1
|
Dong XD, Zhang M, Teng QX, Lei ZN, Cai CY, Wang JQ, Wu ZX, Yang Y, Chen X, Guo H, Chen ZS. Mobocertinib antagonizes multidrug resistance in ABCB1- and ABCG2-overexpressing cancer cells: In vitro and in vivo studies. Cancer Lett 2024; 607:217309. [PMID: 39481798 DOI: 10.1016/j.canlet.2024.217309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1 and ABCG2, strongly correlates with multidrug resistance (MDR), rendering cancer chemotherapy ineffective. Exploration and identification of novel inhibitors targeting ABCB1 and ABCG2 are necessary to overcome the related MDR. Mobocertinib is an approved EGFR/HER2 inhibitor for non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations. This study demonstrates that mobocertinib can potentially reverse ABCB1- and ABCG2-mediated MDR. Our findings indicate a strong interaction between mobocertinib and these two proteins, supported by its high binding affinity with ABCB1 and ABCG2 models. Through inhibiting the drug efflux function of ABCB1 and ABCG2, mobocertinib facilitates substrate drugs accumulation, thereby re-sensitizing substrate drugs in drug-resistant cancer cells. Additionally, mobocertinib inhibited the ATPase activity of ABCB1 and ABCG2 without changing the expression levels or subcellular localization. In the tumor-bearing mouse model, mobocertinib boosted the antitumor effect of paclitaxel and topotecan, resulting in tumor regression. In summary, our study uncovers a novel potential for repurposing mobocertinib as a dual inhibitor of ABCB1 and ABCG2, and suggests the combination of mobocertinib with substrate drugs as a strategy to counteract MDR.
Collapse
MESH Headings
- Humans
- Animals
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Drug Resistance, Neoplasm/drug effects
- Mice
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/antagonists & inhibitors
- Topotecan/pharmacology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Mice, Nude
- Mice, Inbred BALB C
- Paclitaxel/pharmacology
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Meng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; Department of Thyroid and Breast Surgery, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Baoan, Shenzhen, Guangdong, 510000, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Xiang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Huiqin Guo
- Department of Thoracic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
2
|
Dong XD, Lu Q, Li YD, Cai CY, Teng QX, Lei ZN, Wei ZH, Yin F, Zeng L, Chen ZS. RN486, a Bruton's Tyrosine Kinase inhibitor, antagonizes multidrug resistance in ABCG2-overexpressing cancer cells. J Transl Int Med 2024; 12:288-298. [PMID: 39081282 PMCID: PMC11284896 DOI: 10.2478/jtim-2024-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Background and Objectives Overcoming ATP-binding cassette subfamily G member 2 (ABCG2)-mediated multidrug resistance (MDR) has attracted the attention of scientists because one of the critical factors resulting in MDR in cancer is the overexpression of ABCG2. RN486, a Bruton's Tyrosine Kinase (BTK) inhibitor, was discovered to potentially reverse ABCB1-mediated MDR. However, there is still uncertainty about whether RN486 has a reversal off-target impact on ABCG2-mediated MDR. Methods MTT assay was used to detect the reversal effect of RN486 on ABCG2-overexpressing cancer cells. The ABCG2 expression level and subcellular localization were examined by Western blotting and immunofluorescence. Drug accumulation and eflux assay and ATPase assay were performed to analyze the ABCG2 transporter function and ATPase activity. Molecular modeling predicted the binding between RN486 and ABCG2 protein. Results Non-toxic concentrations of RN486 remarkably increased the sensitivity of ABCG2-overexpressing cancer cells to conventional anticancer drugs mitoxantrone and topotecan. The reversal mechanistic studies showed that RN486 elevated the drug accumulation because of reducing the eflux of ABCG2 substrate drug in ABCG2-overexpressing cancer cells. In addition, the inhibitory efect of RN486 on ABCG2-associated ATPase activity was also verified. Molecular docking study implied a strong binding afinity between RN486 and ABCG2 transporter. Meanwhile, the ABCG2 subcellular localization was not altered by the treatment of RN486, but the expression level of ABCG2 was down-regulated. Conclusions Our studies propose that RN486 can antagonize ABCG2-mediated MDR in cancer cells via down-regulating the expression level of ABCG2 protein, reducing ATPase activity of ABCG2 transporter, and inhibiting the transporting function. RN486 could be potentially used in conjunction with chemotherapy to alleviate MDR mediated by ABCG2 in cancer.
Collapse
Affiliation(s)
- Xing-Duo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qisi Lu
- Department of Hematology, Foresea Life Insurance Guangzhou General Hospital, Guangzhou515500, Guangdong Province, China
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Biobank, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen518107, Guangdong Province, China
| | - Zeng-Hui Wei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Fan Yin
- Department of Statistics, University of California at Irvine, Irvine, CA 92697, USA
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Biobank, Precision Medicine Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen518107, Guangdong Province, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
3
|
Liu H, Tang L, Li Y, Xie W, Zhang L, Tang H, Xiao T, Yang H, Gu W, Wang H, Chen P. Nasopharyngeal carcinoma: current views on the tumor microenvironment's impact on drug resistance and clinical outcomes. Mol Cancer 2024; 23:20. [PMID: 38254110 PMCID: PMC10802008 DOI: 10.1186/s12943-023-01928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence of nasopharyngeal carcinoma (NPC) exhibits significant variations across different ethnic groups and geographical regions, with Southeast Asia and North Africa being endemic areas. Of note, Epstein-Barr virus (EBV) infection is closely associated with almost all of the undifferentiated NPC cases. Over the past three decades, radiation therapy and chemotherapy have formed the cornerstone of NPC treatment. However, recent advancements in immunotherapy have introduced a range of promising approaches for managing NPC. In light of these developments, it has become evident that a deeper understanding of the tumor microenvironment (TME) is crucial. The TME serves a dual function, acting as a promoter of tumorigenesis while also orchestrating immunosuppression, thereby facilitating cancer progression and enabling immune evasion. Consequently, a comprehensive comprehension of the TME and its intricate involvement in the initiation, progression, and metastasis of NPC is imperative for the development of effective anticancer drugs. Moreover, given the complexity of TME and the inter-patient heterogeneity, personalized treatment should be designed to maximize therapeutic efficacy and circumvent drug resistance. This review aims to provide an in-depth exploration of the TME within the context of EBV-induced NPC, with a particular emphasis on its pivotal role in regulating intercellular communication and shaping treatment responses. Additionally, the review offers a concise summary of drug resistance mechanisms and potential strategies for their reversal, specifically in relation to chemoradiation therapy, targeted therapy, and immunotherapy. Furthermore, recent advances in clinical trials pertaining to NPC are also discussed.
Collapse
Affiliation(s)
- Huai Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Tang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanxian Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wenji Xie
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ling Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hongmin Yang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Wangning Gu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Hui Wang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Colclough N, Alluri RV, Tucker JW, Gozalpour E, Li D, Du H, Li W, Harlfinger S, O'Neill DJ, Sproat GG, Chen K, Yan Y, McGinnity DF. Utilizing a Dual Human Transporter MDCKII-MDR1-BCRP Cell Line to Assess Efflux at the Blood Brain Barrier. Drug Metab Dispos 2024; 52:95-105. [PMID: 38071533 DOI: 10.1124/dmd.123.001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
To facilitate the design of drugs readily able to cross the blood brain barrier (BBB), a Madin-Darby canine kidney (MDCK) cell line was established that over expresses both P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), the main human efflux transporters of the BBB. Proteomics analyses indicate BCRP is expressed at a higher level than Pgp in this cell line. This cell line shows good activity for both transporters [BCRP substrate dantrolene efflux ratio (ER) 16.3 ± 0.9, Pgp substrate quinidine ER 27.5 ± 1.2], and use of selective transporter inhibitors enables an assessment of the relative contributions to overall ERs. The MDCKII-MDR1-BCRP ER negatively correlates with rat unbound brain/unbound plasma ratio, Kpuu Highly brain penetrant compounds with rat Kpuu ≥ 0.3 show ERs ≤ 2 in the MDCKII-MDR1-BCRP assay while compounds predominantly excluded from the brain, Kpuu ≤ 0.05, demonstrate ERs ≥ 20. A subset of compounds with MDCKII-MDR1-BCRP ER < 2 and rat Kpuu < 0.3 were shown to be substrates of rat Pgp using a rat transfected cell line, MDCKII-rMdr1a. These compounds also showed ERs > 2 in the human National Institutes of Health (NIH) MDCKI-MDR1 (high Pgp expression) cell line, which suggests that they are weak human Pgp substrates. Characterization of 37 drugs targeting the central nervous system in the MDCKII-MDR1-BCRP efflux assay show 36 have ERs < 2. In drug discovery, use of the MDCKII-MDR1-BCRP in parallel with the NIH MDCKI-MDR1 cell line is useful for identification of compounds with high brain penetration. SIGNIFICANCE STATEMENT: A single cell line that includes both the major human efflux transporters of the blood brain barrier (MDCKII-MDR1-BCRP) has been established facilitating the rapid identification of efflux substrates and enabling the design of brain penetrant molecules. Efflux ratios using this cell line demonstrate a clear relationship with brain penetration as defined by rat brain Kpuu.
Collapse
Affiliation(s)
- Nicola Colclough
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Ravindra V Alluri
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - James W Tucker
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Elnaz Gozalpour
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Danxi Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Hongwen Du
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Wei Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Stephanie Harlfinger
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Daniel J O'Neill
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Graham G Sproat
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Kan Chen
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Yumei Yan
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Dermot F McGinnity
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| |
Collapse
|
5
|
Dhakne P, Pillai M, Mishra S, Chatterjee B, Tekade RK, Sengupta P. Refinement of safety and efficacy of anti-cancer chemotherapeutics by tailoring their site-specific intracellular bioavailability through transporter modulation. Biochim Biophys Acta Rev Cancer 2023; 1878:188906. [PMID: 37172652 DOI: 10.1016/j.bbcan.2023.188906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Low intracellular bioavailability, off-site toxicities, and multi drug resistance (MDR) are the major constraints involved in cancer chemotherapy. Many anticancer molecules fail to become a good lead in drug discovery because of their poor site-specific bioavailability. Concentration of a molecule at target sites is largely varied because of the wavering expression of transporters. Recent anticancer drug discovery strategies are paying high attention to enhance target site bioavailability by modulating drug transporters. The level of genetic expression of transporters is an important determinant to understand their ability to facilitate drug transport across the cellular membrane. Solid carrier (SLC) transporters are the major influx transporters involved in the transportation of most anti-cancer drugs. In contrast, ATP-binding cassette (ABC) superfamily is the most studied class of efflux transporters concerning cancer and is significantly involved in efflux of chemotherapeutics resulting in MDR. Balancing SLC and ABC transporters is essential to avoid therapeutic failure and minimize MDR in chemotherapy. Unfortunately, comprehensive literature on the possible approaches of tailoring site-specific bioavailability of anticancer drugs through transporter modulation is not available till date. This review critically discussed the role of different specific transporter proteins in deciding the intracellular bioavailability of anticancer molecules. Different strategies for reversal of MDR in chemotherapy by incorporation of chemosensitizers have been proposed in this review. Targeted strategies for administration of the chemotherapeutics to the intracellular site of action through clinically relevant transporters employing newer nanotechnology-based formulation platforms have been explained. The discussion embedded in this review is timely considering the current need of addressing the ambiguity observed in pharmacokinetic and clinical outcomes of the chemotherapeutics in anti-cancer treatment regimens.
Collapse
Affiliation(s)
- Pooja Dhakne
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Megha Pillai
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Bappaditya Chatterjee
- SVKM's NMIMS School of Pharmacy and Management, Department of Pharmaceutics, Vaikunthlal Mehta Road, Vile Parle West, Mumbai, Maharashtra 400056, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
6
|
Zhang H, Yu J, Ma L, Zhao Y, Xu S, Shi J, Qian K, Gu M, Tan H, Xu L, Liu Y, Mu C, Xiong Y. Reversing multi-drug resistance by polymeric metformin to enhance antitumor efficacy of chemotherapy. Int J Pharm 2022; 624:121931. [PMID: 35750278 DOI: 10.1016/j.ijpharm.2022.121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/01/2023]
Abstract
Multi-drug resistance (MDR) in breast cancer poses a great threat to chemotherapy. The expression and function of the ATP binding cassette (ABC) transporter are the major cause of MDR. Herein, a linear polyethylene glycol (PEI) conjugated with dicyandiamide, which called polymeric metformin (PolyMet), was successfully synthesized as a simple and biocompatible polymer of metformin. PolyMet showed the potential to reverse MDR by inhibiting the efflux of the substrate of ATP-binding cassette (ABC) transporter from DOX resistant MCF-7 cells (MCF-7/DOX). To test its MDR reversing effect, PolyMet was combined with DOX to treat mice carrying MCF-7/DOX xenografts. In order to decrease the toxicities of DOX and delivery PolyMet and DOX to tumor at the same time, PolyMet was complexed with poly-γ-glutamic acid-doxorubicin (PGA-DOX) electrostatically at the optimal ratio of 2:3, which were further coated with lipid membrane to form lipid/PolyMet-(PGA-DOX) nanoparticles (LPPD). The particle size of LPPD was 165.8 nm, and the zeta potential was +36.5 mV. LPPD exhibited favorable cytotoxicity and cellular uptake in MCF-7/DOX. Meanwhile, the bioluminescence imaging and immunohistochemical analysis indicated that LPPD effectively conquered DOX-associated MDR by blocking ABC transporters (ABCB1 and ABCC1) via PolyMet. Remarkably, LPPD significantly inhibited the tumor growth and lowered the systemic toxicity in a murine MCF-7/DOX tumor model. This is the first time to reveal that PolyMet can enhance the anti-tumor efficacy of DOX by dampening ABC transporters and activating the AMPK/mTOR pathway, which is a promising strategy for drug-resistant breast cancer therapy.
Collapse
Affiliation(s)
- Hongyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jiandong Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Lisha Ma
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yue Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shujun Xu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Jingbin Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Ke Qian
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Mancang Gu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Hongsheng Tan
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Li Xu
- Zhejiang Provincial Hospital of TCM (Traditional Chinese Medicine), The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, China
| | - Yun Liu
- UNC Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27559, USA
| | - Chaofeng Mu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Yang Xiong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
7
|
Niu J, Peng D, Liu L. Drug Resistance Mechanisms of Acute Myeloid Leukemia Stem Cells. Front Oncol 2022; 12:896426. [PMID: 35865470 PMCID: PMC9294245 DOI: 10.3389/fonc.2022.896426] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is a polyclonal and heterogeneous hematological malignancy. Relapse and refractory after induction chemotherapy are still challenges for curing AML. Leukemia stem cells (LSCs), accepted to originate from hematopoietic stem/precursor cells, are the main root of leukemogenesis and drug resistance. LSCs are dynamic derivations and possess various elusive resistance mechanisms. In this review, we summarized different primary resistance and remolding mechanisms of LSCs after chemotherapy, as well as the indispensable role of the bone marrow microenvironment on LSCs resistance. Through a detailed and comprehensive review of the spectacle of LSCs resistance, it can provide better strategies for future researches on eradicating LSCs and clinical treatment of AML.
Collapse
Affiliation(s)
| | | | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Omori M, Noro R, Seike M, Matsuda K, Hirao M, Fukuizumi A, Takano N, Miyanaga A, Gemma A. Inhibitors of ABCB1 and ABCG2 overcame resistance to topoisomerase inhibitors in small cell lung cancer. Thorac Cancer 2022; 13:2142-2151. [PMID: 35719112 PMCID: PMC9346178 DOI: 10.1111/1759-7714.14527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is a highly aggressive disease with a poor prognosis. Although most patients initially respond to topoisomerase inhibitors, resistance rapidly emerges. The aim, therefore, is to overcome resistance to topoisomerase I (irinotecan) or II (etoposide) inhibitors in SCLCs. Methods To identify key factors in the chemoresistance of SCLCs, we established four cell lines resistant to etoposide or an active metabolite of irinotecan, SN‐38, from SCLC cell lines and evaluated RNA profiles using parental and newly established cell lines. Results We found that the drug efflux protein, ATP‐binding cassette sub‐family B member 1 (ABCB1), was associated with resistance to etoposide, and ATP‐binding cassette sub‐family G member 2 (ABCG2) was associated with resistance to SN‐38 by RNA sequencing. The inhibition of ABCB1 or ABCG2 in each resistant cell line induced synergistic apoptotic activity and promoted drug sensitivity in resistant SCLC cells. The ABC transporter inhibitors, elacridar and tariquidar, restored sensitivity to etoposide or SN‐38 in in vitro and in vivo studies, and promoted apoptotic activity and G2‐M arrest in resistant SCLC cells. Conclusions ABC transporter inhibitors may be a promising therapeutic strategy for the purpose of overcoming resistance to topoisomerase inhibitors in patients with SCLC.
Collapse
Affiliation(s)
- Miwako Omori
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Aya Fukuizumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Natsuki Takano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Wu ZX, Teng QX, Yang Y, Acharekar N, Wang JQ, He M, Yoganathan S, Lin J, Wang J, Chen ZS. MET inhibitor tepotinib antagonizes multidrug resistance mediated by ABCG2 transporter: In vitro and in vivo study. Acta Pharm Sin B 2022; 12:2609-2618. [PMID: 35646541 PMCID: PMC9136566 DOI: 10.1016/j.apsb.2021.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Overexpression of ABCG2 transporter in cancer cells has been linked to the development of multidrug resistance (MDR), an obstacle to cancer therapy. Our recent study uncovered that the MET inhibitor, tepotinib, is a potent reversal agent for ABCB1-mediated MDR. In the present study, we reported for the first time that the MET inhibitor tepotinib can also reverse ABCG2-mediated MDR in vitro and in vivo by directly binding to the drug-binding site of ABCG2 and reversibly inhibiting ABCG2 drug efflux activity, therefore enhancing the cytotoxicity of substrate drugs in drug-resistant cancer cells. Furthermore, the ABCB1/ABCG2 double-transfected cell model and ABCG2 gene knockout cell model demonstrated that tepotinib specifically inhibits the two MDR transporters. In mice bearing drug-resistant tumors, tepotinib increased the intratumoral accumulation of ABCG2 substrate drug topotecan and enhanced its antitumor effect. Therefore, our study provides a new potential of repositioning tepotinib as an ABCG2 inhibitor and combining tepotinib with substrate drugs to antagonize ABCG2-mediated MDR.
Collapse
Affiliation(s)
- Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Nikita Acharekar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Min He
- Department of Radiotherapy, the Affiliated Jiangyin People's Hospital of Nantong University, Jiangyin 214400, China
| | - Sabesan Yoganathan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jun Lin
- Department of Anesthesiology, Stony Brook University Health Sciences Center, Stony Brook, NY 11794, USA
| | - Jian Wang
- Department of Radiotherapy, the Affiliated Jiangyin People's Hospital of Nantong University, Jiangyin 214400, China
- Corresponding authors.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
- Corresponding authors.
| |
Collapse
|
10
|
Altered protein expression of membrane transporters in isolated cerebral microvessels and brain cortex of a rat Alzheimer's disease model. Neurobiol Dis 2022; 169:105741. [DOI: 10.1016/j.nbd.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 01/28/2023] Open
|
11
|
Abel B, Murakami M, Tosh DK, Yu J, Lusvarghi S, Campbell RG, Gao ZG, Jacobson KA, Ambudkar SV. Interaction of A 3 adenosine receptor ligands with the human multidrug transporter ABCG2. Eur J Med Chem 2022; 231:114103. [PMID: 35152062 PMCID: PMC8893036 DOI: 10.1016/j.ejmech.2022.114103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
Various adenosine receptor nucleoside-like ligands were found to modulate ATP hydrolysis by the multidrug transporter ABCG2. Both ribose-containing and rigidified (N)-methanocarba nucleosides (C2-, N6- and 5'-modified), as well as adenines (C2-, N6-, and deaza modified), were included. 57 compounds out of 63 tested either stimulated (50) or inhibited (7) basal ATPase activity. Structure-activity analysis showed a separation of adenosine receptor and ABCG2 activities. The 7-deaza modification had favorable effects in both (N)-methanocarba nucleosides and adenines. Adenine 37c (MRS7608) and (N)-methanocarba 7-deaza-5'-ethyl ester 60 (MRS7343) were found to be potent stimulators of ABCG2 ATPase activity with EC50 values of 13.2 ± 1.7 and 13.2 ± 2.2 nM, respectively. Both had affinity in the micromolar range for A3 adenosine receptor and lacked the 5'-amide agonist-enabling group (37c was reported as a weak A3 antagonist, Ki 6.82 μM). Compound 60 significantly inhibited ABCG2 substrate transport (IC50 0.44 μM). Docking simulations predicted the interaction of 60 with 21 residues in the drug-binding pocket of ABCG2.
Collapse
Affiliation(s)
- Biebele Abel
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jinha Yu
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA
| | - Ryan G Campbell
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (DKT, JY, RGC, ZGG, KAJ), National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute (BA, MM, SL, SVA), USA.
| |
Collapse
|
12
|
Vasconcelos FC, de Souza PS, Hancio T, de Faria FCC, Maia RC. Update on drug transporter proteins in acute myeloid leukemia: Pathological implication and clinical setting. Crit Rev Oncol Hematol 2021; 160:103281. [PMID: 33667660 DOI: 10.1016/j.critrevonc.2021.103281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological neoplasia causing death worldwide. The long-term overall survival is unsatisfactory due to many factors including older age, genetic heterogeneity and molecular characteristics comprising additional mutations, and resistance to chemotherapeutic drugs. The expression of ABCB1/P-glycoprotein, ABCC1/MRP1, ABCG2/BCRP and LRP transporter proteins is considered the major reason for multidrug resistance (MDR) in AML, however conflicting data have been reported. Here, we review the main issues about drug transporter proteins in AML clinical scenario, and highlight the clinicopathological significance of MDR phenotype associated with ABCB1 polymorphisms and FLT3 mutation.
Collapse
Affiliation(s)
- Flavia Cunha Vasconcelos
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Paloma Silva de Souza
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Bioativos, Polo Novo Cavaleiros/IMCT, Campus Professor Aloisio Teixeira (UFRJ/Macaé), Universidade Federal do Rio de Janeiro (UFRJ), Macaé, RJ, Brazil
| | - Thaís Hancio
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil; Programa de Pós-Graduação Stricto Sensu em Oncologia, INCA, RJ, Brazil
| | - Fernanda Costas Casal de Faria
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil
| | - Raquel Ciuvalschi Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
14
|
Müller P, Abdel Gaber SA, Zimmermann W, Wittig R, Stepp H. ABCG2 influence on the efficiency of photodynamic therapy in glioblastoma cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111963. [PMID: 32795847 DOI: 10.1016/j.jphotobiol.2020.111963] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Photodynamic therapy with 5-aminolevulinic acid (5-ALA PDT) is a promising novel therapeutic approach in the therapy of malignant brain tumors. 5-ALA occurs as a natural precursor of protoporphyrin IX (PpIX), a tumor-selective photosensitizer. The ATP-binding cassette transporter ABCG2 plays a physiologically significant role in porphyrin efflux from living cells. ABCG2 is also associated with stemness properties. Here we investigate the role of ABCG2 on the susceptibility of glioblastoma cells to 5-ALA PDT. METHODS Accumulation of PpIX in doxycycline-inducible U251MG glioblastoma cells with or without induction of ABCG2 expression or ABCG2 inhibition by KO143 was analyzed using flow cytometry. In U251MG cells, ABCG2 was inducible by doxycycline after stable transfection with a tet-on expression plasmid. U251MG cells with high expression of ABCG2 were enriched and used for further experiments (sU251MG-V). PDT was performed on monolayer cell cultures by irradiation with laser light at 635 nm. RESULTS Elevated levels of ABCG2 in doxycycline induced sU251MG-V cells led to a diminished accumulation of PpIX and higher light doses were needed to reduce cell viability. By inhibiting the ABCG2 transporter with the efficient and non-toxic ABCG2 inhibitor KO143, PpIX accumulation and PDT efficiency could be strongly enhanced. CONCLUSION Glioblastoma cells with high ABCG2 expression accumulate less photosensitizer and require higher light doses to be eliminated. Inhibition of ABCG2 during photosensitizer accumulation and irradiation promises to restore full susceptibility of this crucial tumor cell population to photodynamic treatment.
Collapse
Affiliation(s)
- Patricia Müller
- Laser Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany; Labor für Tumorimmunologie, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152, Planegg, Germany.
| | - Sara A Abdel Gaber
- Laser Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany; Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wolfgang Zimmermann
- Labor für Tumorimmunologie, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152, Planegg, Germany; Department of Urology, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany
| | - Rainer Wittig
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany
| | - Herbert Stepp
- Laser Forschungslabor, LIFE Center, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany; Department of Urology, University Hospital, LMU Munich, Fraunhoferstr. 20, 82152 Planegg, Germany
| |
Collapse
|
15
|
Wang J, Wang JQ, Cai CY, Cui Q, Yang Y, Wu ZX, Dong X, Zeng L, Zhao L, Yang DH, Chen ZS. Reversal Effect of ALK Inhibitor NVP-TAE684 on ABCG2-Overexpressing Cancer Cells. Front Oncol 2020; 10:228. [PMID: 32175279 PMCID: PMC7056829 DOI: 10.3389/fonc.2020.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Failure of cancer chemotherapy is mostly due to multidrug resistance (MDR). Overcoming MDR mediated by overexpression of ATP binding cassette (ABC) transporters in cancer cells remains a big challenge. In this study, we explore whether NVP-TAE684, a novel ALK inhibitor which has the potential to inhibit the function of ABC transport, could reverse ABC transporter-mediated MDR. MTT assay was carried out to determine cell viability and reversal effect of NVP-TAE684 in parental and drug resistant cells. Drug accumulation and efflux assay was performed to examine the effect of NVP-TAE684 on the cellular accumulation and efflux of chemotherapeutic drugs. The ATPase activity of ABCG2 transporter in the presence or absence of NVP-TAE684 was conducted to determine the impact of NVP-TAE684 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate protein molecules related to MDR. In addition, the interaction between NVP-TAE684 and ABCG2 transporter was investigated via in silico analysis. MTT assay showed that NVP-TAE684 significantly decreased MDR caused byABCG2-, but not ABCC1-transporter. Drug accumulation and efflux tests indicated that the effect of NVP-TAE684 in decreasing MDR was due to the inhibition of efflux function of ABCG2 transporter. However, NVP-TAE684 did not alter the expression or change the subcellular localization of ABCG2 protein. Furthermore, ATPase activity analysis indicated that NVP-TAE684 could stimulate ABCG2 ATPase activity. Molecular in silico analysis showed that NVP-TAE684 interacts with the substrate binding sites of the ABCG2 transporter. Taken together, our study indicates that NVP-TAE684 could reduce the resistance of MDR cells to chemotherapeutic agents, which provides a promising strategy to overcome MDR.
Collapse
Affiliation(s)
- Jingqiu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Xingduo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
16
|
Cai CY, Zhang W, Wang JQ, Lei ZN, Zhang YK, Wang YJ, Gupta P, Tan CP, Wang B, Chen ZS. Biological evaluation of non-basic chalcone CYB-2 as a dual ABCG2/ABCB1 inhibitor. Biochem Pharmacol 2020; 175:113848. [PMID: 32044354 DOI: 10.1016/j.bcp.2020.113848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/05/2020] [Indexed: 01/23/2023]
Abstract
The enhancement of drug efflux caused by ATP-binding cassette (ABC) transporters (including ABCG2 and ABCB1) overexpression is an important factor for multidrug resistance (MDR) in cancers. After testing the reversal activities of 19 chalcone and bis-chalcone derivatives on MDR cancer cell lines, we found that non-basic chalcone CYB-2 exhibited the most potent reversal activities against both ABCG2- and ABCB1-mediated MDR. The mechanistic studies show that this compound can increase the accumulation of anticancer drugs in both ABCG2- and ABCB1-overexpressing cancer cell lines, resulting from the blocked efflux function of the MDR cancer cell lines. This inhibition is due to the barred ABCG2 and ABCB1 ATPase activities rather than altering the expression or localization of ABCG2 or ABCB1 transporters. The previous studies showed that non-basic chalcones were ABCG2-specific inhibitors; however, we found that non-basic chalcone CYB-2 can be developed as an ABCG2/ABCB1 dual inhibitor to overcome MDR in cancers that co-express both ABCG2 and ABCB1. Moreover, non-basic chalcone CYB-2 has synthetic tractability compared to other chalcone-based derivatives.
Collapse
Affiliation(s)
- Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, PR China
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States; Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261041, PR China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, PR China.
| | - Bo Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 135 Xingang West Road, Guangzhou 510275, PR China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, United States.
| |
Collapse
|
17
|
Sava GP, Fan H, Fisher RA, Lusvarghi S, Pancholi S, Ambudkar SV, Martin LA, Charles Coombes R, Buluwela L, Ali S. ABC-transporter upregulation mediates resistance to the CDK7 inhibitors THZ1 and ICEC0942. Oncogene 2020; 39:651-663. [PMID: 31530935 PMCID: PMC6962093 DOI: 10.1038/s41388-019-1008-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 12/22/2022]
Abstract
The CDK7 inhibitors (CDK7i) ICEC0942 and THZ1, are promising new cancer therapeutics. Resistance to targeted drugs frequently compromises cancer treatment. We sought to identify mechanisms by which cancer cells may become resistant to CDK7i. Resistant lines were established through continuous drug selection. ABC-transporter copy number, expression and activity were examined using real-time PCR, immunoblotting and flow cytometry. Drug responses were measured using growth assays. ABCB1 was upregulated in ICEC0942-resistant cells and there was cross-resistance to THZ1. THZ1-resistant cells upregulated ABCG2 but remained sensitive to ICEC0942. Drug resistance in both cell lines was reversible upon inhibition of ABC-transporters. CDK7i response was altered in adriamycin- and mitoxantrone-resistant cell lines demonstrating ABC-transporter upregulation. ABCB1 expression correlated with ICEC0942 and THZ1 response, and ABCG2 expression with THZ2 response, in a panel of cancer cell lines. We have identified ABCB1 upregulation as a common mechanism of resistance to ICEC0942 and THZ1, and confirmed that ABCG2 upregulation is a mechanism of resistance to THZ1. The identification of potential mechanisms of CDK7i resistance and differences in susceptibility of ICEC0942 and THZ1 to ABC-transporters, may help guide their future clinical use.
Collapse
Affiliation(s)
- Georgina P Sava
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Hailing Fan
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Rosemary A Fisher
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Sunil Pancholi
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lesley-Ann Martin
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - R Charles Coombes
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lakjaya Buluwela
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Simak Ali
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
18
|
Kannan P, Füredi A, Dizdarevic S, Wanek T, Mairinger S, Collins J, Falls T, van Dam RM, Maheshwari D, Lee JT, Szakács G, Langer O. In vivo characterization of [ 18F]AVT-011 as a radiotracer for PET imaging of multidrug resistance. Eur J Nucl Med Mol Imaging 2019; 47:2026-2035. [PMID: 31729540 PMCID: PMC7299908 DOI: 10.1007/s00259-019-04589-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
Abstract
Purpose Multidrug resistance (MDR) impedes cancer treatment. Two efflux transporters from the ATP-binding cassette (ABC) family, ABCB1 and ABCG2, may contribute to MDR by restricting the entry of therapeutic drugs into tumor cells. Although a higher expression of these transporters has been correlated with an unfavorable response to chemotherapy, transporter expression does not necessarily correlate with function. In this study, we characterized the pharmacological properties of [18F]AVT-011, a new PET radiotracer for imaging transporter-mediated MDR in tumors. Methods AVT-011 was radiolabeled with 18F and evaluated with PET imaging in preclinical models. Transport of [18F]AVT-011 by ABCB1 and/or ABCG2 was assessed by measuring its uptake in the brains of wild-type, Abcb1a/b−/−, and Abcg2−/− mice at baseline and after administration of the ABCB1 inhibitor tariquidar (n = 5/group). Metabolism and biodistribution of [18F]AVT-011 were also measured. To measure ABCB1 function in tumors, we performed PET experiments using both [18F]AVT-011 and [18F]FDG in mice bearing orthotopic breast tumors (n = 7–10/group) expressing clinically relevant levels of ABCB1. Results At baseline, brain uptake was highest in Abcb1a/b−/− mice. After tariquidar administration, brain uptake increased 3-fold and 8-fold in wild-type and Abcg2−/− mice, respectively, but did not increase further in Abcb1a/b−/− mice. At 30 min after injection, the radiotracer was > 90% in its parent form and had highest uptake in organs of the hepatobiliary system. Compared with that in drug-sensitive tumors, uptake of [18F]AVT-011 was 32% lower in doxorubicin-resistant tumors with highest ABCB1 expression and increased by 40% with tariquidar administration. Tumor uptake of [18F]FDG did not significantly differ among groups. Conclusion [18F]AVT-011 is a dual ABCB1/ABCG2 substrate radiotracer that can quantify transporter function at the blood-brain barrier and in ABCB1-expressing tumors, making it potentially suitable for clinical imaging of ABCB1-mediated MDR in tumors. Electronic supplementary material The online version of this article (10.1007/s00259-019-04589-w) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pavitra Kannan
- CRUK and MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK. .,Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - András Füredi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sabina Dizdarevic
- Brighton and Sussex University Hospitals, NHS Trust and Brighton and Sussex Medical School, Brighton, UK
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jeffrey Collins
- Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Theresa Falls
- Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - R Michael van Dam
- Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Jason T Lee
- Crump Institute for Molecular Imaging and Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Stanford Center for Innovations in In vivo Imaging, Stanford University School of Medicine, Stanford, CA, USA
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Department of Biomedical Imaging und Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|