1
|
Heywood J, Abele G, Langenbach B, Litvin S, Smallets S, Paustenbach D. Composition of e-cigarette aerosols: A review and risk assessment of selected compounds. J Appl Toxicol 2024. [PMID: 39147402 DOI: 10.1002/jat.4683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The potential harms and benefits of e-cigarettes, or electronic nicotine delivery systems (ENDS), have received significant attention from public health and regulatory communities. Such products may provide a reduced risk means of nicotine delivery for combustible cigarette smokers while being inappropriately appealing to nicotine naive youth. Numerous authors have examined the chemical complexity of aerosols from various open- and closed-system ENDS. This body of literature is reviewed here, with the risks of ENDS aerosol exposure among users evaluated with a margin of exposure (MoE) approach for two non-carcinogens (methylglyoxal, butyraldehyde) and a cancer risk analysis for the carcinogen N-nitrosonornicotine (NNN). We identified 96 relevant papers, including 17, 13, and 5 reporting data for methylglyoxal, butyraldehyde, and NNN, respectively. Using low-end (minimum aerosol concentration, low ENDS use) and high-end (maximum aerosol concentration, high ENDS use) assumptions, estimated doses for methylglyoxal (1.78 × 10-3-135 μg/kg-bw/day) and butyraldehyde (1.9 × 10-4-66.54 μg/kg-bw/day) corresponded to MoEs of 227-17,200,000 and 271-280,000,000, respectively, using identified points of departure (PoDs). Doses of 9.90 × 10-6-1.99 × 10-4 μg/kg-bw/day NNN corresponded to 1.4-28 surplus cancers per 100,000 ENDS users, relative to a NNN-attributable surplus of 7440 per 100,000 cigarette smokers. It was concluded that methylglyoxal and butyraldehyde in ENDS aerosols, while not innocuous, did not present a significant risk of irritant effects among ENDS users. The carcinogenic risks of NNN in ENDS aerosols were reduced, but not eliminated, relative to concentrations reported in combustible cigarette smoke.
Collapse
Affiliation(s)
- Jonathan Heywood
- Paustenbach and Associates, Denver, Colorado, USA
- Insight Exposure & Risk Sciences Group, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
2
|
Li Y, Dator RP, Maertens LA, Balbo S, Hecht SS. Mass Spectrometry-Based Metabolic Profiling of Urinary Metabolites of N'-Nitrosonornicotine (NNN) in the Rat. Chem Res Toxicol 2023; 36:769-781. [PMID: 37017527 PMCID: PMC10429506 DOI: 10.1021/acs.chemrestox.3c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The tobacco-specific nitrosamine N'-nitrosonornicotine (NNN) and its close analogue 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) are classified as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer. The currently used biomarker to monitor NNN exposure is urinary total NNN (free NNN plus its N-glucuronide). However, total NNN does not provide information about the extent of metabolic activation of NNN as related to its carcinogenicity. Targeted analysis of the major metabolites of NNN in laboratory animals recently led to the identification of N'-nitrosonornicotine-1N-oxide (NNN-N-oxide), a unique metabolite detected in human urine that is specifically formed from NNN. To further investigate NNN urinary metabolites that hold promise as new biomarkers for monitoring NNN exposure, uptake, and/or metabolic activation, we conducted a comprehensive profiling of NNN metabolites in the urine of F344 rats treated with NNN or [pyridine-d4]NNN. Using our optimized high-resolution mass spectrometry (HRMS)-based isotope-labeling method, 46 putative metabolites were identified with robust MS evidence. Out of the 46 candidates, all known major NNN metabolites were identified and structurally confirmed by comparing them to their isotopically labeled standards. More importantly, putative metabolites considered to be exclusively formed from NNN were also identified. The two new representative metabolites─4-(methylthio)-4-(pyridin-3-yl)butanoic acid (23, MPBA) and N-acetyl-S-(5-(pyridin-3-yl)-1H-pyrrol-2-yl)-l-cysteine (24, Py-Pyrrole-Cys-NHAc) ─were identified by comparing them to synthetic standards that were fully characterized by nuclear magnetic resonance and HRMS. They are hypothesized to be formed by NNN α-hydroxylation pathways and thus represent the first potential biomarkers to specifically monitor the uptake plus metabolic activation of NNN in tobacco users.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455
| | - Romel P. Dator
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Laura A. Maertens
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
3
|
Li Y, Hecht SS. Mass Spectrometric Quantitation of N'-Nitrosonornicotine-1 N-oxide in the Urine of Cigarette Smokers and Smokeless Tobacco Users. Chem Res Toxicol 2022; 35:1579-1588. [PMID: 36006857 PMCID: PMC9608542 DOI: 10.1021/acs.chemrestox.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N'-Nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which always occur together and are present exclusively in tobacco products, are classified as "carcinogenic to humans" (Group 1) by the International Agency for Research on Cancer. While 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) serves as an excellent biomarker for NNK exposure, the currently available biomarker for NNN exposure is urinary "total NNN" (free NNN plus its N-glucuronide). Quantitation of urinary NNN requires extensive precautions to prevent artifactual formation of NNN resulting from nitrosation of nornicotine during analysis. NNN itself can also be formed endogenously by the same nitrosation reaction, which may sometimes cause an overestimation of exposure to preformed NNN. It is thus important to develop an alternative biomarker to specifically reflect NNN metabolic fate and facilitate relevant cancer etiology studies. In this study, we report the first detection of N'-nitrosonornicotine-1N-oxide (NNN-N-oxide) in human urine. Using a highly specific and sensitive MS3 transition-based method, NNN-N-oxide was quantified with a mean level of 8.40 ± 6.04 fmol/mL in the urine of 10 out of 32 cigarette smokers. It occurred in a substantially higher level in the urine of 13 out of 14 smokeless tobacco users, amounting to a mean concentration of 85.2 ± 96.3 fmol/mL urine. No NNN-N-oxide was detected in any of the nonsmoker urine samples analyzed (n = 20). The possible artifactual formation of NNN-N-oxide during sample preparation steps was excluded by experiments using added ammonium sulfamate. The low levels of NNN-N-oxide in the urine of tobacco users indicate that the pyridine N-oxidation pathway represents a minor detoxification pathway of NNN, which further supports the importance of the α-hydroxylation pathway of NNN metabolic activation in humans.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
4
|
Li Y, Hecht SS. Metabolism and DNA Adduct Formation of Tobacco-Specific N-Nitrosamines. Int J Mol Sci 2022; 23:5109. [PMID: 35563500 PMCID: PMC9104174 DOI: 10.3390/ijms23095109] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 01/06/2023] Open
Abstract
The tobacco-specific N-nitrosamines 4-(N-nitrosomethylamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) always occur together and exclusively in tobacco products or in environments contaminated by tobacco smoke. They have been classified as "carcinogenic to humans" by the International Agency for Research on Cancer. In 1998, we published a review of the biochemistry, biology and carcinogenicity of tobacco-specific nitrosamines. Over the past 20 years, considerable progress has been made in our understanding of the mechanisms of metabolism and DNA adduct formation by these two important carcinogens, along with progress on their carcinogenicity and mutagenicity. In this review, we aim to provide an update on the carcinogenicity and mechanisms of the metabolism and DNA interactions of NNK and NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
5
|
Scherer G, Scherer M, Mütze J, Hauke T, Pluym N. Assessment of the Exposure to Tobacco-Specific Nitrosamines and Minor Tobacco Alkaloids in Users of Various Tobacco/Nicotine Products. Chem Res Toxicol 2022; 35:684-693. [PMID: 35298128 DOI: 10.1021/acs.chemrestox.2c00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tobacco-specific nitrosamines (TSNAs), in particular, the human carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN), are important toxicants in tobacco and also (as contaminants) in nicotine products. In a clinical study comprising a period of 74 h under confinement, we investigated the exposure to NNK, NNN, N'-nitrosoanabasine (NAB), and N'-nitrosoanatabine (NAT) as well as to the minor tobacco alkaloids anabasine (AB) and anatabine (AT) by measuring suitable biomarkers in habitual users of combustible cigarettes (CCs), electronic cigarettes (ECs), heated tobacco products (HTPs), oral tobacco (OT), and nicotine replacement therapy products (NRTs). Non-users (NU) of any tobacco/nicotine products served as the (negative) control group. Smokers exhibited the highest levels for all biomarkers measured, except for AB in urine, which was found to be highest in OT users. Somewhat elevated levels compared to NU, EC, and NRT groups were also observed in the users of HTPs. In the users of tobacco-containing products (CC, HTP, and OT), most frequently the biomarkers significantly correlated with the dose markers such as daily consumption, urinary nicotine equivalents (Nequ), and plasma cotinine (CotP). In conclusion, except for smokers (CC) and OT users, exposure of users of ECs, HTPs, and NRTs to TSNAs as well as the minor tobacco alkaloids AB and AT is marginal and statistically not distinguishable from that of NU. Finally, our results for NNN in the saliva provide preliminary evidence for the formation of NNN from the precursor nornicotine in the presence of thiocyanate as a catalyst. The latter hypothesis requires experimental verification.
Collapse
Affiliation(s)
- Gerhard Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Max Scherer
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Janina Mütze
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Tobias Hauke
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| | - Nikola Pluym
- ABF, Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstraße 5, 82152 Planegg, Germany
| |
Collapse
|
6
|
Li Y, Carlson ES, Zarth AT, Upadhyaya P, Hecht SS. Investigation of 2'-Deoxyadenosine-Derived Adducts Specifically Formed in Rat Liver and Lung DNA by N'-Nitrosonornicotine Metabolism. Chem Res Toxicol 2021; 34:1004-1015. [PMID: 33720703 PMCID: PMC11558792 DOI: 10.1021/acs.chemrestox.1c00012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The International Agency for Research on Cancer has classified the tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as "carcinogenic to humans" (Group 1). To exert its carcinogenicity, NNN requires metabolic activation to form reactive intermediates which alkylate DNA. Previous studies have identified cytochrome P450-catalyzed 2'-hydroxylation and 5'-hydroxylation of NNN as major metabolic pathways, with preferential activation through the 5'-hydroxylation pathway in some cultured human tissues and patas monkeys. So far, the only DNA adducts identified from NNN 5'-hydroxylation in rat tissues are 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine (Py-Py-dI), 6-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxynebularine (Py-Py-dN), and N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) after reduction. To expand the DNA adduct panel formed by NNN 5'-hydroxylation and identify possible activation biomarkers of NNN metabolism, we investigated the formation of dAdo-derived adducts using a new highly sensitive and specific liquid chromatography-nanoelectrospray ionization-high-resolution tandem mass spectrometry method. Two types of NNN-specific dAdo-derived adducts, N6-[5-(3-pyridyl)tetrahydrofuran-2-yl]-2'-deoxyadenosine (N6-Py-THF-dAdo) and 6-[2-(3-pyridyl)-N-pyrrolidinyl-5-hydroxy]-2'-deoxynebularine (Py-Py(OH)-dN), were observed for the first time in calf thymus DNA incubated with 5'-acetoxyNNN. More importantly, Py-Py(OH)-dN was also observed in relatively high abundance in the liver and lung DNA of rats treated with racemic NNN in the drinking water for 3 weeks. These new adducts were characterized using authentic synthesized standards. Both NMR and MS data agreed well with the proposed structures of N6-Py-THF-dAdo and Py-Py(OH)-dN. Reduction of Py-Py(OH)-dN by NaBH3CN led to the formation of Py-Py-dN both in vitro and in vivo, which was confirmed by its isotopically labeled internal standard [pyridine-d4]Py-Py-dN. The NNN-specific dAdo adducts Py-THF-dAdo and Py-Py(OH)-dN formed by NNN 5'-hydroxylation provide a more comprehensive understanding of the mechanism of DNA adduct formation by NNN.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Li Y, Hecht SS. Identification of an N'-Nitrosonornicotine-Specific Deoxyadenosine Adduct in Rat Liver and Lung DNA. Chem Res Toxicol 2021; 34:992-1003. [PMID: 33705110 DOI: 10.1021/acs.chemrestox.1c00013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered to be two of the most important carcinogens in unburned tobacco and its smoke. They readily cause tumors in laboratory animals and are classified as "carcinogenic to humans" by the International Agency for Research on Cancer. DNA adduct formation by these two carcinogens is believed to play a critical role in tobacco carcinogenesis. Among all the DNA adducts formed by NNN and NNK, 2'-deoxyadenosine (dAdo)-derived adducts have not been fully characterized. In the study reported here, we characterized the formation of N6-[4-(3-pyridyl)-4-oxo-1-butyl]-2'-deoxyadenosine (N6-POB-dAdo) and its reduced form N6-PHB-dAdo formed by NNN 2'-hydroxylation in rat liver and lung DNA. More importantly, we characterized a new dAdo adduct N6-[4-hydroxy-1-(pyridine-3-yl)butyl]-2'-deoxyadenosine (N6-HPB-dAdo) formed after NaBH3CN or NaBH4 reduction both in vitro in calf thymus DNA reacted with 5'-acetoxy-N'-nitrosonornicotine and in vivo in rat liver and lung upon treatment with NNN. This adduct was specifically formed by NNN 5'-hydroxylation. Chemical standards of N6-HPB-dAdo and the corresponding isotopically labeled internal standard [pyridine-d4]N6-HPB-dAdo were synthesized using a four-step method. Both NMR and high-resolution mass spectrometry data agreed well with the proposed structure of N6-HPB-dAdo. The new adduct coeluted with the synthesized internal standard under various LC conditions. Its product ion patterns of MS2 and MS3 transitions were also consistent with the proposed fragmentation patterns. Chromatographic resolution of the two diastereomers of N6-HPB-dAdo was successfully achieved. Quantitation suggested a dose-dependent response of the levels of this new adduct in the liver and lung of rats treated with NNN. However, its level was lower than that of 2-[2-(3-pyridyl)-N-pyrrolidinyl]-2'-deoxyinosine, a previously reported dGuo adduct that is also formed from NNN 5'-hydroxylation. The identification of N6-HPB-dAdo in this study leads to new insights pertinent to the mechanism of carcinogenesis by NNN and to the development of biomarkers of NNN metabolic activation.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Li Y, Ma B, Cao Q, Balbo S, Zhao L, Upadhyaya P, Hecht SS. Mass Spectrometric Quantitation of Pyridyloxobutyl DNA Phosphate Adducts in Rats Chronically Treated with N'-Nitrosonornicotine. Chem Res Toxicol 2019; 32:773-783. [PMID: 30740971 DOI: 10.1021/acs.chemrestox.9b00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tobacco-specific carcinogens N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) require metabolic activation to exert their carcinogenicity. NNN and NNK are metabolized to the same reactive diazonium ions, which alkylate DNA forming pyridyloxobutyl (POB) DNA base and phosphate adducts. We have characterized the formation of both POB DNA base and phosphate adducts in NNK-treated rats and the formation of POB DNA base adducts in NNN-treated rats. However, POB DNA phosphate adducts in NNN-treated rats are still uncharacterized. In this study, we quantified the levels of POB DNA phosphate adducts in tissues of rats chronically treated with ( S)-NNN or ( R)-NNN for 10, 30, 50, and 70 weeks during a carcinogenicity study. The highest amounts of POB DNA phosphate adducts were observed in the esophagus of the ( S)-NNN-treated rats, with a maximum level of 5400 ± 317 fmol/mg DNA at 50 weeks. The abundance of POB DNA phosphate adducts in the esophagus was consistent with the results of the carcinogenicity study showing that the esophagus was the primary site of tumor formation from treatment with ( S)-NNN. Compared to the ( R)-NNN group, the levels of POB DNA phosphate adducts were higher in the oral mucosa, esophagus, and liver, while lower in the nasal mucosa of the ( S)-NNN-treated rats. Among 10 combinations of all isomers of POB DNA phosphate adducts, Ap(POB)C and combinations with thymidine predominated across all the rat tissues examined. In the primary target tissue, esophageal mucosa, Ap(POB)C accounted for ∼20% of total phosphate adducts in the ( S)-NNN treatment group throughout the 70 weeks, with levels ranging from 780 ± 194 to 1010 ± 700 fmol/mg DNA. The results of this study showed that POB DNA phosphate adducts were present in high levels and persisted in target tissues of rats chronically treated with ( S)- or ( R)-NNN. These results improve our understanding of DNA damage during NNN-induced carcinogenesis. The predominant POB DNA phosphate isomers observed, such as Ap(POB)C, may serve as biomarkers for monitoring chronic exposure of tobacco-specific nitrosamines in humans.
Collapse
Affiliation(s)
- Yupeng Li
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Bin Ma
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Qing Cao
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Silvia Balbo
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental and Virus Oncology, College of Life Science and Bioengineering , Beijing University of Technology , Beijing 100124 , China
| | - Pramod Upadhyaya
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Stephen S Hecht
- Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
9
|
Fan T, Sun G, Zhao L, Cui X, Zhong R. Metabolic Activation and Carcinogenesis of Tobacco-Specific Nitrosamine N'-Nitrosonornicotine (NNN): A Density Function Theory and Molecular Docking Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E178. [PMID: 30634532 PMCID: PMC6352179 DOI: 10.3390/ijerph16020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
N'-nitrosonornicotine (NNN) is one of the tobacco-specific nitrosamines (TSNAs) that exists widely in smoke and smokeless tobacco products. NNN can induce tumors in various laboratory animal models and has been identified by International Agency for Research on Cancer (IARC) as a human carcinogen. Metabolic activation of NNN is primarily initiated by cytochrome P450 enzymes (CYP450s) via 2'-hydroxylation or 5'-hydroxylation. Subsequently, the hydroxylating intermediates undergo spontaneous decomposition to generate diazohydroxides, which can be further converted to alkyldiazonium ions, followed by attacking DNA to form various DNA damages, such as pyridyloxobutyl (POB)-DNA adducts and pyridyl-N-pyrrolidinyl (py-py)-DNA adducts. If not repaired correctly, these lesions would lead to tumor formation. In the present study, we performed density functional theory (DFT) computations and molecular docking studies to understand the mechanism of metabolic activation and carcinogenesis of NNN. DFT calculations were performed to explore the 2'- or 5'- hydroxylation reaction of (R)-NNN and (S)-NNN. The results indicated that NNN catalyzed by the ferric porphyrin (Compound I, Cpd I) at the active center of CYP450 included two steps, hydrogen abstraction and rebound reactions. The free energy barriers of the 2'- and 5'-hydroxylation of NNN are 9.82/8.44 kcal/mol (R/S) and 7.99/9.19 kcal/mol (R/S), respectively, suggesting that the 2'-(S) and 5'-(R) pathways have a slight advantage. The free energy barriers of the decomposition occurred at the 2'-position and 5'-position of NNN are 18.04/18.02 kcal/mol (R/S) and 18.33/19.53 kcal/mol (R/S), respectively. Moreover, we calculated the alkylation reactions occurred at ten DNA base sites induced by the 2'-hydroxylation product of NNN, generating the free energy barriers ranging from 0.86 to 4.72 kcal/mol, which indicated that these reactions occurred easily. The docking study showed that (S)-NNN had better affinity with CYP450s than that of (R)-NNN, which was consistent with the experimental results. Overall, the combined results of the DFT calculations and the docking obtained in this study provide an insight into the understanding of the carcinogenesis of NNN and other TSNAs.
Collapse
Affiliation(s)
- Tengjiao Fan
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xin Cui
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
10
|
Zarth AT, Upadhyaya P, Yang J, Hecht SS. DNA Adduct Formation from Metabolic 5'-Hydroxylation of the Tobacco-Specific Carcinogen N'-Nitrosonornicotine in Human Enzyme Systems and in Rats. Chem Res Toxicol 2016; 29:380-9. [PMID: 26808005 PMCID: PMC4805523 DOI: 10.1021/acs.chemrestox.5b00520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N'-Nitrosonornicotine (NNN) is carcinogenic in multiple animal models and has been evaluated as a human carcinogen. NNN can be metabolized by cytochrome P450s through two activation pathways: 2'-hydroxylation and 5'-hydroxylation. While most previous studies have focused on 2'-hydroxylation in target tissues of rats, available evidence suggests that 5'-hydroxylation is a major activation pathway in human enzyme systems, in nonhuman primates, and in target tissues of some other rodent carcinogenicity models. In the study reported here, we investigated DNA damage resulting from NNN 5'-hydroxylation by quantifying the adduct 2-(2-(3-pyridyl)-N-pyrrolidinyl)-2'-deoxyinosine (py-py-dI). In rats treated with NNN in the drinking water (7-500 ppm), py-py-dI was the major DNA adduct resulting from 5'-hydroxylation of NNN in vivo. Levels of py-py-dI in the lung and nasal cavity were the highest, consistent with the tissue distribution of CYP2A3. In rats treated with (S)-NNN or (R)-NNN, the ratios of formation of (R)-py-py-dI to (S)-py-py-dI were not the expected mirror image, suggesting that there may be a carrier for one of the unstable intermediates formed upon 5'-hydroxylation of NNN. Rat hepatocytes treated with (S)- or (R)-NNN or (2'S)- or (2'R)-5'-acetoxyNNN exhibited a pattern of adduct formation similar to that of live rats. In vitro studies with human liver S9 fraction or human hepatocytes incubated with NNN (2-500 μM) demonstrated that py-py-dI formation was greater than the formation of pyridyloxobutyl-DNA adducts resulting from 2'-hydroxylation of NNN. (S)-NNN formed more total py-py-dI adducts than (R)-NNN in human liver enzyme systems, which is consistent with the critical role of CYP2A6 in the 5'-hydroxylation of NNN in human liver. The results of this study demonstrate that the major DNA adduct resulting from NNN metabolism by human enzymes is py-py-dI and provide potentially important new insights into the metabolic activation of NNN in rodents and humans.
Collapse
Affiliation(s)
- Adam T. Zarth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Medicinal Chemistry Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jing Yang
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Medicinal Chemistry Graduate Program, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Hecht SS, Stepanov I, Carmella SG. Exposure and Metabolic Activation Biomarkers of Carcinogenic Tobacco-Specific Nitrosamines. Acc Chem Res 2016; 49:106-14. [PMID: 26678241 PMCID: PMC5154679 DOI: 10.1021/acs.accounts.5b00472] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung cancer is the leading cause of cancer death in the world, and cigarette smoking is its main cause. Oral cavity cancer is another debilitating and often fatal cancer closely linked to tobacco product use. While great strides have been made in decreasing tobacco use in the United States and some other countries, there are still an estimated 1 billion men and 250 million women in the world who are cigarette smokers and there are hundreds of millions of smokeless tobacco users, all at risk for cancer. Worldwide, lung cancer kills about three people per minute. This Account focuses on metabolites and biomarkers of two powerful tobacco-specific nitrosamine carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN), considered to be among the main causes of lung cancer and oral cavity cancer in people who use tobacco products. Three properties of NNK and NNN are critical for successful biomarker studies: they are present in all tobacco products, they are tobacco-specific and are not found in any other product, and they are strong carcinogens. NNK and NNN are converted in humans to urinary metabolites that can be quantified by mass spectrometry as biomarkers of exposure to these carcinogens. They are also metabolized to diazonium ions and related electrophiles that react with DNA to form addition products that can be detected and quantified by mass spectrometry. These urinary metabolites and DNA addition products can serve as biomarkers of exposure and metabolic activation, respectively. The biomarkers of exposure, in particular the urinary NNK metabolites 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides, have been extensively applied to document tobacco-specific lung carcinogen uptake in smokers and nonsmokers exposed to secondhand tobacco smoke. Highly sensitive mass spectrometric methods have been developed for quantitative analysis of these NNK metabolites as well as metabolites of NNN in human urine, blood, and toenails. Urinary and serum NNAL have been related to lung cancer risk, and urinary NNN has been related to esophageal cancer risk in prospective epidemiology studies. These results are consistent with carcinogenicity studies of NNK, NNAL, and NNN in rats, which show that NNK and NNAL induce mainly lung tumors, while NNN causes tumors of the esophagus and oral cavity. Biomarkers of metabolic activation of NNK and NNN applied in human studies include the metabolism of deuterium labeled substrates to distinguish NNK and NNN metabolism from that of nicotine and the determination of DNA and hemoglobin adducts in tissues, blood, and oral cells from people exposed to tobacco products. As these methods are continually improved in parallel with the ever increasing sensitivity and selectivity of mass spectrometers, development of a comprehensive biomarker panel for identifying tobacco users at high risk for cancer appears to be a realistic goal. Targeting high risk individuals for smoking cessation and cancer surveillance can potentially decrease the risk of developing fatal cancers.
Collapse
Affiliation(s)
- Stephen S. Hecht
- To whom correspondence should be addressed: Masonic Cancer Center, University of Minnesota, 2231 6 Street SE - 2-148 CCRB, Minneapolis, MN 55455, USA. phone: (612) 624-7604 fax: (612) 624-3869,
| | | | | |
Collapse
|
12
|
Khattab AR, Ibrahim ARS, Ibrahim SM, Abou El-Seoud KA, Soliman WE, El-Fiky FK. LC–MS/MS based-comparative study of (S)-nicotine metabolism by microorganisms, mushroom and plant cultures: Parallels to its mammalian metabolic fate. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bfopcu.2015.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Upadhyaya P, Hecht SS. Quantitative analysis of 3'-hydroxynorcotinine in human urine. Nicotine Tob Res 2015; 17:524-9. [PMID: 25324430 PMCID: PMC4402357 DOI: 10.1093/ntr/ntu206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/26/2014] [Indexed: 11/14/2022]
Abstract
INTRODUCTION Based on previous metabolism studies carried out in patas monkeys, we hypothesized that urinary 3'-hydroxynorcotinine could be a specific biomarker for uptake and metabolism of the carcinogen N'-nitrosonornicotine in people who use tobacco products. METHODS We developed a method for quantitation of 3'-hydroxynorcotinine in human urine. [Pyrrolidinone-(13)C4]3'-hydroxynorcotinine was added to urine as an internal standard, the samples were treated with β-glucuronidase, partially purified by solid supported liquid extraction and quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS The method was accurate (average accuracy = 102%) and precise (coefficient of variation = 5.6%) in the range of measurement. 3'-Hydroxynorcotinine was detected in 48 urine samples from smokers (mean 393±287 pmol/ml urine) and 12 samples from individuals who had stopped smoking and were using the nicotine patch (mean 658±491 pmol/ml urine), but not in any of 10 samples from nonsmokers. CONCLUSIONS Since the amounts of 3'-hydroxynorcotinine found in smokers' urine were approximately 50 times greater than the anticipated daily dose of N'-nitrosonornicotine, we concluded that it is a metabolite of nicotine or one of its metabolites, comprising perhaps 1% of nicotine intake in smokers. Therefore, it would not be suitable as a specific biomarker for uptake and metabolism of N'-nitrosonornicotine. Since 3'-hydroxynorcotinine has never been previously reported as a constituent of human urine, further studies are required to determine its source and mode of formation.
Collapse
Affiliation(s)
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
14
|
Gregg EO, Minet E, McEwan M. Urinary biomarkers of smokers' exposure to tobacco smoke constituents in tobacco products assessment: a fit for purpose approach. Biomarkers 2013; 18:467-86. [PMID: 23902266 PMCID: PMC3812700 DOI: 10.3109/1354750x.2013.821523] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/06/2023]
Abstract
There are established guidelines for bioanalytical assay validation and qualification of biomarkers. In this review, they were applied to a panel of urinary biomarkers of tobacco smoke exposure as part of a "fit for purpose" approach to the assessment of smoke constituents exposure in groups of tobacco product smokers. Clinical studies have allowed the identification of a group of tobacco exposure biomarkers demonstrating a good doseresponse relationship whilst others such as dihydroxybutyl mercapturic acid and 2-carboxy-1-methylethylmercapturic acid - did not reproducibly discriminate smokers and non-smokers. Furthermore, there are currently no agreed common reference standards to measure absolute concentrations and few inter-laboratory trials have been performed to establish consensus values for interim standards. Thus, we also discuss in this review additional requirements for the generation of robust data on urinary biomarkers, including toxicant metabolism and disposition, method validation and qualification for use in tobacco products comparison studies.
Collapse
Affiliation(s)
| | - Emmanuel Minet
- British American Tobacco, Group Research & DevelopmentSouthamptonUnited Kingdom
| | - Michael McEwan
- British American Tobacco, Group Research & DevelopmentSouthamptonUnited Kingdom
| |
Collapse
|
15
|
Analysis of N′-nitrosonornicotine and its metabolites in rabbit blood with liquid chromatography/tandem mass spectrometric method. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 899:103-8. [DOI: 10.1016/j.jchromb.2012.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/29/2012] [Accepted: 05/03/2012] [Indexed: 11/23/2022]
|
16
|
Nilsson R. The molecular basis for induction of human cancers by tobacco specific nitrosamines. Regul Toxicol Pharmacol 2011; 60:268-80. [DOI: 10.1016/j.yrtph.2011.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/24/2011] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
|
17
|
Upadhyaya P, Hecht SS. Identification of adducts formed in the reactions of 5'-acetoxy-N'-nitrosonornicotine with deoxyadenosine, thymidine, and DNA. Chem Res Toxicol 2008; 21:2164-71. [PMID: 18821782 PMCID: PMC2646895 DOI: 10.1021/tx8002559] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
N'-Nitrosonornicotine (NNN) is the most prevalent of the carcinogenic tobacco-specific nitrosamines found in all tobacco products. Previous studies have demonstrated that cytochrome P450-mediated 5'-hydroxylation of NNN is a major metabolic pathway leading to mutagenic products, but to date, DNA adducts formed by this pathway have been only partially characterized, and there have been no studies reported on adducts formed with bases other than dGuo. Because adducts with dAdo and dThd have been identified in the DNA of the livers of rats treated with the structurally related carcinogen N-nitrosopyrrolidine, we investigated dAdo and dThd adduct formation from 5'-acetoxyNNN (3), a stable precursor to 5'-hydroxyNNN (2). Reaction of 3 with dAdo gave diastereomeric products, which were identified by their spectral properties and LC-ESI-MS/MS-SRM analysis as N(6)-[5-(3-pyridyl)tetrahydrofuran-2-yl]dAdo (9). This adduct was further characterized by NaBH(3)CN reduction to N(6)-[4-hydroxy-4-(3-pyridyl)but-1-yl]dAdo (17). A second dAdo adduct was identified, after NaBH(3)CN treatment, as 6-[2-(3-pyridyl)pyrrolidin-1-yl]purine-2'-deoxyriboside (18). Reaction of 3 with dThd, followed by NaBH(3)CN reduction, gave O(2)-[4-(3-pyridyl)-4-hydroxybut-1-yl]thymidine (11). Adducts 9, 11, 17, and 18 were all identified by LC-ESI-MS/MS-SRM comparison to synthetic standards. The reaction of 3 with calf thymus DNA was then investigated. The DNA was enzymatically hydrolyzed to deoxyribonucleosides, and the resulting mixture was treated with NaBH(3)CN and analyzed by LC-ESI-MS/MS-SRM. Adducts 11, 17, and 18, as well as the previously identified dGuo adducts, were identified. The results of this study provide a more comprehensive picture of DNA adduct formation by the quantitatively important 5'-hydroxylation pathway of NNN and will facilitate investigation of the presence of these adducts in laboratory animals treated with NNN or in people who use tobacco products.
Collapse
Affiliation(s)
- Pramod Upadhyaya
- Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota Minneapolis, MN 55455
| |
Collapse
|
18
|
Stepanov I, Hecht SS. Detection and quantitation of N'-nitrosonornicotine in human toenails by liquid chromatography-electrospray ionization-tandem mass spectrometry. Cancer Epidemiol Biomarkers Prev 2008; 17:945-8. [PMID: 18398035 DOI: 10.1158/1055-9965.epi-07-2711] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Specific biomarkers of tobacco carcinogen uptake are critical for investigations of the role of tobacco smoke exposure in human cancers. Two new biomarkers of human exposure to tobacco-specific carcinogens have been recently developed by our research group: urinary N'-nitrosonornicotine (NNN) and toenail 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). In this study, we report the presence of NNN in human toenails. Toenails of 17 smokers were analyzed for total NNN. Mean total NNN level in these samples was 4.63 +/- 6.48 fmol/mg toenail and correlated with previously reported total NNAL (r = 0.96; P < 0.0001), total nicotine (r = 0.48; P < 0.05), and total cotinine (r = 0.87; P < 0.0001). An interesting finding was that amounts of NNN in smokers' toenails were generally higher than those of total NNAL. The ratio of toenail NNN to NNAL averaged 2.8, whereas the previously reported ratio between these biomarkers in smokers' urine was 0.1. NNN was also found in toenail samples from 12 nonsmokers, averaging 0.35 +/- 0.16 fmol/mg and positively correlating with toenail cotinine (r = 0.58; P = 0.05). The results of this study show the feasibility of quantifying NNN in human toenails, providing a potentially useful new biomarker of tobacco carcinogen exposure.
Collapse
Affiliation(s)
- Irina Stepanov
- The Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
19
|
Upadhyaya P, McIntee EJ, Villalta PW, Hecht SS. Identification of adducts formed in the reaction of 5'-acetoxy-N'-nitrosonornicotine with deoxyguanosine and DNA. Chem Res Toxicol 2006; 19:426-35. [PMID: 16544948 PMCID: PMC2518848 DOI: 10.1021/tx050323e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N'-Nitrosonornicotine (NNN) is believed to play an important role as a cause of cancer in people who use tobacco products and is considered to be a human carcinogen. NNN requires metabolism to form DNA adducts, which are absolutely critical to its carcinogenic properties. Previous studies have identified cytochrome P450-catalyzed 2'- and 5'-hydroxylation of NNN as potential DNA adduct forming metabolic pathways. 5'-Hydroxylation is the more prevalent of these in monkeys and humans and is known to generate mutagenic intermediates, but the DNA adducts formed by this pathway have never been characterized. In this study, we used 5'-acetoxyNNN as a stable precursor to 5'-hydroxyNNN and investigated its esterase-catalyzed reactions with deoxyguanosine (dGuo) and DNA. Adducts resulting from carbocation and oxonium ion intermediates, produced by the spontaneous decomposition of 5'-hydroxyNNN, were identified. The carbocation pathway resulted in the formation of 2-[2-hydroxy-5-(3-pyridyl)pyrrolidin-1-yl]deoxyinosine (12) which was characterized by comparison to an independently synthesized standard. Treatment of 12 with NaBH(3)CN produced two diastereomers of 2-[2-(3-pyridyl)pyrrolidin-1-yl]deoxyinosine (14), and their absolute configurations at the 2-position were determined by comparison to synthetic standards. The oxonium ion pathway produced diastereomers of N(2)[5-(3-pyridyl)tetrahydrofuran-2-yl]dGuo (16), identified by comparison to synthetic standards. The absolute configuration at the 5-position was determined by establishing the stereochemistry of the enantiomers of 5-(3-pyridyl)-2-hydroxytetrahydrofuran at the 5-position and allowing these to react individually with dGuo. Treatment of 16 with NaBH(3)CN produced N(2)[4-hydroxy-4-(3-pyridyl)but-1-yl]dGuo (18) which was also synthesized independently. Using liquid chromatography-electrospray ionization-tandem mass spectrometry with selected reaction monitoring, we identified adducts 12 and 16 as products of the reactions of 5'-acetoxyNNN with dGuo. Similarly, adducts 14 and 18 were identified as products of the reaction of 5'-acetoxyNNN with DNA followed by NaBH(3)CN treatment and enzymatic hydrolysis. These results provide the first structural characterization of DNA adducts that can be formed by 5'-hydroxylation of NNN.
Collapse
Affiliation(s)
- Pramod Upadhyaya
- The Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
20
|
Tyroller S, Zwickenpflug W, Thalheim C, Richter E. Acute and subacute effects of tobacco alkaloids, tobacco-specific nitrosamines and phenethyl isothiocyanate on N'-nitrosonornicotine metabolism in rats. Toxicology 2005; 215:245-53. [PMID: 16118032 DOI: 10.1016/j.tox.2005.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 07/14/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
N'-Nitrosonornicotine (NNN) was the first tobacco-specific nitrosamine (TSNA) identified as carcinogen in tobacco smoke, but no data exist on in vivo interactions between NNN and other tobacco alkaloids, TSNA or phenethyl isothiocyanate (PEITC) which have been demonstrated in various studies on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Acute effects on NNN metabolism were tested in male Fischer F344 rats injected s.c. with 30nmol/kg body weight (bw) [5-(3)H]NNN either alone or simultaneously with 15mumol/kg bw nicotine, nornicotine, anatabine, or anabasine, 150mumol/kg bw cotinine, 3mumol/kg bw myosmine, or 300nmol/kg bw of either N'-nitrosoanatabine or N'-nitrosoanabasine. Another group of rats was fed a diet supplemented with PEITC at 1mumol/g diet starting 24h before NNN treatment. Within 24h more than 80% and about 10% of the radioactivity was excreted with urine and feces, respectively. Urinary metabolites were separated by reversed-phase radio-HPLC and identified by co-chromatography with UV standards. In two sets of experiments with control rats treated with NNN only, 4-hydroxy-4-(3-pyridyl)butanoic acid (hydroxy acid, 44.4/44.8%), 4-oxo-4-(3-pyridyl)butanoic acid (keto acid, 32.4/31.5%), NNN-N-oxide (5.0/3.8%), 4-(3-pyridyl)butane-1,4-diol (diol, 1.1/1.0%) and norcotinine (2.3/1.0%) were consistently detected besides unmetabolised NNN (4.7/3.3%). Co-treatment with nicotine, cotinine, nornicotine and PEITC shifted the contribution of the two major metabolites significantly in favor of hydroxy acid (108-113% of control) as compared to keto acid (86-90% of control). The same treatments also increased norcotinine (135-170% of control). These changes are consistent with a decreased metabolic activation of NNN. In subacute studies rats received NNN in drinking water for 4 weeks at a daily dose of 30 nmol/kg bw with or without nornicotine at 15 micromol/kg bw or myosmine at 3 micromol/kg bw. On the last day of the experiment all rats received [5-(3)H]NNN at 30 nmol/kg bw with a contaminated apple bite followed by collection of urine and feces for 18h. Most of the radioactivity, 87-96% of the dose, was recovered in urine and only minor amounts have been excreted in feces or persisted in blood. In urine of the NNN-control group keto acid (32.2%) and unmetabolised NNN (3.9%) were present in identical amounts as in the acute experiment whereas hydroxy acid (41.4% of total radioactivity in urine, 93% of acute NNN control) was reduced in expense of the minor NNN metabolites. Co-administration of nornicotine resulted in a small but significant rise of keto acid (107% of control) and a significant decrease in NNN-N-oxide (76% of control). After co-treatment with myosmine the increase of keto acid (104% of control) was even less but still significant whereas NNN-N-oxide and diol were significantly reduced to 72% and 79% of control, respectively. Our experiments with rats indicate significant mutual effects of some of the major tobacco alkaloids and most relevant TSNA. Further studies on the impact on smokers and the inhibitory effects of isothiocyanates are needed for a final risk assessment.
Collapse
Affiliation(s)
- Stefan Tyroller
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians University, Goethestrasse 33, D-80336 Munich, Germany.
| | | | | | | |
Collapse
|
21
|
Stepanov I, Hecht SS. Tobacco-Specific Nitrosamines and Their Pyridine-N-glucuronides in the Urine of Smokers and Smokeless Tobacco Users. Cancer Epidemiol Biomarkers Prev 2005; 14:885-91. [PMID: 15824160 DOI: 10.1158/1055-9965.epi-04-0753] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tobacco-specific nitrosamines are believed to play a significant role as causes of cancer in people who use tobacco products. Whereas the uptake of one tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, has been shown by analysis of its metabolites in urine, there are no published studies on urinary levels of N'-nitrosonornicotine (NNN), N'-nitrosoanatabine (NAT), and N'-nitrosoanabasine (NAB) or their metabolites in human urine. We developed a method for quantitation of NNN, NAT, NAB, and their pyridine-N-glucuronides NNN-N-Gluc, NAT-N-Gluc, and NAB-N-Gluc in human urine. Total NNN (NNN plus NNN-N-Gluc) was assayed using 5-methyl-N'-nitrosonornicotine as internal standard. Urine was treated with beta-glucuronidase. Following solvent partitioning and solid-phase extraction, total NNN was determined using gas chromatography with nitrosamine-selective detection. Total NAT and total NAB were quantified in the same samples. Separate quantitation of NNN and NNN-N-Gluc was accomplished by extraction of the urine with ethyl acetate before beta-glucuronidase hydrolysis; NNN was analyzed in the ethyl acetate extract, and after enzyme treatment, NNN released from NNN-N-Gluc was quantified in the extracted urine. Separate analyses of NAT, NAT-N-Gluc, NAB, and NAB-N-Gluc proceeded similarly. Analyte identities were confirmed by gas chromatography-tandem mass spectrometry. Mean levels of total NNN, NAT, and NAB in the urine of 14 smokers were (pmol/mg creatinine) 0.18 +/- 0.22, 0.19 +/- 0.20, and 0.040 +/- 0.039, respectively, whereas the corresponding amounts in the urine of 11 smokeless tobacco users were 0.64 +/- 0.44, 1.43 +/- 1.10, and 0.23 +/- 0.19, respectively. Pyridine-N-glucuronides accounted for 59% to 90% of total NNN, NAT, and NAB. The results of this study show the presence of NNN, NAT, NAB, and their pyridine-N-glucuronides in human urine and provide a quantitative method for application in mechanistic and epidemiologic studies of the role of tobacco-specific nitrosamines in human cancer.
Collapse
Affiliation(s)
- Irina Stepanov
- The Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA
| | | |
Collapse
|