1
|
Zaghmi A, Aybay E, Jiang L, Shang M, Steinmetz‐Späh J, Wermeling F, Kogner P, Korotkova M, Östling P, Jakobsson P, Seashore‐Ludlow B, Larsson K. High-content screening of drug combinations of an mPGES-1 inhibitor in multicellular tumor spheroids leads to mechanistic insights into neuroblastoma chemoresistance. Mol Oncol 2024; 18:317-335. [PMID: 37519014 PMCID: PMC10850797 DOI: 10.1002/1878-0261.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023] Open
Abstract
High-throughput drug screening enables the discovery of new anticancer drugs. Although monolayer cell cultures are commonly used for screening, their limited complexity and translational efficiency require alternative models. Three-dimensional cell cultures, such as multicellular tumor spheroids (MCTS), mimic tumor architecture and offer promising opportunities for drug discovery. In this study, we developed a neuroblastoma MCTS model for high-content drug screening. We also aimed to decipher the mechanisms underlying synergistic drug combinations in this disease model. Several agents from different therapeutic categories and with different mechanisms of action were tested alone or in combination with selective inhibition of prostaglandin E2 by pharmacological inhibition of microsomal prostaglandin E synthase-1 (mPGES-1). After a systematic investigation of the sensitivity of individual agents and the effects of pairwise combinations, GFP-transfected MCTS were used in a confirmatory screen to validate the hits. Finally, inhibitory effects on multidrug resistance proteins were examined. In summary, we demonstrate how MCTS-based high-throughput drug screening has the potential to uncover effective drug combinations and provide insights into the mechanism of synergy between an mPGES-1 inhibitor and chemotherapeutic agents.
Collapse
Affiliation(s)
- Ahlem Zaghmi
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Erdem Aybay
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Long Jiang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Mingmei Shang
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Julia Steinmetz‐Späh
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Fredrik Wermeling
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's HealthKarolinska InstitutetStockholmSweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Päivi Östling
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Per‐Johan Jakobsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Brinton Seashore‐Ludlow
- Department of Oncology‐Pathology, Science for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Karin Larsson
- Rheumatology Unit, Department of Medicine, SolnaKarolinska Institutet, Karolinska University HospitalStockholmSweden
| |
Collapse
|
2
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
3
|
Reginatto MW, Fontes KN, Monteiro VRS, Silva NL, Andrade CBV, Gomes HR, Imperio GE, Bloise FF, Kluck GEG, Atella GC, Matthews SG, Bloise E, Ortiga-Carvalho TM. Effect of Sublethal Prenatal Endotoxaemia on Murine Placental Transport Systems and Lipid Homeostasis. Front Microbiol 2021; 12:706499. [PMID: 34394055 PMCID: PMC8363225 DOI: 10.3389/fmicb.2021.706499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Infection alters the expression of transporters that mediate the placental exchange of xenobiotics, lipids and cytokines. We hypothesized that lipopolysaccharide (LPS) modifies the expression of placental transport systems and lipid homeostasis. LPS (150 μg/kg; i.p.) treatments were administered for 4 h or 24 h, animals were euthanized at gestational days (GD) 15.5 or 18.5, and maternal blood, fetuses and placentae were collected. Increased rates of fetal demise were observed at GD15.5 following LPS treatment, whereas at GD18.5, high rates of early labour occurred and were associated with distinct proinflammatory responses. Lipopolysaccharide did not alter ATP-binding cassette (ABC) transporter mRNA expression but decreased fatty acid binding protein associated with plasma membrane (Fabppm) at GD15.5 (LPS-4 h) and increased fatty acid translocase (Fat/Cd36) mRNA at GD18.5 (LPS-4 h). At the protein level, breast cancer-related protein (Bcrp) and ABC sub-family G member 1 (Abcg1) levels were decreased in the placental labyrinth zone (Lz) at GD15.5, whereas P-glycoprotein (P-gp) and Bcrp Lz-immunostaining was decreased at GD18.5. In the placental junctional zone (Jz), P-gp, Bcrp and Abcg1 levels were higher at GD18.5. Specific maternal plasma and placental changes in triacylglycerol, free fatty acid, cholesterol, cholesterol ester and monoacylglycerol levels were detected in a gestational age-dependent manner. In conclusion, LPS-increased risk of fetal death and early labour were associated with altered placental ABC and lipid transporter expression and deranged maternal plasma and placental lipid homeostasis. These changes may potentially modify fetal xenobiotic exposure and placental lipid exchange in cases of bacterial infection.
Collapse
Affiliation(s)
- Mila W Reginatto
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Klaus Novaes Fontes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria R S Monteiro
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia L Silva
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cherley Borba Vieira Andrade
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hanailly Ribeiro Gomes
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guinever E Imperio
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute of Medical, Sinai Health System, Toronto, ON, Canada
| | - Flavia Fonseca Bloise
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoproteins Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoproteins Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephen G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute of Medical, Sinai Health System, Toronto, ON, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Tania M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
5
|
Hyperthermia enhances photodynamic therapy by regulation of HCP1 and ABCG2 expressions via high level ROS generation. Sci Rep 2019; 9:1638. [PMID: 30733583 PMCID: PMC6367329 DOI: 10.1038/s41598-018-38460-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment that make use of the cancer-specific accumulation of porphyrins. We have reported that mitochondrial reactive oxygen species (mitROS) upregulate uptake transporter of porphyrins, heme carrier protein-1 (HCP-1). The accumulation of cancer-specific porphyrins was increased by mitROS production, thereby the cancer-specific PDT cytotoxicity was enhanced. Thus we investigated whether mitROS production by hyperthermia can enhanced the cytotoxicity of PDT or not. In this study, 1 h of hyperthermia at 42 °C increased the mitROS production, and both the accumulation of cancer-specific porphyrins and the PDT cytotoxicity increased. Moreover, the authors treated cells with N-acetyl-L-cysteine (NAC) to examine the effect of mitROS. NAC inhibited the increasing ROS production after hyperthermia to restrain the post-treatment increase of cancer-specific porphyrins accumulation. Moreover, the increase of ROS production in cancer cells after hyperthermia upregulated HCP-1 expression and downregulated ABCG2 expression. These regulation were inhibited by NAC. These results suggest that hyperthermia treatment increased mitROS production, which involved HpD accumulation and enhanced PDT effects in cancer cells. The mechanism of this phenomenon was most likely to be due to both the upregulation of HCP-1 and the downregulation of ABCG2 by mitROS.
Collapse
|
6
|
Szilagyi JT, Composto-Wahler GM, Joseph LB, Wang B, Rosen T, Laskin JD, Aleksunes LM. Anandamide down-regulates placental transporter expression through CB2 receptor-mediated inhibition of cAMP synthesis. Pharmacol Res 2019; 141:331-342. [PMID: 30610963 DOI: 10.1016/j.phrs.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/01/2019] [Accepted: 01/01/2019] [Indexed: 01/13/2023]
Abstract
The BCRP/ABCG2 efflux transporter is expressed on the membrane of placental syncytiotrophoblasts and protects the fetus from toxicant exposure. Syncytiotrophoblasts arise from the fusion of cytotrophoblasts, a process negatively regulated by the endocannabinoid, anandamide (AEA). It is unknown whether AEA can influence fetal concentrations of xenobiotics by modulating the expression of transporters in syncytiotrophoblasts. Here, we sought to characterize and identify the mechanism(s) responsible for AEA-mediated down-regulation of the BCRP transporter in human placental explants and BeWo trophoblasts. Treatment of human placental explants with AEA (1 μM, 24 h) reduced hCGα, syncytin-1, and BCRP mRNAs by ˜30%. Similarly, treatment of BeWo trophoblasts with AEA (0-10 μM, 3-24 h) coordinately down-regulated mRNAs for hCGß, syncytin-2, and BCRP. In turn, AEA increased the sensitivity of trophoblasts to the cytotoxicity of mitoxantrone, a known BCRP substrate, and environmental and dietary contaminants including mycoestrogens and perfluorinated chemicals. AEA-treated trophoblasts also demonstrated reduced BCRP transport of the mycoestrogen zearalenone and the diabetes drug glyburide, labeled with BODIPY. The AEA-mediated reduction of BCRP mRNA was abrogated when placental cells were co-treated with AM630, a CB2 receptor inhibitor, or 8-Br-cAMP, a cAMP analog. AEA reduced intracellular cAMP levels in trophoblasts by 75% at 1 h, and completely inhibited forskolin-induced phosphorylation of the cAMP response element binding protein (CREB). AEA also decreased p-CREB binding to the BCRP promoter. Taken together, our data indicate that AEA down-regulates placental transporter expression and activity via CB2-cAMP signaling. This novel mechanism may explain the repression of placental BCRP expression observed during diseases of pregnancy.
Collapse
Affiliation(s)
- John T Szilagyi
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Gabriella M Composto-Wahler
- Joint Graduate Program in Toxicology, Rutgers University, School of Graduate Studies, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA.
| | - Bingbing Wang
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Todd Rosen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Jeffrey D Laskin
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, 08901, USA; Department of Environmental and Occupational Health, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
7
|
Evers R, Piquette-Miller M, Polli JW, Russel FGM, Sprowl JA, Tohyama K, Ware JA, de Wildt SN, Xie W, Brouwer KLR. Disease-Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clin Pharmacol Ther 2018; 104:900-915. [PMID: 29756222 PMCID: PMC6424581 DOI: 10.1002/cpt.1115] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Drug transporters are critically important for the absorption, distribution, metabolism, and excretion (ADME) of many drugs and endogenous compounds. Therefore, disruption of these pathways by inhibition, induction, genetic polymorphisms, or disease can have profound effects on overall physiology, drug pharmacokinetics, drug efficacy, and toxicity. This white paper provides a review of changes in transporter function associated with acute and chronic disease states, describes regulatory pathways affecting transporter expression, and identifies opportunities to advance the field.
Collapse
Affiliation(s)
- Raymond Evers
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | | | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jason A Sprowl
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College School, Buffalo, New York, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company, Fujisawa, Kanagawa, Japan
| | - Joseph A Ware
- Department of Small Molecule Pharmaceutical Sciences, Genentech, South San Francisco, California, USA
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands, and Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
8
|
Afrouzian M, Al-Lahham R, Patrikeeva S, Xu M, Fokina V, Fischer WG, Abdel-Rahman SZ, Costantine M, Ahmed MS, Nanovskaya T. Role of the efflux transporters BCRP and MRP1 in human placental bio-disposition of pravastatin. Biochem Pharmacol 2018; 156:467-478. [PMID: 30217571 DOI: 10.1016/j.bcp.2018.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
The expression and activity of human placental transporters during pregnancy could be altered by several factors including pathological changes associated with preeclampsia. The aims of this study were to identify the placental efflux transporters involved in the bio-disposition of pravastatin, determine the protein expression of these transporters and their encoding genes as well as the activity of pravastatin uptake in placentas obtained from patients with preeclampsia. ATP-dependent uptake of [3H]-pravastatin by trophoblast tissue apical and basal membrane vesicles exhibited sigmoidal kinetics. The curved shapes of Eadie-Hofstee plots indicate that more than one placental transporter are involved in the uptake of pravastatin. ATP-dependent uptake of [3H]-pravastatin into vesicles expressing MRP1-5, BCRP, and P-gp, as well as the results of inhibition studies suggest that BCRP and MRP1 are the major placental efflux transporters responsible for the in vitro uptake of pravastatin. Compared to placentas from healthy pregnancies, preeclamptic placentas had increased number of syncytial knots with increased expression of BCRP in their apical membrane and increased expression of MRP1 in the cytoplasm of the syncytiotrophoblast and in cytoplasm of syncytial knots. There was a concomitant increase in ABCC1 but not in ABCG2 gene expressions in preeclamptic placentas. ATP-dependent uptake of [3H]-pravastatin by vesicles prepared from apical membranes of preeclamptic placentas was similar to the uptake by vesicles prepared from placentas obtained after uncomplicated pregnancies (13.9 ± 6.5 vs 14.1 ± 5.8 pmol·mg protein-1 min-1). The transporter-specific changes in the expression of BCRP and MRP1 in preeclamptic placentas did not affect the efflux activity of transporters localized on the apical membrane of the syncytiotrophoblast.
Collapse
Affiliation(s)
- Marjan Afrouzian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rabab Al-Lahham
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Svetlana Patrikeeva
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Meixiang Xu
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Valentina Fokina
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wayne G Fischer
- Department of Qulity Management & Patient Safety, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sherif Z Abdel-Rahman
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Maged Costantine
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mahmoud S Ahmed
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tatiana Nanovskaya
- Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
9
|
Pfeifer E, Parrott J, Lee GT, Domalakes E, Zhou H, He L, Mason CW. Regulation of human placental drug transporters in HCV infection and their influence on direct acting antiviral medications. Placenta 2018; 69:32-39. [PMID: 30213482 PMCID: PMC6140346 DOI: 10.1016/j.placenta.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The objectives of this study were to determine how HCV infection affects placental drug transporters, and to determine the role of drug transporters on the cellular accumulation of direct-acting antiviral drugs in human trophoblasts. METHODS Eighty-four ABC and SLC transporter genes were first screened in normal and HCV infected pregnant women using PCR profiler array. The changes in expression were confirmed by qPCR and Western blot. The impact of selected drug transporters on the cellular accumulation of radiolabeled antiviral drugs sofosbuvir, entecavir, and tenofovir was measured in primary human trophoblasts (PHT) and BeWo b30 cells in the presence or absence of transporter-specific inhibitors. PHT were then treated with CL097, ssRNA40, and imquimod to determine the impact of Toll-like receptor (TLR) 7/8 activation on drug transporter expression. RESULTS The expression of the ABC efflux transporters ABCB1/P-gp and ABCG2/BCRP was increased in placenta of women with HCV, while the nucleoside transporters SLC29A1/ENT1 and SLC29A2/ENT2 remained unchanged. The accumulation of sofosbuvir and tenofovir was unaffected by inhibition of these transporters in trophoblast cells. Entecavir accumulation was decreased by the inhibition of ENT2. P-gp and BCRP inhibition enhanced entecavir accumulation in BeWo b30, but not PHT. Overall, there was little effect of TLR7/8 activation on these drug transporters, and the accumulation of entecavir in PHT. DISCUSSION The data suggest that expression of placental drug transporters and selection of antiviral drug may impact fetal drug exposure in pregnancies complicated by HCV infections.
Collapse
Affiliation(s)
- Emily Pfeifer
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Jessica Parrott
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Gene T Lee
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Ericka Domalakes
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Helen Zhou
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Lily He
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Clifford W Mason
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA; Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, 66208, USA.
| |
Collapse
|
10
|
Han LW, Gao C, Mao Q. An update on expression and function of P-gp/ABCB1 and BCRP/ABCG2 in the placenta and fetus. Expert Opin Drug Metab Toxicol 2018; 14:817-829. [PMID: 30010462 DOI: 10.1080/17425255.2018.1499726] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION P-glycoprotein (P-gp)/ABCB1 and breast cancer resistance protein (BCRP)/ABCG2 are highly expressed in the placenta and fetus throughout gestation and can modulate exposure and toxicity of drugs and xenobiotics to the vulnerable fetus during the sensitive times of growth and development. We aim to provide an update on current knowledge on placental and fetal expressions of the two transporters in different species, and to provide insight on interpreting transporter expression and fetal exposure relative to the concept of fraction of drug transported. Areas covered: Comprehensive literature review through PubMed (primarily from July 2010 to February 2018) on P-gp and BCRP expression and function in the placenta and fetus of primarily human, mouse, rat, and guinea pig. Expert opinion: While there are many commonalities in the expression and function of P-gp and BCRP in the placenta and fetal tissues across species, there are distinct differences in expression levels and temporal changes. Further studies are needed to quantify protein abundance of these transporters and functionally assess their activities at various gestational stages. Combining the knowledge of interspecies differences and the concept of fraction of drug transported, we may better predict the magnitude of impact these transporters have on fetal drug exposure.
Collapse
Affiliation(s)
- Lyrialle W Han
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Chunying Gao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| | - Qingcheng Mao
- a Department of Pharmaceutics, School of Pharmacy , University of Washington , Seattle , WA , USA
| |
Collapse
|
11
|
Neradugomma NK, Liao MZ, Mao Q. Buprenorphine, Norbuprenorphine, R-Methadone, and S-Methadone Upregulate BCRP/ABCG2 Expression by Activating Aryl Hydrocarbon Receptor in Human Placental Trophoblasts. Mol Pharmacol 2016; 91:237-249. [PMID: 27974484 DOI: 10.1124/mol.116.107367] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/13/2016] [Indexed: 12/24/2022] Open
Abstract
Opioid dependence during pregnancy is a rising concern. Maintaining addicted pregnant women on long-acting opioid receptor agonist is the most common strategy to manage drug abuse in pregnant women. Methadone (MET) and buprenorphine (BUP) are widely prescribed for opiate maintenance therapy. Norbuprenorphine (NBUP) is the primary active metabolite of BUP. These medications can cross the placenta to the fetus, leading to postpartum neonatal abstinence syndrome. Despite their use during pregnancy, little is known about the cellular changes in the placenta brought about by these drugs. In this study, we showed that BUP, NBUP, and MET at clinically relevant plasma concentrations significantly induced BCRP mRNA up to 10-fold in human model placental JEG3 and BeWo cells and in primary human villous trophoblasts, and this induction was abrogated by CH223191, an aryl hydrocarbon receptor (AhR)-specific antagonist. These drugs increased AhR recruitment onto the AhR-response elements and significantly induced breast cancer resistance protein (BCRP) gene transcription. AhR overexpression further increased BCRP mRNA and protein expression. Knockdown of AhR by shRNA decreased BCRP expression, and this decrease was reversed by rescuing AhR expression. Finally, induction of BCRP expression in JEG3 and BeWo cells was accompanied by an increase in its efflux activity. Collectively, we have demonstrated, for the first time, that BUP, NBUP, and MET are potent AhR agonists and can induce BCRP in human placental trophoblasts by activating AhR. Given the critical role of BCRP in limiting fetal exposure to drugs and xenobiotics, long-term use of these medications may affect fetal drug exposure by altering BCRP expression in human placenta.
Collapse
Affiliation(s)
- Naveen K Neradugomma
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Michael Z Liao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Qingcheng Mao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
12
|
Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat JD, Gerk PM. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance. Pharm Res 2016; 33:2847-2878. [PMID: 27644937 DOI: 10.1007/s11095-016-2028-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.
Collapse
Affiliation(s)
- Anand A Joshi
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Soniya S Vaidya
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts, USA
| | - Marie V St-Pierre
- Department of Clinical Pharmacology and Toxicology, University of Zurich Hospital, Zurich, Switzerland
| | - Andrei M Mikheev
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
- Department of Neurosurgery, Institute of Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, 98109, USA
| | - Kelly E Desino
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
- Abbvie Inc, North Chicago, Illinois, USA
| | - Abner N Nyandege
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA
| | - Kenneth L Audus
- Department of Pharmaceutical Chemistry, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington, USA
| | - Phillip M Gerk
- Department of Pharmaceutics, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, 23298-0533, USA.
| |
Collapse
|
13
|
Oshida K, Shimamura M, Seya K, Ando A, Miyamoto Y. Identification of Transporters Involved in Beraprost Sodium Transport In Vitro. Eur J Drug Metab Pharmacokinet 2016; 42:117-128. [DOI: 10.1007/s13318-016-0327-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Bloise E, Ortiga-Carvalho TM, Reis FM, Lye SJ, Gibb W, Matthews SG. ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 2015; 22:164-81. [PMID: 26545808 DOI: 10.1093/humupd/dmv049] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The transmembrane ATP-binding cassette (ABC) transporters actively efflux an array of clinically relevant compounds across biological barriers, and modulate biodistribution of many physiological and pharmacological factors. To date, over 48 ABC transporters have been identified and shown to be directly and indirectly involved in peri-implantation events and fetal/placental development. They efflux cholesterol, steroid hormones, vitamins, cytokines, chemokines, prostaglandins, diverse xenobiotics and environmental toxins, playing a critical role in regulating drug disposition, immunological responses and lipid trafficking, as well as preventing fetal accumulation of drugs and environmental toxins. METHODS This review examines ABC transporters as important mediators of placental barrier functions and key reproductive processes. Expression, localization and function of all identified ABC transporters were systematically reviewed using PubMed and Google Scholar websites to identify relevant studies examining ABC transporters in reproductive tissues in physiological and pathophysiological states. Only reports written in English were incorporated with no restriction on year of publication. While a major focus has been placed on the human, extensive evidence from animal studies is utilized to describe current understanding of the regulation and function of ABC transporters relevant to human reproduction. RESULTS ABC transporters are modulators of steroidogenesis, fertilization, implantation, nutrient transport and immunological responses, and function as 'gatekeepers' at various barrier sites (i.e. blood-testes barrier and placenta) against potentially harmful xenobiotic factors, including drugs and environmental toxins. These roles appear to be species dependent and change as a function of gestation and development. The best-described ABC transporters in reproductive tissues (primarily in the placenta) are the multidrug transporters p-glycoprotein and breast cancer-related protein, the multidrug resistance proteins 1 through 5 and the cholesterol transporters ABCA1 and ABCG1. CONCLUSIONS The ABC transporters have various roles across multiple reproductive tissues. Knowledge of efflux direction, tissue distribution, substrate specificity and regulation of the ABC transporters in the placenta and other reproductive tissues is rapidly expanding. This will allow better understanding of the disposition of specific substrates within reproductive tissues, and facilitate development of novel treatments for reproductive disorders as well as improved approaches to protecting the developing fetus.
Collapse
Affiliation(s)
- E Bloise
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - T M Ortiga-Carvalho
- Laboratory of Translational Endocrinology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F M Reis
- Division of Human Reproduction, Department of Obstetrics and Gynecology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - S J Lye
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - W Gibb
- Department of Obstetrics & Gynecology, University of Ottawa, Ottawa, ON, Canada Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - S G Matthews
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada M5S 1A8 Department Obstetrics & Gynecology, University of Toronto, Toronto, ON, Canada Department of Medicine, Faculty of Medicine, University of Toronto, Toronto, ON, Canada Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
15
|
Fardel O, Le Vee M, Jouan E, Denizot C, Parmentier Y. Nature and uses of fluorescent dyes for drug transporter studies. Expert Opin Drug Metab Toxicol 2015; 11:1233-51. [PMID: 26050735 DOI: 10.1517/17425255.2015.1053462] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Drug transporters are now recognized as major players involved in pharmacokinetics and toxicology. Methods for assessing their activity are important to consider, particularly owing to regulatory requirements with respect to inhibition of drug transporter activity and prediction of drug-drug interactions. In this context, the use of fluorescent-dye-based transport assays is likely to deserve attention. AREAS COVERED This review provides an overview of the nature of fluorescent dye substrates for ATP-binding cassette and solute carrier drug transporters. Their use for investigating drug transporter activity in cultured cells and clinical hematological samples, drug transporter inhibition, drug transporter imaging and drug transport at the organ level are summarized. EXPERT OPINION A wide range of fluorescent dyes is now available for use in various aspects of drug transporter studies. The use of these dyes for transporter analyses may, however, be hampered by classic pitfalls of fluorescence technology, such as quenching. Transporter-independent processes such as passive diffusion of dyes through plasma membrane or dye sequestration into subcellular compartments must also be considered, as well as the redundant handling by various distinct transporters of some fluorescent probes. Finally, standardization of dye-based transport assays remains an important on-going issue.
Collapse
Affiliation(s)
- Olivier Fardel
- Institut de Recherches en Santé, Environnement et Travail (IRSET) , UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes , France
| | | | | | | | | |
Collapse
|
16
|
Staud F, Ceckova M. Regulation of drug transporter expression and function in the placenta. Expert Opin Drug Metab Toxicol 2015; 11:533-55. [DOI: 10.1517/17425255.2015.1005073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|