1
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Human Cytochrome P450 Cancer-Related Metabolic Activities and Gene Polymorphisms: A Review. Cells 2024; 13:1958. [PMID: 39682707 DOI: 10.3390/cells13231958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs. FINDINGS In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products. Conversely, different CYP isoforms can convert the same substrate, xenobiotic or procarcinogen, into either a more or less toxic product. These phenomena depend on the type of catalyzed reaction, substrate, tissue type, and biological species. Since the CYPs involved in bioactivation (CYP3A4, CYP1A1, CYP2D6, and CYP2C8) are primarily expressed in the liver, their metabolites can induce hepatotoxicity and hepatocarcinogenesis. Additionally, we discuss the role of drugs as CYP substrates, inducers, and inhibitors as well as the implication of nuclear receptors, efflux transporters, and drug-drug interactions in anticancer drug resistance. We highlight the molecular mechanisms underlying the development of hormone-sensitive cancers, including breast, ovarian, endometrial, and prostate cancers. Key players in these mechanisms are the 2,3- and 3,4-catechols of estrogens, which are formed by CYP1A1, CYP1A2, and CYP1B1. The catechols can also produce quinones, leading to the formation of toxic protein and DNA adducts that contribute to cancer progression. However, 2-hydroxy- and 4-hydroxy-estrogens and their O-methylated derivatives along with conjugated metabolites play cancer-protective roles. CYP17A1 and CYP11A1, which are involved in the biosynthesis of testosterone precursors, contribute to prostate cancer, whereas conversion of testosterone to 5α-dihydrotestosterone as well as sustained activation and mutation of the androgen receptor are implicated in metastatic castration-resistant prostate cancer (CRPC). CYP enzymatic activities are influenced by CYP gene polymorphisms, although a significant portion of them have no effects. However, CYP polymorphisms can determine poor, intermediate, rapid, and ultrarapid metabolizer genotypes, which can affect cancer and drug susceptibility. Despite limited statistically significant data, associations between CYP polymorphisms and cancer risk, tumor size, and metastatic status among various populations have been demonstrated. CONCLUSIONS The metabolic diversity and dual character of biological effects of CYPs underlie their implications in, preliminarily, hormone-sensitive cancers. Variations in CYP activities and CYP gene polymorphisms are implicated in the interindividual variability in cancer and drug susceptibility. The development of CYP inhibitors provides options for personalized anticancer therapy.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | | |
Collapse
|
2
|
Wang S, Argikar UA, Chatzopoulou M, Cho S, Crouch RD, Dhaware D, Gu TJ, Heck CJS, Johnson KM, Kalgutkar AS, Liu J, Ma B, Miller GP, Rowley JA, Seneviratne HK, Zhang D, Khojasteh SC. Bioactivation and reactivity research advances - 2023 year in review. Drug Metab Rev 2024; 56:247-284. [PMID: 38963129 DOI: 10.1080/03602532.2024.2376023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Advances in the field of bioactivation have significantly contributed to our understanding and prediction of drug-induced liver injury (DILI). It has been established that many adverse drug reactions, including DILI, are associated with the formation and reactivity of metabolites. Modern methods allow us to detect and characterize these reactive metabolites in earlier stages of drug development, which helps anticipate and circumvent the potential for DILI. Improved in silico models and experimental techniques that better reflect in vivo environments are enhancing predictive capabilities for DILI risk. Further, studies on the mechanisms of bioactivation, including enzyme interactions and the role of individual genetic differences, have provided valuable insights for drug optimizations. Cumulatively, this progress is continually refining our approaches to drug safety evaluation and personalized medicine.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | | | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Rachel D Crouch
- Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN, USA
| | | | - Ting-Jia Gu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, Maryland Heights, MO, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
3
|
Hu Y, Xie S, Xia H, Chen J, Yang Y, Zhan R. The effect of shikonin on the metabolism of lapatinib in vitro, and in vivo. Toxicol Appl Pharmacol 2024; 482:116797. [PMID: 38160892 DOI: 10.1016/j.taap.2023.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE The purpose of this study was to develop an assay for simultaneous determination of lapatinib and its metabolites (N-dealkylated lapatinib and O-dealkylated lapatinib) by ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and to determine the interaction between shikonin and lapatinib in vitro, in vivo, in silico and its mechanism of action. METHODS A new UPLC-MS/MS method for the determination of the concentrations of lapatinib and its metabolites was developed. In vivo, Sprague-Dawley (SD) rats were given lapatinib with or without shikonin. In vitro, to study the interaction mechanism, rat liver microsomes (RLMs), human liver microsomes (HLMs) and recombinant human CYP3A4.1 were used for determining enzyme kinetics. Lastly, we used in silico molecular docking to investigate the molecular mechanism of inhibition. RESULTS The selectivity, precision, accuracy, stability, matrix effect and recovery of UPLC-MS/MS all met the requirements of quantitative analysis of biological samples. Administration of lapatinib combined with shikonin resulted in significantly increased pharmacokinetic parameters (AUC(0-t) and Cmax) of lapatinib, indicating that shikonin increased the exposure of lapatinib in rats. Moreover, in vitro kinetic measurements indicated that shikonin was a time-independent inhibitor, which inhibited the metabolism of lapatinib through a competitive mechanism in RLMs, while noncompetitive inhibition type in both HLMs and CYP3A4.1. Molecular docking analysis further verified the non-competitive inhibition of shikonin on lapatinib in CYP3A4.1. CONCLUSION We developed an UPLC-MS/MS assay for simultaneous determination of lapatinib and its metabolites. It could be successfully applied to the study of pharmacokinetic interaction of shikonin on the inhibition of lapatinib metabolism in vivo and in vitro. In the end, further studies are needed to determine if such interactions are indeed valid in humans and if the interaction is clinically relevant.
Collapse
Affiliation(s)
- Yingying Hu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Saili Xie
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hailun Xia
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Jie Chen
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Yunjun Yang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| | - Ruanjuan Zhan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China.
| |
Collapse
|
4
|
Shin YS, Hwang DB, Won DH, Kim SY, Kim C, Park JW, Jeon Y, Yun JW. The Wnt/β-catenin signaling pathway plays a role in drug-induced liver injury by regulating cytochrome P450 2E1 expression. Toxicol Res 2023; 39:443-453. [PMID: 37398564 PMCID: PMC10313641 DOI: 10.1007/s43188-023-00180-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 07/04/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure and drug withdrawal. Cytochrome P450 (CYP) 2E1 is involved in the metabolism of several drugs, and can induce liver injury through the production of toxic metabolites and the generation of reactive oxygen species. This study aimed to elucidate the role of Wnt/β-catenin signaling in CYP2E1 regulation for drug-induced hepatotoxicity. To achieve this, mice were administered cisplatin or acetaminophen (APAP) 1 h after treatment with the CYP2E1 inhibitor dimethyl sulfoxide (DMSO), and histopathological and serum biochemical analyses were performed. APAP treatment induced hepatotoxicity, as evidenced by an increase in liver weight and serum ALT levels. Moreover, histological analysis indicated severe injury, including apoptosis, in the liver tissue of APAP-treated mice, which was confirmed by TUNEL assay. Additionally, APAP treatment suppressed the antioxidant capacity of the mice and increased the expression of the DNA damage markers γ-H2AX and p53. However, these effects of APAP on hepatotoxicity were significantly attenuated by DMSO treatment. Furthermore, the activation of Wnt/β-catenin signaling using the Wnt agonist CHIR99021 (CHIR) increased CYP2E1 expression in rat liver epithelial cells (WB-F344), whereas treatment with the Wnt/β-catenin antagonist IWP-2 inhibited nuclear β-catenin and CYP2E1 expression. Interestingly, APAP-induced cytotoxicity in WB-F344 cells was exacerbated by CHIR treatment and suppressed by IWP-2 treatment. Overall, these results showed that the Wnt/β-catenin signaling is involved in DILI through the upregulation of CYP2E1 expression by directly binding the transcription factor β-cat/TCF to the Cyp2e1 promoter, thus exacerbating DILI. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00180-6.
Collapse
Affiliation(s)
- Yoo-Sub Shin
- Department of Research and Development, SML Genetree, Seoul, 05855 Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Da-Bin Hwang
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Dong-Hoon Won
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Shin-Young Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662 Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341 Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
5
|
McGill MR, Kaufman YJ, LoBianco FV, Schleiff MA, Aykin-Burns N, Miller GP. The role of cytochrome P450 3A4-mediated metabolism in sorafenib and lapatinib hepatotoxicity. LIVERS 2023; 3:310-321. [PMID: 38037613 PMCID: PMC10688230 DOI: 10.3390/livers3020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are increasingly popular drugs used to treat more than a dozen different diseases, including some forms of cancer. Despite having fewer adverse effects than traditional chemotherapies, they are not without risks. Liver injury is a particular concern. Of the FDA-approved TKIs, approximately 40% cause hepatotoxicity. However, little is known about the underlying pathophysiology. The leading hypothesis is that TKIs are converted by cytochrome P450 3A4 (CYP3A4) to reactive metabolites that damage proteins. Indeed, there is strong evidence for this bioactivation of TKIs in in vitro reactions. However, the actual toxic effects are underexplored. Here, we measured the cytotoxicity of several TKIs in primary mouse hepatocytes, HepaRG cells, and HepG2 cells with and without CYP3A4 modulation. To our surprise, the data indicate that CYP3A4 increases resistance to sorafenib and lapatinib hepatotoxicity. The results have implications for the mechanism of toxicity of these drugs in patients and underline the importance of selecting an appropriate experimental model.
Collapse
Affiliation(s)
- Mitchell R. McGill
- Dept. of Environmental Health Sciences, Fay W. Boozman College of Public Health; Depts. of Pharma-cology & Toxicology and Pathology, College of Medicine; University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Yihong J. Kaufman
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Francesca V. LoBianco
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Mary A. Schleiff
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Nukhet Aykin-Burns
- Dept. of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| | - Grover P. Miller
- Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205 USA
| |
Collapse
|
6
|
He C, Mao Y, Wan H. Preclinical evaluation of chemically reactive metabolites and mitigation of bioactivation in drug discovery. Drug Discov Today 2023; 28:103621. [PMID: 37201781 DOI: 10.1016/j.drudis.2023.103621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
The formation of reactive metabolites (RMs) is thought to be one of the pathogeneses for some idiosyncratic adverse drug reactions (IADRs) which are considered one of the leading causes of some drug attritions and/or recalls. Minimizing or eliminating the formation of RMs via chemical modification is a useful tactic to reduce the risk of IADRs and time-dependent inhibition (TDI) of cytochrome P450 enzymes (CYPs). The RMs should be carefully handled before making a go-no-go decision. Herein, we highlight the role of RMs in the occurrence of IADRs and CYP TDI, the risk of structural alerts, the approaches of RM assessment at the discovery stage and strategies to minimize or eliminate RM liability. Finally, some considerations for developing a RM-positive drug candidate are suggested.
Collapse
Affiliation(s)
- Chunyong He
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China.
| | - Yuchang Mao
- Department of DMPK/Tox, Shanghai Hengrui Pharmaceutical, No. 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Department of DMPK/Bioanalysis, Shanghai Medicilon, No. 585 Chuanda Road, Shanghai 201299, China.
| |
Collapse
|
7
|
Yan M, Li W, Li WB, Huang Q, Li J, Cai HL, Gong H, Zhang BK, Wang YK. Metabolic activation of tyrosine kinase inhibitors: recent advance and further clinical practice. Drug Metab Rev 2023; 55:94-106. [PMID: 36453523 DOI: 10.1080/03602532.2022.2149775] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
At present, receptor tyrosine kinase signaling-related pathways have been successfully mediated to inhibit tumor proliferation and promote anti-angiogenesis effects for cancer therapy. Tyrosine kinase inhibitors (TKIs), a group of novel chemotherapeutic agents, have been applied to treat diverse malignant tumors effectively. However, the latent toxic and side effects of TKIs, such as hepatotoxicity and cardiotoxicity, limit their use in clinical practice. Metabolic activation has the potential to lead to toxic effects. Numerous TKIs have been demonstrated to be transformed into chemically reactive/potentially toxic metabolites following cytochrome P450-catalyzed activation, which causes severe adverse reactions, including hepatotoxicity, cardiotoxicity, skin toxicity, immune injury, mitochondria injury, and cytochrome P450 inactivation. However, the precise mechanisms of how these chemically reactive/potentially toxic species induce toxicity remain poorly understood. In addition, we present our viewpoints that regulating the production of reactive metabolites may decrease the toxicity of TKIs. Exploring this topic will improve understanding of metabolic activation and its underlying mechanisms, promoting the rational use of TKIs. This review summarizes the updated evidence concerning the reactive metabolites of TKIs and the associated toxicities. This paper provides novel insight into the safe use of TKIs and the prevention and treatment of multiple TKIs adverse effects in clinical practice.
Collapse
Affiliation(s)
- Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Wen-Bo Li
- Department of Plastic and Aesthetic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hua-Lin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Yi-Kun Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
8
|
Aiyappa‐Maudsley R, Storr SJ, Rakha EA, Green AR, Ellis IO, Martin SG. CYP2S1 and CYP2W1 expression is associated with patient survival in breast cancer. J Pathol Clin Res 2022; 8:550-566. [PMID: 35902379 PMCID: PMC9535097 DOI: 10.1002/cjp2.291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 12/29/2022]
Abstract
The cytochrome P450 family of enzymes metabolise a wide range of compounds and play important roles in breast cancer pathogenesis due to their involvement in estrogen metabolism and the production of carcinogenic metabolites during this process. The orphan CYPs, CYP2S1, and CYP2W1 are reportedly upregulated in breast cancer. However, their expression and association with clinicopathological and survival parameters have not been previously assessed in a large cohort of breast cancers. Protein expression of CYP2S1 and CYP2W1 was assessed in early-stage invasive breast cancers (n = 1,426) using immunohistochemistry and correlated with various clinicopathological parameters and survival. mRNA expression of CYP2S1 and CYP2W1 was also assessed in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) cohort. Low nuclear and cytoplasmic CYP2S1 was significantly associated with high-grade tumours (p ≤ 0.009), intermediate Nottingham prognostic index (NPI) group (p ≤ 0.025), high mitotic frequency (p ≤ 0.002), human epidermal growth factor receptor 2 (HER2)-negative disease (p ≤ 0.011), and ductal carcinoma (p ≤ 0.022). Cytoplasmic CYP2S1 was additionally associated with patients ≥50 years (p < 0.001), estrogen receptor (ER)-positive tumours (p = 0.011), and high nuclear pleomorphism (p = 0.003). Low cytoplasmic CYP2W1 was significantly associated with patients ≥50 years (p = 0.002), HER2-negative disease (p = 0.003), intermediate NPI (p = 0.013), and mitosis (p = 0.009). Low cytoplasmic CYP2S1 was significantly associated with adverse breast cancer specific survival (p = 0.034), which remained so in multivariate analysis (hazard ratio [HR]: 0.639; 95% confidence interval [CI]: 0.483-0.846; p = 0.002). Low nuclear CYP2W1 was significantly associated with adverse breast cancer specific survival (p = 0.012), with significance also maintained in multivariate analysis (HR: 0.677; 95% CI: 0.510-0.898; p = 0.007). No associations with survival were observed in the METABRIC cohort. CYP2S1 and CYP2W1 are associated with patient survival in breast cancer and may be important prognostic biomarkers.
Collapse
Affiliation(s)
- Radhika Aiyappa‐Maudsley
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK,Present address:
Cancer Research Centre, Department of Molecular and Clinical Cancer MedicineUniversity of Liverpool, William Henry Duncan BuildingLiverpoolUK
| | - Sarah J Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Emad A Rakha
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Stewart G Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| |
Collapse
|
9
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
10
|
Beers JL, Fu D, Jackson KD. Cytochrome P450-Catalyzed Metabolism of Cannabidiol to the Active Metabolite 7-Hydroxy-Cannabidiol. Drug Metab Dispos 2021; 49:882-891. [PMID: 34330718 PMCID: PMC11025033 DOI: 10.1124/dmd.120.000350] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Cannabidiol (CBD) is a naturally occurring nonpsychotoxic phytocannabinoid that has gained increasing attention as a popular consumer product and for its use in Food and Drug Administration-approved Epidiolex (CBD oral solution) for the treatment of Lennox-Gastaut syndrome and Dravet syndrome. CBD was previously reported to be metabolized primarily by CYP2C19 and CYP3A4, with minor contributions from UDP-glucuronosyltransferases. 7-Hydroxy-CBD (7-OH-CBD) is the primary active metabolite with equipotent activity compared with CBD. Given the polymorphic nature of CYP2C19, we hypothesized that variable CYP2C19 expression may lead to interindividual differences in CBD metabolism to 7-OH-CBD. The objectives of this study were to further characterize the roles of cytochrome P450 enzymes in CBD metabolism, specifically to the active metabolite 7-OH-CBD, and to investigate the impact of CYP2C19 polymorphism on CBD metabolism in genotyped human liver microsomes. The results from reaction phenotyping experiments with recombinant cytochrome P450 enzymes and cytochrome P450-selective chemical inhibitors indicated that both CYP2C19 and CYP2C9 are capable of CBD metabolism to 7-OH-CBD. CYP3A played a major role in CBD metabolic clearance via oxidation at sites other than the 7-position. In genotyped human liver microsomes, 7-OH-CBD formation was positively correlated with CYP2C19 activity but was not associated with CYP2C19 genotype. In a subset of single-donor human liver microsomes with moderate to low CYP2C19 activity, CYP2C9 inhibition significantly reduced 7-OH-CBD formation, suggesting that CYP2C9 may play a greater role in CBD 7-hydroxylation than previously thought. Collectively, these data indicate that both CYP2C19 and CYP2C9 are important contributors in CBD metabolism to the active metabolite 7-OH-CBD. SIGNIFICANCE STATEMENT: This study demonstrates that both CYP2C19 and CYP2C9 are involved in CBD metabolism to the active metabolite 7-OH-CBD and that CYP3A4 is a major contributor to CBD metabolism through pathways other than 7-hydroxylation. 7-OH-CBD formation was associated with human liver microsomal CYP2C19 activity, but not CYP2C19 genotype, and CYP2C9 was found to contribute significantly to 7-OH-CBD generation. These findings have implications for patients taking CBD who may be at risk for clinically important cytochrome P450-mediated drug interactions.
Collapse
Affiliation(s)
- Jessica L Beers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Erasmus C, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N'Da DD. Synthesis and comparison of in vitro dual anti-infective activities of novel naphthoquinone hybrids and atovaquone. Bioorg Chem 2021; 114:105118. [PMID: 34216896 DOI: 10.1016/j.bioorg.2021.105118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/11/2021] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
A principal factor that contributes towards the failure to eradicate leishmaniasis and tuberculosis infections is the reduced efficacy of existing chemotherapies, owing to a continuous increase in multidrug-resistant strains of the causative pathogens. This accentuates the dire need to develop new and effective drugs against both plights. A series of naphthoquinone-triazole hybrids was synthesized and evaluated in vitro against Leishmania (L.) and Mycobacterium tuberculosis (Mtb) strains. Their cytotoxicities were also evaluated, using the human embryonic kidney cell line (HEK-293). The hybrids were found to be non-toxic towards human cells and had demonstrated micromolar cellular antileishmanial and antimycobacterial potencies. Hybrid 13, i.e. 2-{[1-(4-methylbenzyl)-1H-1,2,3-triazol-4-yl]methoxy}naphthalene-1,4-dione was the most active of all. It was found with MIC90 0.5 µM potency against Mtb in a protein free medium, and with half-maxima inhibitory concentrations (IC50) of 0.81 µM and 1.48 µM against the infective promastigote parasites of L. donavani and L. major, respectively, with good selectivity towards these pathogens (SI 22 - 65). Comparatively, the clinical naphthoquinone, atovaquone, although less cytotoxic, was found to be two-fold less antimycobacterial potent, and six- to twelve-fold less active against leishmania. Hybrid 13 may therefore stand as a potential anti-infective hit for further development in the search for new antitubercular and antileishmanial drugs. Elucidation of its exact mechanism of action and molecular targets will constitute future endeavour.
Collapse
Affiliation(s)
- Chané Erasmus
- Pharmaceutical Chemistry, School of Pharmacy, North-West University, Potchefstroom 2520, South Africa
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Frans J Smit
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Ronnett Seldon
- SAMRC Drug Discovery and Development Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, 7925, South Africa; Wellcome Centre for Clinical Infectious Diseases Research in Africa, University of Cape Town, Cape Town 7925, South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
12
|
Sneha S, Baker SC, Green A, Storr S, Aiyappa R, Martin S, Pors K. Intratumoural Cytochrome P450 Expression in Breast Cancer: Impact on Standard of Care Treatment and New Efforts to Develop Tumour-Selective Therapies. Biomedicines 2021; 9:biomedicines9030290. [PMID: 33809117 PMCID: PMC7998590 DOI: 10.3390/biomedicines9030290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Despite significant advances in treatment strategies over the past decade, selective treatment of breast cancer with limited side-effects still remains a great challenge. The cytochrome P450 (CYP) family of enzymes contribute to cancer cell proliferation, cell signaling and drug metabolism with implications for treatment outcomes. A clearer understanding of CYP expression is important in the pathogenesis of breast cancer as several isoforms play critical roles in metabolising steroid hormones and xenobiotics that contribute to the genesis of breast cancer. The purpose of this review is to provide an update on how the presence of CYPs impacts on standard of care (SoC) drugs used to treat breast cancer as well as discuss opportunities to exploit CYP expression for therapeutic intervention. Finally, we provide our thoughts on future work in CYP research with the aim of supporting ongoing efforts to develop drugs with improved therapeutic index for patient benefit.
Collapse
Affiliation(s)
- Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
| | - Simon C. Baker
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology & York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK;
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Sarah Storr
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Radhika Aiyappa
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Stewart Martin
- Nottingham Breast Cancer Research Centre, School of Medicine, Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (A.G.); (S.S.); (R.A.); (S.M.)
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK;
- Correspondence: ; Tel.: +44-(0)1274-236482 or +44-(0)1274-235866; Fax: +44-(0)1274-233234
| |
Collapse
|
13
|
Bar H, Bang S. A mixture model to detect edges in sparse co-expression graphs with an application for comparing breast cancer subtypes. PLoS One 2021; 16:e0246945. [PMID: 33571253 PMCID: PMC7877669 DOI: 10.1371/journal.pone.0246945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
We develop a method to recover a gene network's structure from co-expression data, measured in terms of normalized Pearson's correlation coefficients between gene pairs. We treat these co-expression measurements as weights in the complete graph in which nodes correspond to genes. To decide which edges exist in the gene network, we fit a three-component mixture model such that the observed weights of 'null edges' follow a normal distribution with mean 0, and the non-null edges follow a mixture of two lognormal distributions, one for positively- and one for negatively-correlated pairs. We show that this so-called L2 N mixture model outperforms other methods in terms of power to detect edges, and it allows to control the false discovery rate. Importantly, our method makes no assumptions about the true network structure. We demonstrate our method, which is implemented in an R package called edgefinder, using a large dataset consisting of expression values of 12,750 genes obtained from 1,616 women. We infer the gene network structure by cancer subtype, and find insightful subtype characteristics. For example, we find thirteen pathways which are enriched in each of the cancer groups but not in the Normal group, with two of the pathways associated with autoimmune diseases and two other with graft rejection. We also find specific characteristics of different breast cancer subtypes. For example, the Luminal A network includes a single, highly connected cluster of genes, which is enriched in the human diseases category, and in the Her2 subtype network we find a distinct, and highly interconnected cluster which is uniquely enriched in drug metabolism pathways.
Collapse
Affiliation(s)
- Haim Bar
- Department of Statistics, University of Connecticut, Storrs, CT, United States of America
| | - Seojin Bang
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, United States of America
| |
Collapse
|
14
|
Nardone-White DT, Bissada JE, Abouda AA, Jackson KD. Detoxication versus Bioactivation Pathways of Lapatinib In Vitro: UGT1A1 Catalyzes the Hepatic Glucuronidation of Debenzylated Lapatinib. Drug Metab Dispos 2020; 49:233-244. [PMID: 33376146 DOI: 10.1124/dmd.120.000236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022] Open
Abstract
O-Dealkylation of the tyrosine kinase inhibitor lapatinib by cytochrome P450 3A enzymes is implicated in the development of lapatinib-induced hepatotoxicity. Conjugative metabolism of debenzylated lapatinib (M1) via glucuronidation and sulfation is thought to be a major detoxication pathway for lapatinib in preclinical species (rat and dog), limiting formation of the quinoneimine reactive metabolite. Glucuronidation of M1 by human recombinant UDP-glucuronosyltransferases (UGTs) has been reported in vitro; however, the relative UGT enzyme contributions are unknown, and the interspecies differences in the conjugation versus bioactivation pathways of M1 have not been fully elucidated. In the present study, reaction phenotyping experiments using human recombinant UGT enzymes and enzyme-selective chemical inhibitors demonstrated that UGT1A1 was the major hepatic UGT enzyme involved in lapatinib M1 glucuronidation. Formation of the M1-glucuronide by human liver microsomes from UGT1A1-genotyped donors was significantly correlated with UGT1A1 activity as measured by 17β-estradiol 3-glucuronidation (R 2 = 0.90). Interspecies differences were found in the biotransformation of M1 in human, rat, and dog liver microsomal and 9000g supernatant (S9) fractions via glucuronidation, sulfation, aldehyde oxidase-mediated oxidation, and bioactivation to the quinoneimine trapped as a glutathione (GSH) conjugate. Moreover, we demonstrated the sequential metabolism of lapatinib in primary human hepatocytes to the M1-glucuronide, M1-sulfate, and quinoneimine-GSH conjugate. M1 glucuronidation was highly correlated with the rates of M1 formation, suggesting that O-dealkylation may be the rate-limiting step in lapatinib biotransformation. Interindividual variability in the formation and clearance pathways of lapatinib M1 likely influences the hepatic exposure to reactive metabolites and may affect the risk for hepatotoxicity. SIGNIFICANCE STATEMENT: We used an integrated approach to examine the interindividual and interspecies differences in detoxication versus bioactivation pathways of lapatinib, which is associated with idiosyncratic hepatotoxicity. In addition to cytochrome P450 (P450)-mediated bioactivation, we report that multiple non-P450 pathways are involved in the biotransformation of the primary phenolic metabolite of lapatinib in vitro, including glucuronidation, sulfation, and aldehyde oxidase mediated oxidation. UGT1A1 was identified as the major hepatic enzyme involved in debenzylated lapatinib glucuronidation, which may limit hepatic exposure to the potentially toxic quinoneimine.
Collapse
Affiliation(s)
- Dasean T Nardone-White
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (D.T.N.-W., K.D.J.) and Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., A.A.A.)
| | - Jennifer E Bissada
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (D.T.N.-W., K.D.J.) and Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., A.A.A.)
| | - Arsany A Abouda
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (D.T.N.-W., K.D.J.) and Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., A.A.A.)
| | - Klarissa D Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (D.T.N.-W., K.D.J.) and Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., A.A.A.)
| |
Collapse
|
15
|
Shanu-Wilson J, Evans L, Wrigley S, Steele J, Atherton J, Boer J. Biotransformation: Impact and Application of Metabolism in Drug Discovery. ACS Med Chem Lett 2020; 11:2087-2107. [PMID: 33214818 DOI: 10.1021/acsmedchemlett.0c00202] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Biotransformation has a huge impact on the efficacy and safety of drugs. Ultimately the effects of metabolism can be the lynchpin in the discovery and development cycle of a new drug. This article discusses the impact and application of biotransformation of drugs by mammalian systems, microorganisms, and recombinant enzymes, covering active and reactive metabolites, the impact of the gut microbiome on metabolism, and how insights gained from biotransformation studies can influence drug design from the combined perspectives of a CRO specializing in a range of biotransformation techniques and pharma biotransformation scientists. We include a commentary on how biology-driven approaches can complement medicinal chemistry strategies in drug optimization and the in vitro and surrogate systems available to explore and exploit biotransformation.
Collapse
Affiliation(s)
- Julia Shanu-Wilson
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Liam Evans
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Stephen Wrigley
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Jonathan Steele
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - James Atherton
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, Delaware 19803, United States
| | - Jason Boer
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, Delaware 19803, United States
| |
Collapse
|
16
|
Andreu I, Lence E, González-Bello C, Mayorga C, Cuquerella MC, Vayá I, Miranda MA. Protein Binding of Lapatinib and Its N- and O-Dealkylated Metabolites Interrogated by Fluorescence, Ultrafast Spectroscopy and Molecular Dynamics Simulations. Front Pharmacol 2020; 11:576495. [PMID: 33192518 PMCID: PMC7662899 DOI: 10.3389/fphar.2020.576495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023] Open
Abstract
Lapatinib (LAP) is an anticancer drug generally used to treat breast and lung cancer. It exhibits hypersensitivity reactions in addition to dermatological adverse effects and photosensitivity. Moreover, LAP binds to serum proteins and is readily biotransformed in humans, giving rise to several metabolites, such as N- and O-dealkylated products (N-LAP and O-LAP, respectively). In this context, the aim of the present work is to obtain key information on drug@protein complexation, the first step involved in a number of hypersensitivity reactions, by a combination of fluorescence, femtosecond transient absorption spectroscopy and molecular dynamics (MD) simulations. Following this approach, the behavior of LAP and its metabolites has been investigated in the presence of serum proteins, such as albumins and α1-acid glycoproteins (SAs and AGs, respectively) from human and bovine origin. Fluorescence results pointed to a higher affinity of LAP and its metabolites to human proteins; the highest one was found for LAP@HSA. This is associated to the coplanar orientation adopted by the furan and quinazoline rings of LAP, which favors emission from long-lived (up to the ns time-scale) locally-excited (LE) states, disfavoring population of intramolecular charge transfer (ICT) states. Moreover, the highly constrained environment provided by subdomain IB of HSA resulted in a frozen conformation of the ligand, contributing to fluorescence enhancement. Computational studies were clearly in line with the experimental observations, providing valuable insight into the nature of the binding sites and the conformational arrangement of the ligands inside the protein cavities. Besides, a good correlation was found between the calculated binding energies for each ligand@protein complex and the relative affinities observed in competition experiments.
Collapse
Affiliation(s)
- Inmaculada Andreu
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Cristobalina Mayorga
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga and Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
| | - M Consuelo Cuquerella
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, València, Spain.,Unidad Mixta de Investigación UPV-Instituto de Investigación Sanitaria (IIS) La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| |
Collapse
|
17
|
In vitro assessment of the photo(geno)toxicity associated with Lapatinib, a Tyrosine Kinase inhibitor. Arch Toxicol 2020; 95:169-178. [PMID: 32815004 DOI: 10.1007/s00204-020-02880-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
The epidermal growth factor receptors EGFR and HER2 are the main targets for tyrosine kinase inhibitors (TKIs). The quinazoline derivative lapatinib (LAP) is used since 2007 as dual TKI in the treatment of metastatic breast cancer and currently, it is used as an oral anticancer drug for the treatment of solid tumors such as breast and lung cancer. Although hepatotoxicity is its main side effect, it makes sense to investigate the ability of LAP to induce photosensitivity reactions bearing in mind that BRAF (serine/threonine-protein kinase B-Raf) inhibitors display a considerable phototoxic potential and that afloqualone, a quinazoline-marketed drug, causes photodermatosis. Metabolic bioactivation of LAP by CYP3A4 and CYP3A5 leads to chemically reactive N-dealkylated (N-LAP) and O-dealkylated (O-LAP) derivatives. In this context, the aim of the present work is to explore whether LAP and its N- and O-dealkylated metabolites can induce photosensitivity disorders by evaluating their photo(geno)toxicity through in vitro studies, including cell viability as well as photosensitized protein and DNA damage. As a matter of fact, our work has demonstrated that not only LAP, but also its metabolite N-LAP have a clear photosensitizing potential. They are both phototoxic and photogenotoxic to cells, as revealed by the 3T3 NRU assay and the comet assay, respectively. By contrast, the O-LAP does not display relevant photobiological properties. Remarkably, the parent drug LAP shows the highest activity in membrane phototoxicity and protein oxidation, whereas N-LAP is associated with the highest photogenotoxicity, through oxidation of purine bases, as revealed by detection of 8-Oxo-dG.
Collapse
|
18
|
Zhang Y, Wang L, Sun B, Li X, Hou Q, Wang W, Li B. Synthesis and Antiproliferative Activities of Novel Substituted 5-Anilino-α-Glucofuranose Derivatives. Chem Biodivers 2020; 17:e1900739. [PMID: 32141216 DOI: 10.1002/cbdv.201900739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
In order to find novel antitumor candidate agents with high efficiency and low toxicity, 14 novel substituted 5-anilino-α-glucofuranose derivatives have been designed, synthesized and evaluated for antiproliferative activities in vitro. Their structures were characterized by NMR (1 H and 13 C) and HR-MS, and configuration (R/S) at C(5) was identified by two-dimensional 1 H,1 H-NOESY-NMR spectrum. Their antiproliferative activities against human tumor cells were investigated by MTT assay. The results demonstrated that most of the synthesized compounds had antiproliferative effects comparable to the reference drugs gefitinib and lapatinib. In particular, (5R)-5-O-(3-chloro-4-{[5-(4-fluorophenyl)thiophen-2-yl]methyl}anilino)-5-deoxy-1,2-O-(1-methylethylidene)-α-glucofuranose (9da) showed the most potent antiproliferative effects against SW480, A431 and A549 cells, with IC50 values of 8.57, 5.15 and 15.24 μm, respectively. This work suggested 5-anilino-α-glucofuranose as an antitumor core structure that may open a new way to develop more potent anti-cancer agents.
Collapse
Affiliation(s)
- Yaling Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lili Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Baoli Sun
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xiabing Li
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Qiaoli Hou
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wei Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Baolin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
19
|
Murray JL, Mercer SL, Jackson KD. Impact of cytochrome P450 variation on meperidine N-demethylation to the neurotoxic metabolite normeperidine. Xenobiotica 2020; 50:209-222. [PMID: 30902024 PMCID: PMC7755165 DOI: 10.1080/00498254.2019.1599465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
1. Meperidine is an opioid analgesic that undergoes N-demethylation to form the neurotoxic metabolite normeperidine. Previous studies indicate that meperidine N-demethylation is catalyzed by cytochrome P450 2B6 (CYP2B6), CYP3A4, and CYP2C19.2. The purpose of this study was to examine the relative P450 contributions to meperidine N-demethylation and to evaluate the effect of CYP2C19 polymorphism on normeperidine generation. Experiments were performed using recombinant P450 enzymes, selective chemical inhibitors, enzyme kinetic assays, and correlation analysis with individual CYP2C19-genotyped human liver microsomes.3. The catalytic efficiency (kcat/Km) for meperidine N-demethylation was similar between recombinant CYP2B6 and CYP2C19, but markedly lower by CYP3A4.4. In CYP2C19-genotyped human liver microsomes, normeperidine formation was significantly correlated with CYP2C19 activity (S-mephenytoin 4´-hydroxylation).5. CYP2C19 inhibitor (+)-N-3-benzylnirvanol and CYP3A inhibitor ketoconazole significantly reduced microsomal normeperidine generation by an individual donor with high CYP2C19 activity, whereas donors with lower CYP2C19 activity were sensitive to inhibition by ketoconazole but not benzylnirvanol.6. These findings demonstrate that the relative CYP3A4, CYP2B6, and CYP2C19 involvement in meperidine N-demethylation depends on the enzyme activities in individual human liver microsomal samples. CYP2C19 is likely an important contributor to normeperidine generation in individuals with high CYP2C19 activity, but additional factors influence inter-individual metabolite accumulation.
Collapse
Affiliation(s)
- Jessica L Murray
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
| | - Susan L Mercer
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Klarissa D Jackson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Zhang Y, Chen L, Li X, Gao L, Hao Y, Li B, Yan Y. Novel 4-arylaminoquinazolines bearing N, N-diethyl(aminoethyl)amino moiety with antitumour activity as EGFR wt-TK inhibitor. J Enzyme Inhib Med Chem 2020; 34:1668-1677. [PMID: 31530043 PMCID: PMC6758725 DOI: 10.1080/14756366.2019.1667341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herein, four novel 4-arylaminoquinazoline derivatives with N,N-diethyl(aminoethyl)amino moiety were designed, synthesised and evaluated on biological activities in vitro. All synthesised compounds have inhibitory effects against tumour cells (SW480, A549, A431 and NCI-H1975). In particular, 4-(3-chloro-4-(3-fluorobenzyloxy)phenylamino)-6-(5-((N,N-diethyl(aminoethyl))aminomethyl)furan-2-yl)quinazoline (6a) and 6-(5-((N,N-diethylethyl)aminomethyl)furan-2-yl)-4-(4-(E)-(propen-1-yl)phenylamino)quinazoline (6d) were potent antitumour agents which showed high antiproliferative activities against tumour cells in vitro. Moreover, compound 6a could induce late apoptosis of A549 cells at high concentrations and arrest cell cycle of A549 cells in the G0/G1 phase at tested concentrations. Also, compound 6a could inhibit the activity of wild type epidermal growth factor receptor tyrosine kinase (EGFRwt-TK) with IC50 value of 15.60 nM. Molecular docking showed that compound 6a formed three hydrogen bonds with EGFRwt-TK, while lapatinib formed only two hydrogen bonds with the receptor protein. It is believed that this work would be giving a reference for developing anti-cancer drugs targeted EGFR-TK.
Collapse
Affiliation(s)
- Yaling Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an , P. R. China
| | - Li Chen
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Xiabing Li
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Li Gao
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Yunxia Hao
- School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Baolin Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an , P. R. China.,School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an , P. R. China
| | - Yaping Yan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University , Xi'an , P. R. China
| |
Collapse
|
21
|
Bissada JE, Truong V, Abouda AA, Wines KJ, Crouch RD, Jackson KD. Interindividual Variation in CYP3A Activity Influences Lapatinib Bioactivation. Drug Metab Dispos 2019; 47:1257-1269. [PMID: 31492693 DOI: 10.1124/dmd.119.088823] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lapatinib is a dual tyrosine kinase inhibitor associated with rare but potentially severe idiosyncratic hepatotoxicity. We have previously shown that cytochromes P450 CYP3A4 and CYP3A5 quantitatively contribute to lapatinib bioactivation, leading to formation of a reactive, potentially toxic quinone imine. CYP3A5 is highly polymorphic; however, the impact of CYP3A5 polymorphism on lapatinib metabolism has not been fully established. The goal of this study was to determine the effect of CYP3A5 genotype and individual variation in CYP3A activity on the metabolic activation of lapatinib using human-relevant in vitro systems. Lapatinib metabolism was examined using CYP3A5-genotyped human liver microsomes and cryopreserved human hepatocytes. CYP3A and CYP3A5-selective activities were measured in liver tissues using probe substrates midazolam and T-5 (T-1032), respectively, to evaluate the correlation between enzymatic activity and lapatinib metabolite formation. Drug metabolites were measured by high-performance liquid chromatography-tandem mass spectrometry. Further, the relative contributions of CYP3A4 and CYP3A5 to lapatinib O-debenzylation were estimated using selective chemical inhibitors of CYP3A. The results from this study demonstrated that lapatinib O-debenzylation and quinone imine-GSH conjugate formation were highly correlated with hepatic CYP3A activity, as measured by midazolam 1'-hydroxylation. CYP3A4 played a dominant role in lapatinib bioactivation in all liver tissues evaluated. The CYP3A5 contribution to lapatinib bioactivation varied by individual donor and was dependent on CYP3A5 genotype and activity. CYP3A5 contributed approximately 20%-42% to lapatinib O-debenzylation in livers from CYP3A5 expressers. These findings indicate that individual CYP3A activity, not CYP3A5 genotype alone, is a key determinant of lapatinib bioactivation and likely influences exposure to reactive metabolites. SIGNIFICANCE STATEMENT: This study is the first to examine the effect of CYP3A5 genotype, total CYP3A activity, and CYP3A5-selective activity on lapatinib bioactivation in individual human liver tissues. The results of this investigation indicate that lapatinib bioactivation via oxidative O-debenzylation is highly correlated with total hepatic CYP3A activity, and not CYP3A5 genotype alone. These findings provide insight into the individual factors, namely, CYP3A activity, that may affect individual exposure to reactive, potentially toxic metabolites of lapatinib.
Collapse
Affiliation(s)
- Jennifer E Bissada
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Vivian Truong
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Arsany A Abouda
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Kahari J Wines
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Rachel D Crouch
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| | - Klarissa D Jackson
- Department of Pharmaceutical Sciences, Lipscomb University College of Pharmacy and Health Sciences, Nashville, Tennessee (J.E.B., V.T., A.A.A., K.J.W., R.D.C., K.D.J.); Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee (R.D.C., K.D.J.); and Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J.)
| |
Collapse
|
22
|
Risk factors associated with the incidence and time to onset of lapatinib-induced hepatotoxicity. Breast Cancer Res Treat 2019; 178:239-244. [PMID: 31372791 DOI: 10.1007/s10549-019-05382-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Although lapatinib-induced hepatotoxicity can cause severe clinical complications in patients, the factors affecting hepatotoxicity have rarely been investigated. The purpose of this study was to investigate risk factors for hepatotoxicity and time to lapatinib-induced hepatotoxicity. METHODS This retrospective study was performed on metastatic breast cancer patients treated with lapatinib. Various factors were evaluated for hepatotoxicity and time to hepatotoxicity, including sex, age, body weight, height, body surface area, underlying disease, smoking history, start dose of lapatinib, status of liver metastasis, and concomitant drugs. RESULTS Among 159 patients, the percentage of patients with hepatotoxicity after lapatinib initiation was 57.9% (n = 92). Multivariate analysis showed that concomitant use of H2 blockers increased the incidence of hepatotoxicity by 2.3-fold. Patients who received CYP3A4 inducers had 3.1 times higher risk of hepatotoxicity incidence; the attributable risks of H2 blockers and CYP3A4 inducers were 56.7% and 68.1%, respectively. Use of H2 blockers increased the hazard of time to hepatotoxicity by 1.8-fold compared to non-use of H2 blockers. CONCLUSIONS Our study demonstrated that concomitant use of H2 blockers and CYP3A4 inducers was associated with lapatinib-induced hepatotoxicity. Close liver function monitoring is recommended, especially in patients receiving H2 blockers or CYP3A4 inducers.
Collapse
|
23
|
Coker SA, Hurwitz HI, Sharma S, Wang D, Jordaan P, Zarate JP, Lewis LD. The effects of lapatinib on cardiac repolarization: results from a placebo controlled, single sequence, crossover study in patients with advanced solid tumors. Cancer Chemother Pharmacol 2019; 84:383-392. [PMID: 31187169 DOI: 10.1007/s00280-019-03880-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE To evaluate the effect of lapatinib on the QTc interval and ECG parameters in patients with advanced solid tumors. METHODS This was a multicenter, placebo-controlled study in subjects with advanced solid tumors. Subjects were administered two doses of matching placebo on day 1, 12 h apart and one dose in the morning on day 2. Two doses of lapatinib 2000 mg were administered orally on day 3, 12 h apart and one dose in the morning on day 4. Twelve-lead digital ECGs were extracted from continuous Holter recordings at pre-specified time points over the 24-h period on days 2 and 4. Venous blood samples for lapatinib concentrations were obtained immediately following the ECGs. RESULTS A maximum mean baseline-adjusted, placebo time-matched increase in QTcF, (ddQTcF) in the evaluable, (EV) population (n = 37) of 8.8 ms (90% CI 4.1, 13.4) occurred approximately 10 h after the third lapatinib dose. These results were consistent with those in the pharmacodynamic, PD population, (n = 52) (ddQTcF = 7.9 ms; 90% CI 4.1, 11.7). No subject experienced QTcF increases from baseline of > 60 ms on lapatinib or placebo. The geometric mean lapatinib Cmax of 3902 ng/mL was observed at 3.6 h post-dose. CONCLUSIONS These data show a relevant, treatment-related increase in QTcF after treatment with three doses of lapatinib 2000 mg. This study confirms the need for caution in patients with solid tumors treated with lapatinib, and who are concomitantly receiving drugs that are strong CYP3A inhibitors and/or prolong the QTc.
Collapse
Affiliation(s)
- Shodeinde A Coker
- Section of Clinical Pharmacology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Section of Hematology/Oncology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA
- Bristol-Myers Squibb, 3401, Princeton Pike, Lawrenceville, NJ, 08648, USA
| | - Herbert I Hurwitz
- Division of Medical Oncology, Duke University Medical Center, 10 Bryan Searle Drive, Durham, NC, 27710, USA
- Genentech, 1 DNA Way MS 45-4B, South San Francisco, CA, 94080, USA
| | - Sunil Sharma
- The Huntsman Cancer Center, University of Utah, 2000 Circle of Hope, Suite 2125, Salt Lake City, UT, 84112, USA
| | - Ding Wang
- Henry Ford Hospital, Pallister Place, 2799 West Grand Boulevard, Detroit, MI, 48202, USA
| | | | | | - Lionel D Lewis
- Section of Clinical Pharmacology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
- Section of Hematology/Oncology, Department of Medicine, The Geisel School of Medicine at Dartmouth and The Norris Cotton Cancer Center at Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, 03756, USA.
| |
Collapse
|
24
|
Paludetto M, Puisset F, Chatelut E, Arellano C. Identifying the reactive metabolites of tyrosine kinase inhibitors in a comprehensive approach: Implications for drug‐drug interactions and hepatotoxicity. Med Res Rev 2019; 39:2105-2152. [DOI: 10.1002/med.21577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/06/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Marie‐Noëlle Paludetto
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
- Département PharmacieInstitut Claudius Regaud, IUCT‐O Toulouse France
| | - Florent Puisset
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
- Département PharmacieInstitut Claudius Regaud, IUCT‐O Toulouse France
| | - Etienne Chatelut
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
| | - Cécile Arellano
- Centre de Recherches en Cancérologie de Toulouse, INSERMUMR1037Université de Toulouse Toulouse Cedex 1 France
- Faculté de PharmacieUniversité Paul Sabatier Toulouse France
| |
Collapse
|
25
|
Clairet AL, Boiteux-Jurain M, Curtit E, Jeannin M, Gérard B, Nerich V, Limat S. Interaction between phytotherapy and oral anticancer agents: prospective study and literature review. Med Oncol 2019; 36:45. [PMID: 30993543 DOI: 10.1007/s12032-019-1267-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 12/23/2022]
Abstract
Cancer is becoming more prevalent in elderly patient. Due to polypharmacy, older adults with cancer are predisposed to drug-drug interactions. There is also an increasing interest in the use of complementary and alternative medicine (CAM). Thirty to seventy percent of patients with cancer have used CAM. Through pharmaceutical counseling sessions, we can provide advices on herb-drug interactions (HDI). All the patients seen in pharmaceutical counseling sessions were prospectively included. Information was collected during these sessions: prescribed medication (oral anticancer agents (OAA) and other drugs), CAM (phytotherapy especially), and use of over-the-counter (OTC) drugs. If pharmacist considered an interaction or an intervention clinically relevant, the oncologist was notified. Then, a literature review was realized to identify the potential HDI (no interactions, precautions for use, contraindication). Among 201 pharmacist counseling sessions, it resulted in 104 interventions related to 46 HDI, 28 drug-drug interactions and 30 others (wrong dosage, omission…). To determine HDI, we review 73 medicinal plants which are used by our patients with cancer and 31 OAA. A total of 1829 recommendations were formulated about 59 (75%) medical plants and their interaction with an OAA. Herb-drug interactions should not be ignored by healthcare providers in their management of cancer patients in daily practice.
Collapse
Affiliation(s)
- Anne-Laure Clairet
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| | - Marie Boiteux-Jurain
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Elsa Curtit
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, 25000, Besançon, France
| | - Marie Jeannin
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Blandine Gérard
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
| | - Virginie Nerich
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France.
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France.
| | - Samuel Limat
- Department of Pharmacy, University Hospital of Besançon, 25000, Besançon, France
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, 25000, Besançon, France
| |
Collapse
|
26
|
Dekker SJ, Dohmen F, Vermeulen NPE, Commandeur JNM. Characterization of kinetics of human cytochrome P450s involved in bioactivation of flucloxacillin: inhibition of CYP3A-catalysed hydroxylation by sulfaphenazole. Br J Pharmacol 2018; 176:466-477. [PMID: 30447161 PMCID: PMC6329626 DOI: 10.1111/bph.14548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background and Purpose The aim of this study was to characterize the human cytochrome P450s (CYPs) involved in oxidative bioactivation of flucloxacillin to 5‐hydroxymethyl flucloxacillin, a metabolite with high cytotoxicity towards biliary epithelial cells. Experimental Approach The CYPs involved in hydroxylation of flucloxacillin were characterized using recombinant human CYPs, pooled liver microsomes in the presence of CYP‐specific inhibitors and by correlation analysis using a panel of liver microsomes from 16 donors. Key Results Recombinant CYPs showing the highest specific activity were CYP3A4, CYP3A7 and to lower extent CYP2C9 and CTP2C8. Michaelis–Menten enzyme kinetics were determined for pooled human liver microsomes, recombinant CYP3A4, CYP3A7 and CYP2C9. Surprisingly, sulfaphenazole appeared to be a potent inhibitor of 5′‐hydroxylation of flucloxacillin by both recombinant CYP3A4 and CYP3A7. Conclusions and Implications The combined results show that the 5′‐hydroxylation of flucloxacillin is primarily catalysed by CYP3A4, CYP3A7 and CYP2C9. The large variability of the hepatic expression of these enzymes could affect the formation of 5′‐hydroxymethyl flucloxacillin, which may determine the differences in susceptibility to flucloxacillin‐induced liver injury. Additionally, the strong inhibition in CYP3A‐catalysed flucloxacillin metabolism by sulfaphenazole suggests that unanticipated drug–drug interactions could occur with coadministered drugs.
Collapse
Affiliation(s)
- Stefan J Dekker
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Floor Dohmen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Nico P E Vermeulen
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| | - Jan N M Commandeur
- Division of Molecular Toxicology, Amsterdam Institute for Molecules Medicine and Systems (AIMMS), Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Jackson KD, Durandis R, Vergne MJ. Role of Cytochrome P450 Enzymes in the Metabolic Activation of Tyrosine Kinase Inhibitors. Int J Mol Sci 2018; 19:E2367. [PMID: 30103502 PMCID: PMC6121577 DOI: 10.3390/ijms19082367] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/11/2022] Open
Abstract
Tyrosine kinase inhibitors are a rapidly expanding class of molecular targeted therapies for the treatment of various types of cancer and other diseases. An increasing number of clinically important small molecule tyrosine kinase inhibitors have been shown to undergo cytochrome P450-mediated bioactivation to form chemically reactive, potentially toxic products. Metabolic activation of tyrosine kinase inhibitors is proposed to contribute to the development of serious adverse reactions, including idiosyncratic hepatotoxicity. This article will review recent findings and ongoing studies to elucidate the link between drug metabolism and tyrosine kinase inhibitor-associated hepatotoxicity.
Collapse
Affiliation(s)
- Klarissa D Jackson
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| | - Rebecca Durandis
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| | - Matthew J Vergne
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN 37204, USA.
| |
Collapse
|
28
|
Liu F, Huai Z, Xia G, Song L, Li S, Xu Y, Hong K, Yao M, Liu G, Huang Y. Synthesis and antitumor activity of novel 6,7,8-trimethoxy N-aryl-substituted-4-aminoquinazoline derivatives. Bioorg Med Chem Lett 2018; 28:2561-2565. [PMID: 29903662 DOI: 10.1016/j.bmcl.2018.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/19/2022]
Abstract
A series of 6,7,8-trimethoxy N-aryl-substituted-4-aminoquinazoline derivatives were synthesized as epidermal growth factor receptor (EGFR) inhibitors, and their antitumor activities were assessed in the gastric cancer cell line SGC7901 using MTT assay. All compounds of Tg1-14 were found to inhibit SGC7901 cell proliferation, and compound Tg11 (IC50 = 0.434 μM) was found to be slightly more effective against SGC7901 cells than epirubicin (IC50 = 5.16 μM). This suggests that compound Tg11 can be used as a new substitution structure to develop more efficacious antitumor agents. Western blot analysis showed that treatment with Tg11 (40 μM for 30 min) resulted in near complete inhibition of EGF-induced ERK1/2 phosphorylation, indicating that its anti-proliferative effect is largely associated with inhibition of ERK1/2 activation. These data imply that Tg11 is a potential anticancer agent capable of inhibiting cell proliferation.
Collapse
Affiliation(s)
- Fang Liu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Ziyou Huai
- Department of Bioscience, Bengbu Medical College, Bengbu 233030, Anhui, PR China
| | - Guotai Xia
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Liuping Song
- Department of Bioscience, Bengbu Medical College, Bengbu 233030, Anhui, PR China
| | - Sha Li
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Yulan Xu
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Kangjun Hong
- School of Pharmacy, Bengbu Medical College, Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Bengbu 233030, Anhui, PR China
| | - Mingyue Yao
- Department of Bioscience, Bengbu Medical College, Bengbu 233030, Anhui, PR China
| | - Gang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264000, Shandong, PR China.
| | - Yinjiu Huang
- Department of Bioscience, Bengbu Medical College, Bengbu 233030, Anhui, PR China.
| |
Collapse
|
29
|
Amaya GM, Durandis R, Bourgeois DS, Perkins JA, Abouda AA, Wines KJ, Mohamud M, Starks SA, Daniels RN, Jackson KD. Cytochromes P450 1A2 and 3A4 Catalyze the Metabolic Activation of Sunitinib. Chem Res Toxicol 2018; 31:570-584. [PMID: 29847931 DOI: 10.1021/acs.chemrestox.8b00005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sunitinib is a multitargeted tyrosine kinase inhibitor associated with idiosyncratic hepatotoxicity. The mechanisms of this toxicity are unknown. We hypothesized that sunitinib undergoes metabolic activation to form chemically reactive, potentially toxic metabolites which may contribute to development of sunitinib-induced hepatotoxicity. The purpose of this study was to define the role of cytochrome P450 (P450) enzymes in sunitinib bioactivation. Metabolic incubations were performed using individual recombinant P450s, human liver microsomal fractions, and P450-selective chemical inhibitors. Glutathione (GSH) and dansylated GSH were used as trapping agents to detect reactive metabolite formation. Sunitinib metabolites were analyzed by liquid chromatography-tandem mass spectrometry. A putative quinoneimine-GSH conjugate (M5) of sunitinib was detected from trapping studies with GSH and dansyl-GSH in human liver microsomal incubations, and M5 was formed in an NADPH-dependent manner. Recombinant P450 1A2 generated the highest levels of defluorinated sunitinib (M3) and M5, with less formation by P450 3A4 and 2D6. P450 3A4 was the major enzyme forming the primary active metabolite N-desethylsunitinib (M1). In human liver microsomal incubations, P450 3A inhibitor ketoconazole reduced formation of M1 by 88%, while P450 1A2 inhibitor furafylline decreased generation of M5 by 62% compared to control levels. P450 2D6 and P450 3A inhibition also decreased M5 by 54 and 52%, respectively, compared to control. In kinetic assays, recombinant P450 1A2 showed greater efficiency for generation of M3 and M5 compared to that of P450 3A4 and 2D6. Moreover, M5 formation was 2.7-fold more efficient in human liver microsomal preparations from an individual donor with high P450 1A2 activity compared to a donor with low P450 1A2 activity. Collectively, these data suggest that P450 1A2 and 3A4 contribute to oxidative defluorination of sunitinib to generate a reactive, potentially toxic quinoneimine. Factors that alter P450 1A2 and 3A activity may affect patient risk for sunitinib toxicity.
Collapse
Affiliation(s)
- Gracia M Amaya
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - Rebecca Durandis
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - David S Bourgeois
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - James A Perkins
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - Arsany A Abouda
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - Kahari J Wines
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - Mohamed Mohamud
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - Samuel A Starks
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States
| | - R Nathan Daniels
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States.,Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States
| | - Klarissa D Jackson
- Department of Pharmaceutical Sciences , Lipscomb University College of Pharmacy and Health Sciences , Nashville , Tennessee 37204-3951 , United States.,Department of Pharmacology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States
| |
Collapse
|
30
|
Theoretical Insights into Imidazolidine Oxidation of Imidacloprid by Cytochrome P450 3A4. J Mol Graph Model 2018; 80:173-181. [DOI: 10.1016/j.jmgm.2018.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/18/2022]
|
31
|
The effects of lapatinib on CYP3A metabolism of midazolam in patients with advanced cancer. Cancer Chemother Pharmacol 2017; 80:1141-1146. [PMID: 29098381 DOI: 10.1007/s00280-017-3470-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022]
Abstract
PURPOSE The potential inhibition of CYP3A4 by lapatinib was studied using midazolam as a probe substrate in patients with cancer. METHODS This was a partially randomized, 4-period, 4-sequence, 4-treatment, cross-over study in 24 patients with advanced cancer. Single 1-mg IV and 3-mg oral doses of midazolam were given 2 days apart, in a partially random order, on study days 1, 3, 9, and 11. Lapatinib 1500-mg was administered orally once daily on study days 4 through 11. Midazolam plasma concentrations were measured up to 24-h post dosing, and lapatinib plasma concentrations measured prior to each midazolam dose. RESULTS Lapatinib increased the geometric mean (95% CIs) midazolam AUC(o-∞) by 45% (31-60%) after the oral dose and by 14% (0-29%) after the IV dose, and prolonged the midazolam elimination half-life by 48% (22-81%) after the oral dose and by 20% (2-40%) after the IV dose. Lapatinib decreased midazolam total clearance by 13% (1-23%), while total bioavailability was increased 23% (4-46%) without changes in apparent volume of distribution or hepatic bioavailability. CONCLUSION These data show that lapatinib caused weak inhibition of gastrointestinal CYP3A4 in vivo. This suggests that oral CYP3A4 drug substrates with a narrow therapeutic index may need dose reduction if lapatinib is to be co-prescribed.
Collapse
|
32
|
|
33
|
Novel 4-arylaminoquinazoline derivatives with (E)-propen-1-yl moiety as potent EGFR inhibitors with enhanced antiproliferative activities against tumor cells. Eur J Med Chem 2017; 138:689-697. [PMID: 28711703 DOI: 10.1016/j.ejmech.2017.06.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 12/15/2022]
Abstract
A series of novel 4-anilinoquinazoline derivatives with (E)-propen-1-yl moiety were designed, synthesized and evaluated for biological activities in vitro. Most compounds exhibited highly antiproliferative activities against all tested tumor cell lines including A431, A549, NCI-H1975 and SW480 cells. Especially, compound 6e not only presented strong antiproliferative activities against the tested four tumor cell lines (IC50 of 1.35, 8.83, 5.53 and 6.08 μM, respectively) which expressed wild type or L858R/T790M double mutant epidermal growth factor receptor (EGFR), but also showed potent inhibitory activity against wild type EGFR (IC50 = 20.72 nM). The result of molecular docking with EGFR suggested the binding mode of 6e was similar to gefitinib, but different from lapatinib. Additionally, western blot analysis showed that 6e inhibited the phosphorylation of EGFR and its downstream signaling proteins in lung cancer cells. The work could be very useful starting point for developing a new series of tyrosine kinase inhibitors targeting EGFR.
Collapse
|
34
|
Zhang Y, Zhang Y, Liu J, Chen L, Zhao L, Li B, Wang W. Synthesis and in vitro biological evaluation of novel quinazoline derivatives. Bioorg Med Chem Lett 2017; 27:1584-1587. [PMID: 28238614 DOI: 10.1016/j.bmcl.2017.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
A series of novel 4-arylamino-6-(5-substituted furan-2-yl)quinazoline derivatives were designed, synthesized and evaluated on biological activities in vitro. Compound 2a, 3a and 3c exhibited highly anti-proliferation activities on all tested tumor cell lines including SW480, A549, A431 and NCI-H1975 cells. Especially, compound 2a not only exhibited strong anti-proliferation activities against the tumor cell lines which expressed wild type or mutant EGFRL858R/T790M, but also showed the most potent inhibitory activity toward wild type EGFR (IC50=5.06nM). The result of docking with EGFR suggested the binding mode of 2a was similar to that of lapatinib. While Western-blot analyses showed 2a obviously inhibited the activation of EGFR, Akt and Erk1/2 in lung cancer cells at indicated concentration. It is believed that this work would be very useful for developing a new series of TKIs targeting EGFR.
Collapse
Affiliation(s)
- Yaling Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Ying Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Juan Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Li Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Lijun Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China
| | - Baolin Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | - Wei Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China; School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| |
Collapse
|
35
|
Bioactivation and Regioselectivity of Pig Cytochrome P450 3A29 towards Aflatoxin B₁. Toxins (Basel) 2016; 8:toxins8090267. [PMID: 27626447 PMCID: PMC5037493 DOI: 10.3390/toxins8090267] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/05/2016] [Indexed: 01/10/2023] Open
Abstract
Due to unavoidable contaminations in feedstuff, pigs are easily exposed to aflatoxin B1 (AFB1) and suffer from poisoning, thus the poisoned products potentially affect human health. Heretofore, the metabolic process of AFB1 in pigs remains to be clarified, especially the principal cytochrome P450 oxidases responsible for its activation. In this study, we cloned CYP3A29 from pig liver and expressed it in Escherichia coli, and its activity has been confirmed with the typical P450 CO-reduced spectral characteristic and nifedipine-oxidizing activity. The reconstituted membrane incubation proved that the recombinant CYP3A29 was able to oxidize AFB1 to form AFB1-exo-8,9-epoxide in vitro. The structural basis for the regioselective epoxidation of AFB1 by CYP3A29 was further addressed. The T309A mutation significantly decreased the production of AFBO, whereas F304A exhibited an enhanced activation towards AFB1. In agreement with the mutagenesis study, the molecular docking simulation suggested that Thr309 played a significant role in stabilization of AFB1 binding in the active center through a hydrogen bond. In addition, the bulk phenyl group of Phe304 potentially imposed steric hindrance on the binding of AFB1. Our study demonstrates the bioactivation of pig CYP3A29 towards AFB1 in vitro, and provides the insight for understanding regioselectivity of CYP3A29 to AFB1.
Collapse
|