1
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
2
|
Wang Y, Deboer T. Long-Term Effect of a Single Dose of Caffeine on Sleep, the Sleep EEG and Neuronal Activity in the Peduncular Part of the Lateral Hypothalamus under Constant Dark Conditions. Clocks Sleep 2022; 4:260-276. [PMID: 35735603 PMCID: PMC9222093 DOI: 10.3390/clockssleep4020023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Caffeine is a central nervous system stimulant that influences both the sleep–wake cycle and the circadian clock and is known to influence neuronal activity in the lateral hypothalamus, an important area involved in sleep–wake regulation. Light is a strong zeitgeber and it is known to interact with the effect of caffeine on the sleep–wake cycle. We therefore wanted to investigate the long-term effects of a single dose of caffeine under constant dark conditions. Methods: We performed long-term (2 days) electroencephalogram (EEG)/electromyogram recordings combined with multi-unit neuronal activity recordings in the peduncular part of the lateral hypothalamus (PLH) under constant darkness in Brown Norway rats, and investigated the effect of a single caffeine treatment (15 mg/kg) or saline control given 1 h after the onset of the endogenous rest phase. Results: After a reduction in sleep and an increase in waking and activity in the first hours after administration, also on the second recording day after caffeine administration, rapid eye movement (REM) sleep was still reduced. Analysis of the EEG showed that power density in the theta range during waking and REM sleep was increased for at least two days. Neuronal activity in PLH was also increased for two days after the treatment, particularly during non-rapid eye movement sleep. Conclusion: Surprisingly, the data reveal long-term effects of a single dose of caffeine on vigilance states, EEG, and neuronal activity in the PLH. The absence of a light–dark cycle may have enabled the expression of these long-term changes. It therefore may be that caffeine, or its metabolites, have a stronger and longer lasting influence, particularly on the expression of REM sleep, than acknowledged until now.
Collapse
|
3
|
Uehara S, Yoneda N, Higuchi Y, Yamazaki H, Suemizu H. Methyl-hydroxylation and subsequent oxidation to produce carboxylic acid is the major metabolic pathway of tolbutamide in chimeric TK-NOG mice transplanted with human hepatocytes. Xenobiotica 2021; 51:582-589. [PMID: 33455497 DOI: 10.1080/00498254.2021.1875515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tolbutamide is an oral anti-hyperglycaemic agent used to treat non-insulin-dependent diabetes mellitus with species-dependent metabolic profiles. In this study, we investigated tolbutamide metabolism in chimeric TK-NOG mice transplanted with human hepatocytes (humanised-liver mice).Substantial 4-hydroxytolbutamide and 4-carboxytolbutamide production was observed in hepatocytes from humanised-liver mice (Hu-Liver cells) and humans, whereas 4-carboxytolbutamide production was not detected in mouse hepatocytes. In Hu-Liver cells, 4-hydroxytolbutamide formation was inhibited by sulfaphenazole (CYP2C9 inhibitor), whereas 4-carboxytolbutamide formation was inhibited by raloxifene/ethinyloestradiol (aldehyde oxidase inhibitor) and disulfiram (aldehyde dehydrogenase inhibitor).After a single oral dose of tolbutamide (10 mg/kg), the plasma levels of 4-carboxytolbutamide and p-tolylsulfonylurea were higher in humanised-liver mice than in TK-NOG mice. Urinary excretion was the predominant route (>99% of unchanged drug and metabolites detected in excreta) of elimination in both groups. 4-Carboxytolbutamide was the most abundant metabolite in humanised-liver mouse urine, as similarly reported for humans, whereas 4-hydroxytolbutamide was predominantly excreted in TK-NOG mouse urine.These results suggest that humanised-liver mice might represent a suitable animal model for studying the successive oxidative metabolism of tolbutamide by multiple drug-metabolising enzymes. Future work is warranted to study the general nature of primary alcohol metabolism using humanised-liver mice.
Collapse
Affiliation(s)
- Shotaro Uehara
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Nao Yoneda
- Central Institute for Experimental Animals, Kawasaki, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | |
Collapse
|
4
|
Jin L, Pan Y, Tran NLL, Polychronopoulos LN, Warrier A, Brouwer KLR, Nicolazzo JA. Intestinal Permeability and Oral Absorption of Selected Drugs Are Reduced in a Mouse Model of Familial Alzheimer's Disease. Mol Pharm 2020; 17:1527-1537. [PMID: 32212738 DOI: 10.1021/acs.molpharmaceut.9b01227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Compared with the significant number of studies reporting altered abundance and function of drug transporters at the blood-brain barrier (BBB) in Alzheimer's disease (AD), the impact of AD on the abundance of intestinal drug transporters and the subsequent effects on oral drug absorption have received little attention. We have reported the altered abundance of some small intestinal drug transporters in a familial mouse model of AD; however, whether this leads to altered oral drug absorption is unknown. The current study examined plasma concentrations of caffeine and diazepam (markers for transcellular passive transport), digoxin (P-glycoprotein substrate), and valsartan (multidrug resistance-associated protein 2 substrate) following oral administration to 8-10 month old female wild-type (WT) and APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a commonly used mouse model of familial AD. The plasma exposure of valsartan and digoxin was significantly (p < 0.05) lower in APP/PS1 animals compared with WT mice, whereas the plasma concentrations of the passive transcellular markers caffeine and diazepam did not significantly differ between the two genotypes. To assess whether the reduced oral absorption of valsartan and digoxin was due to decreased intestinal transport, the ex vivo transport of the previously mentioned drugs and mannitol (a marker of paracellular transport) across the jejunum of WT and APP/PS1 mice was assessed over 120 min. In line with the in vivo absorption studies, the permeability of caffeine and diazepam did not significantly differ between WT and APP/PS1 mice. The permeability of 3H-digoxin through the APP/PS1 mouse jejunum was lower than that measured through the WT jejunum; the average amount (relative to dose applied) permeating the tissue over 120 min was 0.22 ± 0.11% (mean ± SD) for the APP/PS1 jejunum and 0.85 ± 0.3% for the WT jejunum. A 1.9-fold reduction in the average amount of valsartan permeating the jejunum of APP/PS1 mice relative to that of WT mice was also detected. Although no apparent morphological alterations were observed in the jejunal tissue of APP/PS1 mice, the permeability of 14C-mannitol across the jejunum from APP/PS1 mice was lower than that across the WT jejunum (Papp= 10.7 ± 3.7 × 10-6 and 6.0 ± 3.4 × 10-6 cm/s, respectively), suggesting tightened paracellular junctions in APP/PS1 mice. These studies are the first to demonstrate, in APP/PS1 mice, reduced intestinal permeability and the absorption of drugs commonly prescribed to people with AD for their comorbidities. If these findings translate to people with AD, then modified dosing regimens may be necessary for selected drugs to ensure that their plasma concentrations remain in the effective range.
Collapse
Affiliation(s)
- Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Natalie Lan Linh Tran
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Leon N Polychronopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Aparna Warrier
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
Zhou H, Yang L, Wang C, Li Z, Ouyang Z, Shan M, Gu J, Wei Y. CYP2D1 Gene Knockout Reduces the Metabolism and Efficacy of Venlafaxine in Rats. Drug Metab Dispos 2019; 47:1425-1432. [PMID: 31658948 DOI: 10.1124/dmd.119.088526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022] Open
Abstract
Rat CYP2D1 has been considered as an ortholog of human CYP2D6 To assess the role of CYP2D1 in physiologic processes and drug metabolism, a CYP2D1-null rat model was generated with a CRISPR/Cas9 method. Seven base pairs were deleted from exon 4 of CYP2D1 of Sprague-Dawley wild-type (WT) rats. The CYP2D1-null rats were viable and showed no abnormalities in general appearance and behavior. The metabolism of venlafaxine (VLF) was further studied in CYP2D1-null rats. The V max and intrinsic clearance of the liver microsomes in vitro from CYP2D1-null rats were decreased (by ∼46% and ∼57% in males and ∼47% and ∼58% in females, respectively), while the Michaelis constant was increased (by ∼24% in males and ∼25% in females) compared with WT rats. In the pharmacokinetic studies, compared with WT rats, VLF in CYP2D1-null rats had significantly lower apparent total clearance and apparent volume of distribution (decreased by ∼36% and ∼48% in males and ∼23% and ∼25% in females, respectively), significantly increased area under the curve (AUC) from the time of administration to the last time point, AUC from the start of administration to the theoretical extrapolation, and C max (increased by ∼64%, ∼59%, and ∼26% in males and ∼43%, ∼35%, and ∼15% in females, respectively). In addition, O-desmethyl venlafaxine formation was reduced as well in CYP2D1-null rats compared with that in WT rats. Rat depression models were developed with CYP2D1-null and WT rats by feeding them separately and exposing them to chronic mild stimulation. VLF showed better efficacy in the WT depression rats compared with that in the CYP2D1-null rats. In conclusion, a CYP2D1-null rat model was successfully generated, and CYP2D1 was found to play a certain role in the metabolism and efficacy of venlafaxine. SIGNIFICANCE STATEMENT: A novel CYP2D1-null rat model was generated using CRISPR/Cas9 technology, and it was found to be a valuable tool in the study of the in vivo function of human CYP2D6. Moreover, our data suggest that the reduced O-desmethyl venlafaxine formation was associated with a lower VLF efficacy in rats.
Collapse
Affiliation(s)
- Hongqiu Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Li Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Changsuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Zhiqiang Li
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Zhen Ouyang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Mangting Shan
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Jun Gu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China (H.Z., L.Y., C.W., Z.L., Z.O., Y.W.); MtC BioPharma Co. Ltd., Nanjing, Jiangsu, China (M.S.); and Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany, Albany, New York (J.G.)
| |
Collapse
|
6
|
Kapelyukh Y, Henderson CJ, Scheer N, Rode A, Wolf CR. Defining the Contribution of CYP1A1 and CYP1A2 to Drug Metabolism Using Humanized CYP1A1/1A2 and Cyp1a1/Cyp1a2 Knockout Mice. Drug Metab Dispos 2019; 47:907-918. [PMID: 31147315 PMCID: PMC6657216 DOI: 10.1124/dmd.119.087718] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450s CYP1A1 and CYP1A2 can metabolize a broad range of foreign compounds and drugs. However, these enzymes have significantly overlapping substrate specificities. To establish their relative contribution to drug metabolism in vivo, we used a combination of mice humanized for CYP1A1 and CYP1A2 together with mice nulled at the Cyp1a1 and Cyp1a2 gene loci. CYP1A2 was constitutively expressed in the liver, and both proteins were highly inducible by 2,3,7,8-tetrachlorodibenzodioxin (TCDD) in a number of tissues, including the liver, lung, kidney, and small intestine. Using the differential inhibition of the human enzymes by quinidine, we developed a method to distinguish the relative contribution of CYP1A1 or CYP1A2 in the metabolism of drugs and foreign compounds. Both enzymes made a significant contribution to the hepatic metabolism of the probe compounds 7-methoxy and 7-ehthoxyresorufin in microsomal fractions from animals treated with TCDD. This enzyme kinetic approach allows modeling of the CYP1A1, CYP1A2, and non-CYP1A contribution to the metabolism of any substrate at any substrate, inhibitor, or enzyme concentration and, as a consequence, can be integrated into a physiologically based pharmacokinetics model. The validity of the model can then be tested in humanized mice in vivo. SIGNIFICANCE STATEMENT: Human CYP1A1 and CYP1A2 are important in defining the efficacy and toxicity/carcinogenicity of drugs and foreign compounds. In light of differences in substrate specificity and sensitivity to inhibitors, it is of central importance to understand their relative role in foreign compound metabolism. To address this issue, we have generated mice humanized or nulled at the Cyp1a gene locus and, through the use of these mouse lines and selective inhibitors, developed an enzyme kinetic-based model to enable more accurate prediction of the fate of new chemicals in humans and which can be validated in vivo using mice humanized for cytochrome P450-mediated metabolism.
Collapse
Affiliation(s)
- Y Kapelyukh
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - C J Henderson
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - N Scheer
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - A Rode
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| | - C R Wolf
- Systems Medicine, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital, Dundee, United Kingdom (Y.K., C.J.H., C.R.W.) and Taconic Biosciences Inc., Rensselaer, New York (N.S., A.R.)
| |
Collapse
|
7
|
Mimche SM, Lee CM, Liu KH, Mimche PN, Harvey RD, Murphy TJ, Nyagode BA, Jones DP, Lamb TJ, Morgan ET. A non-lethal malarial infection results in reduced drug metabolizing enzyme expression and drug clearance in mice. Malar J 2019; 18:234. [PMID: 31299982 PMCID: PMC6624958 DOI: 10.1186/s12936-019-2860-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/01/2019] [Indexed: 11/10/2022] Open
Abstract
Background Given the central importance of anti-malarial drugs in the treatment of malaria, there is a need to understand the effect of Plasmodium infection on the broad spectrum of drug metabolizing enzymes. Previous studies have shown reduced clearance of quinine, a treatment for Plasmodium infection, in individuals with malaria. Methods The hepatic expression of a large panel of drug metabolizing enzymes was studied in the livers of mice infected with the AS strain of Plasmodium chabaudi chabaudi, a nonlethal parasite in most strains of mice with several features that model human Plasmodium infections. C57BL/6J mice were infected with P. chabaudi by intraperitoneal injection of infected erythrocytes and sacrificed at different times after infection. Relative hepatic mRNA levels of various drug metabolizing enzymes, cytokines and acute phase proteins were measured by reverse transcriptase-real time PCR. Relative levels of cytochrome P450 proteins were measured by Western blotting with IR-dye labelled antibodies. Pharmacokinetics of 5 prototypic cytochrome P450 substrate drugs were measured by cassette dosing and high-resolution liquid chromatography-mass spectrometry. The results were analysed by MANOVA and post hoc univariate analysis of variance. Results The great majority of enzyme mRNAs were down-regulated, with the greatest effects occurring at the peak of parasitaemia 8 days post infection. Protein levels of cytochrome P450 enzymes in the Cyp 2b, 2c, 2d, 2e, 3a and 4a subfamilies were also down-regulated. Several distinct groups differing in their temporal patterns of regulation were identified. The cassette dosing study revealed that at the peak of parasitaemia, the clearances of caffeine, bupropion, tolbutamide and midazolam were markedly reduced by 60–70%. Conclusions These findings in a model of uncomplicated human malaria suggest that changes in drug clearance in this condition may be of sufficient magnitude to cause significant alterations in exposure and response of anti-malarial drugs and co-medications. Electronic supplementary material The online version of this article (10.1186/s12936-019-2860-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvie M Mimche
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Choon-Myung Lee
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ken H Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Patrice N Mimche
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - R Donald Harvey
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Thomas J Murphy
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Beatrice A Nyagode
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tracey J Lamb
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
McMahon M, Ding S, Jimenez LA, Terranova R, Gerard MA, Vitobello A, Moggs J, Henderson CJ, Wolf CR. Constitutive androstane receptor 1 is constitutively bound to chromatin and 'primed' for transactivation in hepatocytes. Mol Pharmacol 2019; 95:97-105. [PMID: 30361333 PMCID: PMC6277922 DOI: 10.1124/mol.118.113555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a xenobiotic sensor expressed in hepatocytes that activates genes involved in drug metabolism, lipid homeostasis, and cell proliferation. Much progress has been made in understanding the mechanism of activation of human CAR by drugs and xenobiotics. However, many aspects of the activation pathway remain to be elucidated. In this report, we have used viral constructs to express human CAR, its splice variants, and mutant CAR forms in hepatocytes from Car-/- mice in vitro and in vivo. We demonstrate CAR expression rescued the ability of Car-/- hepatocytes to respond to a wide range of CAR activators including phenobarbital. Additionally, two major splice isoforms of human CAR, CAR2 and CAR3, were inactive with almost all the agents tested. In contrast to the current model of CAR activation, ectopic CAR1 is constitutively localized in the nucleus and is loaded onto Cyp2b10 gene in the absence of an inducing agent. In studies to elucidate the role of threonine T38 in CAR regulation, we found that the T38D mutant was inactive even in the presence of CAR activators. However, the T38A mutant was activated by CAR inducers, showing that T38 is not essential for CAR activation. Also, using the inhibitor erlotinib, we could not confirm a role for the epidermal growth factor receptor in CAR regulation. Our data suggest that CAR is constitutively bound to gene regulatory regions and is regulated by exogenous agents through a mechanism which involves protein phosphorylation in the nucleus.
Collapse
Affiliation(s)
- Michael McMahon
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Shaohong Ding
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Lourdes Acosta Jimenez
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Remi Terranova
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Marie-Apolline Gerard
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Antonio Vitobello
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Jonathan Moggs
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - Colin J Henderson
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| | - C Roland Wolf
- School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (M.M., S.D., L.A.J., C.J.H., C.R.W.) and Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, Basel, Switzerland (R.T., M.-A.G., A.V., J.M.)
| |
Collapse
|
9
|
MacLeod AK, Lin D, Huang JTJ, McLaughlin LA, Henderson CJ, Wolf CR. Identification of Novel Pathways of Osimertinib Disposition and Potential Implications for the Outcome of Lung Cancer Therapy. Clin Cancer Res 2018; 24:2138-2147. [PMID: 29437786 DOI: 10.1158/1078-0432.ccr-17-3555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Osimertinib is a third-generation inhibitor of the epidermal growth factor receptor used in treatment of non-small cell lung cancer. A full understanding of its disposition and capacity for interaction with other medications will facilitate its effective use as a single agent and in combination therapy.Experimental Design: Recombinant cytochrome P450s and liver microsomal preparations were used to identify novel pathways of osimertinib metabolism in vitro A panel of knockout and mouse lines humanized for pathways of drug metabolism were used to establish the relevance of these pathways in vivoResults: Although some osimertinib metabolites were similar in mouse and human liver samples there were several significant differences, in particular a marked species difference in the P450s involved. The murine Cyp2d gene cluster played a predominant role in mouse, whereas CYP3A4 was the major human enzyme responsible for osimertinib metabolism. Induction of this enzyme in CYP3A4 humanized mice substantially decreased circulating osimertinib exposure. Importantly, we discovered a further novel pathway of osimertinib disposition involving CPY1A1. Modulation of CYP1A1/CYP1A2 levels markedly reduced parent drug concentrations, significantly altering metabolite pharmacokinetics (PK) in humanized mice in vivoConclusions: We demonstrate that a P450 enzyme expressed in smokers' lungs and lung tumors has the capacity to metabolise osimertinib. This could be a significant factor in defining the outcome of osimertinib treatment. This work also illustrates how P450-humanized mice can be used to identify and mitigate species differences in drug metabolism and thereby model the in vivo effect of critical metabolic pathways on anti-tumor response. Clin Cancer Res; 24(9); 2138-47. ©2018 AACR.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - De Lin
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Jeffrey T-J Huang
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Lesley A McLaughlin
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - Colin J Henderson
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom
| | - C Roland Wolf
- Division of Cancer Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, United Kingdom.
| |
Collapse
|
10
|
Kumar R, Mota LC, Litoff EJ, Rooney JP, Boswell WT, Courter E, Henderson CM, Hernandez JP, Corton JC, Moore DD, Baldwin WS. Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice. PLoS One 2017; 12:e0174355. [PMID: 28350814 PMCID: PMC5370058 DOI: 10.1371/journal.pone.0174355] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we investigated changes in transcript levels, protein expression, and steroid hydroxylation of several xenobiotic detoxifying CYPs in constitutive androstane receptor (CAR)-null and two CYP-null mouse models that have subfamily members regulated by CAR; the Cyp3a-null and a newly described Cyp2b9/10/13-null mouse model. Compensatory changes in CYP expression that occur in these models may also occur in polymorphic humans, or may complicate interpretation of ADME studies performed using these models. The loss of CAR causes significant changes in several CYPs probably due to loss of CAR-mediated constitutive regulation of these CYPs. Expression and activity changes include significant repression of Cyp2a and Cyp2b members with corresponding drops in 6α- and 16β-testosterone hydroxylase activity. Further, the ratio of 6α-/15α-hydroxylase activity, a biomarker of sexual dimorphism in the liver, indicates masculinization of female CAR-null mice, suggesting a role for CAR in the regulation of sexually dimorphic liver CYP profiles. The loss of Cyp3a causes fewer changes than CAR. Nevertheless, there are compensatory changes including gender-specific increases in Cyp2a and Cyp2b. Cyp2a and Cyp2b were down-regulated in CAR-null mice, suggesting activation of CAR and potentially PXR following loss of the Cyp3a members. However, the loss of Cyp2b causes few changes in hepatic CYP transcript levels and almost no significant compensatory changes in protein expression or activity with the possible exception of 6α-hydroxylase activity. This lack of a compensatory response in the Cyp2b9/10/13-null mice is probably due to low CYP2B hepatic expression, especially in male mice. Overall, compensatory and regulatory CYP changes followed the order CAR-null > Cyp3a-null > Cyp2b-null mice.
Collapse
Affiliation(s)
- Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Linda C. Mota
- Environmental Toxicology, Clemson University, Pendleton, SC, United States of America
| | - Elizabeth J. Litoff
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - John P. Rooney
- NHEERL, US-EPA, Research Triangle Park, NC, United States of America
| | - W. Tyler Boswell
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Elliott Courter
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | | | - Juan P. Hernandez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | | | - David D. Moore
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, SC, United States of America
- Environmental Toxicology, Clemson University, Pendleton, SC, United States of America
- * E-mail:
| |
Collapse
|
11
|
CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci Rep 2017; 7:42922. [PMID: 28218310 PMCID: PMC5317174 DOI: 10.1038/srep42922] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/16/2017] [Indexed: 12/16/2022] Open
Abstract
Cytochrome P450 (CYP) 3A accounts for nearly 30% of the total CYP enzymes in the human liver and participates in the metabolism of over 50% of clinical drugs. Moreover, CYP3A plays an important role in chemical metabolism, toxicity, and carcinogenicity. New animal models are needed to investigate CYP3A functions, especially for drug metabolism. In this report, Cyp3a1/2 double knockout (KO) rats were generated by CRISPR-Cas9 technology, and then were characterized for viability and physiological status. The Cyp3a1/2 double KO rats were viable and fertile, and had no obvious physiological abnormities. Compared with the wild-type (WT) rat, Cyp3a1/2 expression was completely absent in the liver of the KO rat. In vitro and in vivo metabolic studies of the CYP3A1/2 substrates indicated that CYP3A1/2 was functionally inactive in double KO rats. The Cyp3a1/2 double KO rat model was successfully generated and characterized. The Cyp3a1/2 KO rats are a novel rodent animal model that will be a powerful tool for the study of the physiological and pharmacological roles of CYP3A, especially in drug and chemical metabolism in vivo.
Collapse
|
12
|
Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 2016; 57:2130-2137. [PMID: 27638959 PMCID: PMC5321228 DOI: 10.1194/jlr.m071183] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Indexed: 12/19/2022] Open
Abstract
Bile acids are synthesized from cholesterol in the liver and subjected to multiple metabolic biotransformations in hepatocytes, including oxidation by cytochromes P450 (CYPs) and conjugation with taurine, glycine, glucuronic acid, and sulfate. Mice and rats can hydroxylate chenodeoxycholic acid (CDCA) at the 6β-position to form α-muricholic acid (MCA) and ursodeoxycholic acid (UDCA) to form β-MCA. However, MCA is not formed in humans to any appreciable degree and the mechanism for this species difference is not known. Comparison of several Cyp-null mouse lines revealed that α-MCA and β-MCA were not detected in the liver samples from Cyp2c-cluster null (Cyp2c-null) mice. Global bile acid analysis further revealed the absence of MCAs and their conjugated derivatives, and high concentrations of CDCA and UDCA in Cyp2c-null mouse cecum and feces. Analysis of recombinant CYPs revealed that α-MCA and β-MCA were produced by oxidation of CDCA and UDCA by Cyp2c70, respectively. CYP2C9-humanized mice have similar bile acid metabolites as the Cyp2c-null mice, indicating that human CYP2C9 does not oxidize CDCA and UDCA, thus explaining the species differences in production of MCA. Because humans do not produce MCA, they lack tauro-β-MCA, a farnesoid X receptor antagonist in mouse that modulates obesity, insulin resistance, and hepatosteatosis.
Collapse
Affiliation(s)
- Shogo Takahashi
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Tatsuki Fukami
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yusuke Masuo
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chad N Brocker
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Cen Xie
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kristopher W Krausz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - C Roland Wolf
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Colin J Henderson
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, United Kingdom
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892.
| |
Collapse
|
13
|
Peters SA, Jones CR, Ungell AL, Hatley OJD. Predicting Drug Extraction in the Human Gut Wall: Assessing Contributions from Drug Metabolizing Enzymes and Transporter Proteins using Preclinical Models. Clin Pharmacokinet 2016; 55:673-96. [PMID: 26895020 PMCID: PMC4875961 DOI: 10.1007/s40262-015-0351-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature. The primary objective of this review is to summarize the current knowledge in the quantitative prediction of gut-wall metabolism. As well as discussing the successes of current models for intestinal metabolism, the challenges in the establishment of good preclinical models are highlighted, including species differences in the isoforms; regional abundances and activities of drug metabolizing enzymes; the interplay of enzyme-transporter proteins; and lack of knowledge on enzyme abundances and availability of empirical scaling factors. Due to its broad specificity and high abundance in the intestine, CYP3A is the enzyme that is frequently implicated in human gut metabolism and is therefore the major focus of this review. A strategy to assess the impact of gut wall metabolism on oral bioavailability during drug discovery and early development phases is presented. Current gaps in the mechanistic understanding and the prediction of gut metabolism are highlighted, with suggestions on how they can be overcome in the future.
Collapse
Affiliation(s)
- Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Frankfurter Str. 250, F130/005, 64293, Darmstadt, Germany.
| | | | - Anna-Lena Ungell
- Investigative ADME, Non-Clinical Development, UCB New Medicines, BioPharma SPRL, Braine l'Alleud, Belgium
| | - Oliver J D Hatley
- Simcyp Limited (A Certara Company), Blades Enterprise Centre, Sheffield, UK
| |
Collapse
|
14
|
Scheer N, Kapelyukh Y, Rode A, Oswald S, Busch D, McLaughlin LA, Lin D, Henderson CJ, Wolf CR. Defining Human Pathways of Drug Metabolism In Vivo through the Development of a Multiple Humanized Mouse Model. Drug Metab Dispos 2015; 43:1679-90. [PMID: 26265742 DOI: 10.1124/dmd.115.065656] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 11/22/2022] Open
Abstract
Variability in drug pharmacokinetics is a major factor in defining drug efficacy and side effects. There remains an urgent need, particularly with the growing use of polypharmacy, to obtain more informative experimental data predicting clinical outcomes. Major species differences in multiplicity, substrate specificity, and regulation of enzymes from the cytochrome P450-dependent mono-oxygenase system play a critical role in drug metabolism. To develop an in vivo model for predicting human responses to drugs, we generated a mouse, where 31 P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene families were exchanged for their relevant human counterparts. The model has been improved through additional humanization for the nuclear receptors constitutive androgen receptor and pregnane X receptor that control the expression of key drug metabolizing enzymes and transporters. In this most complex humanized mouse model reported to date, the cytochromes P450 function as predicted and we illustrate how these mice can be applied to predict drug-drug interactions in humans.
Collapse
Affiliation(s)
- Nico Scheer
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Yury Kapelyukh
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Anja Rode
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Stefan Oswald
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Diana Busch
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Lesley A McLaughlin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - De Lin
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - Colin J Henderson
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| | - C Roland Wolf
- Taconic Biosciences GmbH, Köln, Germany (N.S., A.R.); University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Department of Clinical Pharmacology, Greifswald, Germany (S.O., D.B); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (Y.K., L.A.M., D.L., C.H., C.R.W)
| |
Collapse
|
15
|
Gonzalez FJ, Fang ZZ, Ma X. Transgenic mice and metabolomics for study of hepatic xenobiotic metabolism and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:869-81. [PMID: 25836352 DOI: 10.1517/17425255.2015.1032245] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The study of xenobiotic metabolism and toxicity has been greatly aided by the use of genetically modified mouse models and metabolomics. AREAS COVERED Gene knockout mice can be used to determine the enzymes responsible for the metabolism of xenobiotics in vivo and to examine the mechanisms of xenobiotic-induced toxicity. Humanized mouse models are especially important because there exist marked species differences in the xenobiotic-metabolizing enzymes and the nuclear receptors that regulate these enzymes. Humanized mice expressing CYPs and nuclear receptors including the pregnane X receptor, the major regulator of xenobiotic metabolism and transport were produced. With genetically modified mouse models, metabolomics can determine the metabolic map of many xenobiotics with a level of sensitivity that allows the discovery of even minor metabolites. This technology can be used for determining the mechanism of xenobiotic toxicity and to find early biomarkers for toxicity. EXPERT OPINION Metabolomics and genetically modified mouse models can be used for the study of xenobiotic metabolism and toxicity by: i) comparison of the metabolomics profiles between wild-type and genetically modified mice, and searching for genotype-dependent endogenous metabolites; ii) searching for and elucidating metabolites derived from xenobiotics; and iii) discovery of specific alterations of endogenous compounds induced by xenobiotics-induced toxicity.
Collapse
Affiliation(s)
- Frank J Gonzalez
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Metabolism , Bethesda, MD 20892 , USA +1 301 496 9067 ; +1 301 496 8419 ;
| | | | | |
Collapse
|
16
|
MacLeod AK, Fallon PG, Sharp S, Henderson CJ, Wolf CR, Huang JTJ. An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes. Mol Cell Proteomics 2015; 14:750-60. [PMID: 25561501 PMCID: PMC4349992 DOI: 10.1074/mcp.m114.043661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug–drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of drug pharmacokinetics, pharmacodynamics, and of chemically treated and genetically modified mouse models.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Padraic G Fallon
- §School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sheila Sharp
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Colin J Henderson
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - C Roland Wolf
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Jeffrey T-J Huang
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland;
| |
Collapse
|