1
|
Fan Y, Li X, Li J, Xiong X, Yin S, Fu W, Wang P, Liu J, Xiong Y. Differential metabolites screening in yak (Bos grunniens) seminal plasma after cryopreservation and the evaluation of the effect of galactose on post-thaw sperm motility. Theriogenology 2024; 215:249-258. [PMID: 38103402 DOI: 10.1016/j.theriogenology.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Sperm survival and activity depend on the provision of energy and nutrients from seminal plasma (SP). This study aimed to investigate the variations of metabolites within SP before and after freezing and subsequently explore the potential regulatory mechanisms affecting yak sperm cryodamage due to changes in metabolites in the SP. Untargeted metabolomics analysis was performed to screen for differential metabolites, followed by KEGG analysis to identify enriched signaling pathways. The combinatorial analysis of metabolomics and sperm proteomics revealed the influence of key SP metabolites on sperm proteins. Subsequently, the relevant differentially expressed proteins were verified by Western blot analysis. Finally, the mechanism underlying the positive effect of galactose on sperm motility was determined by assessing the change in ATP content in sperm before and after freezing and thawing. The data showed that a total of 425 and 269 metabolites were identified in the positive and negative ion modes, respectively. Freezing and thawing resulted in the up-regulation of 70 metabolites and the down-regulation of 29 metabolites in SP. The primary impact of freezing and thawing was observed in carbohydrate metabolism, including pyruvate metabolism, pentose phosphate pathway, galactose metabolism, the TCA cycle, and butanoate metabolism. In the combined analysis and Western blot results, a significant positive correlation was observed between galactose and Aldo-keto reductase family 1 member B1 (AKR1B1) (P < 0.05), which has the ability to convert galactose into galactol. Furthermore, the addition of galactose to thawed semen improved sperm motility by increasing AKR1B1 protein in sperm and was associated with the content of ATP. These data identify differential metabolites between fresh and frozen-thawed SP and suggest that galactose is a valuable additive for cryopreserved sperm, providing a theoretical basis for further exploration of the refrigerant formula for yak sperm cryopreservation.
Collapse
Affiliation(s)
- Yilin Fan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Xiaowei Li
- Longri Breeding Stock Farm of Sichuan Province, Dujiangyan, 611800, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Wei Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China
| | - Peng Wang
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Jun Liu
- Sichuan Ganzi Tibetan Autonomous Prefecture, Institute of Animal Husbandry Science, Kangding, 626000, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu, 610041, China; Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Karan BM, Little K, Augustine J, Stitt AW, Curtis TM. Aldehyde Dehydrogenase and Aldo-Keto Reductase Enzymes: Basic Concepts and Emerging Roles in Diabetic Retinopathy. Antioxidants (Basel) 2023; 12:1466. [PMID: 37508004 PMCID: PMC10376360 DOI: 10.3390/antiox12071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic retinopathy (DR) is a complication of diabetes mellitus that can lead to vision loss and blindness. It is driven by various biochemical processes and molecular mechanisms, including lipid peroxidation and disrupted aldehyde metabolism, which contributes to retinal tissue damage and the progression of the disease. The elimination and processing of aldehydes in the retina rely on the crucial role played by aldehyde dehydrogenase (ALDH) and aldo-keto reductase (AKR) enzymes. This review article investigates the impact of oxidative stress, lipid-derived aldehydes, and advanced lipoxidation end products (ALEs) on the advancement of DR. It also provides an overview of the ALDH and AKR enzymes expressed in the retina, emphasizing their growing importance in DR. Understanding the relationship between aldehyde metabolism and DR could guide innovative therapeutic strategies to protect the retina and preserve vision in diabetic patients. This review, therefore, also explores various approaches, such as gene therapy and pharmacological compounds that have the potential to augment the expression and activity of ALDH and AKR enzymes, underscoring their potential as effective treatment options for DR.
Collapse
Affiliation(s)
- Burak Mugdat Karan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Karis Little
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Josy Augustine
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
3
|
Mozhui K, O’Callaghan JP, Ashbrook DG, Prins P, Zhao W, Lu L, Jones BC. Epigenetic analysis in a murine genetic model of Gulf War illness. FRONTIERS IN TOXICOLOGY 2023; 5:1162749. [PMID: 37389175 PMCID: PMC10300436 DOI: 10.3389/ftox.2023.1162749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Of the nearly 1 million military personnel who participated in the 1990-1991 Gulf War, between 25% and 35% became ill with what now is referred to as Gulf War Illness (GWI) by the Department of Defense. Symptoms varied from gastrointestinal distress to lethargy, memory loss, inability to concentrate, depression, respiratory, and reproductive problems. The symptoms have persisted for 30 years in those afflicted but the basis of the illness remains largely unknown. Nerve agents and other chemical exposures in the war zone have been implicated but the long-term effects of these acute exposures have left few if any identifiable signatures. The major aim of this study is to elucidate the possible genomic basis for the persistence of symptoms, especially of the neurological and behavioral effects. To address this, we performed a whole genome epigenetic analysis of the proposed cause of GWI, viz., exposure to organophosphate neurotoxicants combined with high circulating glucocorticoids in two inbred mouse strains, C57BL/6J and DBA/2J. The animals received corticosterone in their drinking water for 7 days followed by injection of diisopropylfluorophosphate, a nerve agent surrogate. Six weeks after DFP injection, the animals were euthanized and medial prefrontal cortex harvested for genome-wide DNA methylation analysis using high-throughput sequencing. We observed 67 differentially methylated genes, notably among them, Ttll7, Akr1c14, Slc44a4, and Rusc2, all related to different symptoms of GWI. Our results support proof of principle of genetic differences in the chronic effects of GWI-related exposures and may reveal why the disease has persisted in many of the now aging Gulf War veterans.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James P. O’Callaghan
- Molecular Neurotoxicology Laboratory, Toxicology, and Molecular Biology Branch, Health Effects Laboratory Division, U. S. Centers for Disease Control and Prevention, NIOSH, Morgantown, WV, United States
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenyuan Zhao
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Byron C. Jones
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
4
|
Cronin SJF, Andrews NA, Latremoliere A. Peripheralized sepiapterin reductase inhibition as a safe analgesic therapy. Front Pharmacol 2023; 14:1173599. [PMID: 37251335 PMCID: PMC10213231 DOI: 10.3389/fphar.2023.1173599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.
Collapse
Affiliation(s)
| | - Nick A. Andrews
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins School of Medicine, Neurosurgery Pain Research Institute, Baltimore, MD, United States
| |
Collapse
|
5
|
de Almeida GRL, Szczepanik JC, Selhorst I, Cunha MP, Dafre AL. The expanding impact of methylglyoxal on behavior-related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110635. [PMID: 36103947 DOI: 10.1016/j.pnpbp.2022.110635] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/17/2023]
Abstract
Methylglyoxal (MGO) is a reactive dicarbonyl compound formed as a byproduct of glycolysis. MGO is a major cell-permeant precursor of advanced glycation end products (AGEs), since it readily reacts with basic phospholipids and nucleotides, as well as amino acid residues of proteins, such as arginine, cysteine, and lysine. The AGEs production induced by MGO are widely associated with several pathologies, including neurodegenerative diseases. However, the impact of MGO metabolism and AGEs formation in the central nervous system (particularly in neurons, astrocytes and oligodendrocytes) on behavior and psychiatric diseases is not fully understood. Here, we briefly present background information on the biological activity of MGO in the central nervous system. It was gathered the available information on the role of MGO metabolism at the physiological processes, as well as at the neurobiology of psychiatry diseases, especially pain-related experiences, anxiety, depression, and cognition impairment-associated diseases. To clarify the role of MGO on behavior and associated diseases, we reviewed primarily the main findings at preclinical studies focusing on genetic and pharmacological approaches. Since monoamine neurotransmitter systems are implicated as pivotal targets on the pathophysiology and treatment of psychiatry and cognitive-related diseases, we also reviewed how MGO affects these neurotransmission systems and the implications of this phenomenon for nociception and pain; learning and cognition; and mood. In summary, this review highlights the pivotal role of glyoxalase 1 (Glo1) and MGO levels in modulating behavioral phenotypes, as well as related cellular and molecular signaling. Conclusively, this review signals dopamine as a new neurochemical MGO target, as well as highlights how MGO metabolism can modulate the pathophysiology and treatment of pain, psychiatric and cognitive-related diseases.
Collapse
Affiliation(s)
- Gudrian R L de Almeida
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Jozimar C Szczepanik
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Ingrid Selhorst
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Mauricio P Cunha
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Basic Sciences of Life, Federal University of Juiz de Fora, 35010-177 Governador Valadares, MG, Brazil.
| | - Alcir L Dafre
- Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
6
|
Kuo CH, Lee IC, Huang BJ, Chen CM, Liou YM. Effects of Aldo-Keto Reductase Family 1 Member A on Osteoblast Differentiation Associated with Lactate Production in MC3T3-E1 Preosteoblastic Cells. Biochem Cell Biol 2022; 100:413-424. [PMID: 35858481 DOI: 10.1139/bcb-2022-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aldo-keto reductase family 1 member A (AKR1A) is an NADPH-dependent aldehyde reductase widely expressed in mammalian tissues. In this study, induced differentiation of MC3T3-E1 preosteoblasts was found to increase AKR1A gene expression concomitantly increased NOx- (nitrite+nitrate), increased glucose uptake, increased [NAD(P)+]/[NAD(P)H] and lactate production but decreased reactive oxygen species (ROS) without changes in eNOS (endothelial nitric oxide synthase) expression in differentiated osteoblasts (OBs). A study using gain- and loss-of-function MC3T3-E1 cells indicated that AKR1A is essential for modulating OB differentiation and gene expression of collagen1 A1, receptor activator of nuclear factor kappa-Β ligand, and osteoprotegerin in OBs. Immunofluorescence microscopy also revealed that changes in AKR1A expression altered extracellular collagen formation in differentiated OBs. Consistently, analyses of alkaline phosphatase activity and calcium deposits of matrix mineralization by Alizarin Red S staining verified that AKR1A is involved in the regulation of OB differentiation and bone matrix formation. In addition, AKR1A gene alterations affected the levels of NOx-, eNOS expression, glucose uptake, [NAD(P)+]/[NAD(P)H] dinucleotide redox couples, lactate production and ROS in differentiated OBs. Herein, we report that AKR1A-mediated denitrosylation may play a role in the regulation of lactate metabolism as well as redox homeostasis in cells, providing an efficient way to quickly gain energy and to significantly reduce oxidative stress for OB differentiation.
Collapse
Affiliation(s)
- Chia-Hsiao Kuo
- Tungs' Taichung MetroHarbor Hospital, 59084, Department of Orthopedics, Taichung, Taiwan;
| | - Inn-Chi Lee
- Chung Shan Medical University Taiyuan Road Branch, 63276, Taichung, Taiwan;
| | - Bo-Jun Huang
- National Chung Hsing University, 34916, LIFE SCIENCES, Taichung, Taiwan;
| | - Chuan-Mu Chen
- National Chung Hsing University, Department of Life Sciences, Taichung, Alberta, Taiwan;
| | - Ying-Ming Liou
- National Chung Hsing University, 34916, LIFE SCIENCES, Taichung, Please select an option below, Taiwan.,National Chung Hsing University, 34916, Rong Hsing Research Center for Translational Medicine, Taichung, Taiwan.,National Chung Hsing University, 34916, The iEGG and Animal Biotechnology Center, Taichung, Taiwan;
| |
Collapse
|
7
|
Miyachi Y, Kuo T, Son J, Accili D. Aldo-ketoreductase 1c19 ablation does not affect insulin secretion in murine islets. PLoS One 2021; 16:e0260526. [PMID: 34843575 PMCID: PMC8629236 DOI: 10.1371/journal.pone.0260526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022] Open
Abstract
Beta cell failure is a critical feature of diabetes. It includes defects of insulin production, secretion, and altered numbers of hormone-producing cells. In previous work, we have shown that beta cell failure is mechanistically linked to loss of Foxo1 function. This loss of function likely results from increased Foxo1 protein degradation, due to hyperacetylation of Foxo1 from increased nutrient turnover. To understand the mechanisms of Foxo1-related beta cell failure, we performed genome-wide analyses of its target genes, and identified putative mediators of sub-phenotypes of cellular dysfunction. Chromatin immunoprecipitation analyses demonstrated a striking pattern of Foxo1 binding to the promoters of a cluster of aldo-ketoreductases on chromosome 13: Akr1c12, Akr1c13, Akr1c19. Of these, Akr1c19 has been reported as a marker of Pdx1-positive endodermal progenitor cells. Here we show that Akr1c19 expression is dramatically decreased in db/db islets. Thus, we investigated whether Akr1c19 is involved in beta cell function. We performed gain- and loss-of-function experiments in cultured beta cells and generated Akr1c19 knockout mice. We show that Foxo1 and HNF1a cooperatively regulate Akr1c19 expression. Nonetheless, functional characterization of Akr1c19 both using islets and knockout mice did not reveal abnormalities on glucose homeostasis. We conclude that reduced expression of Akr1c19 is not sufficient to affect islet function.
Collapse
Affiliation(s)
- Yasutaka Miyachi
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians & Surgeons of Columbia University, New York, New York, United States of America
| | - Taiyi Kuo
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians & Surgeons of Columbia University, New York, New York, United States of America
| | - Jinsook Son
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians & Surgeons of Columbia University, New York, New York, United States of America
| | - Domenico Accili
- Department of Medicine and Naomi Berrie Diabetes Center, Vagelos College of Physicians & Surgeons of Columbia University, New York, New York, United States of America
| |
Collapse
|
8
|
Coombes Z, Plant K, Freire C, Basit AW, Butler P, Conlan RS, Gonzalez D. Progesterone Metabolism by Human and Rat Hepatic and Intestinal Tissue. Pharmaceutics 2021; 13:pharmaceutics13101707. [PMID: 34684000 PMCID: PMC8537901 DOI: 10.3390/pharmaceutics13101707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Following oral administration, the bioavailability of progesterone is low and highly variable. As a result, no clinically relevant, natural progesterone oral formulation is available. After oral delivery, first-pass metabolism initially occurs in the intestines; however, very little information on progesterone metabolism in this organ currently exists. The aim of this study is to investigate the contributions of liver and intestine to progesterone clearance. In the presence of NADPH, a rapid clearance of progesterone was observed in human and rat liver samples (t1/2 2.7 and 2.72 min, respectively). The rate of progesterone depletion in intestine was statistically similar between rat and human (t1/2 197.6 min in rat and 157.2 min in human). However, in the absence of NADPH, progesterone was depleted at a significantly lower rate in rat intestine compared to human. The roles of aldo keto reductases (AKR), xanthine oxidase (XAO) and aldehyde oxidase (AOX) in progesterone metabolism were also investigated. The rate of progesterone depletion was found to be significantly reduced by AKR1C, 1D1 and 1B1 in human liver and by AKR1B1 in human intestine. The inhibition of AOX also caused a significant reduction in progesterone degradation in human liver, whereas no change was observed in the presence of an XAO inhibitor. Understanding the kinetics of intestinal as well as liver metabolism is important for the future development of progesterone oral formulations. This novel information can inform decisions on the development of targeted formulations and help predict dosage regimens.
Collapse
Affiliation(s)
- Zoe Coombes
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (Z.C.); (R.S.C.)
| | - Katie Plant
- Cyprotex, No.24 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK; (K.P.); (P.B.)
| | | | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK;
| | - Philip Butler
- Cyprotex, No.24 Mereside, Alderley Park, Nether Alderley, Cheshire SK10 4TG, UK; (K.P.); (P.B.)
| | - R. Steven Conlan
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (Z.C.); (R.S.C.)
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea SA2 8PP, UK; (Z.C.); (R.S.C.)
- Correspondence: ; Tel.: +44-1792-295384
| |
Collapse
|
9
|
Baier FA, Sánchez-Taltavull D, Yarahmadov T, Castellà CG, Jebbawi F, Keogh A, Tombolini R, Odriozola A, Dias MC, Deutsch U, Furuse M, Engelhardt B, Zuber B, Odermatt A, Candinas D, Stroka D. Loss of Claudin-3 Impairs Hepatic Metabolism, Biliary Barrier Function, and Cell Proliferation in the Murine Liver. Cell Mol Gastroenterol Hepatol 2021; 12:745-767. [PMID: 33866021 PMCID: PMC8273426 DOI: 10.1016/j.jcmgh.2021.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Tight junctions in the liver are essential to maintain the blood-biliary barrier, however, the functional contribution of individual tight junction proteins to barrier and metabolic homeostasis remains largely unexplored. Here, we describe the cell type-specific expression of tight junction genes in the murine liver, and explore the regulation and functional importance of the transmembrane protein claudin-3 in liver metabolism, barrier function, and cell proliferation. METHODS The cell type-specific expression of hepatic tight junction genes is described using our mouse liver single-cell sequencing data set. Differential gene expression in Cldn3-/- and Cldn3+/+ livers was assessed in young and aged mice by RNA sequencing (RNA-seq), and hepatic tissue was analyzed for lipid content and bile acid composition. A surgical model of partial hepatectomy was used to induce liver cell proliferation. RESULTS Claudin-3 is a highly expressed tight junction protein found in the liver and is expressed predominantly in hepatocytes and cholangiocytes. The histology of Cldn3-/- livers showed no overt phenotype, and the canalicular tight junctions appeared intact. Nevertheless, by RNA-seq we detected a down-regulation of metabolic pathways in the livers of Cldn3-/- young and aged mice, as well as a decrease in lipid content and a weakened biliary barrier for primary bile acids, such as taurocholic acid, taurochenodeoxycholic acid, and taurine-conjugated muricholic acid. Coinciding with defects in the biliary barrier and lower lipid metabolism, there was a diminished hepatocyte proliferative response in Cldn3-/- mice after partial hepatectomy. CONCLUSIONS Our data show that, in the liver, claudin-3 is necessary to maintain metabolic homeostasis, retention of bile acids, and optimal hepatocyte proliferation during liver regeneration. The RNA-seq data set can be accessed at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159914.
Collapse
Affiliation(s)
- Felix Alexander Baier
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Daniel Sánchez-Taltavull
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Tural Yarahmadov
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Cristina Gómez Castellà
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Fadi Jebbawi
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Adrian Keogh
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Riccardo Tombolini
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | | | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
| | | | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Daniel Candinas
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
10
|
Time-course transcriptome analysis of lungs from mice exposed to ricin by intratracheal inoculation. Toxicol Lett 2020; 337:57-67. [PMID: 33232776 DOI: 10.1016/j.toxlet.2020.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 11/23/2022]
Abstract
In this study, a ricin toxin (RT)-induced pulmonary intoxication model was established in mice by intratracheal-delivered RT at a dose of 2× LD50. Based on this model, the histopathological evaluation of the lungs at 24 h and 48 h post-exposure was executed, and the genome-wide transcriptome of the lungs at 4, 12, 24 and 48 h post-exposure was analyzed. Histopathological analysis showed that a large number of neutrophils infiltrated the lungs at 24 h post-exposure, and slight pulmonary edema and perivascular-peribronchiolar edema appeared in the lungs at 48 h. Transcriptome analysis showed that the expression of a large number of genes related to leukocyte migration and chemotaxis consistently increased in the lungs upon exposure to RT, and the expression of genes that participate in acute phase immune and/or inflammatory response, also increased within 12 h of exposure to RT, which could be confirmed by the measurement of cytokines, such as IL-1β, TNF-α and IL-6, in bronchoalveolar lavage fluid. While the expression of genes related to cellular components of the extracellular matrix and cell membrane integrity consistently decreased in the lungs, and the expression of genes related to antioxidant activity also decreased within the first 12 h. There are 17 differentially expressed genes (DEGs) that participate in ribotoxic stress response, endoplasmic reticulum stress response or immune response in the lungs at 4 h post-exposure. The expression of these DEGs was upregulated, and the number of these DEGs accounted for about 59 % of all DEGs at 4 h. The 17 DEGs may play an important role in the occurrence and development of inflammation. Notably, Atf3, Egr1, Gdf15 and Osm, which are poorly studied, may be important targets for the subsequent research of RT-induced pulmonary intoxication. This study provides new information and insights for RT-induced pulmonary intoxication, and it can provide a reference for the subsequent study of the toxicological mechanism and therapeutic approaches for RT-induced pulmonary intoxication.
Collapse
|
11
|
Suliman-Lavie R, Title B, Cohen Y, Hamada N, Tal M, Tal N, Monderer-Rothkoff G, Gudmundsdottir B, Gudmundsson KO, Keller JR, Huang GJ, Nagata KI, Yarom Y, Shifman S. Pogz deficiency leads to transcription dysregulation and impaired cerebellar activity underlying autism-like behavior in mice. Nat Commun 2020; 11:5836. [PMID: 33203851 PMCID: PMC7673123 DOI: 10.1038/s41467-020-19577-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 10/20/2020] [Indexed: 02/08/2023] Open
Abstract
Several genes implicated in autism spectrum disorder (ASD) are chromatin regulators, including POGZ. The cellular and molecular mechanisms leading to ASD impaired social and cognitive behavior are unclear. Animal models are crucial for studying the effects of mutations on brain function and behavior as well as unveiling the underlying mechanisms. Here, we generate a brain specific conditional knockout mouse model deficient for Pogz, an ASD risk gene. We demonstrate that Pogz deficient mice show microcephaly, growth impairment, increased sociability, learning and motor deficits, mimicking several of the human symptoms. At the molecular level, luciferase reporter assay indicates that POGZ is a negative regulator of transcription. In accordance, in Pogz deficient mice we find a significant upregulation of gene expression, most notably in the cerebellum. Gene set enrichment analysis revealed that the transcriptional changes encompass genes and pathways disrupted in ASD, including neurogenesis and synaptic processes, underlying the observed behavioral phenotype in mice. Physiologically, Pogz deficiency is associated with a reduction in the firing frequency of simple and complex spikes and an increase in amplitude of the inhibitory synaptic input in cerebellar Purkinje cells. Our findings support a mechanism linking heterochromatin dysregulation to cerebellar circuit dysfunction and behavioral abnormalities in ASD.
Collapse
Affiliation(s)
- Reut Suliman-Lavie
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Title
- Department of Neurobiology, The Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yahel Cohen
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nanako Hamada
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
| | - Maayan Tal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Tal
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galya Monderer-Rothkoff
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bjorg Gudmundsdottir
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kristbjorn O Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Bldg. 560/12-70, 1050 Boyles Street, Frederick, MD, 21702, USA
- Basic Research Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Bldg. 560/32-31D, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, Bldg. 560/12-70, 1050 Boyles Street, Frederick, MD, 21702, USA
- Basic Research Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Bldg. 560/32-31D, 1050 Boyles Street, Frederick, MD, 21702, USA
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Koh-Ichi Nagata
- Department of Molecular Neurobiology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Neurochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosef Yarom
- Department of Neurobiology, The Institute of Life Sciences and Edmond & Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
12
|
Hara A, Nishinaka T, Abe N, El-Kabbani O, Matsunaga T, Endo S. Dimeric dihydrodiol dehydrogenase is an efficient primate 1,5-anhydro-D-fructose reductase. Biochem Biophys Res Commun 2020; 526:728-732. [PMID: 32253031 DOI: 10.1016/j.bbrc.2020.03.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/28/2020] [Indexed: 11/27/2022]
Abstract
1,5-Anhydro-D-fructose (AF), a metabolite of the anhydrofructose pathway of glycogen metabolism, has recently been shown to react with intracellular proteins and form advanced glycation end-products. The reactive AF is metabolized to non-reactive 1,5-anhydro-D-glucitol by AF reductase in animal tissues and human cells. Pig and mouse AF reductases were characterized, but primate AF reductase remains unknown. Here, we examined the AF-reducing activity of eleven primate NADPH-dependent reductases with broad substrate specificity for carbonyl compounds. AF was reduced by monkey dimeric dihydrodiol dehydrogenase (DHDH), human aldehyde reductase (AKR1A1) and human dicarbonyl/L-xylulose reductase (DCXR). DHDH showed the lowest KM (21 μM) for AF, and its kcat/KM value (1208 s-1mM-1) was much higher than those of AKR1A1 (1.3 s-1mM-1), DCXR (1.1 s-1mM-1) and the pig and mouse AF reductases. AF is a novel substrate with higher affinity and catalytic efficiency than known substrates of DHDH. Docking simulation study suggested that Lys156 in the substrate-binding site of DHDH contributes to the high affinity for AF. Gene database searches identified DHDH homologues (with >95% amino acid sequence identity) in humans and apes. Thus, DHDH acts as an efficient AF reductase in primates.
Collapse
Affiliation(s)
- Akira Hara
- Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toru Nishinaka
- Faculty of Pharmacy, Osaka-Ohtani University, Osaka, 584-8540, Japan
| | - Naohito Abe
- Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Ossama El-Kabbani
- Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | | | - Satoshi Endo
- Gifu Pharmaceutical University, Gifu, 501-1196, Japan.
| |
Collapse
|
13
|
Phelps T, Snyder E, Rodriguez E, Child H, Harvey P. The influence of biological sex and sex hormones on bile acid synthesis and cholesterol homeostasis. Biol Sex Differ 2019; 10:52. [PMID: 31775872 PMCID: PMC6880483 DOI: 10.1186/s13293-019-0265-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity and elevated serum lipids are associated with a threefold increase in the risk of developing atherosclerosis, a condition that underlies stroke, myocardial infarction, and sudden cardiac death. Strategies that aim to reduce serum cholesterol through modulation of liver enzymes have been successful in decreasing the risk of developing atherosclerosis and reducing mortality. Statins, which inhibit cholesterol biosynthesis in the liver, are considered among the most successful compounds developed for the treatment of cardiovascular disease. However, recent debate surrounding their effectiveness and safety prompts consideration of alternative cholesterol-lowering therapies, including increasing cholesterol catabolism through bile acid (BA) synthesis. Targeting the enzymes that convert cholesterol to BAs represents a promising alternative to other cholesterol-lowering approaches that treat atherosclerosis as well as fatty liver diseases and diabetes mellitus. Compounds that modify the activity of these pathways have been developed; however, there remains a lack of consideration of biological sex. This is necessary in light of strong evidence for sexual dimorphisms not only in the incidence and progression of the diseases they influence but also in the expression and activity of the proteins affected and in the manner in which men and women respond to drugs that modify lipid handling in the liver. A thorough understanding of the enzymes involved in cholesterol catabolism and modulation by biological sex is necessary to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Taylor Phelps
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Snyder
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Erin Rodriguez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Hailey Child
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Pamela Harvey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
14
|
Endo S, Matsunaga T, Hara A. Mouse Akr1cl gene product is a prostaglandin D2 11-ketoreductase with strict substrate specificity. Arch Biochem Biophys 2019; 674:108096. [DOI: 10.1016/j.abb.2019.108096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 01/23/2023]
|
15
|
Dempsey JL, Cui JY. Regulation of Hepatic Long Noncoding RNAs by Pregnane X Receptor and Constitutive Androstane Receptor Agonists in Mouse Liver. Drug Metab Dispos 2019; 47:329-339. [PMID: 30593543 PMCID: PMC6382996 DOI: 10.1124/dmd.118.085142] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/21/2018] [Indexed: 12/28/2022] Open
Abstract
Altered expression of long noncoding RNAs (lncRNAs) by environmental chemicals modulates the expression of xenobiotic biotransformation-related genes and may serve as therapeutic targets and novel biomarkers of exposure. The pregnane X receptor (PXR/NR1I2) is a critical xenobiotic-sensing nuclear receptor that regulates the expression of many drug-processing genes, and it has similar target-gene profiles and DNA-binding motifs with another xenobiotic-sensing nuclear receptor, namely, constitutive andronstrane receptor (CAR/Nr1i3). To test our hypothesis that lncRNAs are regulated by PXR in concert with protein-coding genes (PCGs) and to compare the PXR-targeted lncRNAs with CAR-targeted lncRNAs, RNA-Seq was performed from livers of adult male C57BL/6 mice treated with corn oil, the PXR agonist PCN, or the CAR agonist 1, 4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP). Among 125,680 known lncRNAs, 3843 were expressed in liver, and 193 were differentially regulated by PXR (among which 40% were also regulated by CAR). Most PXR- or CAR-regulated lncRNAs were mapped to the introns and 3'-untranslated regions (UTRs) of PCGs, as well as intergenic regions. Combining the RNA-Seq data with a published PXR chromatin immunoprecipitation coupled with high-throughput sequencing; cytochrome P450 (P450; ChIP-Seq) data set, we identified 774 expressed lncRNAs with direct PXR-DNA binding sites, and 26.8% of differentially expressed lncRNAs had changes in PXR-DNA binding after PCN exposure. De novo motif analysis identified colocalization of PXR with liver receptor homolog (LRH-1), which regulates bile acid synthesis after PCN exposure. There was limited overlap of PXR binding with an epigenetic mark for transcriptional activation (histone-H3K4-di-methylation, H3K4me2) but no overlap with epigenetic marks for transcriptional silencing [H3 lysine 27 tri-methylation (H3K27me3) and DNA methylation]. Among differentially expressed lncRNAs, 264 were in proximity of PCGs, and the lncRNA-PCG pairs displayed a high coregulatory pattern by PXR and CAR activation. This study was among the first to demonstrate that lncRNAs are regulated by PXR and CAR activation and that they may be important regulators of PCGs involved in xenobiotic metabolism.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
16
|
Chen X, Chen C, Hao J, Qin R, Qian B, Yang K, Zhang J, Zhang F. AKR1B1 Upregulation Contributes to Neuroinflammation and Astrocytes Proliferation by Regulating the Energy Metabolism in Rat Spinal Cord Injury. Neurochem Res 2018; 43:1491-1499. [DOI: 10.1007/s11064-018-2570-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/29/2022]
|
17
|
|
18
|
Jang S, Kwon DM, Kwon K, Park C. Generation and characterization of mouse knockout for glyoxalase 1. Biochem Biophys Res Commun 2017. [PMID: 28623132 DOI: 10.1016/j.bbrc.2017.06.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glyoxalase 1 (Glo1) is the first enzyme involved in glutathione-dependent detoxification of methylglyoxal, eventually generating d-lactate by the second enzyme glyoxalase 2 (Glo2). An accumulation of intracellular glyoxal and methylglyoxal leads to protein malfunction and mutation via formation of the advanced glycation end products (AGEs). Studies on mouse behavior suggest that methylglyoxal has anxiolytic properties. In this report, we generated and characterized a mouse knockout for Glo1. The knockout mice were viable without a pronounced phenotypic defect. Increased level of AGEs in Glo1 knockout mice was detected by immunoblotting with anti-MGH1 in liver homogenate, but not in brain. Alterations in behavior were observed in open field, light-dark transition, and tail suspension test. Open field data indicate increased exploration for novel environment and entry/stay in center zone in Glo1 knockout mice. In addition, increased light-dark transition and immobility was observed in the knockout mice. These data indicate that Glo1 knockout reduces anxiety-like behavior, but increases depression-like behavior.
Collapse
Affiliation(s)
- Sumi Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - David Min Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyu Kwon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chankyu Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
19
|
Giménez-Dejoz J, Weber S, Barski OA, Möller G, Adamski J, Parés X, Porté S, Farrés J. Characterization of AKR1B16, a novel mouse aldo-keto reductase. Chem Biol Interact 2017; 276:182-193. [PMID: 28322781 DOI: 10.1016/j.cbi.2017.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/27/2017] [Accepted: 03/16/2017] [Indexed: 11/29/2022]
Abstract
Aldo-keto reductases (AKRs) are distributed in three families and multiple subfamilies in mammals. The mouse Akr1b3 gene is clearly orthologous to human AKR1B1, both coding for aldose reductase, and their gene products show similar tissue distribution, regulation by osmotic stress and kinetic properties. In contrast, no unambiguous orthologs of human AKR1B10 and AKR1B15.1 have been identified in rodents. Although two more AKRs, AKR1B7 and AKR1B8, have been identified and characterized in mouse, none of them seems to exhibit properties similar to the human AKRs. Recently, a novel mouse AKR gene, Akr1b16, was annotated and the respective gene product, AKR1B16 (sharing 83% and 80% amino acid sequence identity with AKR1B10 and AKR1B15.1, respectively), was expressed as insoluble and inactive protein in a bacterial expression system. Here we describe the expression and purification of a soluble and enzymatically active AKR1B16 from E. coli using three chaperone systems. A structural model of AKR1B16 allowed the estimation of its active-site pocket volume, which was much wider (402 Å3) than those of AKR1B10 (279 Å3) and AKR1B15.1 (60 Å3). AKR1B16 reduced aliphatic and aromatic carbonyl compounds, using NADPH as a cofactor, with moderate or low activity (highest kcat values around 5 min-1). The best substrate for the enzyme was pyridine-3-aldehyde. AKR1B16 showed poor inhibition with classical AKR inhibitors, tolrestat being the most potent. Kinetics and inhibition properties resemble those of rat AKR1B17 but differ from those of the human enzymes. In addition, AKR1B16 catalyzed the oxidation of 17β-hydroxysteroids in a NADP+-dependent manner. These results, together with a phylogenetic analysis, suggest that mouse AKR1B16 is an ortholog of rat AKR1B17, but not of human AKR1B10 or AKR1B15.1. These human enzymes have no counterpart in the murine species, which is evidenced by forming a separate cluster in the phylogenetic tree and by their unique activity with retinaldehyde.
Collapse
Affiliation(s)
- Joan Giménez-Dejoz
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Susanne Weber
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Oleg A Barski
- Diabetes and Obesity Center, School of Medicine, University of Louisville, Louisville, USA
| | - Gabriele Möller
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Sergio Porté
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.
| |
Collapse
|
20
|
Cheng SL, Bammler TK, Cui JY. RNA Sequencing Reveals Age and Species Differences of Constitutive Androstane Receptor-Targeted Drug-Processing Genes in the Liver. Drug Metab Dispos 2017; 45:867-882. [PMID: 28232382 DOI: 10.1124/dmd.117.075135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/17/2017] [Indexed: 12/26/2022] Open
Abstract
The constitutive androstane receptor (CAR/Nr1i3) is an important xenobiotic-sensing nuclear receptor that is highly expressed in the liver and is well known to have species differences. During development, age-specific activation of CAR may lead to modified pharmacokinetics and toxicokinetics of drugs and environmental chemicals, leading to higher risks for adverse drug reactions in newborns and children. The goal of this study was to systematically investigate the age- and species-specific regulation of various drug-processing genes (DPGs) after neonatal or adult CAR activation in the livers of wild-type, CAR-null, and humanized CAR transgenic mice. At either 5 or 60 days of age, the three genotypes of mice were administered a species-appropriate CAR ligand or vehicle once daily for 4 days (i.p.). The majority of DPGs were differentially regulated by age and/or CAR activation. Thirty-six DPGs were commonly upregulated by CAR activation regardless of age or species of CAR. Although the cumulative mRNAs of uptake transporters were not readily altered by CAR, the cumulative phase I and phase II enzymes as well as efflux transporters were all increased after CAR activation in both species. In general, mouse CAR activation produced comparable or even greater fold increases of many DPGs in newborns than in adults; conversely, humanized CAR activation produced weaker induction in newborns than in adults. Western blotting and enzyme activity assays confirmed the age and species specificities of selected CAR-targeted DPGs. In conclusion, this study systematically compared the effect of age and species of CAR proteins on the regulation of DPGs in the liver and demonstrated that the regulation of xenobiotic biotransformation by CAR is profoundly modified by age and species.
Collapse
Affiliation(s)
- Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
21
|
Mindos T, Dun XP, North K, Doddrell RDS, Schulz A, Edwards P, Russell J, Gray B, Roberts SL, Shivane A, Mortimer G, Pirie M, Zhang N, Pan D, Morrison H, Parkinson DB. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol 2017; 216:495-510. [PMID: 28137778 PMCID: PMC5294779 DOI: 10.1083/jcb.201606052] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/23/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
Loss of the Merlin tumor suppressor and activation of the Hippo signaling pathway play major roles in the control of cell proliferation and tumorigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes-associated protein (YAP) in the control of Schwann cell (SC) plasticity and peripheral nerve repair after injury. Injury to the peripheral nervous system (PNS) causes a dramatic shift in SC molecular phenotype and the generation of repair-competent SCs, which direct functional repair. We find that loss of Merlin in these cells causes a catastrophic failure of axonal regeneration and remyelination in the PNS. This effect is mediated by activation of YAP expression in Merlin-null SCs, and loss of YAP restores axonal regrowth and functional repair. This work identifies new mechanisms that control the regenerative potential of SCs and gives new insight into understanding the correct control of functional nerve repair in the PNS.
Collapse
Affiliation(s)
- Thomas Mindos
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Xin-Peng Dun
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Katherine North
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
- University of Bath, Bath BA2 7AY, England, UK
| | - Robin D S Doddrell
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Alexander Schulz
- Leibniz Institute for Age Research - Fritz Lipmann Institute Jena, D-07745 Jena, Germany
| | - Philip Edwards
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth PL6 8DH, England, UK
| | - James Russell
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Bethany Gray
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
- University of Bath, Bath BA2 7AY, England, UK
| | - Sheridan L Roberts
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Aditya Shivane
- Department of Cellular and Anatomical Pathology, Derriford Hospital, Plymouth PL6 8DH, England, UK
| | - Georgina Mortimer
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Melissa Pirie
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| | - Nailing Zhang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Duojia Pan
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Helen Morrison
- Leibniz Institute for Age Research - Fritz Lipmann Institute Jena, D-07745 Jena, Germany
| | - David B Parkinson
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth PL6 8BU, England, UK
| |
Collapse
|
22
|
Quinti L, Casale M, Moniot S, Pais TF, Van Kanegan MJ, Kaltenbach LS, Pallos J, Lim RG, Naidu SD, Runne H, Meisel L, Rauf NA, Leyfer D, Maxwell MM, Saiah E, Landers JE, Luthi-Carter R, Abagyan R, Dinkova-Kostova AT, Steegborn C, Marsh JL, Lo DC, Thompson LM, Kazantsev AG. SIRT2- and NRF2-Targeting Thiazole-Containing Compound with Therapeutic Activity in Huntington's Disease Models. Cell Chem Biol 2016; 23:849-861. [PMID: 27427231 DOI: 10.1016/j.chembiol.2016.05.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022]
Abstract
There are currently no disease-modifying therapies for the neurodegenerative disorder Huntington's disease (HD). This study identified novel thiazole-containing inhibitors of the deacetylase sirtuin-2 (SIRT2) with neuroprotective activity in ex vivo brain slice and Drosophila models of HD. A systems biology approach revealed an additional SIRT2-independent property of the lead-compound, MIND4, as an inducer of cytoprotective NRF2 (nuclear factor-erythroid 2 p45-derived factor 2) activity. Structure-activity relationship studies further identified a potent NRF2 activator (MIND4-17) lacking SIRT2 inhibitory activity. MIND compounds induced NRF2 activation responses in neuronal and non-neuronal cells and reduced production of reactive oxygen species and nitrogen intermediates. These drug-like thiazole-containing compounds represent an exciting opportunity for development of multi-targeted agents with potentially synergistic therapeutic benefits in HD and related disorders.
Collapse
Affiliation(s)
- Luisa Quinti
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Malcolm Casale
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Sébastien Moniot
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Teresa F Pais
- Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Michael J Van Kanegan
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Linda S Kaltenbach
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Judit Pallos
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Ryan G Lim
- Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| | - Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Heike Runne
- Functional Neurogenomics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Lisa Meisel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Nazifa Abdul Rauf
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dmitriy Leyfer
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michele M Maxwell
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eddine Saiah
- BioTherapeutics Chemistry, Pfizer Worldwide Medicinal Chemistry, 200 Cambridge Park Drive, Cambridge, MA 02140, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Ruth Luthi-Carter
- Functional Neurogenomics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093-0747, USA
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, UK; Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - J Lawrence Marsh
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
| | - Donald C Lo
- Department of Neurobiology, Center for Drug Discovery, Duke University Medical Center, Durham, NC 27710, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California, Irvine, CA 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Aleksey G Kazantsev
- Department of Neurology, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
23
|
RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1198-1217. [PMID: 27113289 DOI: 10.1016/j.bbagrm.2016.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known xenobiotic-sensing nuclear receptors with overlapping functions. However, there lacks a quantitative characterization to distinguish between the PXR and CAR target genes and signaling pathways in the liver. The present study performed a transcriptomic comparison of the PXR- and CAR-targets using RNA-Seq in livers of adult wild-type mice that were treated with the prototypical PXR ligand PCN (200mg/kg, i.p. once daily for 4days in corn oil) or the prototypical CAR ligand TCPOBOP (3mg/kg, i.p., once daily for 4days in corn oil). At the given doses, TCPOBOP differentially regulated many more genes (2125) than PCN (212), and 147 of the same genes were differentially regulated by both chemicals. As expected, the top pathways differentially regulated by both PCN and TCPOBOP were involved in xenobiotic metabolism, and they also up-regulated genes involved in retinoid metabolism, but down-regulated genes involved in inflammation and iron homeostasis. Regarding unique pathways, PXR activation appeared to overlap with the aryl hydrocarbon receptor signaling, whereas CAR activation appeared to overlap with the farnesoid X receptor signaling, acute-phase response, and mitochondrial dysfunction. The mRNAs of differentially regulated drug-processing genes (DPGs) partitioned into three patterns, namely TCPOBOP-induced, PCN-induced, as well as TCPOBOP-suppressed gene clusters. The cumulative mRNAs of the differentially regulated DPGs, phase-I and -II enzymes, as well as efflux transporters were all up-regulated by both PCN and TCPOBOPOP, whereas the cumulative mRNAs of the uptake transporters were down-regulated only by TCPOBOP. The absolute mRNA abundance in control and receptor-activated conditions was examined in each DPG category to predict the contribution of specific DPG genes in the PXR/CAR-mediated pharmacokinetic responses. The preferable differential regulation by TCPOBOP in the entire hepatic transcriptome correlated with a marked change in the expression of many DNA and histone epigenetic modifiers. In conclusion, the present study has revealed known and novel, as well as common and unique targets of PXR and CAR in mouse liver following pharmacological activation using their prototypical ligands. Results from this study will further support the role of these receptors in regulating the homeostasis of xenobiotic and intermediary metabolism in the liver, and aid in distinguishing between PXR and CAR signaling at various physiological and pathophysiological conditions. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
24
|
Fu ZD, Selwyn FP, Cui JY, Klaassen CD. RNA Sequencing Quantification of Xenobiotic-Processing Genes in Various Sections of the Intestine in Comparison to the Liver of Male Mice. ACTA ACUST UNITED AC 2016; 44:842-56. [PMID: 27048750 DOI: 10.1124/dmd.115.068270] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/04/2016] [Indexed: 12/31/2022]
Abstract
Previous reports on tissue distribution of xenobiotic-processing genes (XPGs) have limitations, because many non-cytochrome P450 phase I enzymes have not been investigated, and one cannot compare the real mRNA abundance of multiple XPGs using conventional quantification methods. Therefore, this study aimed to quantify and compare the mRNA abundance of all major XPGs in the liver and intestine using RNA sequencing. The mRNA profiles of 304 XPGs, including phase I, phase II enzymes, phase II cosubstrate synthetic enzymes, xenobiotic transporters, as well as xenobiotic-related transcription factors, were systematically examined in the liver and various sections of the intestine in adult male C57BL/6J mice. By two-way hierarchical clustering, over 80% of the XPGs had tissue-divergent expression, which partitioned into liver-predominant, small intestine-predominant, and large intestine-predominant patterns. Among the genes, 54% were expressed highest in the liver, 21% in the duodenum, 4% in the jejunum, 6% in the ileum, and 15% in the large intestine. The highest-expressed XPG in the liver was Mgst1; in the duodenum, Cyp3a11; in the jejunum and ileum, Ces2e; and in the large intestine, Cyp2c55. Interestingly, XPGs in the same family usually exhibited highly different tissue distribution patterns, and many XPGs were almost exclusively expressed in one tissue and minimally expressed in others. In conclusion, the present study is among the first and the most comprehensive investigations of the real mRNA abundance and tissue-divergent expression of all major XPGs in mouse liver and intestine, which aids in understanding the tissue-specific biotransformation and toxicity of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Selwyn FP, Cheng SL, Klaassen CD, Cui JY. Regulation of Hepatic Drug-Metabolizing Enzymes in Germ-Free Mice by Conventionalization and Probiotics. ACTA ACUST UNITED AC 2015; 44:262-74. [PMID: 26586378 DOI: 10.1124/dmd.115.067504] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 01/26/2023]
Abstract
Little is known regarding the effect of intestinal microbiota modifiers, such as probiotics and conventionalization with exogenous bacteria, on host hepatic drug metabolism. Therefore, the goal of this study was to determine the effect of these modifiers on the expression of various drug-metabolizing enzymes of the host liver. VSL3 is a probiotic that contains eight live strains of bacteria. Five groups of mice were used: 1) conventional mice (CV), 2) conventional mice treated with VSL3 in drinking water, 3) germ-free (GF) mice, 4) GF mice treated with VSL3, and 5) GF mice exposed to the conventional environment for 2 months. All mice were 3 months old at tissue collection. GF conditions markedly downregulated the cytochrome P450 (P450) 3a gene cluster, but upregulated the Cyp4a cluster, whereas conventionalization normalized their expression to conventional levels [reverse-transcription quantitative polymerase chain reaction (qPCR) and western blot]. Changes in the Cyp3a and 4a gene expression correlated with alterations in the pregnane X receptor and peroxisome proliferator-activated receptor α-DNA binding, respectively (chromatin immunoprecipitation-qPCR). VSL3 increased each bacterial component in the large intestinal content of the CV mice, and increased these bacteria even more in GF mice, likely due to less competition for growth in the GF environment. VSL3 given to conventional mice increased the mRNAs of Cyp4v3, alcohol dehydrogenase 1, and carboxyesterase 2a, but decreased the mRNAs of multiple phase II glutathione-S-transferases. VSL3 given to germ-free mice decreased the mRNAs of UDP-glucuronosyltransferases 1a9 and 2a3. In conclusion, conventionalization and VSL3 alter the expression of many drug-metabolizing enzyme s in the liver, suggesting the importance of considering "bacteria-drug" interactions for various adverse drug reactions in patients.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Sunny Lihua Cheng
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
26
|
McTaggart SJ, Cézard T, Garbutt JS, Wilson PJ, Little TJ. Transcriptome profiling during a natural host-parasite interaction. BMC Genomics 2015; 16:643. [PMID: 26311167 PMCID: PMC4551569 DOI: 10.1186/s12864-015-1838-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). RESULTS We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. CONCLUSIONS We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Timothée Cézard
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Jennie S Garbutt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Phil J Wilson
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. .,Centre for Immunity, Infection and Evolution, School of Biological Sciences; Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| |
Collapse
|
27
|
Siddens LK, Bunde KL, Harper TA, McQuistan TJ, Löhr CV, Bramer LM, Waters KM, Tilton SC, Krueger SK, Williams DE, Baird WM. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse. Toxicol Appl Pharmacol 2015; 287:149-160. [PMID: 26049101 DOI: 10.1016/j.taap.2015.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023]
Abstract
FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators.
Collapse
Affiliation(s)
- Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA
| | - Kristi L Bunde
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Tod A Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Tammie J McQuistan
- Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V Löhr
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa M Bramer
- Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sharon K Krueger
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| | - William M Baird
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
28
|
Singh M, Kapoor A, Bhatnagar A. Oxidative and reductive metabolism of lipid-peroxidation derived carbonyls. Chem Biol Interact 2015; 234:261-73. [PMID: 25559856 DOI: 10.1016/j.cbi.2014.12.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/16/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Abstract
Extensive research has shown that increased production of reactive oxygen species (ROS) results in tissue injury under a variety of pathological conditions and chronic degenerative diseases. While ROS are highly reactive and can incite significant injury, polyunsaturated lipids in membranes and lipoproteins are their main targets. ROS-triggered lipid-peroxidation reactions generate a range of reactive carbonyl species (RCS), and these RCS spread and amplify ROS-related injury. Several RCS generated in oxidizing lipids, such as 4-hydroxy trans-2-nonenal (HNE), 4-oxo-2-(E)-nonenal (ONE), acrolein, malondialdehyde (MDA) and phospholipid aldehydes have been shown to be produced under conditions of oxidative stress and contribute to tissue injury and dysfunction by depleting glutathione and other reductants leading to the modification of proteins, lipids, and DNA. To prevent tissue injury, these RCS are metabolized by several oxidoreductases, including members of the aldo-keto reductase (AKR) superfamily, aldehyde dehydrogenases (ALDHs), and alcohol dehydrogenases (ADHs). Metabolism via these enzymes results in RCS inactivation and detoxification, although under some conditions, it can also lead to the generation of signaling molecules that trigger adaptive responses. Metabolic transformation and detoxification of RCS by oxidoreductases prevent indiscriminate ROS toxicity, while at the same time, preserving ROS signaling. A better understanding of RCS metabolism by oxidoreductases could lead to the development of novel therapeutic interventions to decrease oxidative injury in several disease states and to enhance resistance to ROS-induced toxicity.
Collapse
Affiliation(s)
- Mahavir Singh
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Aniruddh Kapoor
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
29
|
Peng L, Cui JY, Yoo B, Gunewardena SS, Lu H, Klaassen CD, Zhong XB. RNA-sequencing quantification of hepatic ontogeny of phase-I enzymes in mice. Drug Metab Dispos 2013; 41:2175-86. [PMID: 24080161 DOI: 10.1124/dmd.113.054635] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phase-I drug metabolizing enzymes catalyze reactions of hydrolysis, reduction, and oxidation of drugs and play a critical role in drug metabolism. However, the functions of most phase-I enzymes are not mature at birth, which markedly affects drug metabolism in newborns. Therefore, characterization of the expression profiles of phase-I enzymes and the underlying regulatory mechanisms during liver maturation is needed for better estimation of using drugs in pediatric patients. The mouse is an animal model widely used for studying the mechanisms in the regulation of developmental expression of phase-I genes. Therefore, we applied RNA sequencing to provide a "true quantification" of the mRNA expression of phase-I genes in the mouse liver during development. Liver samples of male C57BL/6 mice at 12 different ages from prenatal to adulthood were used for defining the ontogenic mRNA profiles of phase-I families, including hydrolysis: carboxylesterase (Ces), paraoxonase (Pon), and epoxide hydrolase (Ephx); reduction: aldo-keto reductase (Akr), quinone oxidoreductase (Nqo), and dihydropyrimidine dehydrogenase (Dpyd); and oxidation: alcohol dehydrogenase (Adh), aldehyde dehydrogenase (Aldh), flavin monooxygenases (Fmo), molybdenum hydroxylase (Aox and Xdh), cytochrome P450 (P450), and cytochrome P450 oxidoreductase (Por). Two rapidly increasing stages of total phase-I gene expression after birth reflect functional transition of the liver during development. Diverse expression patterns were identified, and some large gene families contained the mRNA of genes that are enriched at different stages of development. Our study reveals the mRNA abundance of phase-I genes in the mouse liver during development and provides a valuable foundation for mechanistic studies in the future.
Collapse
Affiliation(s)
- Lai Peng
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (L.P., X.B.Z.); Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas (J.Y.C., C.D.K.); Kansas Intellectual and Developmental Disabilities Research Center, Kansas City, Kansas (B.Y., S.S.G.); Department of Pharmacology, Upstate Medical University, State University of New York, Syracuse, New York (H.L.)
| | | | | | | | | | | | | |
Collapse
|