1
|
Prasad B, Al-Majdoub ZM, Wegler C, Rostami-Hodjegan A, Achour B. Quantitative Proteomics for Translational Pharmacology and Precision Medicine: State of The Art and Future Outlook. Drug Metab Dispos 2024; 52:1208-1216. [PMID: 38821856 DOI: 10.1124/dmd.124.001600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Over the past 20 years, quantitative proteomics has contributed a wealth of protein expression data, which are currently used for a variety of systems pharmacology applications, as a complement or a surrogate for activity of the corresponding proteins. A symposium at the 25th North American International Society for the Study of Xenobiotics meeting, in Boston, in September 2023, was held to explore current and emerging applications of quantitative proteomics in translational pharmacology and strategies for improved integration into model-informed drug development based on practical experience of each of the presenters. A summary of the talks and discussions is presented in this perspective alongside future outlook that was outlined for future meetings. SIGNIFICANCE STATEMENT: This perspective explores current and emerging applications of quantitative proteomics in translational pharmacology and precision medicine and outlines the outlook for improved integration into model-informed drug development.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Zubida M Al-Majdoub
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Christine Wegler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Amin Rostami-Hodjegan
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| | - Brahim Achour
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (B.P.); Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (Z.M.A.-M., A.R.-H.); Department of Plant Physiology, Umeå University, Umeå, Sweden (C.W.); Certara UK, Sheffield, United Kingdom (A.R.-H.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, Kingston, Rhode Island (B.A.)
| |
Collapse
|
2
|
Kataoka H, Akiyoshi T, Uchida Y, Imaoka A, Terasaki T, Ohtani H. The Effects of N-Glycosylation on the Expression and Transport Activity of OATP1A2 and OATP2B1. J Pharm Sci 2024; 113:1376-1384. [PMID: 38432624 DOI: 10.1016/j.xphs.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Organic anion transporting polypeptide (OATP)1A2 and OATP2B1 have potential N-glycosylation sites, but their influence remains unclear. This study aimed to identify the N-glycosylation sites of OATP1A2/2B1 and investigate their impact on the expression and function of OATP1A2/2B1. Human embryonic kidney cells expressing OATP1A2 or OATP2B1 (HEK293-OATP1A2/2B1) were exposed to tunicamycin, an N-glycosylation inhibitor, and a plasma membrane fraction (PMF) Western blot assay and an estrone 3-sulfate (E3S) uptake study were conducted. HEK293-OATP1A2/OATP2B1 cell lines with mutation(s) at potential N-glycosylation sites were established, and the Western blotting and uptake study were repeated. Tunicamycin reduced the PMF levels and E3S uptake of OATP1A2/OATP2B1. The Asn124Gln, Asn135Gln, and Asn492Gln mutations in OATP1A2 and Asn176Gln and Asn538Gln mutations in OATP2B1 reduced the molecular weights of the OATP molecules and their PMF levels. The PMF levels of OATP1A2 Asn124/135Gln, OATP1A2 Asn124/135/492Gln, and OATP2B1 Asn176/538Gln were further reduced. The maximum transport velocities of OATP1A2 Asn124Gln, OATP1A2 Asn135Gln, and OATP2B1 Asn176/538Gln were markedly reduced to 10 %, 4 %, and 10 % of the wild-type level, respectively. In conclusion, the N-glycans at Asn124 and Asn135 of OATP1A2 and those at Asn176 and Asn538 of OATP2B1 are essential for the plasma membrane expression of these molecules and also affect their transport function.
Collapse
Affiliation(s)
- Hiroki Kataoka
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Department of Clinical Pharmacy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasuo Uchida
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima city 734-0037, Japan
| | - Ayuko Imaoka
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Tetsuya Terasaki
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Hisakazu Ohtani
- Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo 105-8512, Japan; Department of Clinical Pharmacy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| |
Collapse
|
3
|
Yajima K, Akiyoshi T, Sakamoto K, Suzuki Y, Oka T, Imaoka A, Yamamura H, Kurokawa J, Ohtani H. Determination of single-molecule transport activity of OATP2B1 by measuring the number of transporter molecules using electrophysiological approach. J Pharmacol Sci 2023; 153:153-160. [PMID: 37770156 DOI: 10.1016/j.jphs.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Transporter-mediated clearance is determined by two factors, its single-molecule clearance, and expression level. However, no reliable method has been developed to evaluate them separately. This study aimed to develop a reliable method for evaluating the single-molecule activity of membrane transporters, such as organic anion transporting polypeptide (OATP) 2B1. HEK293 cells that co-expressed large conductance calcium-activated potassium (BK) channel and OATP2B1 were established and used for the following experiments. i) BK channel-mediated whole-cell conductance was measured using patch-clamp technique and divided by its unitary conductance to estimate the number of channels on plasma membrane (QI). ii) Using plasma membrane fraction, quantitative targeted absolute proteomics determined the stoichiometric ratio (ρ) of OATP2B1 to BK channel. iii) The uptake of estrone 3-sulfate was evaluated to calculate the Michaelis constant and uptake clearance (CL) per cell. Single-molecule clearance (CLint) was calculated by dividing CL by QI·ρ. QI and ρ values were estimated to be 916 and 2.16, respectively, yielding CLint of 5.23 fL/min/molecule. We successfully developed a novel method to reliably measure the single-molecule activity of a transporter, which could be used to evaluate the influences of factors such as genetic variations and post-translational modifications on the intrinsic activity of transporters.
Collapse
Affiliation(s)
- Kodai Yajima
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan; Department of Clinical Pharmacy, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8526, Japan.
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Takayuki Oka
- Nanion Technologies Japan K.K., Tokyo Laboratory, Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan.
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8526, Japan.
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan; Department of Clinical Pharmacy, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Pharmacy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
4
|
Murphy WA, Adiwidjaja J, Sjöstedt N, Yang K, Beaudoin JJ, Spires J, Siler SQ, Neuhoff S, Brouwer KLR. Considerations for Physiologically Based Modeling in Liver Disease: From Nonalcoholic Fatty Liver (NAFL) to Nonalcoholic Steatohepatitis (NASH). Clin Pharmacol Ther 2023; 113:275-297. [PMID: 35429164 PMCID: PMC10083989 DOI: 10.1002/cpt.2614] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/05/2022] [Indexed: 01/27/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), representing a clinical spectrum ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), is rapidly evolving into a global pandemic. Patients with NAFLD are burdened with high rates of metabolic syndrome-related comorbidities resulting in polypharmacy. Therefore, it is crucial to gain a better understanding of NAFLD-mediated changes in drug disposition and efficacy/toxicity. Despite extensive clinical pharmacokinetic data in cirrhosis, current knowledge concerning pharmacokinetic alterations in NAFLD, particularly at different stages of disease progression, is relatively limited. In vitro-to-in vivo extrapolation coupled with physiologically based pharmacokinetic and pharmacodynamic (IVIVE-PBPK/PD) modeling offers a promising approach for optimizing pharmacologic predictions while refining and reducing clinical studies in this population. Use of IVIVE-PBPK to predict intra-organ drug concentrations at pharmacologically relevant sites of action is particularly advantageous when it can be linked to pharmacodynamic effects. Quantitative systems pharmacology/toxicology (QSP/QST) modeling can be used to translate pharmacokinetic and pharmacodynamic data from PBPK/PD models into clinically relevant predictions of drug response and toxicity. In this review, a detailed summary of NAFLD-mediated alterations in human physiology relevant to drug absorption, distribution, metabolism, and excretion (ADME) is provided. The application of literature-derived physiologic parameters and ADME-associated protein abundance data to inform virtual NAFLD population development and facilitate PBPK/PD, QSP, and QST predictions is discussed along with current limitations of these methodologies and knowledge gaps. The proposed methodologic framework offers great potential for meaningful prediction of pharmacological outcomes in patients with NAFLD and can inform both drug development and clinical practice for this population.
Collapse
Affiliation(s)
- William A Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffry Adiwidjaja
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Simulations Plus, Inc., Lancaster, California, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kyunghee Yang
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | - James J Beaudoin
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Scott Q Siler
- DILIsym Services Division, Simulations Plus Inc., Research Triangle Park, North Carolina, USA
| | | | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
6
|
Vasilogianni AM, El-Khateeb E, Al-Majdoub ZM, Alrubia S, Rostami-Hodjegan A, Barber J, Achour B. Proteomic quantification of perturbation to pharmacokinetic target proteins in liver disease. J Proteomics 2022; 263:104601. [DOI: 10.1016/j.jprot.2022.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
7
|
Kikuchi R, Chiou WJ, Durbin KR, Savaryn JP, Ma J, Emami Riedmaier A, de Morais SM, Jenkins GJ, Bow DAJ. Quantitation of plasma membrane drug transporters in kidney tissue and cell lines using a novel proteomic approach enabled a prospective prediction of metformin disposition. Drug Metab Dispos 2021; 49:938-946. [PMID: 34330717 DOI: 10.1124/dmd.121.000487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
The successful prospective incorporation of in vitro transporter kinetics in physiologically based pharmacokinetic (PBPK) models to describe drug disposition remains challenging. While determination of scaling factors to extrapolate in vitro to in vivo transporter kinetics has been facilitated by quantitative proteomics, no robust assessment comparing membrane recoveries between different cells/tissues has been made. HEK293 cells overexpressing OCT2, MATE1 and MATE2K or human kidney cortex were homogenized and centrifuged to obtain the total membrane fractions, which were subsequently subjected to liquid-liquid extraction followed by centrifugation and precipitation to isolate plasma membrane fractions. Plasma membrane recoveries determined by quantitation of the marker Na+/K+-ATPase in lysate and plasma membrane fractions were {less than or equal to}20% but within three-fold across different cells and tissues. A separate study demonstrated that recoveries are comparable between basolateral and apical membranes of renal proximal tubules, as measured by Na+/K+-ATPase and γ-glutamyl transpeptidase 1, respectively. The plasma membrane expression of OCT2, MATE1 and MATE2K was quantified and relative expression factors (REFs) were determined as the ratio between the tissue and cell concentrations. Corrections using plasma membrane recovery had minimal impact on REF values (<two-fold). In vitro transporter kinetics of metformin were extrapolated to in vivo using the corresponding REFs in a PBPK model. The simulated metformin exposures were within two-fold of clinical exposure. These results demonstrate that transporter REFs based on plasma membrane expression enable a prediction of transporter-mediated drug disposition. Such REFs may be estimated without the correction of plasma membrane recovery when the same procedure is applied between different matrices. Significance Statement Transporter REFs based on plasma membrane expression enable in vitro-in vivo extrapolation of transporter kinetics. Plasma membrane recoveries as determined by the quantification of Na+/K+-ATPase were comparable between the in vitro and in vivo systems used in the present study, and therefore had minimal impact on the transporter REF values.
Collapse
Key Words
- Transporter-mediated drug/metabolite disposition
- Uptake transporters (OATP, OAT, OCT, PEPT, MCT, NTCP, ASBT, etc.)
- efflux transporters (P-gp, BCRP, MRP, MATE, BSEP, etc)
- in vitro-in vivo prediction (IVIVE)
- proteomics
Collapse
Affiliation(s)
- Ryota Kikuchi
- Drug Metabolism and Pharmacokinetics, AbbVie, United States
| | | | - Kenneth R Durbin
- Drug Metabolism, Pharmacokinetics and Bioanalysis, AbbVie, United States
| | | | - Junli Ma
- Drug Metabolism, Pharmacokinetics and Bioanalysis, AbbVie, United States
| | | | | | - Gary J Jenkins
- Drug Metabolism, Pharmacokinetics and Bioanal, AbbVie, United States
| | | |
Collapse
|
8
|
Martinez MN, Mochel JP, Neuhoff S, Pade D. Comparison of Canine and Human Physiological Factors: Understanding Interspecies Differences that Impact Drug Pharmacokinetics. AAPS JOURNAL 2021; 23:59. [PMID: 33907906 DOI: 10.1208/s12248-021-00590-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
This review is a summary of factors affecting the drug pharmacokinetics (PK) of dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK extrapolations while providing mechanistic insights into species-specific drug in vivo behavior. Such a cross-cutting perspective can be particularly useful when developing therapeutics targeting diseases shared between the two species such as cancer, diabetes, cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the canine-human differences that can affect drug absorption, distribution, metabolism, and elimination, this review provides a comparison of the physiology, drug transporter/enzyme location, abundance, activity, and specificity between dogs and humans. Supplemental material provides an in-depth discussion of certain topics, offering additional critical points to consider. Based upon an assessment of available state-of-the-art information, data gaps were identified. The hope is that this manuscript will encourage the research needed to support an understanding of similarities and differences in human versus canine drug PK.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Food and Drug Administration, Rockville, Maryland, 20855, USA.
| | - Jonathan P Mochel
- SMART Pharmacology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa, 50011, USA
| | - Sibylle Neuhoff
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Devendra Pade
- Certara UK Limited, Simcyp Division, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
9
|
Wegler C, Matsson P, Krogstad V, Urdzik J, Christensen H, Andersson TB, Artursson P. Influence of Proteome Profiles and Intracellular Drug Exposure on Differences in CYP Activity in Donor-Matched Human Liver Microsomes and Hepatocytes. Mol Pharm 2021; 18:1792-1805. [PMID: 33739838 PMCID: PMC8041379 DOI: 10.1021/acs.molpharmaceut.1c00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023]
Abstract
Human liver microsomes (HLM) and human hepatocytes (HH) are important in vitro systems for studies of intrinsic drug clearance (CLint) in the liver. However, the CLint values are often in disagreement for these two systems. Here, we investigated these differences in a side-by-side comparison of drug metabolism in HLM and HH prepared from 15 matched donors. Protein expression and intracellular unbound drug concentration (Kpuu) effects on the CLint were investigated for five prototypical probe substrates (bupropion-CYP2B6, diclofenac-CYP2C9, omeprazole-CYP2C19, bufuralol-CYP2D6, and midazolam-CYP3A4). The samples were donor-matched to compensate for inter-individual variability but still showed systematic differences in CLint. Global proteomics analysis outlined differences in HLM from HH and homogenates of human liver (HL), indicating variable enrichment of ER-localized cytochrome P450 (CYP) enzymes in the HLM preparation. This suggests that the HLM may not equally and accurately capture metabolic capacity for all CYPs. Scaling CLint with CYP amounts and Kpuu could only partly explain the discordance in absolute values of CLint for the five substrates. Nevertheless, scaling with CYP amounts improved the agreement in rank order for the majority of the substrates. Other factors, such as contribution of additional enzymes and variability in the proportions of active and inactive CYP enzymes in HLM and HH, may have to be considered to avoid the use of empirical scaling factors for prediction of drug metabolism.
Collapse
Affiliation(s)
- Christine Wegler
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Pär Matsson
- Department
of Pharmacy, Uppsala University, 752 37 Uppsala, Sweden
| | - Veronica Krogstad
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Jozef Urdzik
- Department
of Surgical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Hege Christensen
- Department
of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0315 Oslo, Norway
| | - Tommy B. Andersson
- DMPK,
Research and Early Development Cardiovascular, Renal and Metabolism,
BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Per Artursson
- Department
of Pharmacy and Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
10
|
Qasem RJ, Fallon JK, Nautiyal M, Mosedale M, Smith PC. Differential Detergent Fractionation of Membrane Protein From Small Samples of Hepatocytes and Liver Tissue for Quantitative Proteomic Analysis of Drug Metabolizing Enzymes and Transporters. J Pharm Sci 2021; 110:87-96. [PMID: 33148403 PMCID: PMC7750260 DOI: 10.1016/j.xphs.2020.10.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/31/2022]
Abstract
The fractionation of enough membrane protein from limited samples is challenging for MS-based quantitative targeted absolute proteomics (QTAP) of drug metabolizing enzymes (DMEs) and transporters. This study evaluated differential detergent fractionation (DDF) of membrane protein from progressively smaller numbers of primary mouse hepatocytes (5 million down to 50,000 cells) and limited liver tissue (25-50 mg) in quantifying select DMEs and transporters by QTAP. Two non-ionic detergents, digitonin and Triton-X-100, were applied in sequence to permeabilize cells and extract membrane proteins. Comparison was made with a membrane protein extraction kit and with homogenization in hypotonic buffer and subsequent differential centrifugation (DC). DDF produced linear membrane protein yields with increasing hepatocyte numbers and better permeabilization evidenced by the higher ratio of cytosolic to membrane protein yields. DDF produced 5-times more membrane protein from liver tissue than DC. The concentration of DMEs and transporters remained consistent in the fractions prepared by DDF from progressively smaller numbers of hepatocytes, but declined in kit fractions. In liver tissue, the concentrations were comparatively higher in DDF versus kit and DC. In conclusion, sequential digitonin and Triton-X-100 fractionation of membrane protein from limited samples is efficient, reproducible and cost-effective for QTAP of DMEs and transporters.
Collapse
Affiliation(s)
- Rani J Qasem
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs, Riyadh, Saudi Arabia
| | - John K Fallon
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Manisha Nautiyal
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Institute for Drug Safety Sciences, Research Triangle Park, NC, USA
| | - Merrie Mosedale
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Institute for Drug Safety Sciences, Research Triangle Park, NC, USA
| | - Philip C Smith
- UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
11
|
El-Khateeb E, Achour B, Scotcher D, Al-Majdoub ZM, Athwal V, Barber J, Rostami-Hodjegan A. Scaling Factors for Clearance in Adult Liver Cirrhosis. Drug Metab Dispos 2020; 48:1271-1282. [PMID: 32978222 DOI: 10.1124/dmd.120.000152] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 01/04/2025] Open
Abstract
In vitro to in vivo extrapolation (IVIVE) enables prediction of in vivo clinical outcomes related to drug exposure in various populations from in vitro data. Prudent IVIVE requires scalars specific to the biologic characteristics of the system in each population. This study determined experimentally for the first time scalars in liver samples from patients with varying degrees of cirrhosis. Microsomal and cytosolic fractions were extracted from 13 noncirrhotic and 32 cirrhotic livers (six mild, 13 moderate, and 13 severe, based on Child-Pugh score). Fractional protein content was determined, and cytochrome P450 reductase activity was used to correct for microsomal protein loss. Although the median microsomal protein per gram liver (MPPGL) in mild, moderate, and severe cirrhosis (26.2, 32.4, and 30.8 mg⋅g-1, respectively) seemed lower than control livers (36.6 mg⋅g-1), differences were not statistically significant (Kruskal-Wallis test, P > 0.05). Corresponding values for cytosolic protein per gram liver were 88.2, 67.9, 62.2, and 75.4 (mg⋅g-1) for mild, moderate, and severe cirrhosis and control livers, respectively, with statistically lower values for severe versus controls (Mann-Whitney P = 0.006). Cirrhosis associated with cancer showed lower MPPGL (24.8 mg⋅g-1) than cirrhosis associated with cholestasis (38.3 mg⋅g-1, P = 0.003). Physiologically based pharmacokinetic simulations with disease-specific scalars captured cirrhosis impact on exposure to alfentanil, metoprolol, midazolam, and ethinylestradiol. These experimentally-determined scalars should alleviate the need for indirect scaling using functional liver volume. Scaling factors in cirrhosis might be a reflection of the etiology rather than the disease severity. Hence, bundling various cirrhotic conditions under the same umbrella when predicting hepatic impairment impact should be revisited. SIGNIFICANCE STATEMENT: Cirrhosis-specific scalars required for extrapolation from microsomal or cytosolic in vitro systems to liver tissue are lacking. These scalars can help in predicting drug clearance and selection of dosage regimens for cirrhosis populations. Attempts to consider potential changes have been empirical and ignored the potential impact of the cause of cirrhosis. We obtained experimental values for these scalars for the first time and assessed their impact on predicted exposure to various substrate drugs using physiologically-based pharmacokinetics simulations.
Collapse
Affiliation(s)
- Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Varinder Athwal
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (E.E.-K., B.A., D.S., Z.M.A.-M., J.B., A.R.-H.) and Wellcome Centre for Cell-Matrix Research, Division of Diabetes, Endocrinology and Gastroenterology (V.A.), University of Manchester, Manchester, United Kingdom; Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt (E.E.-K.); Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom (V.A.); and Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| |
Collapse
|
12
|
Wegler C, Prieto Garcia L, Klinting S, Robertsen I, Wiśniewski JR, Hjelmesaeth J, Åsberg A, Jansson-Löfmark R, Andersson TB, Artursson P. Proteomics-Informed Prediction of Rosuvastatin Plasma Profiles in Patients With a Wide Range of Body Weight. Clin Pharmacol Ther 2020; 109:762-771. [PMID: 32970864 PMCID: PMC7984432 DOI: 10.1002/cpt.2056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Rosuvastatin is a frequently used probe to study transporter‐mediated hepatic uptake. Pharmacokinetic models have therefore been developed to predict transporter impact on rosuvastatin disposition in vivo. However, the interindividual differences in transporter concentrations were not considered in these models, and the predicted transporter impact was compared with historical in vivo data. In this study, we investigated the influence of interindividual transporter concentrations on the hepatic uptake clearance of rosuvastatin in 54 patients covering a wide range of body weight. The 54 patients were given an oral dose of rosuvastatin the day before undergoing gastric bypass or cholecystectomy, and pharmacokinetic (PK) parameters were established from each patient’s individual time‐concentration profiles. Liver biopsies were sampled from each patient and their individual hepatic transporter concentrations were quantified. We combined the transporter concentrations with in vitro uptake kinetics determined in HEK293‐transfected cells, and developed a semimechanistic model with a bottom‐up approach to predict the plasma concentration profiles of the single dose of rosuvastatin in each patient. The predicted PK parameters were evaluated against the measured in vivo plasma PKs from the same 54 patients. The developed model predicted the rosuvastatin PKs within two‐fold error for rosuvastatin area under the plasma concentration versus time curve (AUC; 78% of the patients; average fold error (AFE): 0.96), peak plasma concentration (Cmax; 76%; AFE: 1.05), and terminal half‐life (t1/2; 98%; AFE: 0.89), and captured differences in the rosuvastatin PKs in patients with the OATP1B1 521T<C polymorphism. This demonstrates that hepatic uptake clearance determined in transfected cell lines, together with proteomics scaling, provides a useful tool for prediction models, without the need for empirical scaling factors.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luna Prieto Garcia
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Signe Klinting
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jøran Hjelmesaeth
- Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Grechnikova M, Ženíšková K, Malych R, Mach J, Sutak R. Copper detoxification machinery of the brain-eating amoeba Naegleria fowleri involves copper-translocating ATPase and the antioxidant system. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 14:126-135. [PMID: 33096396 PMCID: PMC7578549 DOI: 10.1016/j.ijpddr.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/19/2022]
Abstract
Copper is a trace metal that is necessary for all organisms but toxic when present in excess. Different mechanisms to avoid copper toxicity have been reported to date in pathogenic organisms such as Cryptococcus neoformans and Candida albicans. However, little if anything is known about pathogenic protozoans despite their importance in human and veterinary medicine. Naegleria fowleri is a free-living amoeba that occurs naturally in warm fresh water and can cause a rapid and deadly brain infection called primary amoebic meningoencephalitis (PAM). Here, we describe the mechanisms employed by N. fowleri to tolerate high copper concentrations, which include various strategies such as copper efflux mediated by a copper-translocating ATPase and upregulation of the expression of antioxidant enzymes and obscure hemerythrin-like and protoglobin-like proteins. The combination of different mechanisms efficiently protects the cell and ensures its high copper tolerance, which can be advantageous both in the natural environment and in the host. Nevertheless, we demonstrate that copper ionophores are potent antiamoebic agents; thus, copper metabolism may be considered a therapeutic target. N. fowleri employs the combination of copper efflux and antioxidant system to ensure a high copper tolerance. Copper efflux in N. fowleri is mediated by a copper-translocating P-type ATPase. Copper ionophores have amoebicidal effect against N. fowleri and thus may be potentially used as antiamoebic agents. Iron-binding proteins hemerythrin and protoglobin are highly upregulated in N. fowleri under copper overload.
Collapse
Affiliation(s)
- Maria Grechnikova
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Kateřina Ženíšková
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ronald Malych
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Mach
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
14
|
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment. Food Chem Toxicol 2020; 140:111305. [DOI: 10.1016/j.fct.2020.111305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
15
|
Elmorsi Y, Al Feteisi H, Al-Majdoub ZM, Barber J, Rostami-Hodjegan A, Achour B. Proteomic characterisation of drug metabolising enzymes and drug transporters in pig liver. Xenobiotica 2020; 50:1208-1219. [DOI: 10.1080/00498254.2020.1763513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yasmine Elmorsi
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Hajar Al Feteisi
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Zubida M. Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
- Certara UK Ltd., Simcyp Division, Sheffield, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Couto N, Al-Majdoub ZM, Gibson S, Davies PJ, Achour B, Harwood MD, Carlson G, Barber J, Rostami-Hodjegan A, Warhurst G. Quantitative Proteomics of Clinically Relevant Drug-Metabolizing Enzymes and Drug Transporters and Their Intercorrelations in the Human Small Intestine. Drug Metab Dispos 2020; 48:245-254. [PMID: 31959703 PMCID: PMC7076527 DOI: 10.1124/dmd.119.089656] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
The levels of drug-metabolizing enzymes (DMEs) and transporter proteins in the human intestine are pertinent to determine oral drug bioavailability. Despite the paucity of reports on such measurements, it is well recognized that these values are essential for translating in vitro data on drug metabolism and transport to predict drug disposition in gut wall. In the current study, clinically relevant DMEs [cytochrome P450 (P450) and uridine 5′-diphospho-glucuronosyltransferase (UGT)] and drug transporters were quantified in total mucosal protein preparations from the human jejunum (n = 4) and ileum (n = 12) using quantification concatemer–based targeted proteomics. In contrast to previous reports, UGT2B15 and organic anion-transporting polypeptide 1 (OATP1A2) were quantifiable in all our samples. Overall, no significant disparities in protein expression were observed between jejunum and ileum. Relative mRNA expression for drug transporters did not correlate with the abundance of their cognate protein, except for P-glycoprotein 1 (P-gp) and organic solute transporter subunit alpha (OST-α), highlighting the limitations of RNA as a surrogate for protein expression in dynamic tissues with high turnover. Intercorrelations were found within P450 [2C9-2C19 (P = 0.002, R2 = 0.63), 2C9–2J2 (P = 0.004, R2 = 0.40), 2D6-2J2 (P = 0.002, R2 = 0.50)] and UGT [1A1-2B7 (P = 0.02, R2 = 0.87)] family of enzymes. There were also correlations between P-gp and several other proteins [OST-α (P < 0.0001, R2 = 0.77), UGT1A6 (P = 0.009, R2 = 0.38), and CYP3A4 (P = 0.007, R2 = 0.30)]. Incorporating such correlations into building virtual populations is crucial for obtaining plausible characteristics of simulated individuals.
Collapse
Affiliation(s)
- Narciso Couto
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Stephanie Gibson
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Pamela J Davies
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Matthew D Harwood
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Gordon Carlson
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Geoffrey Warhurst
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| |
Collapse
|
17
|
Drozdzik M, Szelag‐Pieniek S, Post M, Zeair S, Wrzesinski M, Kurzawski M, Prieto J, Oswald S. Protein Abundance of Hepatic Drug Transporters in Patients With Different Forms of Liver Damage. Clin Pharmacol Ther 2019; 107:1138-1148. [PMID: 31697849 DOI: 10.1002/cpt.1717] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Sylwia Szelag‐Pieniek
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Mariola Post
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Samir Zeair
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Maciej Wrzesinski
- Department of General and Transplantation Surgery County Hospital Szczecin Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology Pomeranian Medical University Szczecin Poland
| | - Jesus Prieto
- Center for Applied Medical Research University of Navarra Pamplona Spain
| | - Stefan Oswald
- Department of Clinical Pharmacology University Medicine of Greifswald Greifswald Germany
| |
Collapse
|
18
|
Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacol Ther 2019; 203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
|
19
|
Prasad B, Achour B, Artursson P, Hop CECA, Lai Y, Smith PC, Barber J, Wisniewski JR, Spellman D, Uchida Y, Zientek M, Unadkat JD, Rostami-Hodjegan A. Toward a Consensus on Applying Quantitative Liquid Chromatography-Tandem Mass Spectrometry Proteomics in Translational Pharmacology Research: A White Paper. Clin Pharmacol Ther 2019; 106:525-543. [PMID: 31175671 PMCID: PMC6692196 DOI: 10.1002/cpt.1537] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Quantitative translation of information on drug absorption, disposition, receptor engagement, and drug-drug interactions from bench to bedside requires models informed by physiological parameters that link in vitro studies to in vivo outcomes. To predict in vivo outcomes, biochemical data from experimental systems are routinely scaled using protein quantity in these systems and relevant tissues. Although several laboratories have generated useful quantitative proteomic data using state-of-the-art mass spectrometry, no harmonized guidelines exit for sample analysis and data integration to in vivo translation practices. To address this gap, a workshop was held on September 27 and 28, 2018, in Cambridge, MA, with 100 experts attending from academia, the pharmaceutical industry, and regulators. Various aspects of quantitative proteomics and its applications in translational pharmacology were debated. A summary of discussions and best practices identified by this expert panel are presented in this "White Paper" alongside unresolved issues that were outlined for future debates.
Collapse
Affiliation(s)
- Bhagwat Prasad
- Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - Philip C Smith
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jacek R Wisniewski
- Biochemical Proteomics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Spellman
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism, Merck & Co., Inc., West Point, PA
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
- Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield, UK
| |
Collapse
|
20
|
Drozdzik M, Busch D, Lapczuk J, Müller J, Ostrowski M, Kurzawski M, Oswald S. Protein Abundance of Clinically Relevant Drug Transporters in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clin Pharmacol Ther 2019; 105:1204-1212. [PMID: 30447067 DOI: 10.1002/cpt.1301] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/20/2018] [Indexed: 11/11/2022]
Abstract
Bioavailability of orally administered drugs is partly determined by function of drug transporters in the liver and intestine. Therefore, we explored adenosine triphosphate-binding cassette (ABC) and solute carriers family transporters expression (quantitative polymerase chain reaction) and protein abundance (liquid chromatography tandem mass spectrometry (LC-MS/MS)) in human liver and duodenum, jejunum, ileum, and colon in paired tissue specimens from nine organ donors. The transporter proteins were detected in the liver (permeability-glycoprotein (P-gp), multidrug resistance protein (MRP)2, MRP3, breast cancer resistance protein (BCRP), organic anion-transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic cation transporter (OCT)1, OCT3, organic anion transporter 2, Na+-taurocholate cotransporting polypeptide, monocarboxylate transporter (MCT)1, and multidrug and toxin extrusion 1) and the intestine (P-gp, multidrug-resistance protein (MRP)2, MRP3, MRP4, BCRP, OATP2B1, OCT1, apical sodium-bile acid transporter (only ileum), MCT1, and peptide transporter (PEPT1)). Significantly higher hepatic gene expression and protein abundance of ABCC2/MRP2, SLC22A1/OCT1, and SLCO2B1/OATP2B1 were found, as compared to all intestinal segments. No correlations between hepatic and small intestinal protein levels were observed. These observations provide a description of drug transporters distribution without the impact of interindividual variability bias and may help in construction of superior physiologically based pharmacokinetic and humanized animal models.
Collapse
Affiliation(s)
- Marek Drozdzik
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Diana Busch
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| | - Joanna Lapczuk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Janett Müller
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| | - Marek Ostrowski
- Department of General and Transplantation Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Mateusz Kurzawski
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Stefan Oswald
- Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald, Germany
| |
Collapse
|
21
|
Wiśniewski JR, Wegler C, Artursson P. Multiple-Enzyme-Digestion Strategy Improves Accuracy and Sensitivity of Label- and Standard-Free Absolute Quantification to a Level That Is Achievable by Analysis with Stable Isotope-Labeled Standard Spiking. J Proteome Res 2018; 18:217-224. [PMID: 30336047 DOI: 10.1021/acs.jproteome.8b00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Quantification of individual proteins is an essential task in understanding biological processes. For example, determination of concentrations of proteins transporting and metabolizing xenobiotics is a prerequisite for drug disposition predictions in humans based on in vitro data. So far, this task has frequently been accomplished by targeted proteomics. This type of analyses requires preparation of stable isotope labeled standards for each protein of interest. The selection of appropriate standard peptides is usually tedious and the number of proteins that can be studied in a single experiment by these approaches is limited. In addition, incomplete digestion of proteins often affects the accuracy of the quantification. To circumvent these constrains in proteomic protein quantification, label- and standard-free approaches, such as "total protein approach" (TPA) have been proposed. Here we directly compare an approach using stable isotope labeled (SIL) standards and TPA for quantification of transporters and enzymes in human liver samples within the same LC-MS/MS runs. We show that TPA is a convenient alternative to SIL-based methods. Optimization of the sample preparation beyond commonly used single tryptic digestion, by adding consecutive cleavage steps, improves accuracy and reproducibility of the TPA method to a level, which is achievable by analysis using stable isotope-labeled standard spiking.
Collapse
Affiliation(s)
- Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction , Max-Planck-Institute of Biochemistry , Am Klopferspitz 18 , D-82152 Martinsried , Germany
| | - Christine Wegler
- Department of Pharmacy , Uppsala University , S-751 23 Uppsala , Sweden.,Cardiovascular, Renal and Metabolism , Innovative Medicines and Early Development Biotech Unit , AstraZeneca , Gothenburg , Sweden
| | - Per Artursson
- Department of Pharmacy , Uppsala University , S-751 23 Uppsala , Sweden.,Science for Life Laboratory , Uppsala University , S-751 23 , Uppsala , Sweden
| |
Collapse
|
22
|
Xu M, Saxena N, Vrana M, Zhang H, Kumar V, Billington S, Khojasteh C, Heyward S, Unadkat JD, Prasad B. Targeted LC-MS/MS Proteomics-Based Strategy To Characterize in Vitro Models Used in Drug Metabolism and Transport Studies. Anal Chem 2018; 90:11873-11882. [PMID: 30204418 DOI: 10.1021/acs.analchem.8b01913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Subcellular fractionation of tissue homogenate provides enriched in vitro models (e.g., microsomes, cytosol, or membranes), which are routinely used in the drug metabolism or transporter activity and protein abundance studies. However, batch-to-batch or interlaboratory variability in the recovery, enrichment, and purity of the subcellular fractions can affect performance of in vitro models leading to inaccurate in vitro to in vivo extrapolation (IVIVE) of drug clearance. To evaluate the quality of subcellular fractions, we developed a simple, targeted, and sensitive LC-MS/MS proteomics-based strategy, which relies on determination of protein markers of various cellular organelles, i.e., plasma membrane, cytosol, nuclei, mitochondria, endoplasmic reticulum (ER), lysosomes, peroxisomes, cytoskeleton, and exosomes. Application of the quantitative proteomics method confirmed a significant effect of processing variables (i.e., homogenization method and centrifugation speed) on the recovery, enrichment, and purity of isolated proteins in microsomes and cytosol. Particularly, markers of endoplasmic reticulum lumen and mitochondrial lumen were enriched in the cytosolic fractions as a result of their release during homogenization. Similarly, the relative recovery and composition of the total membrane fraction isolated from cell vs tissue samples was quantitatively different and should be considered in IVIVE. Further, analysis of exosomes isolated from sandwich-cultured hepatocyte media showed the effect of culture duration on compositions of purified exosomes. Therefore, the quantitative proteomics-based strategy developed here can be applied for efficient and simultaneous determination of multiple protein markers of various cellular organelles when compared to antibody- or activity-based assays and can be used for quality control of subcellular fractionation procedures including in vitro model development for drug metabolism and transport studies.
Collapse
Affiliation(s)
- Meijuan Xu
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States.,Department of Clinical Pharmacology , Affiliated Hospital of Nanjing University of Chinese Medicine , Nanjing , Jiangsu 210029 , China
| | - Neha Saxena
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Marc Vrana
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Haeyoung Zhang
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Vineet Kumar
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Sarah Billington
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Cyrus Khojasteh
- Drug Metabolism and Pharmacokinetics Department , Genentech, Inc. , South San Francisco , California 94080 , United States
| | | | - Jashvant D Unadkat
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| | - Bhagwat Prasad
- Department of Pharmaceutics , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
23
|
Vildhede A, Kimoto E, Rodrigues AD, Varma MVS. Quantification of Hepatic Organic Anion Transport Proteins OAT2 and OAT7 in Human Liver Tissue and Primary Hepatocytes. Mol Pharm 2018; 15:3227-3235. [PMID: 29906129 DOI: 10.1021/acs.molpharmaceut.8b00320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Organic anion transporter (OAT) 2 and OAT7 were recently shown to be involved in the hepatic uptake of drugs; however, there is limited understanding of the population variability in the expression of these transporters in liver. There is also a need to derive relative expression-based scaling factors (REFs) that can be used to bridge in vitro functional data to the in vivo drug disposition. To this end, we quantified OAT2 and OAT7 surrogate peptide abundance in a large number of human liver tissue samples ( n = 52), as well as several single-donor cryopreserved human hepatocyte lots ( n = 30) by a novel, validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. The average surrogate peptide expression of OAT2 and OAT7 in the liver samples was 1.52 ± 0.57 and 4.63 ± 1.58 fmol/μg membrane protein, respectively. While we noted statistically significant differences ( p < 0.05) in hepatocyte and liver tissue abundances for both OAT2 and OAT7, the differences were relatively small (1.8- and 1.5-fold difference in median values, respectively). Large interindividual variability was noted in the hepatic expression of OAT2 (16-fold in liver tissue and 23-fold in hepatocytes). OAT7, on the other hand, showed less interindividual variability (4-fold) in the livers, but high variability for the hepatocyte lots (27-fold). A significant positive correlation in OAT2 and OAT7 expression was observed, but expression levels were neither associated with age nor sex. In conclusion, our data suggest marked interindividual variability in the hepatic expression of OAT2/7, which may contribute to the pharmacokinetic variability of their substrates. Because both transporters were less abundant in hepatocytes than livers, a REF-based approach is recommended when scaling in vitro hepatocyte transport data to predict hepatic drug clearance and liver exposure of OAT2/7 substrates.
Collapse
Affiliation(s)
- Anna Vildhede
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design , Pfizer Worldwide R&D , Groton , Connecticut 06340 , United States
| | - Emi Kimoto
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design , Pfizer Worldwide R&D , Groton , Connecticut 06340 , United States
| | - A David Rodrigues
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design , Pfizer Worldwide R&D , Groton , Connecticut 06340 , United States
| | - Manthena V S Varma
- Pharmacokinetics, Dynamics and Metabolism, Medicine Design , Pfizer Worldwide R&D , Groton , Connecticut 06340 , United States
| |
Collapse
|
24
|
Wegler C, Gaugaz FZ, Andersson TB, Wiśniewski JR, Busch D, Gröer C, Oswald S, Norén A, Weiss F, Hammer HS, Joos TO, Poetz O, Achour B, Rostami-Hodjegan A, van de Steeg E, Wortelboer HM, Artursson P. Variability in Mass Spectrometry-based Quantification of Clinically Relevant Drug Transporters and Drug Metabolizing Enzymes. Mol Pharm 2017; 14:3142-3151. [DOI: 10.1021/acs.molpharmaceut.7b00364] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christine Wegler
- Department
of Pharmacy, Uppsala University, Uppsala 75123, Sweden
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Mölndal 431 50, Sweden
| | | | - Tommy B. Andersson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Mölndal 431 50, Sweden
| | - Jacek R. Wiśniewski
- Biochemical
Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Diana Busch
- Center
of Drug Absorption and Transport, Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald 17489, Germany
| | - Christian Gröer
- Center
of Drug Absorption and Transport, Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald 17489, Germany
| | - Stefan Oswald
- Center
of Drug Absorption and Transport, Department of Clinical Pharmacology, University Medicine of Greifswald, Greifswald 17489, Germany
| | - Agneta Norén
- Department
of Surgical Sciences, Uppsala University, Uppsala 75185, Sweden
| | - Frederik Weiss
- NMI Natural
and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Helen S. Hammer
- NMI Natural
and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Thomas O. Joos
- NMI Natural
and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Oliver Poetz
- NMI Natural
and Medical Sciences Institute, University of Tübingen, Reutlingen 72770, Germany
| | - Brahim Achour
- Centre
for Applied Pharmacokinetic Research, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Amin Rostami-Hodjegan
- Centre
for Applied Pharmacokinetic Research, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Evita van de Steeg
- TNO (Netherlands Organization for Applied Scientific Research), 3700 AJ Zeist, Netherlands
| | - Heleen M. Wortelboer
- TNO (Netherlands Organization for Applied Scientific Research), 3700 AJ Zeist, Netherlands
| | - Per Artursson
- Department
of Pharmacy, Uppsala University, Uppsala 75123, Sweden
| |
Collapse
|
25
|
Chen B, Liu L, Ho H, Chen Y, Yang Z, Liang X, Payandeh J, Dean B, Hop CECA, Deng Y. Strategies of Drug Transporter Quantitation by LC-MS: Importance of Peptide Selection and Digestion Efficiency. AAPS JOURNAL 2017; 19:1469-1478. [PMID: 28589509 DOI: 10.1208/s12248-017-0106-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022]
Abstract
Huge variation of drug transporter abundance was seen in the literature, making PBPK prediction difficult when transporters play a major role. Among multiple factors such as membrane fraction, digestion, and peptide selection that contributed to such variation, peptide selection is the least discussed. Herein, a strategy was established by using a small amount of purified protein standard to select a peptide with near 100% digestion efficiency for quantitation of a transporter protein MDR1. The impact of native membrane protein's tertiary structure on the digestion efficiency of surrogate peptides of MDR1 was investigated. Peptides in more solvent accessible regions are found to be digested much more efficiently than those in large stretches of helical structures. The concentration of peptide EALDESIPPVSFWR(EAL) in the most solvent accessible linker region of MDR1 was found closest to the true protein concentration. When using EAL for MDR1 quantitation, the abundance is over 10 times higher than previously reported, indicating the importance of peptide selection for transporter quantitation. In addition, this study also proposes a screening strategy to select peptides appropriate for relative quantitation for in vitro-in vivo extrapolation in the absence of any protein standard.
Collapse
Affiliation(s)
- Buyun Chen
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA.
| | - Liling Liu
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Hoangdung Ho
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Yuan Chen
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Ze Yang
- Stanford University, 450 Serra Mall, Stanford, California, 94305, USA
| | - Xiaorong Liang
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Jian Payandeh
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | - Brian Dean
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| | | | - Yuzhong Deng
- Genentech Inc, 1 DNA Way, South San Francisco, California, 94080, USA
| |
Collapse
|
26
|
Achour B, Al Feteisi H, Lanucara F, Rostami-Hodjegan A, Barber J. Global Proteomic Analysis of Human Liver Microsomes: Rapid Characterization and Quantification of Hepatic Drug-Metabolizing Enzymes. Drug Metab Dispos 2017; 45:666-675. [PMID: 28373266 DOI: 10.1124/dmd.116.074732] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/30/2017] [Indexed: 12/17/2022] Open
Abstract
Many genetic and environmental factors lead to interindividual variations in the metabolism and transport of drugs, profoundly affecting efficacy and toxicity. Precision dosing, that is, targeting drug dose to a well characterized subpopulation, is dependent on quantitative models of the profiles of drug-metabolizing enzymes (DMEs) and transporters within that subpopulation, informed by quantitative proteomics. We report the first use of ion mobility-mass spectrometry for this purpose, allowing rapid, robust, label-free quantification of human liver microsomal (HLM) proteins from distinct individuals. Approximately 1000 proteins were identified and quantified in four samples, including an average of 70 DMEs. Technical and biological variabilities were distinguishable, with technical variability accounting for about 10% of total variability. The biological variation between patients was clearly identified, with samples showing a range of expression profiles for cytochrome P450 and uridine 5'-diphosphoglucuronosyltransferase enzymes. Our results showed excellent agreement with previous data from targeted methods. The label-free method, however, allowed a fuller characterization of the in vitro system, showing, for the first time, that HLMs are significantly heterogeneous. Further, the traditional units of measurement of DMEs (pmol mg-1 HLM protein) are shown to introduce error arising from variability in unrelated, highly abundant proteins. Simulations of this variability suggest that up to 1.7-fold variation in apparent CYP3A4 abundance is artifactual, as are background positive correlations of up to 0.2 (Spearman correlation coefficient) between the abundances of DMEs. We suggest that protein concentrations used in pharmacokinetic predictions and scaling to in vivo clinical situations (physiologically based pharmacokinetics and in vitro-in vivo extrapolation) should be referenced instead to tissue mass.
Collapse
Affiliation(s)
- Brahim Achour
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester (B.A., H.A.F., A.R.-H., J.B.), Waters Corporation, Wilmslow, Cheshire East (F.L.), and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Hajar Al Feteisi
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester (B.A., H.A.F., A.R.-H., J.B.), Waters Corporation, Wilmslow, Cheshire East (F.L.), and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Francesco Lanucara
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester (B.A., H.A.F., A.R.-H., J.B.), Waters Corporation, Wilmslow, Cheshire East (F.L.), and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester (B.A., H.A.F., A.R.-H., J.B.), Waters Corporation, Wilmslow, Cheshire East (F.L.), and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester (B.A., H.A.F., A.R.-H., J.B.), Waters Corporation, Wilmslow, Cheshire East (F.L.), and Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield (A.R.-H.), United Kingdom
| |
Collapse
|
27
|
Mateus A, Treyer A, Wegler C, Karlgren M, Matsson P, Artursson P. Intracellular drug bioavailability: a new predictor of system dependent drug disposition. Sci Rep 2017; 7:43047. [PMID: 28225057 PMCID: PMC5320532 DOI: 10.1038/srep43047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/17/2017] [Indexed: 11/26/2022] Open
Abstract
Intracellular drug exposure is influenced by cell- and tissue-dependent expression of drug-transporting proteins and metabolizing enzymes. Here, we introduce the concept of intracellular bioavailability (Fic) as the fraction of extracellular drug available to bind intracellular targets, and we assess how Fic is affected by cellular drug disposition processes. We first investigated the impact of two essential drug transporters separately, one influx transporter (OATP1B1; SLCO1B1) and one efflux transporter (P-gp; ABCB1), in cells overexpressing these proteins. We showed that OATP1B1 increased Fic of its substrates, while P-gp decreased Fic. We then investigated the impact of the concerted action of multiple transporters and metabolizing enzymes in freshly-isolated human hepatocytes in culture configurations with different levels of expression and activity of these proteins. We observed that Fic was up to 35-fold lower in the configuration with high expression of drug-eliminating transporters and enzymes. We conclude that Fic provides a measurement of the net impact of all cellular drug disposition processes on intracellular bioavailable drug levels. Importantly, no prior knowledge of the involved drug distribution pathways is required, allowing for high-throughput determination of drug access to intracellular targets in highly defined cell systems (e.g., single-transporter transfectants) or in complex ones (including primary human cells).
Collapse
Affiliation(s)
- André Mateus
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Andrea Treyer
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Cardiovascular and Metabolic Diseases Innovative Medicines, DMPK, AstraZeneca R&D, Mölndal SE-431 83, Sweden
| | - Maria Karlgren
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Pär Matsson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, Box 580, Uppsala SE-751 23, Sweden.,Science for Life Laboratory Drug Discovery and Development platform (SciLifelab DDD-P), Uppsala University, Uppsala SE-751 23, Sweden
| |
Collapse
|
28
|
Vaessen SFC, van Lipzig MMH, Pieters RHH, Krul CAM, Wortelboer HM, van de Steeg E. Regional Expression Levels of Drug Transporters and Metabolizing Enzymes along the Pig and Human Intestinal Tract and Comparison with Caco-2 Cells. Drug Metab Dispos 2017; 45:353-360. [PMID: 28153842 DOI: 10.1124/dmd.116.072231] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/09/2017] [Indexed: 01/06/2023] Open
Abstract
Intestinal transporter proteins and metabolizing enzymes play a crucial role in the oral absorption of a wide variety of drugs. The aim of the current study was to characterize better available intestinal in vitro models by comparing expression levels of these proteins and enzymes between porcine intestine, human intestine, and Caco-2 cells. We therefore determined the absolute protein expression of 19 drug transporters and the mRNA expression of 12 metabolic enzymes along the pig intestinal tract (duodenum, jejunum, ileum; N = 4), in human intestine (jejunum; N = 9), and Caco-2 cells. Expression of the included transporters and enzymes was in general well comparable between porcine and human intestinal tissue, although breast cancer resistance protein, monocarboxylate transporter 5, multidrug resistance protein (MRP) 1, MRP1, MRP3 (∼2-fold), and organic anion-transporting polypeptide (OATP) 4A1 (∼6-fold) was higher expressed in pig compared with human jejunum. Alternatively, expression level of relevant transporter proteins (glucose transporter 1, OATP4A1, MRP2, MRP1, and OATP2B1) was significantly higher (3- to 130-fold) in Caco-2 cells compared with human jejunum. Moreover, all examined CYPs showed at least a fivefold lower gene expression in Caco-2 cells compared with human jejunum, with the smallest differences for CYP1A1 and CYP3A5 and the largest difference for CYP3A4 (871-fold higher expression in human jejunum compared with Caco-2 cells). In conclusion, a comprehensive overview is provided of the expression levels of clinically relevant transporter proteins and metabolic enzymes in porcine and human intestinal tissue and Caco-2 cells, which may assist in deciding upon the most suitable model to further improve our understanding of processes that determine intestinal absorption of compounds.
Collapse
Affiliation(s)
- Stefan F C Vaessen
- TNO, Zeist, The Netherlands (M.M.H.L, C.A.M.K, H.M.W, E.S); Institute for Risk Assessment Sciences, Utrecht, The Netherlands (R.H.H.P, J.A.S,); Research Centre Technology & Innovation; and Innovative Testing in Life sciences and Chemistry, University of Applied Sciences, Utrecht, The Netherlands (S.F.C.V, R.H.H.P, C.A.M.K)
| | - Marola M H van Lipzig
- TNO, Zeist, The Netherlands (M.M.H.L, C.A.M.K, H.M.W, E.S); Institute for Risk Assessment Sciences, Utrecht, The Netherlands (R.H.H.P, J.A.S,); Research Centre Technology & Innovation; and Innovative Testing in Life sciences and Chemistry, University of Applied Sciences, Utrecht, The Netherlands (S.F.C.V, R.H.H.P, C.A.M.K)
| | - Raymond H H Pieters
- TNO, Zeist, The Netherlands (M.M.H.L, C.A.M.K, H.M.W, E.S); Institute for Risk Assessment Sciences, Utrecht, The Netherlands (R.H.H.P, J.A.S,); Research Centre Technology & Innovation; and Innovative Testing in Life sciences and Chemistry, University of Applied Sciences, Utrecht, The Netherlands (S.F.C.V, R.H.H.P, C.A.M.K)
| | - Cyrille A M Krul
- TNO, Zeist, The Netherlands (M.M.H.L, C.A.M.K, H.M.W, E.S); Institute for Risk Assessment Sciences, Utrecht, The Netherlands (R.H.H.P, J.A.S,); Research Centre Technology & Innovation; and Innovative Testing in Life sciences and Chemistry, University of Applied Sciences, Utrecht, The Netherlands (S.F.C.V, R.H.H.P, C.A.M.K)
| | - Heleen M Wortelboer
- TNO, Zeist, The Netherlands (M.M.H.L, C.A.M.K, H.M.W, E.S); Institute for Risk Assessment Sciences, Utrecht, The Netherlands (R.H.H.P, J.A.S,); Research Centre Technology & Innovation; and Innovative Testing in Life sciences and Chemistry, University of Applied Sciences, Utrecht, The Netherlands (S.F.C.V, R.H.H.P, C.A.M.K)
| | - Evita van de Steeg
- TNO, Zeist, The Netherlands (M.M.H.L, C.A.M.K, H.M.W, E.S); Institute for Risk Assessment Sciences, Utrecht, The Netherlands (R.H.H.P, J.A.S,); Research Centre Technology & Innovation; and Innovative Testing in Life sciences and Chemistry, University of Applied Sciences, Utrecht, The Netherlands (S.F.C.V, R.H.H.P, C.A.M.K)
| |
Collapse
|
29
|
Subcellular fractionation of human liver reveals limits in global proteomic quantification from isolated fractions. Anal Biochem 2016; 509:82-88. [DOI: 10.1016/j.ab.2016.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/04/2016] [Indexed: 11/19/2022]
|
30
|
Burt HJ, Riedmaier AE, Harwood MD, Crewe HK, Gill KL, Neuhoff S. Abundance of Hepatic Transporters in Caucasians: A Meta-Analysis. ACTA ACUST UNITED AC 2016; 44:1550-61. [PMID: 27493152 PMCID: PMC5034697 DOI: 10.1124/dmd.116.071183] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022]
Abstract
This study aimed to derive quantitative abundance values for key hepatic transporters suitable for in vitro–in vivo extrapolation within a physiologically based pharmacokinetic modeling framework. A meta-analysis was performed whereby data on abundance measurements, sample preparation methods, and donor demography were collated from the literature. To define values for a healthy Caucasian population, a subdatabase was created whereby exclusion criteria were applied to remove samples from non-Caucasian individuals, those with underlying disease, or those with subcellular fractions other than crude membrane. Where a clinically relevant active genotype was known, only samples from individuals with an extensive transporter phenotype were included. Authors were contacted directly when additional information was required. After removing duplicated samples, the weighted mean, geometric mean, standard deviation, coefficient of variation, and between-study homogeneity of transporter abundances were determined. From the complete database containing 24 transporters, suitable abundance data were available for 11 hepatic transporters from nine studies after exclusion criteria were applied. Organic anion transporting polypeptides OATP1B1 and OATP1B3 showed the highest population abundance in healthy adult Caucasians. For several transporters, the variability in abundance was reduced significantly once the exclusion criteria were applied. The highest variability was observed for OATP1B3 > OATP1B1 > multidrug resistance protein 2 > multidrug resistance gene 1. No relationship was found between transporter expression and donor age. To our knowledge, this study provides the first in-depth analysis of current quantitative abundance data for a wide range of hepatic transporters, with the aim of using these data for in vitro–in vivo extrapolation, and highlights the significance of investigating the background of tissue(s) used in quantitative transporter proteomic studies. Similar studies are now warranted for other ethnicities.
Collapse
Affiliation(s)
- Howard J Burt
- Simcyp Limited (a Certara Company), Sheffield, United Kingdom
| | | | | | - H Kim Crewe
- Simcyp Limited (a Certara Company), Sheffield, United Kingdom
| | | | - Sibylle Neuhoff
- Simcyp Limited (a Certara Company), Sheffield, United Kingdom
| |
Collapse
|
31
|
Ölander M, Wiśniewski JR, Matsson P, Lundquist P, Artursson P. The Proteome of Filter-Grown Caco-2 Cells With a Focus on Proteins Involved in Drug Disposition. J Pharm Sci 2016; 105:817-827. [DOI: 10.1016/j.xphs.2015.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
|
32
|
Harwood MD, Achour B, Neuhoff S, Russell MR, Carlson G, Warhurst G. In Vitro-In Vivo Extrapolation Scaling Factors for Intestinal P-Glycoprotein and Breast Cancer Resistance Protein: Part I: A Cross-Laboratory Comparison of Transporter-Protein Abundances and Relative Expression Factors in Human Intestine and Caco-2 Cells. ACTA ACUST UNITED AC 2015; 44:297-307. [PMID: 26631742 DOI: 10.1124/dmd.115.067371] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/01/2015] [Indexed: 12/22/2022]
Abstract
Over the last 5 years the quantification of transporter-protein absolute abundances has dramatically increased in parallel to the expanded use of in vitro-in vivo extrapolation (IVIVE) and physiologically based pharmacokinetics (PBPK)-linked models, for decision-making in pharmaceutical company drug development pipelines and regulatory submissions. Although several research groups have developed laboratory-specific proteomic workflows, it is unclear if the large range of reported variability is founded on true interindividual variability or experimental variability resulting from sample preparation or the proteomic methodology used. To assess the potential for methodological bias on end-point abundance quantification, two independent laboratories, the University of Manchester (UoM) and Bertin Pharma (BPh), employing different proteomic workflows, quantified the absolute abundances of Na/K-ATPase, P-gp, and breast cancer resistance protein (BCRP) in the same set of biologic samples from human intestinal and Caco-2 cell membranes. Across all samples, P-gp abundances were significantly correlated (P = 0.04, Rs = 0.72) with a 2.4-fold higher abundance (P = 0.001) generated at UoM compared with BPh. There was a systematically higher BCRP abundance in Caco-2 cell samples quantified by BPh compared with UoM, but not in human intestinal samples. Consequently, a similar intestinal relative expression factor (REF), derived from distal jejunum and Caco-2 monolayer samples, between laboratories was found for P-gp. However, a 2-fold higher intestinal REF was generated by UoM (2.22) versus BPh (1.11). We demonstrate that differences in absolute protein abundance are evident between laboratories and they probably result from laboratory-specific methodologies relating to peptide choice.
Collapse
Affiliation(s)
- Matthew D Harwood
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Brahim Achour
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Sibylle Neuhoff
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Matthew R Russell
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Gordon Carlson
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | - Geoffrey Warhurst
- Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (M.D.H., G.C., G.W.); Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, Stopford Building, Manchester, United Kingdom (B.A., M.R.R., A.R-H.); Simcyp Limited (a Certara Company), Sheffield (M.D.H., S.N., A.R-H.), United Kingdom
| | | |
Collapse
|
33
|
Heikkinen AT, Lignet F, Cutler P, Parrott N. The role of quantitative ADME proteomics to support construction of physiologically based pharmacokinetic models for use in small molecule drug development. Proteomics Clin Appl 2015; 9:732-44. [DOI: 10.1002/prca.201400147] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/16/2015] [Accepted: 02/05/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Aki T. Heikkinen
- School of Pharmacy; Faculty of Health Sciences; University of Eastern Finland; Kuopio Finland
| | - Floriane Lignet
- Pharmaceutical Sciences; Pharmaceutical Research & Early Development; Roche Innovation Center Basel; Basel Switzerland
| | - Paul Cutler
- Pharmaceutical Sciences; Pharmaceutical Research & Early Development; Roche Innovation Center Basel; Basel Switzerland
| | - Neil Parrott
- Pharmaceutical Sciences; Pharmaceutical Research & Early Development; Roche Innovation Center Basel; Basel Switzerland
| |
Collapse
|
34
|
Badée J, Achour B, Rostami-Hodjegan A, Galetin A. Meta-analysis of expression of hepatic organic anion-transporting polypeptide (OATP) transporters in cellular systems relative to human liver tissue. Drug Metab Dispos 2015; 43:424-32. [PMID: 25564656 DOI: 10.1124/dmd.114.062034] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Organic anion-transporting polypeptide (OATP)1B1, OATP1B3, and OATP2B1 transporters play an important role in hepatic drug disposition. Recently, an increasing number of studies have reported proteomic expression data for OATP transporters. However, systematic analysis and understanding of the actual differences in OATP expression between liver tissue and commonly used cellular systems is lacking. In the current study, meta-analysis was performed to assess the protein expression of OATP transporters reported in hepatocytes relative to liver tissue and to identify any potential correlations in transporter expression levels in the same individual. OATP1B1 was identified as the most abundant uptake transporter at 5.9 ± 8.3, 5.8 ± 3.3, and 4.2 ± 1.7 fmol/μg protein in liver tissue, sandwich-cultured human hepatocytes (SCHH), and cryopreserved suspended hepatocytes, respectively. The rank order in average expression in liver tissue and cellular systems was OATP1B1 > OATP1B3 ≈ OATP2B1. Abundance levels of the OATP transporters investigated were not significantly different between liver and cellular systems, with the exception of OATP2B1 expression in SCHH relative to liver tissue. Analysis of OATP1B1, OATP1B3, and OATP2B1 liver expression data in the same individuals (n = 86) identified weak (OATP1B1-OATP2B1) to moderately (OATP1B3-OATP2B1) significant correlations. A significant weak correlation was noted between OATP1B1 abundance and age of human donors, whereas expression of the OATPs investigated was independent of sex. Implications of the current analysis on the in vitro-in vivo extrapolation of transporter-mediated drug disposition using physiologically based pharmacokinetic models are discussed.
Collapse
Affiliation(s)
- Justine Badée
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, Manchester, United Kingdom (J.B., B.A., A.R-H., A.G.) and Simcyp Limited (a Certara Company), Sheffield, United Kingdom (A.R-H.)
| |
Collapse
|