1
|
Taoto C, Tangsrisakda N, Thukhammee W, Phetcharaburanin J, Iamsaard S, Tanphaichitr N. Rats Orally Administered with Ethyl Alcohol for a Prolonged Time Show Histopathology of the Epididymis and Seminal Vesicle Together with Changes in the Luminal Metabolite Composition. Biomedicines 2024; 12:1010. [PMID: 38790972 PMCID: PMC11117629 DOI: 10.3390/biomedicines12051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Prolonged ethanol (EtOH) consumption is associated with male infertility, with a decreased spermatogenesis rate as one cause. The defective maturation and development of sperm during their storage in the cauda epididymis and transit in the seminal vesicle can be another cause, possibly occurring before the drastic spermatogenesis disruption. Herein, we demonstrated that the cauda epididymis and seminal vesicle of rats, orally administered with EtOH under a regimen in which spermatogenesis was still ongoing, showed histological damage, including lesions, a decreased height of the epithelial cells and increased collagen fibers in the muscle layer, which implicated fibrosis. Lipid peroxidation (shown by malondialdehyde (MDA) levels) was observed, indicating that reactive oxygen species (ROS) were produced along with acetaldehyde during EtOH metabolism by CYP2E1. MDA, acetaldehyde and other lipid peroxidation products could further damage cellular components of the cauda epididymis and seminal vesicle, and this was supported by increased apoptosis (shown by a TUNEL assay and caspase 9/caspase 3 expression) in these two tissues of EtOH-treated rats. Consequently, the functionality of the cauda epididymis and seminal vesicle in EtOH-treated rats was impaired, as demonstrated by a decreases in 1H NMR-analyzed metabolites (e.g., carnitine, fructose), which were important for sperm development, metabolism and survival in their lumen.
Collapse
Affiliation(s)
- Chayakorn Taoto
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Nareelak Tangsrisakda
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
| | - Wipawee Thukhammee
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jutarop Phetcharaburanin
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- Khon Kaen University Phenome Centre, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (C.T.); (N.T.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nongnuj Tanphaichitr
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1Y 8L6, Canada
| |
Collapse
|
2
|
Elkin ER, Harris SM, Su AL, Lash LH, Loch-Caruso R. Placenta as a target of trichloroethylene toxicity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:472-486. [PMID: 32022077 PMCID: PMC7103546 DOI: 10.1039/c9em00537d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Trichloroethylene (TCE) is an industrial solvent and a common environmental contaminant detected in thousands of hazardous waste sites. Risk of exposure is a concern for workers in occupations that use TCE as well as for residents who live near industries that use TCE or who live near TCE-contaminated sites. Although renal, hepatic and carcinogenic effects of TCE have been documented, less is known about TCE impacts on reproductive functions despite epidemiology reports associating maternal TCE exposure with adverse pregnancy outcomes. Toxicological evidence suggests that the placenta mediates at least some of the adverse pregnancy outcomes associated with TCE exposure. Toxicology studies show that the TCE metabolite, S-(1,2-dichlorovinyl)-l-cysteine (DCVC) generates toxic effects such as mitochondrial dysfunction, apoptosis, oxidative stress, and release of prostaglandins and pro-inflammatory cytokines in placental cell lines. Each of these mechanisms of toxicity have significant implications for placental functions and, thus, ultimately the health of mother and developing child. Despite these findings there remain significant gaps in our knowledge about effects of TCE on the placenta, including effects on specific placental cell types and functions as well as sex differences in response to TCE exposure. Due to the critical role that the placenta plays in pregnancy, future research addressing some of these knowledge gaps could lead to significant gains in public health.
Collapse
Affiliation(s)
- Elana R Elkin
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2029, USA.
| | | | | | | | | |
Collapse
|
3
|
Luo YS, Hsieh NH, Soldatow VY, Chiu WA, Rusyn I. Comparative analysis of metabolism of trichloroethylene and tetrachloroethylene among mouse tissues and strains. Toxicology 2018; 409:33-43. [PMID: 30053492 PMCID: PMC6186498 DOI: 10.1016/j.tox.2018.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022]
Abstract
Trichloroethylene (TCE) and tetrachloroethylene (PCE) are structurally similar chemicals that are metabolized through oxidation and glutathione conjugation pathways. Both chemicals have been shown to elicit liver and kidney toxicity in rodents and humans; however, TCE has been studied much more extensively in terms of both metabolism and toxicity. Despite their qualitative similarities, quantitative comparison of tissue- and strain-specific metabolism of TCE and PCE has not been performed. To fill this gap, we conducted a comparative toxicokinetic study where equimolar single oral doses of TCE (800 mg/kg) or PCE (1000 mg/kg) were administered to male mice of C57BL/6J, B6C3F1/J, and NZW/LacJ strains. Samples of liver, kidney, serum, brain, and lung were obtained for up to 36 h after dosing. For each tissue, concentrations of parent compounds, as well as their oxidative and glutathione conjugation metabolites were measured and concentration-time profiles constructed. A multi-compartment toxicokinetic model was developed to quantitatively compare TCE and PCE metabolism. As expected, the flux through oxidation metabolism pathway predominated over that through conjugation across all mouse strains examined, it is 1,200-3,800 fold higher for TCE and 26-34 fold higher for PCE. However, the flux through glutathione conjugation, albeit a minor metabolic pathway, was 21-fold higher for PCE as compared to TCE. The degree of inter-strain variability was greatest for oxidative metabolites in TCE-treated and for glutathione conjugation metabolites in PCE-treated mice. This study provides critical data for quantitative comparisons of TCE and PCE metabolism, and may explain the differences in organ-specific toxicity between these structurally similar chemicals.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Valerie Y Soldatow
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
4
|
Determination of Trichloroethylene in Water by Liquid–Liquid Microextraction Assisted Solid Phase Microextraction. CHROMATOGRAPHY 2015. [DOI: 10.3390/chromatography2010066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Lash LH, Chiu WA, Guyton KZ, Rusyn I. Trichloroethylene biotransformation and its role in mutagenicity, carcinogenicity and target organ toxicity. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 762:22-36. [PMID: 25484616 PMCID: PMC4254735 DOI: 10.1016/j.mrrev.2014.04.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolism is critical for the mutagenicity, carcinogenicity, and other adverse health effects of trichloroethylene (TCE). Despite the relatively small size and simple chemical structure of TCE, its metabolism is quite complex, yielding multiple intermediates and end-products. Experimental animal and human data indicate that TCE metabolism occurs through two major pathways: cytochrome P450 (CYP)-dependent oxidation and glutathione (GSH) conjugation catalyzed by GSH S-transferases (GSTs). Herein we review recent data characterizing TCE processing and flux through these pathways. We describe the catalytic enzymes, their regulation and tissue localization, as well as the evidence for transport and inter-organ processing of metabolites. We address the chemical reactivity of TCE metabolites, highlighting data on mutagenicity of these end-products. Identification in urine of key metabolites, particularly trichloroacetate (TCA), dichloroacetate (DCA), trichloroethanol and its glucuronide (TCOH and TCOG), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC), in exposed humans and other species (mostly rats and mice) demonstrates function of the two metabolic pathways in vivo. The CYP pathway primarily yields chemically stable end-products. However, the GST pathway conjugate S-(1,2-dichlorovinyl)glutathione (DCVG) is further processed to multiple highly reactive species that are known to be mutagenic, especially in kidney where in situ metabolism occurs. TCE metabolism is highly variable across sexes, species, tissues and individuals. Genetic polymorphisms in several of the key enzymes metabolizing TCE and its intermediates contribute to variability in metabolic profiles and rates. In all, the evidence characterizing the complex metabolism of TCE can inform predictions of adverse responses including mutagenesis, carcinogenesis, and acute and chronic organ-specific toxicity.
Collapse
Affiliation(s)
- Lawrence H. Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201 USA
| | - Weihsueh A. Chiu
- U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC, 20460 USA; Chiu.Weihsueh@.epa.gov;
| | - Kathryn Z. Guyton
- U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC, 20460 USA; Chiu.Weihsueh@.epa.gov;
| | - Ivan Rusyn
- Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599 USA;
| |
Collapse
|
6
|
Abusoglu S, Celik HT, Tutkun E, Yilmaz H, Serdar MA, Bal CD, Yildirimkaya M, Avcikucuk M. 8-hydroxydeoxyguanosine as a useful marker for determining the severity of trichloroethylene exposure. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2014; 69:180-186. [PMID: 24325749 DOI: 10.1080/19338244.2013.763761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this study was to determine 8-hydroxydeoxyguanosine (8-OH-dG) levels in trichloroethylene (TCE)-exposed workers. Oxidative stress biomarkers and biochemical parameters were monitored among 26 TCE-exposed workers and 78 age-matched control subjects. Levels of urinary 8-OH-dG were analyzed by liquid chromatography tandem mass spectrometry. Urinary 8-OH-dG levels were significantly higher for TCE-exposed group (p < .001). Spearman's correlation test revealed positive correlations between urinary trichloroacetic acid levels and age, urinary 8-OH-dG, urinary total oxidant status, and urinary total antioxidant status (p = .042, p < .001, p < .001, and p < .001, respectively). 8-OH-dG may be a useful marker to determine the extent of TCE exposure.
Collapse
Affiliation(s)
- Sedat Abusoglu
- a Department of Biochemistry , ANKALAB Laboratory , Ankara , Turkey
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Schrader SM, Marlow KL. Assessing the reproductive health of men with occupational exposures. Asian J Androl 2014; 16:23-30. [PMID: 24369130 PMCID: PMC3901877 DOI: 10.4103/1008-682x.122352] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/24/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022] Open
Abstract
The earliest report linking environmental (occupational) exposure to adverse human male reproductive effects dates back to1775 when an English physician, Percival Pott, reported a high incidence of scrotal cancer in chimney sweeps. This observation led to safety regulations in the form of bathing requirements for these workers. The fact that male-mediated reproductive harm in humans may be a result of toxicant exposures did not become firmly established until relatively recently, when Lancranjan studied lead-exposed workers in Romania in 1975, and later in 1977, when Whorton examined the effects of dibromochloropropane (DBCP) on male workers in California. Since these discoveries, several additional human reproductive toxicants have been identified through the convergence of laboratory and observational findings. Many research gaps remain, as the pool of potential human exposures with undetermined effects on male reproduction is vast. This review provides an overview of methods used to study the effects of exposures on male reproduction and their reproductive health, with a primary emphasis on the implementation and interpretation of human studies. Emphasis will be on occupational exposures, although much of the information is also useful in assessing environmental studies, occupational exposures are usually much higher and better defined.
Collapse
Affiliation(s)
- Steven M Schrader
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, OH, USA
| | - Katherine L Marlow
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Applied Research and Technology, Cincinnati, OH, USA
| |
Collapse
|
8
|
Rusyn I, Chiu WA, Lash LH, Kromhout H, Hansen J, Guyton KZ. Trichloroethylene: Mechanistic, epidemiologic and other supporting evidence of carcinogenic hazard. Pharmacol Ther 2013; 141:55-68. [PMID: 23973663 DOI: 10.1016/j.pharmthera.2013.08.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/31/2013] [Indexed: 02/09/2023]
Abstract
The chlorinated solvent trichloroethylene (TCE) is a ubiquitous environmental pollutant. The carcinogenic hazard of TCE was the subject of a 2012 evaluation by a Working Group of the International Agency for Research on Cancer (IARC). Information on exposures, relevant data from epidemiologic studies, bioassays in experimental animals, and toxicity and mechanism of action studies was used to conclude that TCE is carcinogenic to humans (Group 1). This article summarizes the key evidence forming the scientific bases for the IARC classification. Exposure to TCE from environmental sources (including hazardous waste sites and contaminated water) is common throughout the world. While workplace use of TCE has been declining, occupational exposures remain of concern, especially in developing countries. The strongest human evidence is from studies of occupational TCE exposure and kidney cancer. Positive, although less consistent, associations were reported for liver cancer and non-Hodgkin lymphoma. TCE is carcinogenic at multiple sites in multiple species and strains of experimental animals. The mechanistic evidence includes extensive data on the toxicokinetics and genotoxicity of TCE and its metabolites. Together, available evidence provided a cohesive database supporting the human cancer hazard of TCE, particularly in the kidney. For other target sites of carcinogenicity, mechanistic and other data were found to be more limited. Important sources of susceptibility to TCE toxicity and carcinogenicity were also reviewed by the Working Group. In all, consideration of the multiple evidence streams presented herein informed the IARC conclusions regarding the carcinogenicity of TCE.
Collapse
Affiliation(s)
- Ivan Rusyn
- University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | - Johnni Hansen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | |
Collapse
|
9
|
Tiwari AK, Pragya P, Ravi Ram K, Chowdhuri DK. Environmental chemical mediated male reproductive toxicity: Drosophila melanogaster as an alternate animal model. Theriogenology 2011; 76:197-216. [PMID: 21356551 DOI: 10.1016/j.theriogenology.2010.12.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 12/28/2010] [Accepted: 12/31/2010] [Indexed: 01/16/2023]
Abstract
Industrialization and indiscriminate use of agrochemicals have increased the human health risk. Recent epidemiological studies raised a concern for male reproduction given their observations of reduced sperm counts and altered semen quality. Interestingly, environmental factors that include various metals, pesticides and their metabolites have been causally linked to such adversities by their presence in the semen at levels that correlate to infertility. The epidemiological observations were further supported by studies in animal models involving various chemicals. Therefore, in this review, we focused on male reproductive toxicity and the adverse effects of different environmental chemicals on male reproduction. However, it is beyond the scope of this review to provide a detailed appraisal of all of the environmental chemicals that have been associated with reproductive toxicity in animals. Here, we provided the evidence for reproductive adversities of some commonly encountered chemicals (pesticides/metals) in the environment. In view of the recent thrust for an alternate to animal models in research, we subsequently discussed the contributions of Drosophila melanogaster as an alternate animal model for quick screening of toxicants for their reproductive toxicity potential. Finally, we emphasized the genetic and molecular tools offered by Drosophila for understanding the mechanisms underlying the male reproductive toxicity.
Collapse
Affiliation(s)
- A K Tiwari
- Embryotoxicology Division, Indian Institute of Toxicology Research, M.G. Marg, Lucknow-226001, India
| | | | | | | |
Collapse
|
10
|
Kumar S, Mishra VV. Review: Toxicants in reproductive fluid and in vitro fertilization (IVF) outcome. Toxicol Ind Health 2010; 26:505-11. [PMID: 20529961 DOI: 10.1177/0748233710373081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Some of the physical, chemical, dietary, occupational and environmental factors are having adverse effect on human reproduction. Increasing trend in reproductive disorders in recent years at least in part might be associated with these factors. The data available suggests less success rate of in vitro fertilization (IVF) outcome of parents exposed to some of the reproductive toxic chemicals as compared to parents who were not exposed to such chemicals. However, data are very meager and require more studies as some debatable data also exists. But existing positive findings encourage in advising that sub-fertile subjects, who are planning to go for the IVF, should reduce toxic exposure well in advance by adopting positive life style and work environment. Further, clinician ought to be aware of occupational and environmental exposure history of the participating couple.
Collapse
Affiliation(s)
- Sunil Kumar
- Division of Reproductive and Cytotoxicology, National Institute of Occupational Health (ICMR), Ahmedabad 380016, India.
| | | |
Collapse
|
11
|
Jollow DJ, Bruckner JV, McMillan DC, Fisher JW, Hoel DG, Mohr LC. Trichloroethylene risk assessment: a review and commentary. Crit Rev Toxicol 2010; 39:782-97. [PMID: 19852561 DOI: 10.3109/10408440903222177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trichloroethylene (TCE) is a widespread environmental contaminant that is carcinogenic when given in high, chronic doses to certain strains of mice and rats. The capacity of TCE to cause cancer in humans is less clear. The current maximum contaminant level (MCL) of 5 ppb (microg/L) is based on an US Environment Protection Agency (USEPA) policy decision rather than the underlying science. In view of major advances in understanding the etiology and mechanisms of chemically induced cancer, USEPA began in the late 1990s to revise its guidelines for cancer risk assessment. TCE was chosen as the pilot chemical. The USEPA (2005) final guidelines emphasized a "weight-of-evidence" approach with consideration of dose-response relationships, modes of action, and metabolic/toxicokinetic processes. Where adequate data are available to support reversible binding of the carcinogenic moiety to biological receptors as the initiating event (i.e., a threshold exists), a nonlinear approach is to be used. Otherwise, the default assumption of a linear (i.e., nonthreshold) dose-response is utilized. When validated physiologically based pharmacokinetic (PBPK) models are available, they are to be used to predict internal dosimetry as the basis for species and dose extrapolations. The present article reviews pertinent literature and discusses areas where research may resolve some outstanding issues and facilitate the reassessment process. Key research needs are proposed, including role of dichloroacetic acid (DCA) in TCE-induced liver tumorigenesis in humans; extension of current PBPK models to predict target organ deposition of trichloroacetic acid (TCA) and DCA in humans ingesting TCE in drinking water; use of human hepatocytes to ascertain metabolic rate constants for use in PBPK models that incorporate variability in metabolism of TCE by potentially sensitive subpopulations; measurement of the efficiency of first-pass elimination of trace levels of TCE in drinking water; and assessment of exogenous factors' (e.g., alcohol, drugs) ability to alter metabolic activation and risks at such low-level exposure.
Collapse
Affiliation(s)
- David J Jollow
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | |
Collapse
|
12
|
Tabrez S, Ahmad M. Toxicity, biomarkers, genotoxicity, and carcinogenicity of trichloroethylene and its metabolites: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2009; 27:178-196. [PMID: 19657920 DOI: 10.1080/10590500903091340] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Trichloroethylene (TCE) is a prevalent occupational and environmental contaminant that has been reported to cause a variety of toxic effects. This article reviews toxicity, mutagenicity, and carcinogenicity caused by the exposure of TCE and its metabolites in the living system as well as on their (TCE and its metabolites) toxicity biomarkers.
Collapse
|
13
|
Khan S, Priyamvada S, Khan SA, Khan W, Farooq N, Khan F, Yusufi ANK. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues. Food Chem Toxicol 2009; 47:1562-8. [PMID: 19361549 DOI: 10.1016/j.fct.2009.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/25/2009] [Accepted: 04/01/2009] [Indexed: 11/26/2022]
Abstract
Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.
Collapse
Affiliation(s)
- Sheeba Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, UP, India
| | | | | | | | | | | | | |
Collapse
|
14
|
König R, Cai P, Guo X, Ansari GAS. Transcriptomic analysis reveals early signs of liver toxicity in female MRL +/+ mice exposed to the acylating chemicals dichloroacetyl chloride and dichloroacetic anhydride. Chem Res Toxicol 2008; 21:572-82. [PMID: 18293905 DOI: 10.1021/tx7002728] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dichloroacetyl chloride (DCAC) is a reactive metabolite of trichloroethene (TCE). TCE and its metabolites have been implicated in the induction of organ-specific and systemic autoimmunity, in the acceleration of autoimmune responses, and in the development of liver toxicity and hepatocellular carcinoma. In humans, effects of environmental toxicants are often multifactorial and detected only after long-term exposure. Therefore, we developed a mouse model to determine mechanisms by which DCAC and related acylating agents affect the liver. Autoimmune-prone female MRL +/+ mice were injected intraperitoneally with 0.2 mmol/kg of DCAC or dichloroacetic anhydride (DCAA) in corn oil twice weekly for six weeks. No overt liver pathology was detectable. Using microarray gene expression analysis, we detected changes in the liver transcriptome consistent with inflammatory processes. Both acylating toxicants up-regulated the expression of acute phase response and inflammatory genes. Furthermore, metallothionein genes were strongly up-regulated, indicating effects of the toxicants on zinc ion homeostasis and stress responses. In addition, DCAC and DCAA induced the up-regulation of several genes indicative of tumorigenesis. Our data provide novel insight into early mechanisms for the induction of liver disease by acylating agents. The data also demonstrate the power of microarray analysis in detecting early changes in liver function following exposure to environmental toxicants.
Collapse
Affiliation(s)
- Rolf König
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|
15
|
Abstract
There is accumulating evidence that workplace exposure to toxic substances contributes to male infertility. Men suffering from infertility problems may do well to look at their occupations, where exposure to certain substances may be a contributory factor, if not a direct cause, of infertility. Most of the studies to date are either case reports or epidemiological studies (population-based, case-control, or cohort studies). Additional, controlled studies need to be done to ascertain the effects of occupational toxins on male infertility. Until then, men and their employers should work together to minimize exposure to these substances.
Collapse
Affiliation(s)
- Paul Claman
- Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, University of Ottawa Faculty of Medicine, Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Lamb JC, Hentz KL. Toxicological review of male reproductive effects and trichloroethylene exposure: Assessing the relevance to human male reproductive health. Reprod Toxicol 2006; 22:557-63. [PMID: 16938429 DOI: 10.1016/j.reprotox.2006.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/19/2006] [Accepted: 07/05/2006] [Indexed: 11/18/2022]
Abstract
Effects of trichloroethylene (TCE) on male reproduction and fertility have been studied in mice and rats, and assessed in workers exposed to TCE. Only limited evidence exists for any male reproductive effects in rats or humans. The human studies of TCE male reproductive effects failed to provide much useful information for risk assessment. First, the TCE-specific studies are limited in group size, scope, and typically provide no data on dose, so dose-response assessment is impossible. In other studies, TCE is only one of many solvents identified in the workplace, such that the confounding exposures or lack of evidence of specific exposures make the exposure assessment useless. For TCE risk assessment, one currently must rely upon animal studies as more reliable and useful. The rat studies were generally negative, showing systemic toxicity but little or no male reproductive toxicity. The mouse studies showed various organ effects in the male reproductive system and were typically associated with increased liver weight and kidney toxicity. Enzyme induction and oxidative metabolism appear to be important in the systemic toxicity and may likewise play a role in the reproductive toxicity of TCE. Oxidative metabolites of TCE are formed in the mouse epididymis resulting in epididymal damage, and at systemically toxic high doses, TCE may adversely affect the maturation of sperm and decreasing sperm motility. Protection against systemic toxicity should also protect against adverse effects including male reproductive toxicity.
Collapse
Affiliation(s)
- James C Lamb
- The Weinberg Group Inc, Washington, DC 20036, USA.
| | | |
Collapse
|
17
|
Chiu WA, Okino MS, Lipscomb JC, Evans MV. Issues in the pharmacokinetics of trichloroethylene and its metabolites. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1450-6. [PMID: 16966104 PMCID: PMC1570093 DOI: 10.1289/ehp.8691] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Much progress has been made in understanding the complex pharmacokinetics of trichloroethylene (TCE) . Qualitatively, it is clear that TCE is metabolized to multiple metabolites either locally or into systemic circulation. Many of these metabolites are thought to have toxicologic importance. In addition, efforts to develop physiologically based pharmacokinetic (PBPK) models have led to a better quantitative assessment of the dosimetry of TCE and several of its metabolites. As part of a mini-monograph on key issues in the health risk assessment of TCE, this article is a review of a number of the current scientific issues in TCE pharmacokinetics and recent PBPK modeling efforts with a focus on literature published since 2000. Particular attention is paid to factors affecting PBPK modeling for application to risk assessment. Recent TCE PBPK modeling efforts, coupled with methodologic advances in characterizing uncertainty and variability, suggest that rigorous application of PBPK modeling to TCE risk assessment appears feasible at least for TCE and its major oxidative metabolites trichloroacetic acid and trichloroethanol. However, a number of basic structural hypotheses such as enterohepatic recirculation, plasma binding, and flow- or diffusion-limited treatment of tissue distribution require additional evaluation and analysis. Moreover, there are a number of metabolites of potential toxicologic interest, such as chloral, dichloroacetic acid, and those derived from glutathione conjugation, for which reliable pharmacokinetic data is sparse because of analytical difficulties or low concentrations in systemic circulation. It will be a challenge to develop reliable dosimetry for such cases.
Collapse
Affiliation(s)
- Weihsueh A Chiu
- National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA.
| | | | | | | |
Collapse
|
18
|
Delinsky AD, Bruckner JV, Bartlett MG. A review of analytical methods for the determination of trichloroethylene and its major metabolites chloral hydrate, trichloroacetic acid and dichloroacetic acid. Biomed Chromatogr 2005; 19:617-39. [PMID: 15828053 DOI: 10.1002/bmc.488] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Trichloroethylene (TCE) and some of its metabolites are potentially carcinogenic compounds that the general population is commonly exposed to in drinking water. Concentrations of TCE, dichloroacetic acid (DCA) and trichloroacetic acid (TCA) given to laboratory animals in cancer bioassays are high, whereas drinking water levels of the compounds are very low. It is not clear whether the trace amounts of TCE, DCA and TCA in drinking water pose a cancer risk to humans. The accuracy of pharmacokinetic studies relies on the analytical method from which blood and tissue concentration data are obtained. Models that extrapolate cancer risks of TCE and its metabolites from laboratory animals to humans, in turn, rely on the results of pharmacokinetic studies. Therefore, it is essential to have reliable analytical methods for the analysis of TCE and its metabolites. This paper reviews the methods currently in the literature for the analysis of TCE, DCA, TCA and, to a lesser extent, chloral hydrate (CH). Additional aspects of analytical methods such as method validation, species preservation and future directions in the analysis of TCE and its metabolites are also discussed.
Collapse
Affiliation(s)
- Amy D Delinsky
- University of Georgia, College of Pharmacy, Department of Pharmaceutical and Biomedical Sciences, Athens, GA 30602, USA
| | | | | |
Collapse
|
19
|
Bolaris S, Constantinou C, Valcana T, Margarity M. The effect of chloral hydrate on the in-vitro T3 binding to adult rat cerebral nuclei. J Pharm Pharmacol 2005; 57:1011-8. [PMID: 16102257 DOI: 10.1211/0022357056604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Chloral hydrate is a widely used hypnotic drug for children and animals but the possible interactions of its sedative action and thyroid hormones has not been investigated. In this study the effect of chloral hydrate on the in-vitro binding of triiodothyronine (T3) to cerebral nuclei of adult rats and on the thyroid hormones' synaptosomal and plasma availability were examined. Our results show that during deep anaesthesia caused by a single intraperitoneal administration of chloral hydrate (100 mg kg(-1)), the maximal number of nuclear thyroid hormone receptors (Bmax) and the equilibrium dissociation constant (Kd) were decreased. These changes returned to normal values when rats woke up (2(1/2)h after chloral hydrate administration). Plasma or synaptosomal levels of thyroid hormones were unaffected during chloral hydrate treatment. Our study demonstrates that the nuclear T3 binding in adult rat brain is affected by the sedative action of chloral hydrate.
Collapse
Affiliation(s)
- Stamatis Bolaris
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras 265 00, Greece
| | | | | | | |
Collapse
|
20
|
Forkert PG, Baldwin RM, Millen B, Lash LH, Putt DA, Shultz MA, Collins KS. Pulmonary bioactivation of trichloroethylene to chloral hydrate: relative contributions of CYP2E1, CYP2F, and CYP2B1. Drug Metab Dispos 2005; 33:1429-37. [PMID: 15987776 DOI: 10.1124/dmd.105.005074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary cytotoxicity induced by trichloroethylene (TCE) is associated with cytochrome P450-dependent bioactivation to reactive metabolites. In this investigation, studies were undertaken to test the hypothesis that TCE metabolism to chloral hydrate (CH) is mediated by cytochrome P450 enzymes, including CYP2E1, CYP2F, and CYP2B1. Recombinant rat CYP2E1 catalyzed TCE metabolism to CH with greater affinity than did the recombinant P450 enzymes, rat CYP2F4, mouse CYP2F2, rat CYP2B1, and human CYP2E1. The catalytic efficiencies of recombinant rat CYP2E1 (V(max)/K(m) = 0.79) for generating CH was greater than those of recombinant CYP2F4 (V(max)/K(m) = 0.27), recombinant mouse CYP2F2 (V(max)/K(m) = 0.11), recombinant rat CYP2B1 (V(max)/K(m) = 0.07), or recombinant human CYP2E1 (V(max)/K(m) = 0.02). Decreases in lung microsomal immunoreactive CYP2E1, CYP2F2, and CYP2B1 were manifested at varying time points after TCE treatment. The loss of immunoreactive CYP2F2 occurred before the loss of immunoreactive CYP2E1 and CYP2B1. These protein decreases coincided with marked reduction of lung microsomal p-nitrophenol hydroxylation and pentoxyresorufin O-dealkylation. Rates of CH formation in the microsomal incubations were time-dependent and were incremental from 5 to 45 min. The production of CH was also determined in human lung microsomal incubations. The rates were low and were detected in only three of eight subjects. These results showed that, although CYP2E1, CYP2F, and CYP2B1 are all capable of generating CH, TCE metabolism is mediated with greater affinity by recombinant rat CYP2E1 than by recombinant CYP2F, CYP2B1, or human CYP2E1. Moreover, the rates of CH production were substantially higher in murine than in human lung.
Collapse
Affiliation(s)
- Poh-Gek Forkert
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | | | | | |
Collapse
|
21
|
Delinsky AD, Delinsky DC, Muralidhara S, Fisher JW, Bruckner JV, Bartlett MG. Analysis of dichloroacetic acid in rat blood and tissues by hydrophilic interaction liquid chromatography with tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:1075-1083. [PMID: 15776496 DOI: 10.1002/rcm.1890] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dichloroacetic acid (DCA) is a compound found in chlorinated drinking water. In addition, the compound is a metabolite of several halogenated solvents, including trichloroethylene (TCE) and perchloroethylene (PCE). Exposure to DCA is of concern because high doses of the compound have been shown to cause cancer in laboratory animals. Dosages of TCE administered to animals in cancer studies are designed to elicit maximal DCA formation in vivo, whereas levels of DCA to which individuals are exposed in drinking water are very low. Analysis of DCA in biological samples has been quite challenging. Derivatizing reagents commonly used to convert DCA into a more volatile form for analysis by gas chromatography (GC) have been found to convert trichloroacetic acid (TCA), a major metabolite of TCE and PCE, into DCA. High-performance liquid chromatography (HPLC) analysis does not require derivatization of DCA and can thus avoid this problem. However, the most popular stationary phases in HPLC columns do not retain small, polar compounds such as DCA well. The liquid chromatography/tandem mass spectrometry (LC/MS/MS) method described in this paper uses hydrophilic interaction liquid chromatography (HILIC), a type of chromatography that is able to retain these small, polar compounds. Method validation was performed using the United States Food and Drug Administration (USFDA) and International Conference on Harmonziation (ICH) Guidance for Industry: Bioanalytical Method Validation as a guide. Levels of DCA found in rats dosed with 2 g/kg TCE were 17.2 ng/mL (liver), 262.4 ng/mL (kidney), 175.1 ng/mL (lung), and 39.5 ng/mL (blood).
Collapse
Affiliation(s)
- Amy D Delinsky
- University of Georgia, College of Pharmacy, Department of Pharmaceutical and Biomedical Sciences, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Three mechanisms have been proposed for exposure of the conceptus to chemicals in semen: access of chemicals to the maternal circulation after absorption from the vagina, direct chemical exposure of the conceptus following transport from the vagina to the uterine cavity, and delivery to the egg and subsequent conceptus of chemical bound to the sperm cell. We review published data for each of these three mechanisms. Human seminal fluid chemical concentrations are typically similar to or lower than blood concentrations, although some antimicrobial agents achieve higher concentrations in semen than in blood. Vaginal absorption of medications has been shown to occur, although the vehicles in which these medications are delivered to the vagina may maintain contact with the vaginal epithelium to a greater extent than does semen. Assuming total absorption of a seminal dose of a chemical with a high semen:blood concentration ratio, distribution within the recipient woman would result in a blood concentration at least three orders of magnitude lower than that in the man. Direct delivery of seminal chemicals into the uterine cavity of humans has not been shown to occur, although it may occur in species such as the rat in which seminal fluid has access to the uterine cavity. Chemicals in or on human sperm cells have been demonstrated with respect to tetracycline and cocaine in vitro and aluminum, lead, and cadmium in vivo. The in vitro cocaine study offers sufficiently quantitative data with which to predict that oocyte concentrations would be five orders of magnitude lower than blood concentrations associated with cocaine abuse, assuming a maximally cocaine-bound sperm were capable of fertilizing. Thus, even using liberal assumptions about transmission of chemicals in semen or sperm, predicted exposure levels of a pregnant woman or of the conceptus are three or more orders of magnitude lower than blood concentrations in the man whose semen is the putative vehicle for chemical transport.
Collapse
Affiliation(s)
- Leah Klemmt
- College of William and Mary, Williamsburg, Virginia, USA
| | | |
Collapse
|
23
|
Magnusson LL, Bonde JP, Olsen J, Möller L, Bingefors K, Wennborg H. Paternal Laboratory Work and Congenital Malformations. J Occup Environ Med 2004; 46:761-7. [PMID: 15300126 DOI: 10.1097/01.jom.0000135550.47632.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animal studies indicate male-mediated teratogenicity for certain carcinogens/mutagens. Nevertheless, paternal occupational determinants of malformations in humans have been sparsely investigated. Data on male employees at Swedish universities from 1970 to 1989 were linked to the Medical Birth Register. The relationship between major malformations and exposure to laboratory work and to specific laboratory agents/techniques before the third trimester were analyzed using logistic regression. For major malformations, "laboratory work in general" (n = 3237) gave an adjusted odds ratio (OR) of 1.3 (95% CI = 0.8-2.1) and carcinogenic solvent use (n = 2489) of 2.0 (95% CI = 0.8-4.9) around the time of conception. For carcinogenic solvents and neural crest malformations, OR was 4.9 (95% CI =1.5-15.8). In conclusion, the prevalence of congenital malformations was not increased in offspring of males with laboratory work in general (1970-1989). Paternal work with agents such as carcinogens could, however, be of concern.
Collapse
Affiliation(s)
- Linda L Magnusson
- Unit of Environmental Medicine, Department of Biosciences at Novum, Karolinska Institutet, Sweden.
| | | | | | | | | | | |
Collapse
|
24
|
DuTeaux SB, Berger T, Hess RA, Sartini BL, Miller MG. Male Reproductive Toxicity of Trichloroethylene: Sperm Protein Oxidation and Decreased Fertilizing Ability1. Biol Reprod 2004; 70:1518-26. [PMID: 14736810 DOI: 10.1095/biolreprod.103.022210] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of the present study was to characterize and investigate potential mechanisms for the male reproductive toxicity of trichloroethylene (TCE). Male rats exposed to TCE in drinking water exhibited a dose-dependent decrease in the ability to fertilize oocytes from untreated females. This reduction in fertilizing ability occurred in the absence of treatment-related changes in combined testes/epididymides weight, sperm concentration, or sperm motility. In addition, flow cytometric analysis showed that there were no treatment-related differences in sperm mitochondrial membrane potential or acrosomal stability. TCE caused slight histological changes in efferent ductule epithelium, coinciding with the previously reported ductule localization of cytochrome P450 2E1. However, no alterations were noted in the testis or in any segment of the epididymis. Because there were no treatment-related changes to sperm indices and no clear pathological lesions to explain the reduced fertilization, the present study investigated TCE-mediated sperm oxidative damage. Oxidized proteins were detected by immunochemical techniques following the derivatization of sperm protein carbonyls with dinitrophenyl hydrazine. Immunochemical staining of whole, intact sperm showed the presence of halos of oxidized proteins around the head and midpiece of sperm from TCE-treated animals. The presence of oxidized sperm proteins was confirmed by Western blotting using in vitro-oxidized sperm as a positive control. Thiobarbituric acid reactive substances analyses showed a dose-dependent increase in the level of lipid peroxidation in sperm from treated animals, as well. Oxidative damage to sperm may explain the diminished fertilizing capacity of exposed animals and provide another mechanism by which TCE can adversely affect reproductive capabilities in the male.
Collapse
Affiliation(s)
- Shelley Brown DuTeaux
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
25
|
News & Views. ACS CHEMICAL HEALTH & SAFETY 2003. [DOI: 10.1016/s1074-9098(03)00071-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|