1
|
Kharasch ED, Hoffer C, Bedynek P. Intrasubject Variability in Intravenous and Oral Probes for Hepatic and First-Pass CYP3A Activity. Clin Pharmacokinet 2024; 63:1121-1135. [PMID: 39073723 DOI: 10.1007/s40262-024-01406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND OBJECTIVES Clearances and the area under the plasma concentration-time curve extrapolated to infinity (AUC0-∞) of intravenous (IV) and oral midazolam and alfentanil are probes for hepatic and first-pass cytochrome P450 3A (CYP3A) activity, drug interactions, and phenotyping. Single-time plasma concentrations are also used as a proxy for clearance and AUC0-∞. Pupil diameter change is a noninvasive surrogate for plasma alfentanil. An ideal probe should have minimal intrasubject (interday) variability. Despite their widespread use, the intrasubject variability of CYP3A probes is not well characterized. This investigation determined the intrasubject (interday) variability of midazolam and alfentanil metrics of hepatic and first-pass CYP3A. METHODS Twelve volunteers were studied in a four-period protocol, with each period identical and separated by approximately 2 weeks. In each period, participants received 1 mg IV midazolam then 15 μg/kg IV alfentanil 1 h later. The next day, they received 3 mg oral midazolam then 60 μg/kg oral alfentanil. Plasma drug concentrations were determined by liquid chromatography-mass spectrometry (LCMS). Dark-adapted pupil diameters were measured coincident with blood sampling. Plasma concentrations and pupil effects (miosis) were analyzed using noncompartmental methods. The results were the coefficient of variation (%CV, mean ± SD) across four sessions in 12 participants. RESULTS For IV midazolam: AUC0-∞, clearance, and 5 h concentration, the %CVs were 12 ± 3, 12 ± 3, and 18 ± 8. For IV alfentanil AUC0-∞, clearance, 2 h concentration, and area under the effect curve from time zero to infinity (AUEC0-∞), the %CVs were 16 ± 5, 15 ± 4, 22 ± 7, and 50 ± 28. For oral midazolam AUC0-∞, clearance, and 5 h concentration, %CVs were 19 ± 5, 18 ± 4, and 28 ± 11. For oral alfentanil: AUC0-∞, clearance, 4 h concentration, and AUEC0-∞, %CVs were 20 ± 4, 21 ± 4, 42 ± 26, and 37 ± 14. CONCLUSIONS Midazolam and alfentanil had comparable intrasubject variabilities of clearance and AUC0-∞. Single-time point metrics had greater intrasubject variability than AUC0-∞ and clearance. Miosis was a surrogate for alfentanil concentrations and provided real-time results, but intrasubject variability was greater than that of clearances and AUC0-∞.
Collapse
Affiliation(s)
- Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, 905 S. LaSalle St, GSRB1 Room 2031, Box 3094, Durham, NC, 27710, USA.
- Bermaride LLC, Durham, NC, 27712, USA.
| | - Christine Hoffer
- Department of Anesthesiology, University of Washington, Seattle, WA, USA
| | - Pamela Bedynek
- Department of Anesthesiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Tremmel R, Hofmann U, Haag M, Schaeffeler E, Schwab M. Circulating Biomarkers Instead of Genotyping to Establish Metabolizer Phenotypes. Annu Rev Pharmacol Toxicol 2024; 64:65-87. [PMID: 37585662 DOI: 10.1146/annurev-pharmtox-032023-121106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Heidelberg (DKFZ), Partner Site, Tübingen, Germany
| |
Collapse
|
3
|
Hirano R, Yokokawa A, Furihata T, Shibasaki H. Plasma 6β-hydroxycortisol to cortisol ratio as a less invasive cytochrome P450 3A phenotyping method. Br J Clin Pharmacol 2023. [PMID: 38102865 DOI: 10.1111/bcp.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
AIM A less invasive evaluation method of cytochrome P450 3A (CYP3A) activity provides an important tool for personalized medicine. We aimed to clarify the usefulness of the plasma 6β-hydroxycortisol to cortisol concentration (6β-OHF/F) ratio as a minimally invasive CYP3A phenotyping method. METHODS Plasma 6β-OHF and cortisol concentrations were measured via liquid chromatography/tandem mass spectrometry. The plasma 6β-OHF/F ratio was compared with 6β-hydroxylation clearance of endogenous cortisol (CLm(6β) ; which we previously developed as an index of CYP3A activity) before, during and after oral contraceptive administration in 3 healthy women. The plasma 6β-OHF/F ratio was observed during oral clarithromycin administration. The plasma 6β-OHF/F ratio was also measured in 39 healthy participants. RESULTS The plasma 6β-OHF/F ratio in 3 healthy women on Day 21 of starting oral contraceptive administration decreased by 39, 49 and 61% compared with Day 0. These values were similar to CLm(6β) values (43, 54 and 59%, respectively). Plasma 6β-OHF/F ratio and CLm(6β) exhibited a good correlation (r = .9053). The 6β-OHF/F ratio decreased from 0.00921 to 0.00577 only 3 h following clarithromycin administration. The plasma 6β-OHF/F ratio ranged 0.00565-0.01556 in 39 healthy participants. CONCLUSION Based on its close relationship with CLm(6β) and its decrease upon inhibition by clarithromycin, the plasma 6β-OHF/F ratio serves as an index of CYP3A activity. Using this minimally invasive index, we can identify patients with extremely low CYP3A activity before treatment initiation and optimize the initial drug dose, thereby mitigating the risk of severe adverse reactions.
Collapse
Affiliation(s)
- Ryohei Hirano
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akitomo Yokokawa
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiromi Shibasaki
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
4
|
Jackson KD, Achour B, Lee J, Geffert RM, Beers JL, Latham BD. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab Dispos 2023; 51:1238-1253. [PMID: 37419681 PMCID: PMC10506699 DOI: 10.1124/dmd.122.001066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023] Open
Abstract
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed: traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT: This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Collapse
Affiliation(s)
- Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Raeanne M Geffert
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Bethany D Latham
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
5
|
Jin J, Zhong XB. Epigenetic Mechanisms Contribute to Intraindividual Variations of Drug Metabolism Mediated by Cytochrome P450 Enzymes. Drug Metab Dispos 2023; 51:672-684. [PMID: 36973001 PMCID: PMC10197210 DOI: 10.1124/dmd.122.001007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Significant interindividual and intraindividual variations on cytochrome P450 (CYP)-mediated drug metabolism exist in the general population globally. Genetic polymorphisms are one of the major contribution factors for interindividual variations, but epigenetic mechanisms mainly contribute to intraindividual variations, including DNA methylation, histone modifications, microRNAs, and long non-coding RNAs. The current review provides analysis of advanced knowledge in the last decade on contributions of epigenetic mechanisms to intraindividual variations on CYP-mediated drug metabolism in several situations, including (1) ontogeny, the developmental changes of CYP expression in individuals from neonates to adults; (2) increased activities of CYP enzymes induced by drug treatment; (3) increased activities of CYP enzymes in adult ages induced by drug treatment at neonate ages; and (4) decreased activities of CYP enzymes in individuals with drug-induced liver injury (DILI). Furthermore, current challenges, knowledge gaps, and future perspective of the epigenetic mechanisms in development of CYP pharmacoepigenetics are discussed. In conclusion, epigenetic mechanisms have been proven to contribute to intraindividual variations of drug metabolism mediated by CYP enzymes in age development, drug induction, and DILI conditions. The knowledge has helped understanding how intraindividual variation are generated. Future studies are needed to develop CYP-based pharmacoepigenetics to guide clinical applications for precision medicine with improved therapeutic efficacy and reduced risk of adverse drug reactions and toxicity. SIGNIFICANCE STATEMENT: Understanding epigenetic mechanisms in contribution to intraindividual variations of CYP-mediated drug metabolism may help to develop CYP-based pharmacoepigenetics for precision medicine to improve therapeutic efficacy and reduce adverse drug reactions and toxicity for drugs metabolized by CYP enzymes.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
6
|
Sun LN, Shen Y, Yang YQ, Chen XL, Huang FR, Wang DJ, Zhang Y, Wang DW, Wang YQ. Simultaneous Determination of Cortisol and 6β-Hydroxycortisol in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry. J Chromatogr Sci 2023; 61:130-139. [PMID: 35589097 DOI: 10.1093/chromsci/bmac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/30/2022] [Accepted: 04/22/2021] [Indexed: 11/14/2022]
Abstract
The feasibility of taking the ratio of 6β-hydroxycortisol (6β-OHCOR) to cortisol (COR) in plasma as a biomarker to reflect CYP3A4 activity needs to be verified, but the low concentration of 6β-OHCOR which is an endogenous substance in plasma presents a challenge for determination. In this study, a Liquid chromatography with tandem mass spectrometry (LC-MS/MS) method was established to simultaneously quantify the COR and 6β-OHCOR in plasma with COR-d4 and 6β-OHCOR-d4 as internal standards (ISs). Plasma samples were treated by protein precipitation using acetonitrile. Separation with a gradient elution within 5 min was achieved on C18+ column utilizing 5 mM ammonium formate and methanol. An API 4,000 MS in multiple reaction monitoring mode with transitions of 407.1 → 361.1 and 423.1 → 347.1 was utilized. Albumin solution was used as a surrogate matrix, with good linearities over the concentration of 1.20-300 ng/mL for COR and 0.0400-10.0 ng/mL for 6β-OHCOR. The precisions for intrarun and interrun were < 6.8%, and the accuracy was fell in the interval of -5.2 to 3.5%. Matrix effect was not found. Recovery was close to 100.0%. Stability was confirmed under the storage and processing conditions. The validated method was applied to evaluate the inhibitory effect of voriconazole to CYP3A by the ratio of 6β-OHCOR to COR.
Collapse
Affiliation(s)
- Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yu-Qing Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang-Long Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Dun-Jian Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ye Zhang
- Department of Pharmacy, Nanjing Jinling Hospital, Nanjing 211166, China
| | - Da-Wei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,School of Pharmacy, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
7
|
Hirano R, Yokokawa A, Furihata T, Shibasaki H. Dried blood spots analysis of 6β-hydroxycortisol and cortisol using liquid chromatography/tandem mass spectrometry for calculating 6β-hydroxycortisol to cortisol ratio. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4790. [PMID: 34881490 DOI: 10.1002/jms.4790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Dried blood spot (DBS) sampling is a minimally invasive method used to collect blood samples of any population for personalized medicine. We aimed to develop a sensitive and reliable analytical method for measuring 6β-hydroxycortisol (6β-OHF) and cortisol concentrations in DBS by liquid chromatography/tandem mass spectrometry so as to utilize DBS as a less invasive blood sampling method for calculating the ratio of 6β-OHF/cortisol. The lower limits of quantification obtained using four DBS were 1.08 pg/50 μl for 6β-OHF and 1.01 pg/50 μl for cortisol. The 6β-OHF and cortisol in DBS were stable for 28 days at room temperature. The intraday and interday accuracy and precision of the method was <12%. Additionally, the 6β-OHF and cortisol in DBS were measured before, during, and after 3 days of clarithromycin administration to two of the subjects. Then, their concentration was compared in the plasma and whole blood collected simultaneously. The concentrations of 6β-OHF and cortisol in four DBS ranged from 0.007 to 0.079 ng/50 μl and from 1.15 to 6.66 ng/50 μl, respectively. The 6β-OHF/cortisol ratio in DBS decreased by approximately 50% on administering clarithromycin compared with that before the administration of clarithromycin. The 6β-OHF/cortisol ratio in DBS also showed a strong correlation with that in whole blood (r = 0.9694) and plasma (r = 0.9383). This method provides high accuracy and precision for measuring 6β-OHF and cortisol in DBS. It also allows the use of DBS instead of plasma for calculating the 6β-OHF/cortisol ratio. The 6β-OHF/cortisol ratio could be an index of CYP3A activity in clinical setting.
Collapse
Affiliation(s)
- Ryohei Hirano
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Akitomo Yokokawa
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiromi Shibasaki
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
8
|
Magliocco G, Desmeules J, Bosilkovska M, Thomas A, Daali Y. The 1β-Hydroxy-Deoxycholic Acid to Deoxycholic Acid Urinary Metabolic Ratio: Toward a Phenotyping of CYP3A Using an Endogenous Marker? J Pers Med 2021; 11:jpm11020150. [PMID: 33672438 PMCID: PMC7923269 DOI: 10.3390/jpm11020150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
In this study, we assessed the potential use of the 1β-hydroxy-deoxycholic acid (1β-OH-DCA) to deoxycholic acid (DCA) urinary metabolic ratio (UMR) as a CYP3A metric in ten male healthy volunteers. Midazolam (MDZ) 1 mg was administered orally at three sessions: alone (control session), after pre-treatment with fluvoxamine 50 mg (12 h and 2 h prior to MDZ administration), and voriconazole 400 mg (2 h before MDZ administration) (inhibition session), and after a 7-day pre-treatment with the inducer rifampicin 600 mg (induction session). The 1β-OH-DCA/DCA UMR was measured at each session, and correlations with MDZ metrics were established. At baseline, the 1β-OH-DCA/DCA UMR correlated significantly with oral MDZ clearance (r = 0.652, p = 0.041) and Cmax (r = -0.652, p = 0.041). In addition, the modulation of CYP3A was reflected in the 1β-OH-DCA/DCA UMR after the intake of rifampicin (induction ratio = 11.4, p < 0.01). During the inhibition session, a non-significant 22% decrease in 1β-OH-DCA/DCA was observed (p = 0.275). This result could be explained by the short duration of CYP3A inhibitors intake fixed in our clinical trial. Additional studies, particularly involving CYP3A inhibition for a longer period and larger sample sizes, are needed to confirm the 1β-OH-DCA/DCA metric as a suitable CYP3A biomarker.
Collapse
Affiliation(s)
- Gaëlle Magliocco
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Jules Desmeules
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Marija Bosilkovska
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
| | - Aurélien Thomas
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Forensic Toxicology and Chemistry Unit, CURML, 1000 Lausanne University Hospital, Geneva University Hospitals, Lausanne, 1205 Geneva, Switzerland
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, 1000 Lausanne, Switzerland
| | - Youssef Daali
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland; (G.M.); (J.D.); (M.B.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1206 Geneva, Switzerland
- Swiss Center for Applied Human Toxicology, 1205 Geneva, Switzerland;
- Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
9
|
Endo M, Hirano R, Shibasaki H, Yokokawa A, Furuta T, Abe K, Morita K, Tanaka S, Hirano T, Sakurai M, Mizuno K. Midazolam Intoxication in a Premature Neonate. Clin Ther 2020; 42:946-951. [DOI: 10.1016/j.clinthera.2020.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
|
10
|
Nakamura T, Hiraoka K, Harada R, Matsuzawa T, Ishikawa Y, Funaki Y, Yoshikawa T, Tashiro M, Yanai K, Okamura N. Brain histamine H 1 receptor occupancy after oral administration of desloratadine and loratadine. Pharmacol Res Perspect 2019; 7:e00499. [PMID: 31338198 PMCID: PMC6624455 DOI: 10.1002/prp2.499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/27/2023] Open
Abstract
Some histamine H1 receptor (H1R) antagonists induce adverse sedative reactions caused by blockade of histamine transmission in the brain. Desloratadine is a second-generation antihistamine for treatment of allergic disorders. Its binding to brain H1Rs, which is the basis of sedative property of antihistamines, has not been examined previously in the human brain by positron emission tomography (PET). We examined brain H1R binding potential ratio (BPR), H1R occupancy (H1RO), and subjective sleepiness after oral desloratadine administration in comparison to loratadine. Eight healthy male volunteers underwent PET imaging with [11C]-doxepin, a PET tracer for H1Rs, after a single oral administration of desloratadine (5 mg), loratadine (10 mg), or placebo in a double-blind crossover study. BPR and H1RO in the cerebral cortex were calculated, and plasma concentrations of loratadine and desloratadine were measured. Subjective sleepiness was quantified by the Line Analogue Rating Scale (LARS) and the Stanford Sleepiness Scale (SSS). BPR was significantly lower after loratadine administration than after placebo (0.504 ± 0.074 vs 0.584 ± 0.059 [mean ± SD], P < 0.05), but BPR after desloratadine administration was not significantly different from BPR after placebo (0.546 ± 0.084 vs 0.584 ± 0.059, P = 0.250). The plasma concentration of loratadine was negatively correlated with BPR in subjects receiving loratadine, but that of desloratadine was not correlated with BPR. Brain H1ROs after desloratadine and loratadine administration were 6.47 ± 10.5% and 13.8 ± 7.00%, respectively (P = 0.103). Subjective sleepiness did not significantly differ among subjects receiving the two antihistamines and placebo. At therapeutic doses, desloratadine did not bind significantly to brain H1Rs and did not induce any significant sedation.
Collapse
Affiliation(s)
- Tadaho Nakamura
- Division of Pharmacology, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kotaro Hiraoka
- Cyclotron and Radioisotope CenterTohoku UniversitySendaiJapan
| | - Ryuichi Harada
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Takuro Matsuzawa
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoichi Ishikawa
- Cyclotron and Radioisotope CenterTohoku UniversitySendaiJapan
| | | | - Takeo Yoshikawa
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Manabu Tashiro
- Cyclotron and Radioisotope CenterTohoku UniversitySendaiJapan
| | - Kazuhiko Yanai
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| | - Nobuyuki Okamura
- Division of Pharmacology, Faculty of MedicineTohoku Medical and Pharmaceutical UniversitySendaiJapan
- Department of PharmacologyTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
11
|
Phenotyping of Human CYP450 Enzymes by Endobiotics: Current Knowledge and Methodological Approaches. Clin Pharmacokinet 2019; 58:1373-1391. [DOI: 10.1007/s40262-019-00783-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Müller F, Sharma A, König J, Fromm MF. Biomarkers for In Vivo Assessment of Transporter Function. Pharmacol Rev 2018; 70:246-277. [PMID: 29487084 DOI: 10.1124/pr.116.013326] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drug-drug interactions are a major concern not only during clinical practice, but also in drug development. Due to limitations of in vitro-in vivo predictions of transporter-mediated drug-drug interactions, multiple clinical Phase I drug-drug interaction studies may become necessary for a new molecular entity to assess potential drug interaction liabilities. This is a resource-intensive process and exposes study participants, who frequently are healthy volunteers without benefit from study treatment, to the potential risks of a new drug in development. Therefore, there is currently a major interest in new approaches for better prediction of transporter-mediated drug-drug interactions. In particular, researchers in the field attempt to identify endogenous compounds as biomarkers for transporter function, such as hexadecanedioate, tetradecanedioate, coproporphyrins I and III, or glycochenodeoxycholate sulfate for hepatic uptake via organic anion transporting polypeptide 1B or N1-methylnicotinamide for multidrug and toxin extrusion protein-mediated renal secretion. We summarize in this review the currently proposed biomarkers and potential limitations of the substances identified to date. Moreover, we suggest criteria based on current experiences, which may be used to assess the suitability of a biomarker for transporter function. Finally, further alternatives and supplemental approaches to classic drug-drug interaction studies are discussed.
Collapse
Affiliation(s)
- Fabian Müller
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Ashish Sharma
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany (F.M., J.K., M.F.F.); and Department of Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riß, Germany (F.M., A.S.)
| |
Collapse
|
13
|
Kasahara M, Sakamoto S, Sasaki K, Uchida H, Kitajima T, Shigeta T, Narumoto S, Hirata Y, Fukuda A. Living donor liver transplantation during the first 3 months of life. Liver Transpl 2017; 23:1051-1057. [PMID: 28220684 DOI: 10.1002/lt.24743] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/08/2017] [Accepted: 01/27/2017] [Indexed: 12/28/2022]
Abstract
Living donor liver transplantation (LDLT) is now an established technique for treating children with end-stage liver disease. Few data exist about liver transplantation (LT) for exclusively young infants, especially infants of <3 months of age. We report our single-center experience with 12 patients in which LDLT was performed during the first 3 months of life and compare the results with those of older infants who underwent LT. All of the patients were treated at the National Center of Child Health and Development, Tokyo, Japan. Between November 2005 to November 2016, 436 children underwent LT. Twelve of these patients underwent LT in the first 3 months of life (median age, 41 days; median weight, 4.0 kg). The indications for transplantation were fulminant hepatic failure (n = 11) and metabolic liver disease (n = 1). All the patients received the left lateral segment (LLS) in situ to mitigate the problem of graft-to-recipient size discrepancy. A reduced LLS graft was used in 11 patients and a segment 2 monosegment graft was used in 1 patient. We compared the results with those of infants who were 4-6 months of age (n = 67) and 7-12 months of age (n = 110) who were treated in the same study period. There were significant differences in the Pediatric End-Stage Liver Disease score and the conversion rate of tacrolimus to cyclosporine in younger infants. Furthermore, the incidence of biliary complications, bloodstream infection, and cytomegalovirus infection tended to be higher, whereas the incidence of acute cellular rejection tended to be lower in younger infants. The overall cumulative 10-year patient and graft survival rates in recipients of <3 months of age were both 90.9%. LDLT during the first 3 months of life appears to be a feasible option with excellent patient and graft survival. Liver Transplantation 23 1051-1057 2017 AASLD.
Collapse
Affiliation(s)
- Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Seisuke Sakamoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kengo Sasaki
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Hajime Uchida
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Toshihiro Kitajima
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Takanobu Shigeta
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Soichi Narumoto
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yoshihiro Hirata
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akinari Fukuda
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
14
|
Chan SW, Xiao Y, Hu M, Yin OQP, Chu TTW, Fok BSP, Lee VHL, Tomlinson B. Associations of the CYP3A5*3
and CYP3A4
*1G
polymorphisms with the pharmacokinetics of oral midazolam and the urinary 6β-hydroxycortisol/cortisol ratio as markers of CYP3A activity in healthy male Chinese. J Clin Pharm Ther 2016; 41:552-8. [PMID: 27511886 DOI: 10.1111/jcpt.12433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Affiliation(s)
- S. W. Chan
- Department of Medicine and Therapeutics; Prince of Wales Hospital; The Chinese University of Hong Kong; NT Hong Kong SAR China
| | - Y. Xiao
- Department of Medicine and Therapeutics; Prince of Wales Hospital; The Chinese University of Hong Kong; NT Hong Kong SAR China
| | - M. Hu
- Department of Medicine and Therapeutics; Prince of Wales Hospital; The Chinese University of Hong Kong; NT Hong Kong SAR China
| | - O. Q. P. Yin
- School of Pharmacy; The Chinese University of Hong Kong; Hong Kong SAR China
| | - T. T. W. Chu
- Department of Medicine and Therapeutics; Prince of Wales Hospital; The Chinese University of Hong Kong; NT Hong Kong SAR China
| | - B. S. P. Fok
- Department of Medicine and Therapeutics; Prince of Wales Hospital; The Chinese University of Hong Kong; NT Hong Kong SAR China
| | - V. H. L. Lee
- School of Pharmacy; The Chinese University of Hong Kong; Hong Kong SAR China
| | - B. Tomlinson
- Department of Medicine and Therapeutics; Prince of Wales Hospital; The Chinese University of Hong Kong; NT Hong Kong SAR China
| |
Collapse
|
15
|
Marsousi N, Samer CF, Fontana P, Reny JL, Rudaz S, Desmeules JA, Daali Y. Coadministration of ticagrelor and ritonavir: Toward prospective dose adjustment to maintain an optimal platelet inhibition using the PBPK approach. Clin Pharmacol Ther 2016; 100:295-304. [PMID: 27264793 DOI: 10.1002/cpt.407] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 11/09/2022]
Abstract
Ticagrelor is a potent antiplatelet drug metabolized by cytochrome (CYP)3A. It is contraindicated in patients with human immunodeficiency virus (HIV) because of the expected CYP3A inhibition by most protease inhibitors, such as ritonavir and an increased bleeding risk. In this study, a physiologically based pharmacokinetic (PBPK) model was created for ticagrelor and its active metabolite (AM). Based on the simulated interaction between ticagrelor 180 mg and ritonavir 100 mg, a lower dose of ticagrelor was calculated to obtain, when coadministered with ritonavir, the same pharmacokinetic (PK) and platelet inhibition as ticagrelor administered alone. A clinical study was thereafter conducted in healthy volunteers. Observed PK profiles of ticagrelor and its AM were successfully predicted with the model. Platelet inhibition was nearly complete in both sessions despite administration of a fourfold lower dose of ticagrelor in the second session. This PBPK model could be prospectively used to broaden the usage of ticagrelor in patients with ritonavir-treated HIV regardless of the CYP3A inhibition.
Collapse
Affiliation(s)
- N Marsousi
- Clinical Pharmacology and Toxicology Service, Geneva University Hospitals, Switzerland.,School of Pharmaceutical Sciences, Geneva University, Switzerland
| | - C F Samer
- Clinical Pharmacology and Toxicology Service, Geneva University Hospitals, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), University of Geneva, Switzerland
| | - P Fontana
- Division of Angiology and Haemostasis, Geneva University Hospitals, Switzerland.,Geneva Platelet Group, Faculty of Medicine, University of Geneva, Switzerland
| | - J L Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Switzerland.,Department of General Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals, Switzerland
| | - S Rudaz
- School of Pharmaceutical Sciences, Geneva University, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), University of Geneva, Switzerland
| | - J A Desmeules
- Clinical Pharmacology and Toxicology Service, Geneva University Hospitals, Switzerland.,School of Pharmaceutical Sciences, Geneva University, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), University of Geneva, Switzerland
| | - Y Daali
- Clinical Pharmacology and Toxicology Service, Geneva University Hospitals, Switzerland.,School of Pharmaceutical Sciences, Geneva University, Switzerland.,Swiss Center for Applied Human Toxicology (SCAHT), University of Geneva, Switzerland
| |
Collapse
|
16
|
Luo X, Zheng L, Cai N, Liu Q, Yang S, He X, Cheng Z. Evaluation of 6β-Hydroxycortisol and 6β-Hydroxycortisone as Biomarkers for Cytochrome P450 3A Activity: Insight into Their Predictive Value for Estimating Oral Immunosuppressant Metabolism. J Pharm Sci 2015; 104:3578-86. [DOI: 10.1002/jps.24566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 01/08/2023]
|
17
|
Shibasaki H, Kuroiwa M, Uchikura S, Tsuboyama S, Yokokawa A, Kume M, Furuta T. Use of endogenous cortisol 6β-hydroxylation clearance for phenotyping in vivo CYP3A activity in women after sequential administration of an oral contraceptive (OC) containing ethinylestradiol and levonorgestrel as weak CYP3A inhibitors. Steroids 2014; 87:137-44. [PMID: 24928723 DOI: 10.1016/j.steroids.2014.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/30/2013] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
Abstract
The present study was undertaken to evaluate the time courses of in vivo cytochrome P450 3A (CYP3A) inhibition in four healthy women after sequential administration of an oral contraceptive (OC) containing ethinylestradiol and levonorgestrel, using 6β-hydroxylation clearance of endogenous cortisol (CLm(6β)) as a new index for CYP3A phenotyping. The 6β-hydroxylation clearance (CLm(6β)) was followed every 2h from 9:00 or 11:00 to 17:00 on days 0 (baseline), 1, 2, 21, and 28 during a single menstrual cycle. The serum concentrations of endogenous estradiol and progesterone were also measured. The time course data of CLm(6β) clearly demonstrated 43-64% inhibition of CYP3A activity in women taking a low daily dose of the OC for 21days. The average CLm(6β) levels that were suppressed by the OC in four women were extremely low (0.60-1.23mL/min) compared with the normal CLm(6β) range (1.5-3.5mL/min) that was obtained from 49 healthy subjects in our previous study. The in vivo inhibitory potencies (43-64%) obtained in this study were stronger than expected from reported in vitro studies (∼20%). Furthermore, it would take at least seven days to return to the baseline activity of CYP3A after discontinuation of the OC. The results presented here should provide important information on the inhibitory effect of OC on the CYP3A activities in women, which are involved in the metabolism of a number of drugs with a narrow therapeutic range.
Collapse
Affiliation(s)
- Hiromi Shibasaki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Miyuki Kuroiwa
- School of Nursing, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Shinobu Uchikura
- School of Nursing, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Sayuri Tsuboyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akitomo Yokokawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Miyoko Kume
- School of Nursing, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjyuku-ku, Tokyo 162-8666, Japan
| | - Takashi Furuta
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|