1
|
Hammid A, Fallon JK, Vellonen KS, Lassila T, Reinisalo M, Urtti A, Gonzalez F, Tolonen A, Smith PC, Honkakoski P. Aldehyde oxidase 1 activity and protein expression in human, rabbit, and pig ocular tissues. Eur J Pharm Sci 2023; 191:106603. [PMID: 37827455 DOI: 10.1016/j.ejps.2023.106603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/14/2023]
Abstract
Aldehyde oxidase (AOX) is a cytosolic drug-metabolizing enzyme which has attracted increasing attention in drug development due to its high hepatic expression, broad substrate profile and species differences. In contrast, there is limited information on the presence and activity of AOX in extrahepatic tissues including ocular tissues. Because several ocular drugs are potential substrates for AOX, we performed a comprehensive analysis of the AOX1 expression and activity profile in seven ocular tissues from humans, rabbits, and pigs. AOX activities were determined using optimized assays for the established human AOX1 probe substrates 4-dimethylamino-cinnamaldehyde (DMAC) and phthalazine. Inhibition studies were undertaken in conjunctival and retinal homogenates using well-established human AOX1 inhibitors menadione and chlorpromazine. AOX1 protein contents were quantitated with targeted proteomics and confirmed by immunoblotting. Overall, DMAC oxidation rates varied over 10-fold between species (human ˃˃ rabbit ˃ pig) and showed 2- to 6-fold differences between tissues from the same species. Menadione seemed a more potent inhibitor of DMAC oxidation across species than chlorpromazine. Human AOX1 protein levels were highest in the conjunctiva, followed by most posterior tissues, whereas anterior tissues showed low levels. The rabbit AOX1 expression was high in the conjunctiva, retinal pigment epithelial (RPE), and choroid while lower in the anterior tissues. Quantification of pig AOX1 was not successful but immunoblotting confirmed the presence of AOX1 in all species. DMAC oxidation rates and AOX1 contents correlated quite well in humans and rabbits. This study provides, for the first time, insights into the ocular expression and activity of AOX1 among multiple species.
Collapse
Affiliation(s)
- Anam Hammid
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland.
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Kati-Sisko Vellonen
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Toni Lassila
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI-00790 Helsinki, Finland
| | - Francisco Gonzalez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Service of Ophthalmology, University Hospital of Santiago de Compostela, and Fundacion Instituto de Investigacion Sanitaria de Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain
| | - Ari Tolonen
- Admescope Ltd, Typpitie 1, FI-90620 Oulu, Finland
| | - Philip C Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7355, Chapel Hill, NC 27599-7355, United States
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, FI-70210 Kuopio, Finland
| |
Collapse
|
2
|
Izat N, Bolleddula J, Abbasi A, Cheruzel L, Jones RS, Moss D, Ortega-Muro F, Parmentier Y, Peterkin VC, Tian DD, Venkatakrishnan K, Zientek MA, Barber J, Houston JB, Galetin A, Scotcher D. Challenges and Opportunities for In Vitro-In Vivo Extrapolation of Aldehyde Oxidase-Mediated Clearance: Toward a Roadmap for Quantitative Translation. Drug Metab Dispos 2023; 51:1591-1606. [PMID: 37751998 DOI: 10.1124/dmd.123.001436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Underestimation of aldehyde oxidase (AO)-mediated clearance by current in vitro assays leads to uncertainty in human dose projections, thereby reducing the likelihood of success in drug development. In the present study we first evaluated the current drug development practices for AO substrates. Next, the overall predictive performance of in vitro-in vivo extrapolation of unbound hepatic intrinsic clearance (CLint,u) and unbound hepatic intrinsic clearance by AO (CLint,u,AO) was assessed using a comprehensive literature database of in vitro (human cytosol/S9/hepatocytes) and in vivo (intravenous/oral) data collated for 22 AO substrates (total of 100 datapoints from multiple studies). Correction for unbound fraction in the incubation was done by experimental data or in silico predictions. The fraction metabolized by AO (fmAO) determined via in vitro/in vivo approaches was found to be highly variable. The geometric mean fold errors (gmfe) for scaled CLint,u (mL/min/kg) were 10.4 for human hepatocytes, 5.6 for human liver cytosols, and 5.0 for human liver S9, respectively. Application of these gmfe's as empirical scaling factors improved predictions (45%-57% within twofold of observed) compared with no correction (11%-27% within twofold), with the scaling factors qualified by leave-one-out cross-validation. A road map for quantitative translation was then proposed following a critical evaluation on the in vitro and clinical methodology to estimate in vivo fmAO In conclusion, the study provides the most robust system-specific empirical scaling factors to date as a pragmatic approach for the prediction of in vivo CLint,u,AO in the early stages of drug development. SIGNIFICANCE STATEMENT: Confidence remains low when predicting in vivo clearance of AO substrates using in vitro systems, leading to de-prioritization of AO substrates from the drug development pipeline to mitigate risk of unexpected and costly in vivo impact. The current study establishes a set of empirical scaling factors as a pragmatic tool to improve predictability of in vivo AO clearance. Developing clinical pharmacology strategies for AO substrates by utilizing mass balance/clinical drug-drug interaction data will help build confidence in fmAO.
Collapse
Affiliation(s)
- Nihan Izat
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Jayaprakasam Bolleddula
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Armina Abbasi
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Lionel Cheruzel
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Robert S Jones
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Darren Moss
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Fatima Ortega-Muro
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Yannick Parmentier
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Vincent C Peterkin
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Dan-Dan Tian
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Karthik Venkatakrishnan
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Michael A Zientek
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, UK (N.I., Ji.B., J.B.H., A.G., D.S.); EMD Serono Research & Development Institute, Inc., Billerica, Massachusetts (Ja.B., K.V.); Amgen Inc., South San Francisco, California (A.A.); Genentech, Inc., South San Francisco, California (L.C., R.S.J.); Janssen Pharmaceutical Companies of Johnson & Johnson, Beerse, Belgium (D.M.); GSK R&D, Tres Cantos, Madrid, Spain (F.O.M.); Technologie Servier, Orléans, France (Y.P.); AbbVie Inc., North Chicago, Illinois (V.C.P.); Eli Lilly and Company, Indianapolis, Indiana (D.-D.T.); and Takeda Pharmaceuticals Limited, San Diego, California (M.A.Z.)
| |
Collapse
|
3
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
4
|
Paragas EM, Choughule K, Jones JP, Barr JT. Enzyme Kinetics, Pharmacokinetics, and Inhibition of Aldehyde Oxidase. Methods Mol Biol 2021; 2342:257-284. [PMID: 34272698 DOI: 10.1007/978-1-0716-1554-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehyde oxidase (AO) has emerged as an important drug metabolizing enzyme over the last decade. Several compounds have failed in the clinic because the clearance or toxicity was underestimated by preclinical species. Human AO is much more active than rodent AO, and dogs do not have functional AO. Metabolic products from AO-catalyzed oxidation are generally nonreactive and often they have much lower solubility. AO metabolism is not limited to oxidation as AO can also catalyze reduction of oxygen and nitrite. Reduction of oxygen leads to the reactive oxygen species (ROS) superoxide radical anion and hydrogen peroxide. Reduction of nitrite leads to the formation of nitric oxide with potential pharmacological implications. AO is also reported to catalyze the reductive metabolism of nitro-compounds, N-oxides, sulfoxides, isoxazoles, isothiazoles, nitrite, and hydroxamic acids. These reductive transformations may cause toxicity due to the formation of reactive metabolites. Moreover, the inhibition kinetics are complex, and multiple probe substrates should be used when assessing the potential for DDIs. Finally, AO appears to be amenable to computational predictions of both regioselectivity and rates of reaction, which holds promise for virtual screening.
Collapse
Affiliation(s)
- Erickson M Paragas
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Kanika Choughule
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, Boston, MA, USA
| | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John T Barr
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, South San Francisco, CA, USA.
| |
Collapse
|
5
|
Abbasi A, Joswig-Jones CA, Jones JP. Site-Directed Mutagenesis at the Molybdenum Pterin Cofactor Site of the Human Aldehyde Oxidase: Interrogating the Kinetic Differences Between Human and Cynomolgus Monkey. Drug Metab Dispos 2020; 48:1364-1371. [PMID: 33020066 DOI: 10.1124/dmd.120.000187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/25/2020] [Indexed: 11/22/2022] Open
Abstract
The estimation of the drug clearance by aldehyde oxidase (AO) has been complicated because of this enzyme's atypical kinetics and species and substrate specificity. Since human AO (hAO) and cynomolgus monkey AO (mAO) have a 95.1% sequence identity, cynomolgus monkeys may be the best species for estimating AO clearance in humans. Here, O6-benzylguanine (O6BG) and dantrolene were used under anaerobic conditions, as oxidative and reductive substrates of AO, respectively, to compare and contrast the kinetics of these two species through numerical modeling. Whereas dantrolene reduction followed the same linear kinetics in both species, the oxidation rate of O6BG was also linear in mAO and did not follow the already established biphasic kinetics of hAO. In an attempt to determine why hAO and mAO are kinetically distinct, we have altered the hAO V811 and F885 amino acids at the oxidation site adjacent to the molybdenum pterin cofactor to the corresponding alanine and leucine in mAO, respectively. Although some shift to a more monkey-like kinetics was observed for the V811A mutant, five more mutations around the AO cofactors still need to be investigated for this purpose. In comparing the oxidative and reductive rates of metabolism under anaerobic conditions, we have come to the conclusion that despite having similar rates of reduction (4-fold difference), the oxidation rate in mAO is more than 50-fold slower than hAO. This finding implies that the presence of nonlinearity in AO kinetics is dependent upon the degree of imbalance between the rates of oxidation and reduction in this enzyme. SIGNIFICANCE STATEMENT: Although they have as much as 95.1% sequence identity, human and cynomolgus monkey aldehyde oxidase are kinetically distinct. Therefore, monkeys may not be good estimators of drug clearance in humans.
Collapse
Affiliation(s)
- Armina Abbasi
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
6
|
Cheshmazar N, Dastmalchi S, Terao M, Garattini E, Hamzeh-Mivehroud M. Aldehyde oxidase at the crossroad of metabolism and preclinical screening. Drug Metab Rev 2019; 51:428-452. [DOI: 10.1080/03602532.2019.1667379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Narges Cheshmazar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther 2019; 201:137-180. [PMID: 31128989 DOI: 10.1016/j.pharmthera.2019.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/27/2019] [Indexed: 11/29/2022]
Abstract
Aldehyde oxidase (AO) is a cytosolic enzyme that belongs to the family of structurally related molybdoflavoproteins like xanthine oxidase (XO). The enzyme is characterized by broad substrate specificity and marked species differences. It catalyzes the oxidation of aromatic and aliphatic aldehydes and various heteroaromatic rings as well as reduction of several functional groups. The references to AO and its role in metabolism date back to the 1950s, but the importance of this enzyme in the metabolism of drugs has emerged in the past fifteen years. Several reviews on the role of AO in drug metabolism have been published in the past decade indicative of the growing interest in the enzyme and its influence in drug metabolism. Here, we present a comprehensive monograph of AO as a drug metabolizing enzyme with emphasis on marketed drugs as well as other xenobiotics, as substrates and inhibitors. Although the number of drugs that are primarily metabolized by AO are few, the impact of AO on drug development has been extensive. We also discuss the effect of AO on the systemic exposure and clearance these clinical candidates. The review provides a comprehensive analysis of drug discovery compounds involving AO with the focus on developmental candidates that were reported in the past five years with regards to pharmacokinetics and toxicity. While there is only one known report of AO-mediated clinically relevant drug-drug interaction (DDI), a detailed description of inhibitors and inducers of AO known to date has been presented here and the potential risks associated with DDI. The increasing recognition of the importance of AO has led to significant progress in predicting the site of AO-mediated metabolism using computational methods. Additionally, marked species difference in expression of AO makes it is difficult to predict human clearance with high confidence. The progress made towards developing in vivo, in vitro and in silico approaches for predicting AO metabolism and estimating human clearance of compounds that are metabolized by AO have also been discussed.
Collapse
Affiliation(s)
- Deepak Dalvie
- Drug Metabolism and Pharmacokinetics, Celgene Corporation, 10300, Campus Point Drive, San Diego, CA 92121, USA.
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, UK
| |
Collapse
|
8
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
9
|
Padilha EC, Wang J, Kerns E, Lee A, Huang W, Jiang JK, McKew J, Mutlib A, Peccinini RG, Yu PB, Sanderson P, Xu X. Application of in vitro Drug Metabolism Studies in Chemical Structure Optimization for the Treatment of Fibrodysplasia Ossificans Progressiva (FOP). Front Pharmacol 2019; 10:234. [PMID: 31068801 PMCID: PMC6491728 DOI: 10.3389/fphar.2019.00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Currently no approved treatment exists for fibrodysplasia ossificans progressiva (FOP) patients, and disease progression results in severe restriction of joint function and premature mortality. LDN-193189 has been demonstrated to be efficacious in a mouse FOP disease model after oral administration. To support species selection for drug safety evaluation and to guide structure optimization for back-up compounds, in vitro metabolism of LDN-193189 was investigated in liver microsome and cytosol fractions of mouse, rat, dog, rabbit, monkey and human. Metabolism studies included analysis of reactive intermediate formation using glutathione and potassium cyanide (KCN) and analysis of non-P450 mediated metabolites in cytosol fractions of various species. Metabolite profiles and metabolic soft spots of LDN-193189 were elucidated using LC/UV and mass spectral techniques. The in vitro metabolism of LDN-193189 was significantly dependent on aldehyde oxidase, with formation of the major NIH-Q55 metabolite. The piperazinyl moiety of LDN-193189 was liable to NADPH-dependent metabolism which generated reactive iminium intermediates, as confirmed through KCN trapping experiments, and aniline metabolites (M337 and M380), which brought up potential drug safety concerns. Subsequently, strategies were employed to avoid metabolic liabilities leading to the synthesis of Compounds 1, 2, and 3. This study demonstrated the importance of metabolite identification for the discovery of novel and safe drug candidates for the treatment of FOP and helped medicinal chemists steer away from potential metabolic liabilities.
Collapse
Affiliation(s)
- Elias C Padilha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States.,Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Jianyao Wang
- Department of Pharmacokinetics, Dynamics and Metabolism, Discovery Sciences, Janssen Research and Development, Spring House, PA, United States.,Frontage Laboratories, Inc., Department of Drug Metabolism, Exton, PA, United States
| | - Ed Kerns
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Arthur Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Wenwei Huang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Jian-Kang Jiang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - John McKew
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Abdul Mutlib
- Frontage Laboratories, Inc., Department of Drug Metabolism, Exton, PA, United States
| | - Rosangela G Peccinini
- Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Paul B Yu
- Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Philip Sanderson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Xin Xu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
10
|
Yang X, Johnson N, Di L. Evaluation of Cytochrome P450 Selectivity for Hydralazine as an Aldehyde Oxidase Inhibitor for Reaction Phenotyping. J Pharm Sci 2019; 108:1627-1630. [DOI: 10.1016/j.xphs.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 12/15/2022]
|
11
|
Mota C, Coelho C, Leimkühler S, Garattini E, Terao M, Santos-Silva T, Romão MJ. Critical overview on the structure and metabolism of human aldehyde oxidase and its role in pharmacokinetics. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Uchida H, Mikami B, Yamane-Tanabe A, Ito A, Hirano K, Oki M. Crystal structure of an aldehyde oxidase from Methylobacillus sp. KY4400. J Biochem 2018; 163:321-328. [DOI: 10.1093/jb/mvy004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/21/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Hiroyuki Uchida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Bunzou Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Aiko Yamane-Tanabe
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Anna Ito
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Kouzou Hirano
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 9-1, Bunkyo 3-Chome, Fukui 910-8507, Japan
| |
Collapse
|
13
|
Xu Y, Li L, Wang Y, Xing J, Zhou L, Zhong D, Luo X, Jiang H, Chen K, Zheng M, Deng P, Chen X. Aldehyde Oxidase Mediated Metabolism in Drug-like Molecules: A Combined Computational and Experimental Study. J Med Chem 2017; 60:2973-2982. [DOI: 10.1021/acs.jmedchem.7b00019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Xu
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Liang Li
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yulan Wang
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jing Xing
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Lei Zhou
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Dafang Zhong
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaomin Luo
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kaixian Chen
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingyue Zheng
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pan Deng
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaoyan Chen
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
14
|
Crouch RD, Hutzler JM, Daniels JS. A novel in vitro allometric scaling methodology for aldehyde oxidase substrates to enable selection of appropriate species for traditional allometry. Xenobiotica 2017; 48:219-231. [PMID: 28281401 DOI: 10.1080/00498254.2017.1296208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Failure to predict human pharmacokinetics of aldehyde oxidase (AO) substrates using traditional allometry has been attributed to species differences in AO metabolism. 2. To identify appropriate species for predicting human in vivo clearance by single-species scaling (SSS) or multispecies allometry (MA), we scaled in vitro intrinsic clearance (CLint) of five AO substrates obtained from hepatic S9 of mouse, rat, guinea pig, monkey and minipig to human in vitro CLint. 3. When predicting human in vitro CLint, average absolute fold-error was ≤2.0 by SSS with monkey, minipig and guinea pig (rat/mouse >3.0) and was <3.0 by most MA species combinations (including rat/mouse combinations). 4. Interspecies variables, including fraction metabolized by AO (Fm,AO) and hepatic extraction ratios (E) were estimated in vitro. SSS prediction fold-errors correlated with the animal:human ratio of E (r2 = 0.6488), but not Fm,AO (r2 = 0.0051). 5. Using plasma clearance (CLp) from the literature, SSS with monkey was superior to rat or mouse at predicting human CLp of BIBX1382 and zoniporide, consistent with in vitro SSS assessments. 6. Evaluation of in vitro allometry, Fm,AO and E may prove useful to guide selection of suitable species for traditional allometry and prediction of human pharmacokinetics of AO substrates.
Collapse
Affiliation(s)
- Rachel D Crouch
- a Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA and
| | - J Matthew Hutzler
- b Q2 Solutions, Bioanalytical and ADME Labs , Indianapolis , IN , USA
| | - J Scott Daniels
- a Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , TN , USA and
| |
Collapse
|
15
|
Rashidi MR, Soltani S. An overview of aldehyde oxidase: an enzyme of emerging importance in novel drug discovery. Expert Opin Drug Discov 2017; 12:305-316. [DOI: 10.1080/17460441.2017.1284198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Alimoradi N, Ashrafi-Kooshk MR, Shahlaei M, Maghsoudi S, Adibi H, McGeary RP, Khodarahmi R. Diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives act as acid phosphatase inhibitors: synthesis accompanied by experimental and molecular modeling assessments. J Enzyme Inhib Med Chem 2016; 32:20-28. [PMID: 27766897 PMCID: PMC6010023 DOI: 10.1080/14756366.2016.1230109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Purple acid phosphatases (PAPs) are binuclear metallo-hydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals, PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. The aim of the present study was to investigate inhibitory effect of synthesized diethylalkylsulfonamido(4-methoxyphenyl)methyl)phosphonate/phosphonic acid derivatives as potential red kidney bean PAP (rkbPAP) inhibitors accompanied by experimental and molecular modeling assessments. Enzyme kinetic data showed that they are good rkbPAP inhibitors whose potencies improve with increasing alkyl chain length. Hexadecyl derivatives, as most potent compounds (Ki = 1.1 µM), inhibit rkbPAP in the mixed manner, while dodecyl derivatives act as efficient noncompetitive inhibitor. Also, analysis by molecular modeling of the structure of the rkbPAP-inhibitor complexes reveals factors, which may be important for the determination of inhibition specificity.
Collapse
Affiliation(s)
- Nahid Alimoradi
- a Student Research Committee , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | | | - Mohsen Shahlaei
- c Nano Drug Delivery Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Shabnam Maghsoudi
- b Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Hadi Adibi
- d Pharmaceutical Sciences Research Center, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ross P McGeary
- e The University of Queensland, School of Chemistry and Molecular Biosciences , St. Lucia , QLD , Australia
| | - Reza Khodarahmi
- b Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
17
|
Bohnert T, Patel A, Templeton I, Chen Y, Lu C, Lai G, Leung L, Tse S, Einolf HJ, Wang YH, Sinz M, Stearns R, Walsky R, Geng W, Sudsakorn S, Moore D, He L, Wahlstrom J, Keirns J, Narayanan R, Lang D, Yang X. Evaluation of a New Molecular Entity as a Victim of Metabolic Drug-Drug Interactions-an Industry Perspective. ACTA ACUST UNITED AC 2016; 44:1399-423. [PMID: 27052879 DOI: 10.1124/dmd.115.069096] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 12/15/2022]
Abstract
Under the guidance of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ), scientists from 20 pharmaceutical companies formed a Victim Drug-Drug Interactions Working Group. This working group has conducted a review of the literature and the practices of each company on the approaches to clearance pathway identification (fCL), estimation of fractional contribution of metabolizing enzyme toward metabolism (fm), along with modeling and simulation-aided strategy in predicting the victim drug-drug interaction (DDI) liability due to modulation of drug metabolizing enzymes. Presented in this perspective are the recommendations from this working group on: 1) strategic and experimental approaches to identify fCL and fm, 2) whether those assessments may be quantitative for certain enzymes (e.g., cytochrome P450, P450, and limited uridine diphosphoglucuronosyltransferase, UGT enzymes) or qualitative (for most of other drug metabolism enzymes), and the impact due to the lack of quantitative information on the latter. Multiple decision trees are presented with stepwise approaches to identify specific enzymes that are involved in the metabolism of a given drug and to aid the prediction and risk assessment of drug as a victim in DDI. Modeling and simulation approaches are also discussed to better predict DDI risk in humans. Variability and parameter sensitivity analysis were emphasized when applying modeling and simulation to capture the differences within the population used and to characterize the parameters that have the most influence on the prediction outcome.
Collapse
Affiliation(s)
- Tonika Bohnert
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Aarti Patel
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ian Templeton
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Yuan Chen
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Chuang Lu
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - George Lai
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Louis Leung
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Susanna Tse
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Heidi J Einolf
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ying-Hong Wang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Michael Sinz
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ralph Stearns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Robert Walsky
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Wanping Geng
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Sirimas Sudsakorn
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - David Moore
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Ling He
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jan Wahlstrom
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Jim Keirns
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Rangaraj Narayanan
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Dieter Lang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | - Xiaoqing Yang
- Biogen, Cambridge, Massachusetts (T.B.); GlaxoSmithKline R&D, Hertfordshire, United Kingdom (A.P.); Janssen R&D, Spring House, Pennsylvania (I.T.); Genentech, South San Francisco, California (Y.C.); Takeda, Cambridge, Massachusetts (C.L.); Eisai Inc., Andover, Massachusetts (G.L.); Pfizer Inc., Groton, Connecticut (L.L., S.T.); Novartis, East Hanover, New Jersey (H.J.E.); Merck & Co., Inc., Kenilworth, New Jersey (Y.-H.W.); Bristol Myers Squibb, Wallingford, Connecticut (M.S.); Vertex Pharmaceuticals Inc., Boston, Massachusetts (R.S.); EMD Serono R&D Institute, Inc., Billerica, Massachusetts (R.W., W.G.); Sanofi, Waltham, Massachusetts (S.S.); Roche Innovation Center, New York, New York (D.M.); Daiichi Sankyo, Edison, New Jersey (L.H.); Amgen Inc., Thousand Oaks, California (J.W.); Astellas, Northbrook, Illinois (J.K.); Celgene Corporation, Summit, New Jersey (R.N.); Bayer Pharma AG, Wuppertal, Germany (D.L.); and Incyte Corporation, Wilmington, Delaware (X.Y.)
| | | |
Collapse
|
18
|
Structure and function of mammalian aldehyde oxidases. Arch Toxicol 2016; 90:753-80. [DOI: 10.1007/s00204-016-1683-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
|
19
|
Siah M, Farzaei MH, Ashrafi-Kooshk MR, Adibi H, Arab SS, Rashidi MR, Khodarahmi R. Inhibition of guinea pig aldehyde oxidase activity by different flavonoid compounds: An in vitro study. Bioorg Chem 2016; 64:74-84. [DOI: 10.1016/j.bioorg.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 01/22/2023]
|
20
|
Interspecies differences in the metabolism of methotrexate: An insight into the active site differences between human and rabbit aldehyde oxidase. Biochem Pharmacol 2015; 96:288-95. [PMID: 26032640 DOI: 10.1016/j.bcp.2015.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/21/2015] [Indexed: 12/27/2022]
Abstract
Several drug compounds have failed in clinical trials due to extensive biotransformation by aldehyde oxidase (AOX) (EC 1.2.3.1). One of the main reasons is the difficulty in scaling clearance for drugs metabolised by AOX, from preclinical species to human. Using methotrexate as a probe substrate, we evaluated AOX metabolism in liver cytosol from human and commonly used laboratory species namely guinea pig, monkey, rat and rabbit. We found that the metabolism of methotrexate in rabbit liver cytosol was several orders of magnitude higher than any of the other species tested. The results of protein quantitation revealed that the amount of AOX1 in human liver was similar to rabbit liver. To understand if the observed differences in activity were due to structural differences, we modelled rabbit AOX1 using the previously generated human AOX1 homology model. Molecular docking of methotrexate into the active site of the enzyme led to the identification of important residues that could potentially be involved in substrate binding and account for the observed differences. In order to study the impact of these residue changes on enzyme activity, we used site directed mutagenesis to construct mutant AOX1 cDNAs by substituting nucleotides of human AOX1 with relevant ones of rabbit AOX1. AOX1 mutant proteins were expressed in Escherichia coli. Differences in the kinetic properties of these mutants have been presented in this study.
Collapse
|
21
|
Affiliation(s)
- Deepak Dalvie
- Pfizer Global Research and Development, LaJolla Laboratories San Diego
| | - Michael Zientek
- Pfizer Global Research and Development, LaJolla Laboratories San Diego
| |
Collapse
|
22
|
Sanoh S, Tayama Y, Sugihara K, Kitamura S, Ohta S. Significance of aldehyde oxidase during drug development: Effects on drug metabolism, pharmacokinetics, toxicity, and efficacy. Drug Metab Pharmacokinet 2015; 30:52-63. [DOI: 10.1016/j.dmpk.2014.10.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022]
|
23
|
Bustin SA. The reproducibility of biomedical research: Sleepers awake! BIOMOLECULAR DETECTION AND QUANTIFICATION 2014; 2:35-42. [PMID: 27896142 PMCID: PMC5121206 DOI: 10.1016/j.bdq.2015.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
There is increasing concern about the reliability of biomedical research, with recent articles suggesting that up to 85% of research funding is wasted. This article argues that an important reason for this is the inappropriate use of molecular techniques, particularly in the field of RNA biomarkers, coupled with a tendency to exaggerate the importance of research findings.
Collapse
Affiliation(s)
- Stephen A. Bustin
- Faculty of Medical Science, Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford CM1 1SQ, UK
| |
Collapse
|
24
|
Barr JT, Jones JP, Oberlies NH, Paine MF. Inhibition of human aldehyde oxidase activity by diet-derived constituents: structural influence, enzyme-ligand interactions, and clinical relevance. Drug Metab Dispos 2014; 43:34-41. [PMID: 25326286 DOI: 10.1124/dmd.114.061192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mechanistic understanding of interactions between diet-derived substances and conventional medications in humans is nascent. Most investigations have examined cytochrome P450-mediated interactions. Interactions mediated by other phase I enzymes are understudied. Aldehyde oxidase (AO) is a phase I hydroxylase that is gaining recognition in drug design and development programs. Taken together, a panel of structurally diverse phytoconstituents (n = 24) was screened for inhibitors of the AO-mediated oxidation of the probe substrate O(6)-benzylguanine. Based on the estimated IC50 (<100 μM), 17 constituents were advanced for Ki determination. Three constituents were described best by a competitive inhibition model, whereas 14 constituents were described best by a mixed-mode model. The latter model consists of two Ki terms, Kis and Kii, which ranged from 0.26-73 and 0.80-120 μM, respectively. Molecular modeling was used to glean mechanistic insight into AO inhibition. Docking studies indicated that the tested constituents bound within the AO active site and elucidated key enzyme-inhibitor interactions. Quantitative structure-activity relationship modeling identified three structural descriptors that correlated with inhibition potency (r(2) = 0.85), providing a framework for developing in silico models to predict the AO inhibitory activity of a xenobiotic based solely on chemical structure. Finally, a simple static model was used to assess potential clinically relevant AO-mediated dietary substance-drug interactions. Epicatechin gallate and epigallocatechin gallate, prominent constituents in green tea, were predicted to have moderate to high risk. Further characterization of this uncharted type of interaction is warranted, including dynamic modeling and, potentially, clinical evaluation.
Collapse
Affiliation(s)
- John T Barr
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| | - Jeffrey P Jones
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| | - Nicholas H Oberlies
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| | - Mary F Paine
- Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, Washington (J.T.B., M.F.P.); Department of Chemistry, Washington State University, Pullman, Washington (J.P.J.); and Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (N.H.O.)
| |
Collapse
|
25
|
Zientek MA, Youdim K. Reaction phenotyping: advances in the experimental strategies used to characterize the contribution of drug-metabolizing enzymes. Drug Metab Dispos 2014; 43:163-81. [PMID: 25297949 DOI: 10.1124/dmd.114.058750] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During the process of drug discovery, the pharmaceutical industry is faced with numerous challenges. One challenge is the successful prediction of the major routes of human clearance of new medications. For compounds cleared by metabolism, accurate predictions help provide an early risk assessment of their potential to exhibit significant interpatient differences in pharmacokinetics via routes of metabolism catalyzed by functionally polymorphic enzymes and/or clinically significant metabolic drug-drug interactions. This review details the most recent and emerging in vitro strategies used by drug metabolism and pharmacokinetic scientists to better determine rates and routes of metabolic clearance and how to translate these parameters to estimate the amount these routes contribute to overall clearance, commonly referred to as fraction metabolized. The enzymes covered in this review include cytochrome P450s together with other enzymatic pathways whose involvement in metabolic clearance has become increasingly important as efforts to mitigate cytochrome P450 clearance are successful. Advances in the prediction of the fraction metabolized include newly developed methods to differentiate CYP3A4 from the polymorphic enzyme CYP3A5, scaling tools for UDP-glucuronosyltranferase, and estimation of fraction metabolized for substrates of aldehyde oxidase.
Collapse
Affiliation(s)
- Michael A Zientek
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| | - Kuresh Youdim
- Worldwide Research and Development, Pharmacokinetics, Pharmacodynamics, and Metabolism, Pfizer Inc., San Diego, California (M.A.Z.); and Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, F. Hoffmann-La Roche Ltd, Roche Innovation Center Basel, Basel, Switzerland (K.Y.)
| |
Collapse
|
26
|
Peng YS, Liu B, Wang RF, Zhao QT, Xu W, Yang XW. Hepatic metabolism: a key component of herbal drugs research. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2014; 17:89-106. [PMID: 25296190 DOI: 10.1080/10286020.2014.960856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Liver is the largest metabolic organ for a wide range of endogenous and exogenous compounds and plays a crucial part in the pharmacokinetics and pharmacodynamics through various metabolic reactions. This review provides a progressive description of hepatic metabolism of herbal drugs with respect to metabolic types and investigational methods. In addition, the problems encountered during the research process are discussed.
Collapse
Affiliation(s)
- Yu-Shuai Peng
- a School of Chinese Materia Medica, Beijing University of Chinese Medicine , Beijing 100102 , China
| | | | | | | | | | | |
Collapse
|
27
|
Choughule KV, Barnaba C, Joswig-Jones CA, Jones JP. In vitro oxidative metabolism of 6-mercaptopurine in human liver: insights into the role of the molybdoflavoenzymes aldehyde oxidase, xanthine oxidase, and xanthine dehydrogenase. Drug Metab Dispos 2014; 42:1334-40. [PMID: 24824603 DOI: 10.1124/dmd.114.058107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anticancer agent 6-mercaptopurine (6MP) has been in use since 1953 for the treatment of childhood acute lymphoblastic leukemia (ALL) and inflammatory bowel disease. Despite being available for 60 years, several aspects of 6MP drug metabolism and pharmacokinetics in humans are unknown. Molybdoflavoenzymes such as aldehyde oxidase (AO) and xanthine oxidase (XO) have previously been implicated in the metabolism of this drug. In this study, we investigated the in vitro metabolism of 6MP to 6-thiouric acid (6TUA) in pooled human liver cytosol. We discovered that 6MP is metabolized to 6TUA through sequential metabolism via the 6-thioxanthine (6TX) intermediate. The role of human AO and XO in the metabolism of 6MP was established using the specific inhibitors raloxifene and febuxostat. Both AO and XO were involved in the metabolism of the 6TX intermediate, whereas only XO was responsible for the conversion of 6TX to 6TUA. These findings were further confirmed using purified human AO and Escherichia coli lysate containing expressed recombinant human XO. Xanthine dehydrogenase (XDH), which belongs to the family of xanthine oxidoreductases and preferentially reduces nicotinamide adenine dinucleotide (NAD(+)), was shown to contribute to the overall production of the 6TX intermediate as well as the final product 6TUA in the presence of NAD(+) in human liver cytosol. In conclusion, we present evidence that three enzymes, AO, XO, and XDH, contribute to the production of 6TX intermediate, whereas only XO and XDH are involved in the conversion of 6TX to 6TUA in pooled HLC.
Collapse
Affiliation(s)
- Kanika V Choughule
- Department of Chemistry, Washington State University, Pullman, Washington
| | - Carlo Barnaba
- Department of Chemistry, Washington State University, Pullman, Washington
| | | | - Jeffrey P Jones
- Department of Chemistry, Washington State University, Pullman, Washington
| |
Collapse
|
28
|
Weidert ER, Schoenborn SO, Cantu-Medellin N, Choughule KV, Jones JP, Kelley EE. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases. Nitric Oxide 2014; 37:41-5. [PMID: 24406683 DOI: 10.1016/j.niox.2013.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 01/10/2023]
Abstract
Sources of nitric oxide alternative to nitric oxide synthases are gaining significant traction as crucial mediators of vessel function under hypoxic inflammatory conditions. For example, capacity to catalyze the one electron reduction of nitrite (NO2-) to ·NO has been reported for hemoglobin, myoglobin and molybdopterin-containing enzymes including xanthine oxidoreductase (XOR) and aldehyde oxidase (AO). For XOR and AO, use of selective inhibition strategies is therefore crucial when attempting to assign relative contributions to nitrite-mediated ·NO formation in cells and tissue. To this end, XOR inhibition has been accomplished with application of classic pyrazolopyrimidine-based inhibitors allo/oxypurinol or the newly FDA-approved XOR-specific inhibitor, Uloric® (febuxostat). Likewise, raloxifene, an estrogen receptor antagonist, has been identified as a potent (Ki=1.0 nM) inhibitor of AO. Herein, we characterize the inhibition kinetics of raloxifene for XOR and describe the resultant effects on inhibiting XO-catalyzed ·NO formation. Exposure of purified XO to raloxifene (PBS, pH 7.4) resulted in a dose-dependent (12.5-100 μM) inhibition of xanthine oxidation to uric acid. Dixon plot analysis revealed a competitive inhibition process with a Ki=13 μM. This inhibitory process was more effective under acidic pH; similar to values encountered under hypoxic/inflammatory conditions. In addition, raloxifene also inhibited anoxic XO-catalyzed reduction of NO2- to NO (EC50=64 μM). In contrast to having no effect on XO-catalyzed uric acid production, the AO inhibitor menadione demonstrated potent inhibition of XO-catalyzed NO2- reduction (EC50=60 nM); somewhat similar to the XO-specific inhibitor, febuxostat (EC50=4 nM). Importantly, febuxostat was found to be a very poor inhibitor of human AO (EC50=613 μM) suggesting its usefulness for validating XO-dependent contributions to NO2- reduction in biological systems. Combined, these data indicate care should be taken when choosing inhibition strategies as well as inhibitor concentrations when assigning relative NO2- reductase activity of AO and XOR.
Collapse
Affiliation(s)
- E R Weidert
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States
| | - S O Schoenborn
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States
| | - N Cantu-Medellin
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States; University of Pittsburgh School of Medicine, Vascular Medicine Institute, United States
| | - K V Choughule
- Washington State University, Department of Chemistry, United States
| | - J P Jones
- Washington State University, Department of Chemistry, United States
| | - E E Kelley
- University of Pittsburgh School of Medicine, Department of Anesthesiology, United States; University of Pittsburgh School of Medicine, Vascular Medicine Institute, United States.
| |
Collapse
|
29
|
Abstract
INTRODUCTION Metabolism is one of the most important clearance pathways representing the major clearance route of 75% drugs. The four most common drug metabolizing enzymes (DME) that contribute significantly to elimination pathways of new chemical entities are cytochrome P450s, UDP-glucuronosyltransferases, aldehyde oxidase and sulfotransferases. Accurate prediction of human in vivo clearance by these enzymes, using both in vitro and in vivo tools, is critical for the success of drug candidates in human translation. AREAS COVERED Important recent advances of key DME are reviewed and highlighted in the following areas: major isoforms, tissue distribution, generic polymorphism, substrate specificity, species differences, mechanism of catalysis, in vitro-in vivo extrapolation and the importance of using optimal assay conditions and relevant animal models. EXPERT OPINION Understanding the clearance mechanism of a compound is the first step toward successful prediction of human clearance. It is critical to apply appropriate in vitro and in vivo methodologies and physiologically based models in human translation. While high-confidence prediction for P450-mediated clearance has been achieved, the accuracy of human clearance prediction is significantly lower for other enzyme classes. More accurate predictive methods and models are being developed to address these challenges.
Collapse
Affiliation(s)
- Li Di
- Pfizer, Inc., Pharmacokinetics, Dynamics and Metabolism , Groton, CT 06340 , USA +1 860 715 6172 ;
| |
Collapse
|