed between healthy participants and patients with CKD. In conclusion, mechanistic modeling performed here supports CKD-related decrease in OATP1B function to inform prospective PBPK modeling of OATP1B-mediated drug-drug interaction in these patients. Monitoring of CPI allows detection of CKD-drug interaction risk for OATP1B drugs with combined hepatic and renal elimination which may be underestimated by extrapolating the interaction risk based on pitavastatin data in healthy participants.
Collapse
Affiliation(s)
- Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Xiaoyan Chu
- ADME and Discovery Toxicology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ka Lai Yee
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Storelli F, Li CY, Sachar M, Kumar V, Heyward S, Sáfár Z, Kis E, Unadkat JD. Prediction of Hepatobiliary Clearances and Hepatic Concentrations of Transported Drugs in Humans Using Rosuvastatin as a Model Drug. Clin Pharmacol Ther 2022; 112:593-604. [DOI: 10.1002/cpt.2556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Flavia Storelli
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Cindy Yanfei Li
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Madhav Sachar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | - Vineet Kumar
- Department of Pharmaceutics University of Washington Seattle WA USA
| | | | | | | | | |
Collapse
|
7
|
Chothe PP, Nakakariya M, Rotter CJ, Sandoval P, Tohyama K. Recent Advances in Drug Transporter Sciences: Highlights From the Year 2020. Drug Metab Rev 2021; 53:321-349. [PMID: 34346798 DOI: 10.1080/03602532.2021.1963270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug Metabolism Reviews has an impressive track record of providing scientific reviews in the area of xenobiotic biotransformation over 47 years. It has consistently proved to be resourceful to many scientists from pharmaceutical industry, academia, regulatory agencies working in diverse areas including enzymology, pharmacology, pharmacokinetics and toxicology. Over the last 5 years Drug metabolism Reviews has annually published an industry commentary aimed to highlight novel insights and approaches that have made significant impacts on the field of biotransformation (led by Cyrus Khojasteh). We hope to continue this tradition by providing an overview of advances made in the field of drug transporters during 2020. The field of drug transporters is rapidly evolving as they play an essential role in drug absorption, distribution, clearance and elimination. In this review we have selected outstanding drug transporter articles that have significantly contributed to moving forward the field of transporter science with respect to translation and improved understanding of diverse aspects including uptake clearance, clinical biomarkers, induction, proteomics, emerging transporters and tissue targeting.The theme of this review consists of synopsis that summarizes each article followed by our commentary. The objective of this work is not to provide a comprehensive review but rather exemplify novel insights and state-of-the-art highlights of recent research that have advanced our understanding of drug transporters in drug disposition. We are hopeful that this effort will prove useful to the scientific community and as such request feedback, and further extend an invitation to anyone interested in contributing to future reviews.
Collapse
Affiliation(s)
- Paresh P Chothe
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-Chrome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Charles J Rotter
- Global Drug Metabolism and Pharmacokinetics, Takeda California Incorporated, 9625 Towne Centre Drive, San Diego, California, 92121, USA
| | - Philip Sandoval
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Kimio Tohyama
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
8
|
Yadav J, El Hassani M, Sodhi J, Lauschke VM, Hartman JH, Russell LE. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metab Rev 2021; 53:207-233. [PMID: 33989099 DOI: 10.1080/03602532.2021.1922435] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Improved pharmacokinetics/pharmacodynamics (PK/PD) prediction in the early stages of drug development is essential to inform lead optimization strategies and reduce attrition rates. Recently, there have been significant advancements in the development of new in vitro and in vivo strategies to better characterize pharmacokinetic properties and efficacy of drug leads. Herein, we review advances in experimental and mathematical models for clearance predictions, advancements in developing novel tools to capture slowly metabolized drugs, in vivo model developments to capture human etiology for supporting drug development, limitations and gaps in these efforts, and a perspective on the future in the field.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Boston, MA, USA
| | | | - Jasleen Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
9
|
Interaction between Omeprazole and Gliclazide in Relation to CYP2C19 Phenotype. J Pers Med 2021; 11:jpm11050367. [PMID: 34063566 PMCID: PMC8147656 DOI: 10.3390/jpm11050367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
The antidiabetic drug gliclazide is partly metabolized by CYP2C19, the main enzyme involved in omeprazole metabolism. The aim of the study was to explore the interaction between omeprazole and gliclazide in relation to CYP2C19 phenotype using physiologically based pharmacokinetic (PBPK) modeling approach. Developed PBPK models were verified using in vivo pharmacokinetic profiles obtained from a clinical trial on omeprazole-gliclazide interaction in healthy volunteers, CYP2C19 normal/rapid/ultrarapid metabolizers (NM/RM/UM). In addition, the association of omeprazole cotreatment with gliclazide-induced hypoglycemia was explored in 267 patients with type 2 diabetes (T2D) from the GoDARTS cohort, Scotland. The PBPK simulations predicted 1.4–1.6-fold higher gliclazide area under the curve (AUC) after 5-day treatment with 20 mg omeprazole in all CYP2C19 phenotype groups except in poor metabolizers. The predicted gliclazide AUC increased 2.1 and 2.5-fold in intermediate metabolizers, and 2.6- and 3.8-fold in NM/RM/UM group, after simulated 20-day dosing with 40 mg omeprazole once and twice daily, respectively. The predicted results were corroborated by findings in patients with T2D which demonstrated 3.3-fold higher odds of severe gliclazide-induced hypoglycemia in NM/RM/UM patients concomitantly treated with omeprazole. Our results indicate that omeprazole may increase exposure to gliclazide and thus increase the risk of gliclazide-associated hypoglycemia in the majority of patients.
Collapse
|
10
|
Morse BL, Fallon JK, Kolur A, Hogan AT, Smith PC, Hillgren KM. Comparison of Hepatic Transporter Tissue Expression in Rodents and Interspecies Hepatic OCT1 Activity. AAPS J 2021; 23:58. [PMID: 33903987 DOI: 10.1208/s12248-021-00583-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatic clearance may be uptake rate limited by organic anion transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1). While comparison of OATP activity has been investigated across species, little has been reported for OCT1. Additionally, while data on interspecies transporter expression in the liver exist, quantitative comparison of these transporters in multiple tissues is lacking. In the current research, the pharmacokinetics of OCT1 substrates (sumatriptan and metformin) were assessed in Oct knockout rats for comparison with previous Oct1/2-/- mice data and OCT1 pharmacogenetics in humans. Effect of OCT1 inhibitors verapamil and erlotinib on OCT1 substrate liver partitioning was also evaluated in rats. Expression of 18 transporters, including Oatps and Octs, in 9 tissues from mice and rats was quantitated using nanoLC/MS-MS, along with uptake transporters in hepatocytes from 5 species. Interspecies differences in OCT1 activity were further evaluated via uptake of OCT1 substrates in hepatocytes with corresponding in vivo liver partitioning in rodents and monkey. In Oct1-/- rats, sumatriptan hepatic clearance and liver partitioning decreased; however, metformin pharmacokinetics were unaffected. OCT1 inhibitor coadministration decreased sumatriptan liver partitioning. In rodents, Oatp expression was highest in the liver, although comparable expression of Oatps in other tissues was determined. Expression of Octs was highest in the kidney, with liver Oct1 expression comparably lower than Oatps. Liver partitioning of OCT1 substrates was lower in rodents than in monkey, in agreement with the highest OCT1 expression and uptake of OCT1 substrates in monkey hepatocytes. Species-dependent OCT1 activity requires consideration when translating preclinical data to the clinic.
Collapse
Affiliation(s)
- Bridget L Morse
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anil Kolur
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Andrew T Hogan
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kathleen M Hillgren
- Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| |
Collapse
|
11
|
A Systematic Study of the In Vitro Pharmacokinetics and Estimated Human In Vivo Clearance of Indole and Indazole-3-Carboxamide Synthetic Cannabinoid Receptor Agonists Detected on the Illicit Drug Market. Molecules 2021; 26:molecules26051396. [PMID: 33807614 PMCID: PMC7961380 DOI: 10.3390/molecules26051396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
In vitro pharmacokinetic studies were conducted on enantiomer pairs of twelve valinate or tert-leucinate indole and indazole-3-carboxamide synthetic cannabinoid receptor agonists (SCRAs) detected on the illicit drug market to investigate their physicochemical parameters and structure-metabolism relationships (SMRs). Experimentally derived Log D7.4 ranged from 2.81 (AB-FUBINACA) to 4.95 (MDMB-4en-PINACA) and all SCRAs tested were highly protein bound, ranging from 88.9 ± 0.49% ((R)-4F-MDMB-BINACA) to 99.5 ± 0.08% ((S)-MDMB-FUBINACA). Most tested SCRAs were cleared rapidly in vitro in pooled human liver microsomes (pHLM) and pooled cryopreserved human hepatocytes (pHHeps). Intrinsic clearance (CLint) ranged from 13.7 ± 4.06 ((R)-AB-FUBINACA) to 2944 ± 95.9 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHLM, and from 110 ± 34.5 ((S)-AB-FUBINACA) to 3216 ± 607 mL min−1 kg−1 ((S)-AMB-FUBINACA) in pHHeps. Predicted Human in vivo hepatic clearance (CLH) ranged from 0.34 ± 0.09 ((S)-AB-FUBINACA) to 17.79 ± 0.20 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHLM and 1.39 ± 0.27 ((S)-MDMB-FUBINACA) to 18.25 ± 0.12 mL min−1 kg−1 ((S)-5F-AMB-PINACA) in pHHeps. Valinate and tert-leucinate indole and indazole-3-carboxamide SCRAs are often rapidly metabolised in vitro but are highly protein bound in vivo and therefore predicted in vivo CLH is much slower than CLint. This is likely to give rise to longer detection windows of these substances and their metabolites in urine, possibly as a result of accumulation of parent drug in lipid-rich tissues, with redistribution into the circulatory system and subsequent metabolism.
Collapse
|
12
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
13
|
Eng H, Bi YA, West MA, Ryu S, Yamaguchi E, Kosa RE, Tess DA, Griffith DA, Litchfield J, Kalgutkar AS, Varma MVS. Organic Anion-Transporting Polypeptide 1B1/1B3-Mediated Hepatic Uptake Determines the Pharmacokinetics of Large Lipophilic Acids: In Vitro-In Vivo Evaluation in Cynomolgus Monkey. J Pharmacol Exp Ther 2021; 377:169-180. [PMID: 33509903 DOI: 10.1124/jpet.120.000457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
It is generally presumed that uptake transport mechanisms are of limited significance in hepatic clearance for lipophilic or high passive-permeability drugs. In this study, we evaluated the mechanistic role of the hepato-selective organic anion-transporting polypeptides (OATPs) 1B1/1B3 in the pharmacokinetics of compounds representing large lipophilic acid space. Intravenous pharmacokinetics of 16 compounds with molecular mass ∼400-730 Da, logP ∼3.5-8, and acid pKa <6 were obtained in cynomolgus monkey after dosing without and with a single-dose rifampicin-OATP1B1/1B3 probe inhibitor. Rifampicin (30 mg/kg oral) significantly (P < 0.05) reduced monkey clearance and/or steady-state volume of distribution (VDss) for 15 of 16 acids evaluated. Additionally, clearance of danoprevir was reduced by about 35%, although statistical significance was not reached. A significant linear relationship was noted between the clearance ratio (i.e., ratio of control to treatment groups) and VDss ratio, suggesting hepatic uptake contributes to the systemic clearance and distribution simultaneously. In vitro transport studies using primary monkey and human hepatocytes showed uptake inhibition by rifampicin (100 µM) for compounds with logP ≤6.5 but not for the very lipophilic acids (logP > 6.5), which generally showed high nonspecific binding in hepatocyte incubations. In vitro uptake clearance and fraction transported by OATP1B1/1B3 (ft,OATP1B) were found to be similar in monkey and human hepatocytes. Finally, for compounds with logP ≤6.5, good agreement was noted between in vitro ft,OATP1B and clearance ratio (as well as VDss ratio) in cynomolgus monkey. In conclusion, this study provides mechanistic evidence for the pivotal role of OATP1B-mediated hepatic uptake in the pharmacokinetics across a wide, large lipophilic acid space. SIGNIFICANCE STATEMENT: This study provides mechanistic insight into the pharmacokinetics of a broad range of large lipophilic acids. Organic anion-transporting polypeptides 1B1/1B3-mediated hepatic uptake is of key importance in the pharmacokinetics and drug-drug interactions of almost all drugs and new molecular entities in this space. Diligent in vitro and in vivo transport characterization is needed to avoid the false negatives often noted because of general limitations in the in vitro assays while handling compounds with such physicochemical attributes.
Collapse
Affiliation(s)
- Heather Eng
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Yi-An Bi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Mark A West
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Sangwoo Ryu
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Emi Yamaguchi
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Rachel E Kosa
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Tess
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - David A Griffith
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - John Litchfield
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Amit S Kalgutkar
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, Connecticut (H.E., Y.B., M.A.W., S.R., E.Y., R.E.K., M.V.S.V.), and PDM (D.A.T., J.L., A.S.K.) and Medicinal Chemistry, Medicine Design, Worldwide Research and Development (D.A.G.), Pfizer Inc., Cambridge, Massachusetts
| |
Collapse
|
14
|
Izat N, Sahin S. Hepatic transporter-mediated pharmacokinetic drug-drug interactions: Recent studies and regulatory recommendations. Biopharm Drug Dispos 2021; 42:45-77. [PMID: 33507532 DOI: 10.1002/bdd.2262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Transporter-mediated drug-drug interactions are one of the major mechanisms in pharmacokinetic-based drug interactions and correspondingly affecting drugs' safety and efficacy. Regulatory bodies underlined the importance of the evaluation of transporter-mediated interactions as a part of the drug development process. The liver is responsible for the elimination of a wide range of endogenous and exogenous compounds via metabolism and biliary excretion. Therefore, hepatic uptake transporters, expressed on the sinusoidal membranes of hepatocytes, and efflux transporters mediating the transport from hepatocytes to the bile are determinant factors for pharmacokinetics of drugs, and hence, drug-drug interactions. In parallel with the growing research interest in this area, regulatory guidances have been updated with detailed assay models and criteria. According to well-established preclinical results, observed or expected hepatic transporter-mediated drug-drug interactions can be taken into account for clinical studies. In this paper, various methods including in vitro, in situ, in vivo, in silico approaches, and combinational concepts and several clinical studies on the assessment of transporter-mediated drug-drug interactions were reviewed. Informative and effective evaluation by preclinical tools together with the integration of pharmacokinetic modeling and simulation can reduce unexpected clinical outcomes and enhance the success rate in drug development.
Collapse
Affiliation(s)
- Nihan Izat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Selma Sahin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Feng B, Pemberton R, Dworakowski W, Ye Z, Zetterberg C, Wang G, Morikawa Y, Kumar S. Evaluation of the Utility of PXB Chimeric Mice for Predicting Human Liver Partitioning of Hepatic Organic Anion-Transporting Polypeptide Transporter Substrates. Drug Metab Dispos 2020; 49:254-264. [PMID: 33376106 DOI: 10.1124/dmd.120.000276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
The ability to predict human liver-to-plasma unbound partition coefficient (Kpuu) is important to estimate unbound liver concentration for drugs that are substrates of hepatic organic anion-transporting peptide (OATP) transporters with asymmetric distribution into the liver relative to plasma. Herein, we explored the utility of PXB chimeric mice with humanized liver that are highly repopulated with human hepatocytes to predict human hepatic disposition of OATP substrates, including rosuvastatin, pravastatin, pitavastatin, valsartan, and repaglinide. In vitro total uptake clearance and transporter-mediated active uptake clearance in C57 mouse hepatocytes were greater than in PXB chimeric mouse hepatocytes for rosuvastatin, pravastatin, pitavastatin, and valsartan. Consistent with in vitro uptake data, enhanced hepatic uptake and resulting total systemic clearance were observed with the above four compounds in severely compromised immune-deficient (SCID) control mice compared with the PXB chimeric mice, which suggest that mouse has a stronger transporter-mediated hepatic uptake than human. In vivo liver-to-plasma Kpuu from PXB chimeric and SCID control mice were also compared, and rosuvastatin and pravastatin Kpuu in SCID mice were more than 10-fold higher than that in PXB chimeric mice, whereas pitavastatin, valsartan, and repaglinide Kpuu in SCID mice were comparable with Kpuu in PXB chimeric mice. Finally, PXB chimeric mouse liver-to-plasma Kpuu values were compared with the reported human Kpuu, and a good correlation was observed as the PXB Kpuu vales were within 3-fold of human Kpuu Our results indicate that PXB mice could be a useful tool to delineate hepatic uptake and enable prediction of human liver-to-plasma Kpuu of hepatic uptake transporter substrates. SIGNIFICANCE STATEMENT: We evaluated PXB mouse with humanized liver for its ability to predict human liver disposition of five organic anion-transporting polypeptide transporter substrates. Both in vitro and in vivo data suggest that mouse liver has a stronger transporter-mediated hepatic uptake than the humanized liver in PXB mouse. More importantly, PXB liver-to-plasma unbound partition coefficient (Kpuu) values were compared with the reported human Kpuu, and a good correlation was observed. PXB mice could be a useful tool to project human liver-to-plasma Kpuu of hepatic uptake transporter substrates.
Collapse
Affiliation(s)
- Bo Feng
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Rachel Pemberton
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Wojciech Dworakowski
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Zhengqi Ye
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Craig Zetterberg
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Guanyu Wang
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Yoshio Morikawa
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| | - Sanjeev Kumar
- Drug Metabolism and Pharmacokinetics, Vertex Pharmaceuticals, Boston, Massachusetts (B.F., R.P., W.D., Z.Y., C.Z., G.W., S.K.) and PhoenixBio USA Corporation, New York City, New York (Y.M.)
| |
Collapse
|
16
|
Bi YA, Ryu S, Tess DA, Rodrigues AD, Varma MVS. Effect of Human Plasma on Hepatic Uptake of Organic Anion–Transporting Polypeptide 1B Substrates: Studies Using Transfected Cells and Primary Human Hepatocytes. Drug Metab Dispos 2020; 49:72-83. [DOI: 10.1124/dmd.120.000134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/19/2020] [Indexed: 12/27/2022] Open
|
17
|
Yoshikado T, Lee W, Toshimoto K, Morita K, Kiriake A, Chu X, Lee N, Kimoto E, Varma MVS, Kikuchi R, Scialis RJ, Shen H, Ishiguro N, Lotz R, Li AP, Maeda K, Kusuhara H, Sugiyama Y. Evaluation of Hepatic Uptake of OATP1B Substrates by Short Term-Cultured Plated Human Hepatocytes: Comparison With Isolated Suspended Hepatocytes. J Pharm Sci 2020; 110:376-387. [PMID: 33122051 DOI: 10.1016/j.xphs.2020.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Hepatic uptake clearance has been measured in suspended human hepatocytes (SHH). Plated human hepatocytes (PHH) after short-term culturing are increasingly employed to study hepatic transport driven mainly by its higher throughput. To know pros/cons of both systems, the hepatic uptake clearances of several organic anion transporting polypeptide 1B substrates were compared between PHH and SHH by determining the initial uptake velocities or through dynamic model-based analyses. For cerivastatin, pitavastatin and rosuvastatin, initial uptake clearances (PSinf) obtained using PHH were comparable to those using SHH, while cell-to-medium concentration (C/M) ratios were 2.7- to 5.4-fold higher. For pravastatin and dehydropravastatin, hydrophilic compounds with low uptake/cellular binding, their PSinf and C/M ratio in PHH were 1.8- to 3.2-fold lower than those in SHH. These hydrophilic substrates are more prone to wash-off during the uptake study using PHH, which may explain the apparently lower uptake than SHH. The C/M ratios obtained using PHH were stable over an extended time, making PHH suitable to estimate the C/M ratios and hepatocyte-to-medium unbound concentration ratios (Kp,uu). In conclusion, PHH is useful in evaluating hepatic uptake/efflux clearances and Kp,uu of OATP1B substrates in a high-throughput manner, however, a caution is warranted for hydrophilic drugs with low uptake/cellular binding.
Collapse
Affiliation(s)
- Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan; Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Kiyoe Morita
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Aya Kiriake
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | | | - Nora Lee
- Daewoong Pharmaceutical Co., Ltd, Seoul, Korea
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | | | | | - Hong Shen
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Hyogo, Japan
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach an der Riss, Germany
| | - Albert P Li
- In Vitro ADMET Laboratories Inc, Columbia, MA, USA
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan.
| |
Collapse
|
18
|
Tess DA, Eng H, Kalgutkar AS, Litchfield J, Edmonds DJ, Griffith DA, Varma MVS. Predicting the Human Hepatic Clearance of Acidic and Zwitterionic Drugs. J Med Chem 2020; 63:11831-11844. [PMID: 32985885 DOI: 10.1021/acs.jmedchem.0c01033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prospective predictions of human hepatic clearance for anionic/zwitterionic compounds, which are oftentimes subjected to transporter-mediated uptake, are challenging in drug discovery. We evaluated the utility of preclinical species, rats and cynomolgus monkeys [nonhuman primates (NHPs)], to predict the human hepatic clearance using a diverse set of acidic/zwitterionic drugs. Preclinical clearance data were generated following intravenous dosing in rats/NHPs and compared to the human clearance data (n = 18/27). Single-species scaling of NHP clearance with an allometric exponent of 0.50 allowed for good prediction of human clearance (fold error ∼2.1, bias ∼1.0), with ∼86% predictions within 3-fold. In comparison, rats underpredicted the clearance of lipophilic acids, while overprediction was noted for hydrophilic acids. Finally, an in vitro clearance assay based on human hepatocytes, which is routinely used in discovery setting, markedly underpredicted human clearance (bias ∼0.12). Collectively, this study provides insights into the usefulness of the preclinical models in enabling pharmacokinetic optimization for acid/zwitterionic drug candidates.
Collapse
Affiliation(s)
- David A Tess
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Heather Eng
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - John Litchfield
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David J Edmonds
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - David A Griffith
- Medicine Design, Pfizer Worldwide Research & Development, Cambridge, Massachusetts 02139, United States
| | - Manthena V S Varma
- Medicine Design, Pfizer Worldwide Research & Development, Groton, Connecticut 06340, United States
| |
Collapse
|
19
|
Türk D, Hanke N, Wolf S, Frechen S, Eissing T, Wendl T, Schwab M, Lehr T. Physiologically Based Pharmacokinetic Models for Prediction of Complex CYP2C8 and OATP1B1 (SLCO1B1) Drug-Drug-Gene Interactions: A Modeling Network of Gemfibrozil, Repaglinide, Pioglitazone, Rifampicin, Clarithromycin and Itraconazole. Clin Pharmacokinet 2020; 58:1595-1607. [PMID: 31129789 PMCID: PMC6885506 DOI: 10.1007/s40262-019-00777-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Drug–drug interactions (DDIs) and drug–gene interactions (DGIs) pose a serious health risk that can be avoided by dose adaptation. These interactions are investigated in strictly controlled setups, quantifying the effect of one perpetrator drug or polymorphism at a time, but in real life patients frequently take more than two medications and are very heterogenous regarding their genetic background. Objectives The first objective of this study was to provide whole-body physiologically based pharmacokinetic (PBPK) models of important cytochrome P450 (CYP) 2C8 perpetrator and victim drugs, built and evaluated for DDI and DGI studies. The second objective was to apply these models to describe complex interactions with more than two interacting partners. Methods PBPK models of the CYP2C8 and organic-anion-transporting polypeptide (OATP) 1B1 perpetrator drug gemfibrozil (parent–metabolite model) and the CYP2C8 victim drugs repaglinide (also an OATP1B1 substrate) and pioglitazone were developed using a total of 103 clinical studies. For evaluation, these models were applied to predict 34 different DDI studies, establishing a CYP2C8 and OATP1B1 PBPK DDI modeling network. Results The newly developed models show a good performance, accurately describing plasma concentration–time profiles, area under the plasma concentration–time curve (AUC) and maximum plasma concentration (Cmax) values, DDI studies as well as DGI studies. All 34 of the modeled DDI AUC ratios (AUC during DDI/AUC control) and DDI Cmax ratios (Cmax during DDI/Cmax control) are within twofold of the observed values. Conclusions Whole-body PBPK models of gemfibrozil, repaglinide, and pioglitazone have been built and qualified for DDI and DGI prediction. PBPK modeling is applicable to investigate complex interactions between multiple drugs and genetic polymorphisms. Electronic supplementary material The online version of this article (10.1007/s40262-019-00777-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Denise Türk
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | - Nina Hanke
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | - Sarah Wolf
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany
| | | | | | - Thomas Wendl
- Clinical Pharmacometrics, Bayer AG, Leverkusen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Campus C2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
20
|
Sanoh S, Naritomi Y, Kitamura S, Shinagawa A, Kakuni M, Tateno C, Ohta S. Predictability of human pharmacokinetics of drugs that undergo hepatic organic anion transporting polypeptide (OATP)-mediated transport using single-species allometric scaling in chimeric mice with humanized liver: integration with hepatic drug metabolism. Xenobiotica 2020; 50:1370-1379. [PMID: 32401667 DOI: 10.1080/00498254.2020.1769229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We previously reported a prediction method for human pharmacokinetics (PK) using single species allometric scaling (SSS) and the complex Dedrick plot in chimeric mice with humanized liver to predict the total clearance (CLt), distribution volumes in steady state (Vdss) and plasma concentration-time profiles of several drugs metabolized by cytochrome P450 (P450) and non-P450 enzymes. In the present study, we examined eight compounds (bosentan, cerivastatin, fluvastatin, pitavastatin, pravastatin, repaglinide, rosuvastatin, valsartan) as typical organic anion transporting polypeptide (OATP) substrates and six compounds metabolized by P450 and non-P450 enzymes to evaluate the predictability of CLt, Vdss and plasma concentration-time profiles after intravenous administration to chimeric mice. The predicted CLt and Vdss of drugs that undergo OATP-mediated uptake and P450/non-P450-mediated metabolism reflected the observed data from humans within a threefold error range. We also examined the possibility of predicting plasma concentration-time profiles of drugs that undergo OATP-mediated uptake using the complex Dedrick plot in chimeric mice. Most profiles could be superimposed with observed profiles from humans within a two- to threefold error range. PK prediction using SSS and the complex Dedrick plot in chimeric mice can be useful for evaluating drugs that undergo both OATP-mediated uptake and P450/non-P450-mediated metabolism.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoichi Naritomi
- Analysis and Pharmacokinetics Research Laboratories, Astellas Pharma Inc, Tsukuba, Japan
| | - Satoshi Kitamura
- Analysis and Pharmacokinetics Research Laboratories, Astellas Pharma Inc, Tsukuba, Japan
| | - Akihiko Shinagawa
- School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Chise Tateno
- R&D Dept, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan.,Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
21
|
Alluri RV, Li R, Varma MVS. Transporter–enzyme interplay and the hepatic drug clearance: what have we learned so far? Expert Opin Drug Metab Toxicol 2020; 16:387-401. [DOI: 10.1080/17425255.2020.1749595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ravindra V. Alluri
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Rui Li
- Modeling and Simulations, Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Manthena V. S. Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
22
|
Carter SJ, Chouhan B, Sharma P, Chappell MJ. Prediction of Clinical Transporter-Mediated Drug-Drug Interactions via Comeasurement of Pitavastatin and Eltrombopag in Human Hepatocyte Models. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2020; 9:211-221. [PMID: 32142598 PMCID: PMC7179958 DOI: 10.1002/psp4.12505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/27/2020] [Indexed: 11/21/2022]
Abstract
A structurally identifiable micro‐rate constant mechanistic model was used to describe the interaction between pitavastatin and eltrombopag, with improved goodness‐of‐fit values through comeasurement of pitavastatin and eltrombopag. Transporter association and dissociation rate constants and passive rates out of the cell were similar between pitavastatin and eltrombopag. Translocation into the cell through transporter‐mediated uptake was six times greater for pitavastatin, leading to pronounced inhibition of pitavastatin uptake by eltrombopag. The passive rate into the cell was 91 times smaller for pitavastatin compared with eltrombopag. A semimechanistic physiologically‐based pharmacokinetic (PBPK) model was developed to evaluate the potential for clinical drug–drug interactions (DDIs). The PBPK model predicted a twofold increase in the pitavastatin peak blood concentration and area under the concentration‐time curve in the presence of eltrombopag in simulated healthy volunteers. The use of structural identifiability supporting experimental design combined with robust micro‐rate constant parameter estimates and a semimechanistic PBPK model gave more informed predictions of transporter‐mediated DDIs.
Collapse
Affiliation(s)
- Simon J Carter
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, UK
| | - Bhavik Chouhan
- Functional & Mechanistic Safety, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca R&D, Gothenburg, Sweden
| | - Pradeep Sharma
- Clinical Pharmacology & Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca R&D, Cambridge, UK
| | - Michael J Chappell
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, UK
| |
Collapse
|
23
|
Leedale JA, Kyffin JA, Harding AL, Colley HE, Murdoch C, Sharma P, Williams DP, Webb SD, Bearon RN. Multiscale modelling of drug transport and metabolism in liver spheroids. Interface Focus 2020; 10:20190041. [PMID: 32194929 PMCID: PMC7061947 DOI: 10.1098/rsfs.2019.0041] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
In early preclinical drug development, potential candidates are tested in the laboratory using isolated cells. These in vitro experiments traditionally involve cells cultured in a two-dimensional monolayer environment. However, cells cultured in three-dimensional spheroid systems have been shown to more closely resemble the functionality and morphology of cells in vivo. While the increasing usage of hepatic spheroid cultures allows for more relevant experimentation in a more realistic biological environment, the underlying physical processes of drug transport, uptake and metabolism contributing to the spatial distribution of drugs in these spheroids remain poorly understood. The development of a multiscale mathematical modelling framework describing the spatio-temporal dynamics of drugs in multicellular environments enables mechanistic insight into the behaviour of these systems. Here, our analysis of cell membrane permeation and porosity throughout the spheroid reveals the impact of these properties on drug penetration, with maximal disparity between zonal metabolism rates occurring for drugs of intermediate lipophilicity. Our research shows how mathematical models can be used to simulate the activity and transport of drugs in hepatic spheroids and in principle any organoid, with the ultimate aim of better informing experimentalists on how to regulate dosing and culture conditions to more effectively optimize drug delivery.
Collapse
Affiliation(s)
- Joseph A Leedale
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| | - Jonathan A Kyffin
- Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Amy L Harding
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Helen E Colley
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield S10 2TA, UK
| | - Parveen Sharma
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, UK
| | - Dominic P Williams
- AstraZeneca, IMED Biotech Unit, Drug Safety and Metabolism, Cambridge Science Park, Cambridge CB4 0FZ, UK
| | - Steven D Webb
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK.,Department of Applied Mathematics, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Rachel N Bearon
- EPSRC Liverpool Centre for Mathematics in Healthcare, Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK
| |
Collapse
|
24
|
Nozaki Y, Izumi S. Recent advances in preclinical in vitro approaches towards quantitative prediction of hepatic clearance and drug-drug interactions involving organic anion transporting polypeptide (OATP) 1B transporters. Drug Metab Pharmacokinet 2020; 35:56-70. [DOI: 10.1016/j.dmpk.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/29/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
|
25
|
Hernández Lozano I, Langer O. Use of imaging to assess the activity of hepatic transporters. Expert Opin Drug Metab Toxicol 2020; 16:149-164. [PMID: 31951754 PMCID: PMC7055509 DOI: 10.1080/17425255.2020.1718107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Membrane transporters of the SLC and ABC families are abundantly expressed in the liver, where they control the transfer of drugs/drug metabolites across the sinusoidal and canalicular hepatocyte membranes and play a pivotal role in hepatic drug clearance. Noninvasive imaging methods, such as PET, SPECT or MRI, allow for measuring the activity of hepatic transporters in vivo, provided that suitable transporter imaging probes are available.Areas covered: We give an overview of the working principles of imaging-based assessment of hepatic transporter activity. We discuss different currently available PET/SPECT radiotracers and MRI contrast agents and their applications to measure hepatic transporter activity in health and disease. We cover mathematical modeling approaches to obtain quantitative parameters of transporter activity and provide a critical assessment of methodological limitations and challenges associated with this approach.Expert opinion: PET in combination with pharmacokinetic modeling can be potentially applied in drug development to study the distribution of new drug candidates to the liver and their clearance mechanisms. This approach bears potential to mechanistically assess transporter-mediated drug-drug interactions, to assess the influence of disease on hepatic drug disposition and to validate and refine currently available in vitro-in vivo extrapolation methods to predict hepatic clearance of drugs.
Collapse
Affiliation(s)
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| |
Collapse
|
26
|
Kulkarni P, Korzekwa K, Nagar S. A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats. Xenobiotica 2019; 50:536-544. [PMID: 31530243 DOI: 10.1080/00498254.2019.1668982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Mathematical modeling remains a useful tool to study the impact of transporters on overall and intracellular drug disposition. The impact of organic anion transporter protein mediated uptake on atorvastatin systemic and intracellular pharmacokinetics, specifically distribution volume, was studied in rats with mathematical modeling and conducting in vivo pharmacokinetic studies for atorvastatin in presence and absence of rifampicin. A previously developed 5-compartment explicit membrane model for the liver was combined with a compartmental model to develop a semi-physiological hybrid model for atorvastatin disposition. 2. Rifampicin treatment resulted in a decrease in systemic clearance and steady-state distribution volume, and an increase in half-life of atorvastatin. The hybrid model predicted higher unbound intracellular liver atorvastatin concentrations than unbound plasma concentrations in both rifampicin treated and untreated groups, indicating involvement of uptake transporters. The intracellular unbound concentrations during the distributive phase were unaffected by rifampicin. The dependence of clearance on blood flow as well as hepatic uptake for atorvastatin (a moderate-to-high extraction ratio drug) can explain this lack of change in intracellular concentrations if there is incomplete inhibition of transport at the tested rifampicin dose. 3. The hybrid model successfully allowed the evaluation of effect of active uptake on intracellular and plasma atorvastatin disposition.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
27
|
van der Made TK, Fedecostante M, Scotcher D, Rostami-Hodjegan A, Sastre Toraño J, Middel I, Koster AS, Gerritsen KG, Jankowski V, Jankowski J, Hoenderop JGJ, Masereeuw R, Galetin A. Quantitative Translation of Microfluidic Transporter in Vitro Data to in Vivo Reveals Impaired Albumin-Facilitated Indoxyl Sulfate Secretion in Chronic Kidney Disease. Mol Pharm 2019; 16:4551-4562. [PMID: 31525064 DOI: 10.1021/acs.molpharmaceut.9b00681] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Indoxyl sulfate (IxS), a highly albumin-bound uremic solute, accumulates in chronic kidney disease (CKD) due to reduced renal clearance. This study was designed to specifically investigate the role of human serum albumin (HSA) in IxS renal secretion via organic anion transporter 1 (OAT1) in a microfluidic system and subsequently apply quantitative translation of in vitro data to predict extent of change in IxS renal clearance in CKD stage IV relative to healthy. Conditionally immortalized human proximal tubule epithelial cells overexpressing OAT1 were incubated with IxS (5-200 μM) in the HSA-free medium or in the presence of either HSA or CKD-modified HSA. IxS uptake in the presence of HSA resulted in more than 20-fold decrease in OAT1 affinity (Km,u) and 37-fold greater in vitro unbound intrinsic clearance (CLint,u) versus albumin-free condition. In the presence of CKD-modified albumin, Km,u increased four-fold and IxS CLint,u decreased almost seven-fold relative to HSA. Fold-change in parameters exceeded differences in IxS binding between albumin conditions, indicating additional mechanism and facilitating role of albumin in IxS OAT1-mediated uptake. Quantitative translation of IxS in vitro OAT1-mediated CLint,u predicted a 60% decrease in IxS renal elimination as a result of CKD, in agreement with the observed data (80%). The findings of the current study emphasize the role of albumin in IxS transport via OAT1 and explored the impact of modifications in albumin on renal excretion via active secretion in CKD. For the first time, this study performed quantitative translation of transporter kinetic data generated in a novel microfluidic in vitro system to a clinically relevant setting. Knowledge gaps and future directions in quantitative translation of renal drug disposition from microphysiological systems are discussed.
Collapse
Affiliation(s)
- Thomas K van der Made
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| | | | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K.,Simcyp Division , Certara UK Limited , Sheffield S1 2BJ , U.K
| | | | | | | | - Karin G Gerritsen
- Department of Nephrology and Hypertension , University Medical Center Utrecht , Utrecht 3508 GA , The Netherlands
| | - Vera Jankowski
- Institute for Molecular Cardiovascular Research , RWTH Aachen University Hospital , Aachen 52074 , Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research , RWTH Aachen University Hospital , Aachen 52074 , Germany.,School for Cardiovascular Diseases , Maastricht University , Universiteitssingel 50 , Maastricht 6229 ER , The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences , Radboud University Medical Center , Nijmegen 6500 HB , The Netherlands
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences , The University of Manchester , Manchester M13 9PL , U.K
| |
Collapse
|
28
|
Carter SJ, Ferecskó AS, King L, Ménochet K, Parton T, Chappell MJ. A mechanistic modelling approach for the determination of the mechanisms of inhibition by cyclosporine on the uptake and metabolism of atorvastatin in rat hepatocytes using a high throughput uptake method. Xenobiotica 2019; 50:415-426. [PMID: 31389297 DOI: 10.1080/00498254.2019.1652781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Determine the inhibition mechanism through which cyclosporine inhibits the uptake and metabolism of atorvastatin in fresh rat hepatocytes using mechanistic models applied to data generated using a high throughput oil spin method.Atorvastatin was incubated in fresh rat hepatocytes (0.05-150 nmol/ml) with or without 20 min pre-incubation with 10 nmol/ml cyclosporine and sampled over 0.25-60 min using a high throughput oil spin method. Micro-rate constant and macro-rate constant mechanistic models were ranked based on goodness of fit values.The best fitting model to the data was a micro-rate constant mechanistic model including non-competitive inhibition of uptake and competitive inhibition of metabolism by cyclosporine (Model 2). The association rate constant for atorvastatin was 150-fold greater than the dissociation rate constant and 10-fold greater than the translocation into the cell. The association and dissociation rate constants for cyclosporine were 7-fold smaller and 10-fold greater, respectively, than atorvastatin. The simulated atorvastatin-transporter-cyclosporine complex derived using the micro-rate constant parameter estimates increased in line with the incubation concentration of atorvastatin.The increased amount of data generated with the high throughput oil spin method, combined with a micro-rate constant mechanistic model helps to explain the inhibition of uptake by cyclosporine following pre-incubation.
Collapse
Affiliation(s)
- Simon J Carter
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| | | | | | | | | | - Michael J Chappell
- Biomedical and Biological Systems Laboratory, School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
29
|
Abu Mellal A, Hussain N, Said AS. The clinical significance of statins-macrolides interaction: comprehensive review of in vivo studies, case reports, and population studies. Ther Clin Risk Manag 2019; 15:921-936. [PMID: 31413581 PMCID: PMC6661989 DOI: 10.2147/tcrm.s214938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
The objectives of this article were to review the mechanism and clinical significance of statins-macrolides interaction, determine which combination has the highest risk for the interaction, and identify key patients' risk factors for the interaction in relation to the development of muscle toxicity. A literature review was conducted in PubMed and Embase (1946 to December 2018) using combined terms: statins - as group and individual agents, macrolides - as group and individual agents, drug interaction, muscle toxicity, rhabdomyolysis, CYP3A4 inhibitors, and OAT1B inhibitors, with forward and backward citation tracking. Relevant English language in vivo studies in healthy volunteers, case reports, and population studies were included. The interaction between statins and macrolides depends on the type of statin and macrolide used. The mechanism of the interaction is due to macrolides' inhibition of CYP3A4 isoenzyme and OAT1B transporter causing increased exposure to statins. The correlation of this increased statin's exposure to the development of muscle toxicity could not be established, unless the patient had other risk factors such as advanced age, cardiovascular diseases, renal impairment, diabetes, and the concomitant use of other CYP3A4 inhibitors. Simvastatin, lovastatin, and to lesser extent atorvastatin are the statins most affected by this interaction. Rosuvastatin, fluvastatin, and pravastatin are not significantly affected by this interaction. Telithromycin, clarithromycin, and erythromycin are the most "offending" macrolides, while azithromycin appears to be safe to use with statins. This review presented a clear description of the clinical significance of this interaction in real practice. Also, it provided health care professionals with clear suggestions and recommendations on how to overcome this interaction. In conclusion, understanding the different characteristics of each statin and macrolide, as well as key patients' risk factors, will enable health care providers to utilize both groups effectively without compromising patient safety.
Collapse
Affiliation(s)
- Abdallah Abu Mellal
- College of Health and Human Sciences, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Nadia Hussain
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| | - Amira Sa Said
- College of Pharmacy, Al Ain University of Science and Technology, Al Ain, UAE
| |
Collapse
|
30
|
Clerbaux LA, Paini A, Lumen A, Osman-Ponchet H, Worth AP, Fardel O. Membrane transporter data to support kinetically-informed chemical risk assessment using non-animal methods: Scientific and regulatory perspectives. ENVIRONMENT INTERNATIONAL 2019; 126:659-671. [PMID: 30856453 PMCID: PMC6441651 DOI: 10.1016/j.envint.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/10/2019] [Accepted: 03/01/2019] [Indexed: 06/01/2023]
Abstract
Humans are continuously exposed to low levels of thousands of industrial chemicals, most of which are poorly characterised in terms of their potential toxicity. The new paradigm in chemical risk assessment (CRA) aims to rely on animal-free testing, with kinetics being a key determinant of toxicity when moving from traditional animal studies to integrated in vitro-in silico approaches. In a kinetically informed CRA, membrane transporters, which have been intensively studied during drug development, are an essential piece of information. However, how existing knowledge on transporters gained in the drug field can be applied to CRA is not yet fully understood. This review outlines the opportunities, challenges and existing tools for investigating chemical-transporter interactions in kinetically informed CRA without animal studies. Various environmental chemicals acting as substrates, inhibitors or modulators of transporter activity or expression have been shown to impact TK, just as drugs do. However, because pollutant concentrations are often lower in humans than drugs and because exposure levels and internal chemical doses are not usually known in contrast to drugs, new approaches are required to translate transporter data and reasoning from the drug sector to CRA. Here, the generation of in vitro chemical-transporter interaction data and the development of transporter databases and classification systems trained on chemical datasets (and not only drugs) are proposed. Furtheremore, improving the use of human biomonitoring data to evaluate the in vitro-in silico transporter-related predicted values and developing means to assess uncertainties could also lead to increase confidence of scientists and regulators in animal-free CRA. Finally, a systematic characterisation of the transportome (quantitative monitoring of transporter abundance, activity and maintenance over time) would reinforce confidence in the use of experimental transporter/barrier systems as well as in established cell-based toxicological assays currently used for CRA.
Collapse
Affiliation(s)
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy.
| | - Annie Lumen
- National Center for Toxicological Research, US Food and Drug Administration (FDA), Jefferson, AR, USA
| | | | - Andrew P Worth
- European Commission, Joint Research Centre, Ispra, Italy
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environment et travail), UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
31
|
Naritomi Y, Sanoh S, Ohta S. Utility of Chimeric Mice with Humanized Liver for Predicting Human Pharmacokinetics in Drug Discovery: Comparison with in Vitro– in Vivo Extrapolation and Allometric Scaling. Biol Pharm Bull 2019; 42:327-336. [DOI: 10.1248/bpb.b18-00754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoichi Naritomi
- Analysis & Pharmacokinetics Research Laboratories, Astellas Pharma Inc
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
32
|
Matsunaga N, Ufuk A, Morse BL, Bedwell DW, Bao J, Mohutsky MA, Hillgren KM, Hall SD, Houston JB, Galetin A. Hepatic Organic Anion Transporting Polypeptide-Mediated Clearance in the Beagle Dog: Assessing In Vitro-In Vivo Relationships and Applying Cross-Species Empirical Scaling Factors to Improve Prediction of Human Clearance. Drug Metab Dispos 2018; 47:215-226. [PMID: 30593544 DOI: 10.1124/dmd.118.084194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
In the present study, the beagle dog was evaluated as a preclinical model to investigate organic anion transporting polypeptide (OATP)-mediated hepatic clearance. In vitro studies were performed with nine OATP substrates in three lots of plated male dog hepatocytes ± OATP inhibitor cocktail to determine total uptake clearance (CLuptake) and total and unbound cell-to-medium concentration ratio (Kpuu). In vivo intrinsic hepatic clearances (CLint,H) were determined following intravenous drug administration (0.1 mg/kg) in male beagle dogs. The in vitro parameters were compared with those previously reported in plated human, monkey, and rat hepatocytes; the ability of cross-species scaling factors to improve prediction of human in vivo clearance was assessed. CLuptake in dog hepatocytes ranged from 9.4 to 135 µl/min/106 cells for fexofenadine and telmisartan, respectively. Active process contributed >75% to CLuptake for 5/9 drugs. Rosuvastatin and valsartan showed Kpuu > 10, whereas cerivastatin, pitavastatin, repaglinide, and telmisartan had Kpuu < 5. The extent of hepatocellular binding in dog was consistent with other preclinical species and humans. The bias (2.73-fold) obtained from comparison of predicted versus in vivo dog CLint,H was applied as an average empirical scaling factor (ESFav) for in vitro-in vivo extrapolation of human CLint,H The ESFav based on dog reduced underprediction of human CLint,H for the same data set (geometric mean fold error = 2.1), highlighting its utility as a preclinical model to investigate OATP-mediated uptake. The ESFav from all preclinical species resulted in comparable improvement of human clearance prediction, in contrast to drug-specific empirical scalars, rationalized by species differences in expression and/or relative contribution of particular transporters to drug hepatic uptake.
Collapse
Affiliation(s)
- Norikazu Matsunaga
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Bridget L Morse
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - David W Bedwell
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Jingqi Bao
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Michael A Mohutsky
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Kathleen M Hillgren
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Stephen D Hall
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.M., A.U., J.B.H., A.G.); Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan (N.M.); and Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (B.L.M., D.W.B., J.B., M.A.M., K.M.H., S.D.H.)
| |
Collapse
|
33
|
Guo Y, Chu X, Parrott NJ, Brouwer KL, Hsu V, Nagar S, Matsson P, Sharma P, Snoeys J, Sugiyama Y, Tatosian D, Unadkat JD, Huang SM, Galetin A. Advancing Predictions of Tissue and Intracellular Drug Concentrations Using In Vitro, Imaging and Physiologically Based Pharmacokinetic Modeling Approaches. Clin Pharmacol Ther 2018; 104:865-889. [PMID: 30059145 PMCID: PMC6197917 DOI: 10.1002/cpt.1183] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This white paper examines recent progress, applications, and challenges in predicting unbound and total tissue and intra/subcellular drug concentrations using in vitro and preclinical models, imaging techniques, and physiologically based pharmacokinetic (PBPK) modeling. Published examples, regulatory submissions, and case studies illustrate the application of different types of data in drug development to support modeling and decision making for compounds with transporter-mediated disposition, and likely disconnects between tissue and systemic drug exposure. The goals of this article are to illustrate current best practices and outline practical strategies for selecting appropriate in vitro and in vivo experimental methods to estimate or predict tissue and plasma concentrations, and to use these data in the application of PBPK modeling for human pharmacokinetic (PK), efficacy, and safety assessment in drug development.
Collapse
Affiliation(s)
- Yingying Guo
- Investigational Drug Disposition, Eli Lilly and Company, Lilly Corporate Center, DC0714, Indianapolis, IN 46285, USA; Tel: 317-277-4324
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 732-594-0977
| | - Neil J. Parrott
- Pharmaceutical Sciences, Pharmaceutical Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Kim L.R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, CB #7569 Kerr Hall, Chapel Hill, NC 27599-7569, USA; Tel: (919) 962-7030
| | - Vicky Hsu
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Swati Nagar
- Temple University School of Pharmacy, Department of Pharmaceutical Sciences, 3307 N Broad Street, Philadelphia PA 19140, USA; 215-707-9110
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, Box 580, SE-75123 Uppsala, Sweden +46-(0)18-471 46 30
| | - Pradeep Sharma
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca R&D, Cambridge CB4 0WG, UK
| | - Jan Snoeys
- Department of Pharmacokinetics, Dynamics and Metabolism, Janssen R&D, Beerse, Belgium; Tel: +32-14606812
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN Research Cluster for Innovation, Yokohama 230-0045, Japan; Tel: (045) 506-1814
| | - Daniel Tatosian
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA; 908-464-2375
| | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA; 206-685-2869
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA; 301-796-1541
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, The University of Manchester, Manchester M13 9PT, UK; + 44-161-275-6886
| |
Collapse
|
34
|
Liao M, Zhu Q, Zhu A, Gemski C, Ma B, Guan E, Li AP, Xiao G, Xia CQ. Comparison of uptake transporter functions in hepatocytes in different species to determine the optimal model for evaluating drug transporter activities in humans. Xenobiotica 2018; 49:852-862. [PMID: 30132394 DOI: 10.1080/00498254.2018.1512017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A thorough understanding of species-dependent differences in hepatic uptake transporters is critical for predicting human pharmacokinetics (PKs) from preclinical data. In this study, the activities of organic anion transporting polypeptide (OATP/Oatp), organic cation transporter 1 (OCT1/Oct1), and sodium-taurocholate cotransporting polypeptide (NTCP/Ntcp) in cultured rat, dog, monkey and human hepatocytes were compared. The activities of hepatic uptake transporters were evaluated with respect to culture duration, substrate and species-dependent differences in hepatocytes. Longer culture duration reduced hepatic uptake transporter activities across species except for Oatp and Ntcp in rats. Comparable apparent Michaelis-Menten constant (Km,app) values in hepatocytes were observed across species for atorvastatin, estradiol-17β-glucuronide and metformin. The Km,app values for rosuvastatin and taurocholate were significantly different across species. Rat hepatocytes exhibited the highest Oatp percentage of uptake transporter-mediated permeation clearance (PSinf,act) while no difference in %PSinf,act of probe substrates were observed across species. The in vitro hepatocyte inhibition data in rats, monkeys and humans provided reasonable predictions of in vivo drug-drug interaction (DDIs) between atorvastatin/rosuvastatin and rifampin. These findings suggested that using human hepatocytes with a short culture time is the most robust preclinical model for predicting DDIs for compounds exhibiting active hepatic uptake in humans.
Collapse
Affiliation(s)
| | - Qing Zhu
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Andy Zhu
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | | | - Bingli Ma
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Emily Guan
- a Takeda Pharmaceuticals, DMPK , Cambridge , MA , USA
| | | | - Guangqing Xiao
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Cindy Q Xia
- b Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| |
Collapse
|
35
|
Kimoto E, Mathialagan S, Tylaska L, Niosi M, Lin J, Carlo AA, Tess DA, Varma MVS. Organic Anion Transporter 2–Mediated Hepatic Uptake Contributes to the Clearance of High-Permeability–Low-Molecular-Weight Acid and Zwitterion Drugs: Evaluation Using 25 Drugs. J Pharmacol Exp Ther 2018; 367:322-334. [DOI: 10.1124/jpet.118.252049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023] Open
|
36
|
Li AP, Alam N, Amaral K, Ho MCD, Loretz C, Mitchell W, Yang Q. Cryopreserved Human Intestinal Mucosal Epithelium: A Novel In Vitro Experimental System for the Evaluation of Enteric Drug Metabolism, Cytochrome P450 Induction, and Enterotoxicity. Drug Metab Dispos 2018; 46:1562-1571. [PMID: 30006371 DOI: 10.1124/dmd.118.082875] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
We report here a novel in vitro enteric experimental system, cryopreserved human intestinal mucosa (CHIM), for the evaluation of enteric drug metabolism, drug-drug interaction, drug toxicity, and pharmacology. CHIM was isolated from the small intestines of four human donors. The small intestines were first dissected into the duodenum, jejunum, and ileum, followed by collagenase digestion of the intestinal lumen. The isolated mucosa was gently homogenized to yield multiple cellular fragments, which were then cryopreserved in a programmable liquid cell freezer and stored in liquid nitrogen. After thawing and recovery, CHIM retained robust cytochrome P450 (P450) and non-P450 drug-metabolizing enzyme activities and demonstrated dose-dependent induction of transcription of CYP24A1 (approximately 300-fold) and CYP3A4 (approximately 3-fold) by vitamin D3 as well as induction of CYP3A4 (approximately 3-fold) by rifampin after 24 hours of treatment. Dose-dependent decreases in cell viability quantified by cellular ATP content were observed for naproxen and acetaminophen, with higher enterotoxicity observed for naproxen, consistent with that observed in humans in vivo. These results suggest that CHIM may be a useful in vitro experimental model for the evaluation of enteric drug properties, including drug metabolism, drug-drug interactions, and drug toxicity.
Collapse
Affiliation(s)
- Albert P Li
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Novera Alam
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Kirsten Amaral
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Ming-Chih David Ho
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Carol Loretz
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Walter Mitchell
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| | - Qian Yang
- In Vitro ADMET Laboratories Inc., Advanced Pharmaceutical Sciences Inc., Columbia, Maryland
| |
Collapse
|
37
|
De Bruyn T, Ufuk A, Cantrill C, Kosa RE, Bi YA, Niosi M, Modi S, Rodrigues AD, Tremaine LM, Varma MVS, Galetin A, Houston JB. Predicting Human Clearance of Organic Anion Transporting Polypeptide Substrates Using Cynomolgus Monkey: In Vitro–In Vivo Scaling of Hepatic Uptake Clearance. Drug Metab Dispos 2018; 46:989-1000. [DOI: 10.1124/dmd.118.081315] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
|
38
|
Mitra P, Weinheimer S, Michalewicz M, Taub ME. Prediction and Quantification of Hepatic Transporter-Mediated Uptake of Pitavastatin Utilizing a Combination of the Relative Activity Factor Approach and Mechanistic Modeling. Drug Metab Dispos 2018; 46:953-963. [PMID: 29666154 DOI: 10.1124/dmd.118.080614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022] Open
Abstract
Quantification of the fraction transported (ft) by a particular transporter will facilitate more robust estimations of transporter interactions. Using pitavastatin as a model uptake transporter substrate, we investigated the utility of the relative activity factor (RAF) approach and mechanistic modeling to estimate ft in hepatocytes. The transporters evaluated were organic anion-transporting polypeptides OATP1B1 and OATP1B3 and sodium-taurocholate cotransporting polypeptide. Transporter-expressing human embryonic kidney 293 cells and human hepatocytes were used for determining RAF values, which were then incorporated into the mechanistic model to simulate hepatocyte uptake of pitavastatin over time. There was excellent agreement between simulated and observed hepatocyte uptake of pitavastatin, indicating the suitability of this approach for translation of uptake from individual transporter-expressing cells to more holistic in vitro models. Subsequently, ft values were determined. The largest contributor to hepatocyte uptake of pitavastatin was OATP1B1, which correlates with what is known about the in vivo disposition of pitavastatin. The ft values were then used for evaluating in vitro-in vivo correlations of hepatic uptake inhibition with OATP inhibitors rifampicin and cyclosporine. Predictions were compared with previously reported plasma exposure changes of pitavastatin with these inhibitors. Although hepatic uptake inhibition of pitavastatin was 2-3-fold underpredicted, incorporation of scaling factors (SFs) into RAF values significantly improved the predictive ability. We propose that calibration of hepatocytes with standard transporter substrates and inhibitors would allow for determination of system-specific SFs, which could subsequently be used for refining predictions of clinical DDI potential for new chemical entities that undergo active hepatic uptake.
Collapse
Affiliation(s)
- Pallabi Mitra
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Samantha Weinheimer
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Meeghan Michalewicz
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| | - Mitchell E Taub
- Drug Metabolism and Pharmacokinetics Department, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, Connecticut
| |
Collapse
|
39
|
El-Kattan AF, Varma MVS. Navigating Transporter Sciences in Pharmacokinetics Characterization Using the Extended Clearance Classification System. Drug Metab Dispos 2018; 46:729-739. [DOI: 10.1124/dmd.117.080044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/22/2018] [Indexed: 12/12/2022] Open
|
40
|
Sato M, Toshimoto K, Tomaru A, Yoshikado T, Tanaka Y, Hisaka A, Lee W, Sugiyama Y. Physiologically Based Pharmacokinetic Modeling of Bosentan Identifies the Saturable Hepatic Uptake As a Major Contributor to Its Nonlinear Pharmacokinetics. Drug Metab Dispos 2018; 46:740-748. [PMID: 29475833 DOI: 10.1124/dmd.117.078972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/21/2018] [Indexed: 01/02/2023] Open
Abstract
Bosentan is a substrate of hepatic uptake transporter organic anion-transporting polypeptides (OATPs), and undergoes extensive hepatic metabolism by cytochrome P450 (P450), namely, CYP3A4 and CYP2C9. Several clinical investigations have reported a nonlinear relationship between bosentan doses and its systemic exposure, which likely involves the saturation of OATP-mediated uptake, P450-mediated metabolism, or both in the liver. Yet, the underlying causes for the nonlinear bosentan pharmacokinetics are not fully delineated. To address this, we performed physiologically based pharmacokinetic (PBPK) modeling analyses for bosentan after its intravenous administration at different doses. As a bottom-up approach, PBPK modeling analyses were performed using in vitro kinetic parameters, other relevant parameters, and scaling factors. As top-down approaches, three different types of PBPK models that incorporate the saturation of hepatic uptake, metabolism, or both were compared. The prediction from the bottom-up approach (models 1 and 2) yielded blood bosentan concentration-time profiles and their systemic clearance values that were not in good agreement with the clinically observed data. From top-down approaches (models 3, 4, 5-1, and 5-2), the prediction accuracy was best only with the incorporation of the saturable hepatic uptake for bosentan. Taken together, the PBPK models for bosentan were successfully established, and the comparison of different PBPK models identified the saturation of the hepatic uptake process as a major contributing factor for the nonlinear pharmacokinetics of bosentan.
Collapse
Affiliation(s)
- Masanobu Sato
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| | - Kota Toshimoto
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| | - Atsuko Tomaru
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| | - Takashi Yoshikado
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| | - Yuta Tanaka
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| | - Akihiro Hisaka
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| | - Wooin Lee
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| | - Yuichi Sugiyama
- Advanced Review with Electronic Data Promotion Group, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan (M.S.); Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Kanagawa, Japan (K.T., A.T., T.Y., Y.S.); DMPK Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., Tochigi, Japan (Y.T); Graduate School and Faculty of Pharmaceutical Sciences, Chiba University, Chiba, Japan (A.H.); and College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea (W.L.)
| |
Collapse
|
41
|
Mao J, Doshi U, Wright M, Hop CECA, Li AP, Chen Y. Prediction of the Pharmacokinetics of Pravastatin as an OATP Substrate Using Plateable Human Hepatocytes With Human Plasma Data and PBPK Modeling. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2018; 7:251-258. [PMID: 29388346 PMCID: PMC5915609 DOI: 10.1002/psp4.12283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/15/2023]
Abstract
Plateable human hepatocytes with human plasma were utilized to generate the uptake transporter kinetic data for pravastatin, an organic anion-transporting polypeptide (OATP) transporter substrate. The active hepatic uptake of pravastatin was determined with a Jmax value of 134.4 pmol/min/million cells and Km of 76.77 µM in plateable human hepatocytes with human plasma. The physiologically-based pharmacokinetic (PBPK) model with incorporation of these in vitro kinetic data successfully simulated the i.v. pharmacokinetic profile of pravastatin without applying scaling factor (the mean predicted area under the curve (AUC) is within 1.5-fold of the observed). Furthermore, the PBPK model also adequately described the oral plasma concentration-time profiles of pravastatin at different dose levels. The current investigation demonstrates an approach allowing us to build upon the translation of in vitro OATP uptake transporter data to in vivo, with a hope of utilizing the in vitro data for the prospective human pharmacokinetic (PK) prediction.
Collapse
Affiliation(s)
- Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Utkarsh Doshi
- In Vitro ADMET Laboratories Inc. (IVAL), Columbia, Maryland, USA
| | - Matthew Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| | - Albert P Li
- In Vitro ADMET Laboratories Inc. (IVAL), Columbia, Maryland, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, California, USA
| |
Collapse
|
42
|
Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative Expression of Hepatobiliary Transporters and Functional Uptake of Substrates in Hepatic Two-Dimensional Sandwich Cultures: A Comparative Evaluation of Upcyte and Primary Human Hepatocytes. Drug Metab Dispos 2017; 46:166-177. [DOI: 10.1124/dmd.117.078238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/27/2017] [Indexed: 12/28/2022] Open
|
43
|
Novik EI, Dwyer J, Morelli JK, Parekh A, Cho C, Pludwinski E, Shrirao A, Freedman RM, MacDonald JS, Jayyosi Z. Long-enduring primary hepatocyte-based co-cultures improve prediction of hepatotoxicity. Toxicol Appl Pharmacol 2017; 336:20-30. [DOI: 10.1016/j.taap.2017.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/25/2017] [Accepted: 09/14/2017] [Indexed: 12/23/2022]
|
44
|
Ishida K, Ullah M, Tóth B, Juhasz V, Unadkat JD. Successful Prediction of In Vivo Hepatobiliary Clearances and Hepatic Concentrations of Rosuvastatin Using Sandwich-Cultured Rat Hepatocytes, Transporter-Expressing Cell Lines, and Quantitative Proteomics. Drug Metab Dispos 2017; 46:66-74. [PMID: 29084782 DOI: 10.1124/dmd.117.076539] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/25/2017] [Indexed: 01/13/2023] Open
Abstract
We determined whether in vivo transporter-mediated hepatobiliary clearance (CL) and hepatic concentrations of rosuvastatin (RSV) in the rat could be predicted by transport activity in sandwich-cultured rat hepatocytes (SCRHs) and/or transporter-expressing cell lines scaled by differences in transporter protein expression between SCRHs, cell lines, and rat liver. The predicted hepatobiliary CLs and hepatic concentrations of RSV were compared with our previously published positron emission tomography imaging data. Sinusoidal uptake CL ([Formula: see text]) and efflux (canalicular and sinusoidal) CLs of [3H]-RSV in SCRHs were evaluated in the presence and absence of Ca2+ and in the absence and presence of 1 mM unlabeled RSV (to estimate passive diffusion CL). [Formula: see text] of RSV into cells expressing organic anion transporting polypeptide (Oatp) 1a1, 1a4, and 1b2 was also determined. Protein expression of Oatps in SCRHs and Oatp-expressing cells was quantified by liquid chromatography tandem mass spectrometry. SCRHs well predicted the in vivo RSV sinusoidal and canalicular efflux CLs but significantly underestimated in vivo [Formula: see text]. Oatp expression in SCRHs was significantly lower than that in the rat liver. [Formula: see text], based on RSV [Formula: see text] into Oatp-expressing cells (active transport) plus passive diffusion CL in SCRHs, scaled by the difference in protein expression in Oatp cells versus SCRH versus rat liver, was within 2-fold of that observed in SCRHs or in vivo. In vivo hepatic RSV concentrations were well predicted by Oatp-expressing cells after correcting [Formula: see text] for Oatp protein expression. This is the first demonstration of the successful prediction of in vivo hepatobiliary CLs and hepatic concentrations of RSV using transporter-expressing cells and SCRHs.
Collapse
Affiliation(s)
- Kazuya Ishida
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Mohammed Ullah
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Beáta Tóth
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Viktoria Juhasz
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (K.I., J.D.U.); Cellular Transport Group, Pharmaceutical Sciences, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland (M.U.); and SOLVO Biotechnology, Budaörs, Hungary (B.T., V.J.)
| |
Collapse
|
45
|
Uchida M, Tajima Y, Kakuni M, Kageyama Y, Okada T, Sakurada E, Tateno C, Hayashi R. Organic Anion–Transporting Polypeptide (OATP)–Mediated Drug-Drug Interaction Study between Rosuvastatin and Cyclosporine A in Chimeric Mice with Humanized Liver. Drug Metab Dispos 2017; 46:11-19. [DOI: 10.1124/dmd.117.075994] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/13/2017] [Indexed: 01/13/2023] Open
|
46
|
Morse BL, MacGuire JG, Marino AM, Zhao Y, Fox M, Zhang Y, Shen H, Griffith Humphreys W, Marathe P, Lai Y. Physiologically Based Pharmacokinetic Modeling of Transporter-Mediated Hepatic Clearance and Liver Partitioning of OATP and OCT Substrates in Cynomolgus Monkeys. AAPS JOURNAL 2017; 19:1878-1889. [PMID: 29019117 DOI: 10.1208/s12248-017-0151-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
In the present investigations, we evaluate in vitro hepatocyte uptake and partitioning for the prediction of in vivo clearance and liver partitioning. Monkeys were intravenously co-dosed with rosuvastatin and bosentan, substrates of the organic anion transporting polypeptides (OATPs), and metformin, a substrate of organic cation transporter 1 (OCT1). Serial plasma and liver samples were collected over time. Liver and plasma unbound fraction was determined using equilibrium dialysis. In vivo unbound partitioning (Kpu,u) for rosuvastatin, bosentan, and metformin, calculated from total concentrations in the liver and plasma, were 243, 553, and 15, respectively. A physiologically based pharmacokinetic monkey model that incorporates active and passive hepatic uptake was developed to fit plasma and liver concentrations. In addition, a two-compartment model was used to fit in vitro hepatic uptake curves in suspended monkey hepatocyte to determine active uptake, passive diffusion, and intracellular unbound fraction parameters. At steady-state in the model, in vitro Kpu,u was determined. The results demonstrated that in vitro values under-predicted in vivo active uptake for rosuvastatin, bosentan, and metformin by 6.7-, 28-, and 1.5-fold, respectively, while passive diffusion was over-predicted. In vivo Kpu,u values were under-predicted from in vitro data by 30-, 79-, and 3-fold. In conclusion, active uptake and liver partitioning in monkeys for OATP substrates were greatly under-predicted from in vitro hepatocyte uptake, while OCT-mediated uptake and partitioning scaled reasonably well from in vitro, demonstrating substrate- and transporter-dependent scaling factors. The combination of in vitro experimental and modeling approaches proved useful for assessing prediction of in vivo intracellular partitioning.
Collapse
Affiliation(s)
- Bridget L Morse
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA.,Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jamus G MacGuire
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Anthony M Marino
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yue Zhao
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Maxine Fox
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Hong Shen
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | | | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, NJ, USA. .,Drug Metabolism, Gilead Sciences Inc., Foster City, California, 94404, USA.
| |
Collapse
|
47
|
Kumar V, Nguyen TB, Tóth B, Juhasz V, Unadkat JD. Optimization and Application of a Biotinylation Method for Quantification of Plasma Membrane Expression of Transporters in Cells. AAPS JOURNAL 2017; 19:1377-1386. [DOI: 10.1208/s12248-017-0121-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
|
48
|
Han KM, Ahn SY, Seo H, Yun J, Cha HJ, Shin JS, Kim YH, Kim H, Park HK, Lee YM. Bosentan and Rifampin Interactions Modulate Influx Transporter and Cytochrome P450 Expression and Activities in Primary Human Hepatocytes. Biomol Ther (Seoul) 2017; 25:288-295. [PMID: 28173639 PMCID: PMC5424639 DOI: 10.4062/biomolther.2016.153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 11/10/2022] Open
Abstract
The incidence of polypharmacy-which can result in drug-drug interactions-has increased in recent years. Drug-metabolizing enzymes and drug transporters are important polypharmacy modulators. In this study, the effects of bosentan and rifampin on the expression and activities of organic anion-transporting peptide (OATP) and cytochrome P450 (CYP450) 2C9 and CYP3A4 were investigated in vitro. HEK293 cells and primary human hepatocytes overexpressing the target genes were treated with bosentan and various concentrations of rifampin, which decreased the uptake activities of OATP transporters in a dose-dependent manner. In primary human hepatocytes, CYP2C9 and CYP3A4 gene expression and activities decreased upon treatment with 20 μM bosentan+200 μM rifampin. Rifampin also reduced gene expression of OATP1B1, OATP1B3, and OATP2B1 transporter, and inhibited bosentan influx in human hepatocytes at increasing concentrations. These results confirm rifampin- and bosentan-induced interactions between OATP transporters and CYP450.
Collapse
Affiliation(s)
- Kyoung-Moon Han
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Sun-Young Ahn
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyewon Seo
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Jaesuk Yun
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hye Jin Cha
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Ji-Soon Shin
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Young-Hoon Kim
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hyungsoo Kim
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Hye-Kyung Park
- Pharmacological Research Division, Toxicological and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
49
|
Galetin A, Zhao P, Huang SM. Physiologically Based Pharmacokinetic Modeling of Drug Transporters to Facilitate Individualized Dose Prediction. J Pharm Sci 2017; 106:2204-2208. [PMID: 28390843 DOI: 10.1016/j.xphs.2017.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 01/12/2023]
Abstract
Physiologically based pharmacokinetic modeling is a commonly used strategy in the drug development and regulatory submissions. This commentary provides a critical overview of the current status of physiologically based pharmacokinetic methodologies to predict transporter-mediated pharmacokinetics, in addition to the impact of disease and genetics with respect to local and systemic concentration.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK; Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993.
| | - Ping Zhao
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
50
|
Wang Q, Zheng M, Leil T. Investigating Transporter-Mediated Drug-Drug Interactions Using a Physiologically Based Pharmacokinetic Model of Rosuvastatin. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:228-238. [PMID: 28296193 PMCID: PMC5397561 DOI: 10.1002/psp4.12168] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 01/24/2023]
Abstract
Rosuvastatin is a frequently used probe in transporter-mediated drug-drug interaction (DDI) studies. This report describes the development of a physiologically based pharmacokinetic (PBPK) model of rosuvastatin for prediction of pharmacokinetic (PK) DDIs. The rosuvastatin model predicted the observed single (i.v. and oral) and multiple dose PK profiles, as well as the impact of coadministration with transporter inhibitors. The predicted effects of rifampin and cyclosporine (6.58-fold and 5.07-fold increase in rosuvastatin area under the curve (AUC), respectively) were mediated primarily via inhibition of hepatic organic anion-transporting polypeptide (OATP)1B1 (Inhibition constant (Ki ) ∼1.1 and 0.014 µM, respectively) and OATP1B3 (Ki ∼0.3 and 0.007 µM, respectively), with cyclosporine also inhibiting intestinal breast cancer resistance protein (BCRP; Ki ∼0.07 µM). The predicted effects of gemfibrozil and its metabolite were moderate (1.88-fold increase in rosuvastatin AUC) and mediated primarily via inhibition of hepatic OATP1B1 and renal organic cation transporter 3. This model of rosuvastatin will be useful in prospectively predicting transporter-mediated DDIs with novel pharmaceutical agents in development.
Collapse
Affiliation(s)
- Q Wang
- Quantitative Clinical Pharmacology, Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - M Zheng
- Quantitative Clinical Pharmacology, Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - T Leil
- Quantitative Clinical Pharmacology, Clinical Pharmacology and Pharmacometrics, Bristol-Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|