1
|
Shinozaki Y, Saito K, Kashiwagi K, Koizumi S. Ocular P2 receptors and glaucoma. Neuropharmacology 2023; 222:109302. [PMID: 36341810 DOI: 10.1016/j.neuropharm.2022.109302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Adenosine triphosphate (ATP), an energy source currency in cells, is released or leaked to the extracellular space under both physiological and pathological conditions. Extracellular ATP functions as an intercellular signaling molecule through activation of purinergic P2 receptors. Ocular tissue and cells release ATP in response to physiological stimuli such as intraocular pressure (IOP), and P2 receptor activation regulates IOP elevation or reduction. Dysregulated purinergic signaling may cause abnormally elevated IOP, which is one of the major risk factors for glaucoma. Glaucoma, a leading cause of blindness worldwide, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs), which are essential retinal neurons that transduce visual information to the brain. An elevation in IOP may stress RGCs and increase the risk for glaucoma pathogenesis. In the aqueous humor of human patients with glaucoma, the ATP level is significantly elevated. Such excess amount of ATP may directly cause RGC death via a specific subtype of P2 receptors. Dysregulated purinergic signaling may also trigger inflammation, oxidative stress, and excitotoxicity via activating non-neuronal cell types such as glial cells. In this review, we discussed the physiological roles of extracellular nucleotides in the ocular tissue and their potential role in the pathogenesis of glaucoma. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan; Interdisciplinary Brain-Immune Research Center, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
2
|
Martins TGDS, Sipahi AM, Mendes MA, Fowler SB, Schor P. Metaboloma use in ophthalmology. REVISTA BRASILEIRA DE OFTALMOLOGIA 2022. [DOI: 10.37039/1982.8551.20220056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Miras-Portugal MT, Gualix J. Geoffrey Burnstock, our friend and magister: the diadenosine polyphosphate connection. Purinergic Signal 2020; 17:79-84. [PMID: 33025428 DOI: 10.1007/s11302-020-09736-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 11/27/2022] Open
Abstract
Development of science needs the cooperation of many creative brains. Sometimes, ideas on a specific area get suddenly exhausted and then it is the time for a privileged mind to think in a different way and reach the turning point to introduce a new paradigm. This happened to Geoffrey Burnstock, a heterodox thinker and nonconformist scientist that has been the paladin of purinergic signalling since 1972, opening neuroscience to the understanding of organs and tissues functioning and development of a new pharmacology. This review summarizes the contribution of our group to the understanding of the role of the diadenosine polyphosphates, ApnA, as signalling molecules, describing their tissue and organ distribution, their transport and storage in secretory vesicles and their release and interaction with purinergic receptors. We also have to acknowledge the friendly and kindly support of Professor Burnstock that showed a great interest in the field from our initial findings and actively stimulated our efforts to establish the extracellular roles and biological significance of these dinucleotides.
Collapse
Affiliation(s)
- María-Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
4
|
Abstract
Glaucoma is an optical neuropathy associated to a progressive degeneration of retinal ganglion cells with visual field loss and is the main cause of irreversible blindness in the world. The treatment has the aim to reduce intraocular pressure. The first therapy option is to instill drugs on the ocular surface. The main limitation of this is the reduced time of the drug staying on the cornea. This means that high doses are required to ensure its therapeutic effect. A drug-loaded contact lens can diffuse into the post lens tear film in a constant and prolonged flow, resulting in an increased retention of the drug on the surface of the cornea for up to 30 min and thus providing a higher drug bioavailability, increasing the therapeutic efficacy, reducing the amount of administered drug, and thereby provoking fewer adverse events. Several different systems of drug delivery have been studied in recent decades; ranging from more simple methods of impregnating the lenses, such as soaking, to more complex ones, such as molecular imprinting have been proposed. Moreover, different drugs, from those already commercially available to new substances such as melatonin have been studied to improve the glaucoma treatment efficacy. This review describes the role of contact lenses as an innovative drug delivery system to treat glaucoma.
Collapse
|
5
|
Yu J, Liu Z, Liang Y, Luo F, Zhang J, Tian C, Motzik A, Zheng M, Kang J, Zhong G, Liu C, Fang P, Guo M, Razin E, Wang J. Second messenger Ap 4A polymerizes target protein HINT1 to transduce signals in FcεRI-activated mast cells. Nat Commun 2019; 10:4664. [PMID: 31604935 PMCID: PMC6789022 DOI: 10.1038/s41467-019-12710-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/25/2019] [Indexed: 02/01/2023] Open
Abstract
Signal transduction systems enable organisms to monitor their external environments and accordingly adjust the cellular processes. In mast cells, the second messenger Ap4A binds to the histidine triad nucleotide-binding protein 1 (HINT1), disrupts its interaction with the microphthalmia-associated transcription factor (MITF), and eventually activates the transcription of genes downstream of MITF in response to immunostimulation. How the HINT1 protein recognizes and is regulated by Ap4A remain unclear. Here, using eight crystal structures, biochemical experiments, negative stain electron microscopy, and cellular experiments, we report that Ap4A specifically polymerizes HINT1 in solution and in activated rat basophilic leukemia cells. The polymerization interface overlaps with the area on HINT1 for MITF interaction, suggesting a possible competitive mechanism to release MITF for transcriptional activation. The mechanism depends precisely on the length of the phosphodiester linkage of Ap4A. These results highlight a direct polymerization signaling mechanism by the second messenger.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaizhou Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yuanyuan Liang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jie Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Alex Motzik
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, 91120, Israel
| | - Mengmeng Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Min Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- Kangma BioTech, Co., Ltd, 1131 Cailun Road, Shanghai, 201203, China
| | - Ehud Razin
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, 91120, Israel.
- NUS-HUJ-CREATE Cellular and Molecular Mechanisms of Inflammation Program, Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
6
|
Yazdani M, Elgstøen KBP, Rootwelt H, Shahdadfar A, Utheim ØA, Utheim TP. Tear Metabolomics in Dry Eye Disease: A Review. Int J Mol Sci 2019; 20:E3755. [PMID: 31374809 PMCID: PMC6695908 DOI: 10.3390/ijms20153755] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial syndrome that can be caused by alteration in the quality or quantity of the precorneal tear film. It is considered one of the most common ocular conditions leading patients to seek eye care. The current method for diagnostic evaluations and follow-up examinations of DED is a combination of clinical signs and symptoms determined by clinical tests and questionnaires, respectively. The application of powerful omics technologies has opened new avenues toward analysis of subjects in health and disease. Metabolomics is a new emerging and complementary research discipline to all modern omics in the comprehensive analysis of biological systems. The identification of distinct metabolites and integrated metabolic profiles in patients can potentially inform clinicians at an early stage or during monitoring of disease progression, enhancing diagnosis, prognosis, and the choice of therapy. In ophthalmology, metabolomics has gained considerable attention over the past decade but very limited such studies have been reported on DED. This paper aims to review the application of tear metabolomics in DED.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway.
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway.
| | | | - Helge Rootwelt
- Department of Medical Biochemistry, Oslo University Hospital, 0027 Oslo, Norway
| | - Aboulghassem Shahdadfar
- Center for Eye Research, Department of Ophthalmology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Ullevål, 0450 Oslo, Norway
- The Norwegian Dry Eye Clinic, 0366 Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Maxillofacial Surgery, Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, Vestre Viken Hospital Trust, 3019 Drammen, Norway
- Department of Ophthalmology, Stavanger University Hospital, 4011 Stavanger, Norway
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5020 Bergen, Norway
- Department of Ophthalmology, Sørlandet Hospital Arendal, 4604 Arendal, Norway
- Department of Life Sciences and Health, Oslo Metropolitan University, 0130 Oslo, Norway
| |
Collapse
|
7
|
Multiomic Signature of Glaucoma Predisposition in Flammer Syndrome Affected Individuals – Innovative Predictive, Preventive and Personalised Strategies in Disease Management. FLAMMER SYNDROME 2019. [DOI: 10.1007/978-3-030-13550-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Abstract
The recent discovery of the photoreceptor melanopsin in lens epithelial cells has opened the possibility of modulating this protein by light stimulation. Experiments carried out on New Zealand white rabbits have demonstrated that the release of ATP from the lens to the aqueous humor can be reduced either when a yellow filter or a melanopsin antagonist is used. Compared to control (1.10 ± 0.15 μM ATP), the application of a yellow filter (λ465-480) reduced ATP in the aqueous humor 70%, while the melanopsin antagonist AA92593 reduced the presence of ATP 63% (n = 5), an effect which was also obtained with the PLC inhibitor U73122. These results indicate that when melanopsin is blocked either by the lack of light, a filter, or an antagonist, the extracellular presence of ATP is significantly reduced. This discovery may be relevant, on the one hand, because many ocular physiological processes are controlled by ATP and, on the other hand, because it is possible to stimulate ATP release with just light and without using any added substance.
Collapse
Affiliation(s)
- Jesús Pintor
- Department of Biochemistry, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, E-28037, Madrid, Spain.
| |
Collapse
|
9
|
Jacob TF, Singh V, Dixit M, Ginsburg-Shmuel T, Fonseca B, Pintor J, Youdim MBH, Major DT, Weinreb O, Fischer B. A promising drug candidate for the treatment of glaucoma based on a P2Y6-receptor agonist. Purinergic Signal 2018; 14:271-284. [PMID: 30019187 DOI: 10.1007/s11302-018-9614-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/31/2018] [Indexed: 11/28/2022] Open
Abstract
Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 μM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 μM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.
Collapse
Affiliation(s)
- Tali Fishman Jacob
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel
| | - Vijay Singh
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Mudit Dixit
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Tamar Ginsburg-Shmuel
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Begoña Fonseca
- Escuela Universitaria De Optica, Universidad Complutense De Madrid, C/Arcos De Jalon 118, 28037, Madrid, Spain
| | - Jesus Pintor
- Escuela Universitaria De Optica, Universidad Complutense De Madrid, C/Arcos De Jalon 118, 28037, Madrid, Spain
| | - Moussa B H Youdim
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel
| | - Dan T Major
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel.
| | - Orly Weinreb
- GlaucoPharm Ltd, P.O.Box 620, New Industrial Park, 20692, Yokneam, Israel.
| | - Bilha Fischer
- Department of Chemistry, Gonda-Goldschmied Medical Research Center, Bar-Ilan University, 52900, Ramat Gan, Israel.
| |
Collapse
|
10
|
Pérez de Lara MJ, Guzmán-Aranguez A, Gómez-Villafuertes R, Gualix J, Miras-Portugal MT, Pintor J. Increased Ap 4A levels and ecto-nucleotidase activity in glaucomatous mice retina. Purinergic Signal 2018; 14:259-270. [PMID: 29948577 DOI: 10.1007/s11302-018-9612-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/22/2018] [Indexed: 10/14/2022] Open
Abstract
The pathogenesis of glaucoma involves numerous intracellular mechanisms including the purinergic system contribution. Furthermore, the presence and release of nucleotides and dinucleotides during the glaucomatous damage and the maintenance of degradation machinery through ecto-nucleotidase activity are participating in the modulation of the suitable extracellular complex balance. The aim of this study was to investigate the levels of diadenosine tetraphosphate (Ap4A) and the pattern of ecto-nucleotidase activity expression in glaucomatous retinas during the progress the pathology. Ap4A levels were analyzed by HPLC in glaucomatous retinas from the DBA/2J mice at 3, 9, 15, and 23 months of age. For that, retinas were dissected as flattened whole-mounts and stimulated in Ringer buffer with or without 59 mM KCl. NPP1 expression was analyzed by RT-PCR and western blot and its distribution was assessed by immunohistochemistry studies examined under confocal microscopy. Glaucomatous mice exhibited Ap4A values, which changed in stimulated retinas as long as the pathology progressed varying from 0.73 ± 0.04 (3 months) to 0.170 ± 0.05 pmol/mg retina (23 months). Concomitantly, NPP1 expression was significantly increased (82.15%) in the DBA/2J mice at 15 months. Furthermore, immunohistochemical studies showed that NPP1 labeling was stronger in OPL and IPL labeling tangentially in the vitreal part of the retina and was upregulated at 15 months of age. Our findings demonstrate that Ap4A decreased levels may be related with exacerbated activity of NPP1 protein in glaucomatous degeneration and in this way contributing to elucidate different mechanisms involved in retinal impairment in glaucomatous degeneration.
Collapse
Affiliation(s)
- María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Ana Guzmán-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Javier Gualix
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - María Teresa Miras-Portugal
- Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary, Complutense University of Madrid, Av/ Puerta del Hierro s/n, 28040, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Complutense University of Madrid, c/Arcos de Jalón 118, 28037, Madrid, Spain.
| |
Collapse
|
11
|
Fonseca B, Martínez-Águila A, Pérez de Lara MJ, Miras-Portugal MT, Gómez-Villafuertes R, Pintor J. Changes in P2Y Purinergic Receptor Expression in the Ciliary Body in a Murine Model of Glaucoma. Front Pharmacol 2017; 8:719. [PMID: 29085298 PMCID: PMC5649148 DOI: 10.3389/fphar.2017.00719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
Glaucoma is a neuropathology, often accompanied by an elevated intraocular pressure (IOP), which can lead to blindness. Since DBA/2J mice develop glaucoma, several studies of the physiopathology of glaucoma have been reported in this animal model. It is also known that purinergic receptors are involved in the pathology of glaucoma by controlling aqueous humor production and drainage and therefore controlling IOP. There are no studies on purinergic receptors in the DBA/2J model of glaucoma and their relation to the development of the pathology, so the aim of this study was to make an approach to the purinergic mechanisms involved in glaucoma. All the experiments were performed using DBA/2J and C57BL/6J mice and investigating P2Y1, P2Y2, and P2Y6 receptors. IOP measurements were made with a non-invasive rebound tonometer, and animals were instilled with diadenosine tetraphosphate (Ap4A) and the corresponding purinergic antagonists in order to see their effects on IOP. The expression of mRNA for P2Y1, P2Y2, and P2Y6 purinergic receptors was carried out by quantitative real-time PCR. Additionally, P2Y-receptor expression was performed by immunohistochemical techniques carried out on the ciliary processes. The results showed that IOP decreases when Ap4A was instilled and that the expressions of the analyzed purinergic receptors were stable throughout all the ages under study in the C57BL/6J mice (control mice). On the other hand, there were significant changes in the purinergic receptor expression in DBA/2J suggesting that elevated IOP in these animals could be related to an increase of P2Y2 expression and a decrease in P2Y1 receptors.
Collapse
Affiliation(s)
- Begoña Fonseca
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Martínez-Águila
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - María J Pérez de Lara
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Shinozaki Y, Kashiwagi K, Namekata K, Takeda A, Ohno N, Robaye B, Harada T, Iwata T, Koizumi S. Purinergic dysregulation causes hypertensive glaucoma-like optic neuropathy. JCI Insight 2017; 2:93456. [PMID: 28978804 DOI: 10.1172/jci.insight.93456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/24/2017] [Indexed: 12/24/2022] Open
Abstract
Glaucoma is an optic neuropathy characterized by progressive degeneration of retinal ganglion cells (RGCs) and visual loss. Although one of the highest risk factors for glaucoma is elevated intraocular pressure (IOP) and reduction in IOP is the only proven treatment, the mechanism of IOP regulation is poorly understood. We report that the P2Y6 receptor is critical for lowering IOP and that ablation of the P2Y6 gene in mice (P2Y6KO) results in hypertensive glaucoma-like optic neuropathy. Topically applied uridine diphosphate, an endogenous selective agonist for the P2Y6 receptor, decreases IOP. The P2Y6 receptor was expressed in nonpigmented epithelial cells of the ciliary body and controlled aqueous humor dynamics. P2Y6KO mice exhibited sustained elevation of IOP, age-dependent damage to the optic nerve, thinning of ganglion cell plus inner plexiform layers, and a reduction of RGC numbers. These changes in P2Y6KO mice were attenuated by an IOP lowering agent. Consistent with RGC damage, visual functions were impaired in middle-aged P2Y6KO mice. We also found that expression and function of P2Y6 receptors in WT mice were significantly reduced by aging, another important risk factor for glaucoma. In summary, our data show that dysfunctional purinergic signaling causes IOP dysregulation, resulting in glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, and
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akiko Takeda
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, and
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Bernard Robaye
- Institute of Interdisciplinary Research and.,Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, Belgium
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, and
| |
Collapse
|
13
|
Crooke A, Guzman-Aranguez A, Carracedo G, de Lara MJP, Pintor J. Understanding the Presence and Roles of Ap 4A (Diadenosine Tetraphosphate) in the Eye. J Ocul Pharmacol Ther 2017; 33:426-434. [PMID: 28414592 DOI: 10.1089/jop.2016.0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Diadenosine tetraphosphate abbreviated Ap4A is a naturally occurring dinucleotide, which is present in most of the ocular fluids. Due to its intrinsic resistance to enzyme degradation compared to mononucleotides, this molecule can exhibit profound actions on ocular tissues, including the ocular surface, ciliary body, trabecular meshwork, and probably the retina. The actions of Ap4A are mostly carried out by P2Y2 receptors, but the participation of P2X2 and P2Y6 in processes such as the regulation of intraocular pressure (IOP), together with the P2Y2, is pivotal. Beyond the physiological role, this dinucleotide can present on the ocular surface keeping a right production of tear secretion or regulating IOP. It is important to note that exogenous application of Ap4A to cells or animal models can significantly modify pathophysiological conditions and thus is an attractive therapeutic molecule. The ocular location where Ap4A actions have not been fully elucidated is in the retina. Although some analogues show interesting actions on pathological situations such as retinal detachment, little is known about the real effect of this dinucleotide, this being one of the challenges that require pursuing in the near future.
Collapse
Affiliation(s)
- Almudena Crooke
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Ana Guzman-Aranguez
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- 2 Departamento de Optometría y Visión, F. Óptica, Universidad Complutense de Madrid , Madrid, Spain
| | - Maria J Perez de Lara
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| | - Jesus Pintor
- 1 Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid , Madrid, Spain
| |
Collapse
|
14
|
Reigada D, Navarro-Ruiz RM, Caballero-López MJ, Del Águila Á, Muñoz-Galdeano T, Maza RM, Nieto-Díaz M. Diadenosine tetraphosphate (Ap 4A) inhibits ATP-induced excitotoxicity: a neuroprotective strategy for traumatic spinal cord injury treatment. Purinergic Signal 2017; 13:75-87. [PMID: 27761681 PMCID: PMC5334201 DOI: 10.1007/s11302-016-9541-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Reducing cell death during the secondary injury is a major priority in the development of a cure for traumatic spinal cord injury (SCI). One of the earliest processes that follow SCI is the excitotoxicity resulting from the massive release of excitotoxicity mediators, including ATP, which induce an excessive and/or prolonged activation of their receptors and a deregulation of the calcium homeostasis. Diadenosine tetraphosphate (Ap4A) is an endogenous purinergic agonist, present in both extracellular and intracellular fluids, with promising cytoprotective effects in different diseases including neurodegenerative processes. In a search for efficient neuroprotective strategies for SCI, we have tested the capability of Ap4A to reduce the excitotoxic death mediated by the ATP-induced deregulation of calcium homeostasis and its consequences on tissue preservation and functional recovery in a mouse model of moderate contusive SCI. Our analyses with the murine neural cell line Neuro2a demonstrate that treatment with Ap4A reduces ATP-dependent excitotoxic death by both lowering the intracellular calcium response and decreasing the expression of specific purinergic receptors. Follow-up analyses in a mouse model of contusive SCI showed that acute administration of Ap4A following SCI reduces tissue damage and improves motor function recovery. These results suggest that Ap4A cytoprotection results from a decrease of the purinergic tone preventing the effects of a massive release of ATP after SCI, probably together with a direct induction of anti-apoptotic and pro-survival pathways via activation of P2Y2 proposed in previous studies. In conclusion, Ap4A may be a good candidate for an SCI therapy, particularly to reduce excitotoxicity in combination with other modulators and/or inhibitors of the excitotoxic process that are being tested.
Collapse
Affiliation(s)
- David Reigada
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Rosa María Navarro-Ruiz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Marcos Javier Caballero-López
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Ángela Del Águila
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Experimental Neurology Unit, Hospital Nacional de Parapléjicos (SESCAM), Finca la Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
15
|
Diadenosine tetraphosphate as a potential therapeutic nucleotide to treat glaucoma. Purinergic Signal 2016; 13:171-177. [PMID: 27848070 DOI: 10.1007/s11302-016-9547-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/27/2016] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that produces blindness. The main factor associated with this disease is an abnormally elevated intraocular pressure (IOP). To date, some attempts have been made to demonstrate the role of nucleotides modulating IOP, but never in a model of glaucoma. The DBA/2J mouse is an animal that develops the pathology spontaneously, starting from the typical rise in IOP at 9 months of age. Using this animal model, together with a control mouse, C57BL/6J, it has been possible to monitor the elevation in IOP in the glaucomatous mice and to check the ability of the dinucleotide diadenosine tetraphosphate AKA Ap4A to reduce IOP. The topical application of Ap4A when IOP is maximal (9-12 months) reduced IOP 30.6 ± 6.6% in the DBA/2J and 17.9 ± 4.0% in the C57BL/6J mice. Concentration response curves in both animal strains produced similar pD2 values; these being 4.9 ± 0.5 and 5.1 ± 0.4 for the normotensive C57BL/6J and the glaucomatous DBA/2J respectively. Antagonist studies showed differences between the control and the glaucomatous animals. In particular, the main receptor reducing IOP in the control animal was the P2Y1 receptor and in the glaucomatous model the P2Y6, although the participation of other P2 receptors cannot be ruled out. The long-term effect of Ap4A applied three times a week for 3 months showed a clear stop in the elevation of IOP in the glaucomatous model, thus indicating the possibility of using Ap4A as an effective compound for the treatment of glaucoma.
Collapse
|
16
|
Carracedo G, Crooke A, Guzman-Aranguez A, Pérez de Lara MJ, Martin-Gil A, Pintor J. The role of dinucleoside polyphosphates on the ocular surface and other eye structures. Prog Retin Eye Res 2016; 55:182-205. [PMID: 27421962 DOI: 10.1016/j.preteyeres.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 11/17/2022]
Abstract
Dinucleoside polyphosphates comprises a group of dinucleotides formed by two nucleosides linked by a variable number of phosphates, abbreviated NpnN (where n represents the number of phosphates). These compounds are naturally occurring substances present in tears, aqueous humour and in the retina. As the consequence of their presence, these dinucleotides contribute to many ocular physiological processes. On the ocular surface, dinucleoside polyphosphates can stimulate tear secretion, mucin release from goblet cells and they help epithelial wound healing by accelerating cell migration rate. These dinucleotides can also stimulate the presence of proteins known to protect the ocular surface against microorganisms, such as lysozyme and lactoferrin. One of the latest discoveries is the ability of some dinucleotides to facilitate the paracellular way on the cornea, therefore allowing the delivery of compounds, such as antiglaucomatous ones, more easily within the eye. The compound Ap4A has been described being abnormally elevated in patient's tears suffering of dry eye, Sjogren syndrome, congenital aniridia, or after refractive surgery, suggesting this molecule as biomarker for dry eye condition. At the intraocular level, some diadenosine polyphosphates are abnormally elevated in glaucoma patients, and this can be related to the stimulation of a P2Y2 receptor that increases the chloride efflux and water movement in the ciliary epithelium. In the retina, the dinucleotide dCp4U, has been proven to be useful to help in the recovery of retinal detachments. Altogether, dinucleoside polyphosphates are a group of compounds which present relevant physiological actions but which also can perform promising therapeutic benefits.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Almudena Crooke
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Alba Martin-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Carracedo G, González-Méijome JM, Martín-Gil A, Carballo J, Pintor J. The influence of rigid gas permeable lens wear on the concentrations of dinucleotides in tears and the effect on dry eye signs and symptoms in keratoconus. Cont Lens Anterior Eye 2016; 39:375-9. [PMID: 27209480 DOI: 10.1016/j.clae.2016.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 04/19/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the signs and symptoms of dry eye and dinucleotide secretion in tears of keratoconus patients (KC) and the potential effect of rigid gas permeable (RGP) contact lens wear. METHODS Twenty-three KC patients and forty control subjects were enrolled in this study. Signs of dry eye including tear volume, tear stability and corneal staining along with symptoms were assessed using the McMonnies questionnaire. Tears were collected using Schirmer strips, and dinucleotide concentrations in collected tears measured using high pressure liquid chromatography. Values obtained in KC and controls were compared. The effect of contact lens wear in KC was also assessed. RESULTS KC eyes showed a significantly lower tear volume compared to controls, shorter tear break up time (TBUT), higher corneal staining and higher McMonnies dry eye questionnaire scores (p<0.05). When compared with non-wearers, KC contact lens wearers showed significantly higher symptoms, lower Schirmer and TBUT values (p<0.05). Concentration of Ap4A (0.695±0.304μM vs. 0.185±0.178μM) and Ap5A (0.132±0.128μM vs. 0.045±0.036μM) were higher in KC compared to controls (p<0.001) and only Ap4A was statistically higher in RGP wearers compared to non-wearers (0.794±0.478μM vs. 0.417±0.313μM) (p<0.05). CONCLUSION Signs and symptoms of dry eye as well as concentrations of Ap4A and Ap5A were markedly increased in KC patients compared to controls. Moreover, Ap4A and symptoms of dry eye were statistically higher in RGP wearers compared to non-wearers. This seems to indicate that factors such as RGP contact lens wear might exacerbate the clinical condition of dry eye.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry, Universidad Complutense de Madrid, Madrid, Spain; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| | - José Manuel González-Méijome
- Clinical & Experimental Optometry Research Lab, Center of Physics (Optometry), School of Sciences, University of Minho, Braga, Portugal
| | - Alba Martín-Gil
- Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Carballo
- Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
18
|
Jin SW, Min JS. Clinical evaluation of the effect of diquafosol ophthalmic solution in glaucoma patients with dry eye syndrome. Jpn J Ophthalmol 2016; 60:150-5. [PMID: 26873225 DOI: 10.1007/s10384-016-0430-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate the effects of diquafosol on intraocular pressure (IOP) and dry eye symptoms in glaucoma patients with dry eye syndrome (DES). METHODS This study evaluated a total of 138 glaucoma patients with DES who were treated with diquafosol ophthalmic solution (DIQUAS(®)). Before treatment and 1, 4, 12, 36, and 52 weeks after treatment, IOP, ocular surface disease index (OSDI), tear film break-up time (BUT), Schirmer I test scores, fluorescein staining, conjunctival impression cytology, and adverse drug reactions were evaluated. RESULTS Throughout the treatment period, the mean IOP for all the patients remained stable after treatment with diquafosol (15.4 ± 2.8 mmHg at baseline and 16.0 ± 2.8 mmHg at 52 weeks). The mean OSDI score improved significantly at 4, 12, and 52 weeks after diquafosol treatment. The BUT and Schirmer I test scores were significantly increased after diquafosol treatment. The Oxford scheme score was significantly decreased at 1, 4, 12, 36, and 52 weeks after diquafosol treatment. A significant improvement in goblet cell density was observed after 4 weeks of treatment with diquafosol. Adverse drug reactions were reported in 22 (15.9 %) patients. There were no serious adverse drug reactions. CONCLUSIONS Diquafosol was effective in improving objective and subjective symptoms and maintained a stable IOP in glaucoma patients with DES. Therefore, the addition of diquafosol treatment in glaucoma patients with DES or ocular surface side effects using anti-glaucoma medication may be beneficial.
Collapse
Affiliation(s)
- Sang Wook Jin
- Department of Ophthalmology, Dong-A University Medical Center, #26 Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea.
| | - Ji Sang Min
- Department of Ophthalmology, Dong-A University Medical Center, #26 Daesingongwon-ro, Seo-gu, Busan, 602-715, Republic of Korea
| |
Collapse
|
19
|
Loma P, Guzman-Aranguez A, Perez de Lara MJ, Pintor J. Lactoferrin Levels in Tears are Increased by the Topical Application of Diadenosine Tetraphosphate. Curr Eye Res 2016; 41:1150-2. [PMID: 26863584 DOI: 10.3109/02713683.2015.1113431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE This study was undertaken to determine the effect of the topical application of diadenosine tetraphosphate on lactoferrin levels in rabbit tears. METHODS Diadenosine tetraphosphate was topically instilled in a single-dose, tear samples were collected by micropipette and lactoferrin was measured by Enzyme-Linked ImmunoSorbent Assay (ELISA). RESULTS The concentration of lactoferrin in rabbit tears was significantly increased 1 h after diadenosine tetraphosphate application, remaining elevated for 3 h more. This effect was blocked by P2 receptors antagonists. CONCLUSIONS Topical application of diadenosine tetraphosphate stimulates the secretion of lactoferrin in rabbit tears through P2 receptor activation.
Collapse
Affiliation(s)
- Patricia Loma
- a Departamento de Bioquímica y Biología Molecular , E.U. Óptica, Universidad Complutense de Madrid , Madrid , Spain
| | - Ana Guzman-Aranguez
- a Departamento de Bioquímica y Biología Molecular , E.U. Óptica, Universidad Complutense de Madrid , Madrid , Spain
| | - Maria J Perez de Lara
- a Departamento de Bioquímica y Biología Molecular , E.U. Óptica, Universidad Complutense de Madrid , Madrid , Spain
| | - Jesus Pintor
- a Departamento de Bioquímica y Biología Molecular , E.U. Óptica, Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
20
|
Taguchi M, Shinozaki Y, Kashiwagi K, Shigetomi E, Robaye B, Koizumi S. Müller cell-mediated neurite outgrowth of the retinal ganglion cells via P2Y 6 receptor signals. J Neurochem 2015; 136:741-751. [PMID: 26560804 DOI: 10.1111/jnc.13427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/22/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
Müller cells, the primary macroglia of the retina, support various functions of retinal ganglion cells (RGCs). Here, we demonstrate a nucleotide-mediated communication between these two types of cells, by which Müller cells control neurite outgrowth of RGCs by activation of P2 receptors such as P2Y6 . Cultured mouse RGCs had significantly enhanced neurite outgrowth when cultured with either cultured mouse Müller cells or conditioned medium derived from Müller cells, and this was completely inhibited by the nucleotide-degrading enzyme, apyrase. This increase in outgrowth was mimicked by exogenously applied nucleotides such as ATP, uridine triphosphate, and uridine diphosphate. Pharmacological and genetic analysis revealed that P2Y6 receptor in RGCs was responsible for the increased neurite outgrowth. P2Y6 receptor was expressed in the ganglion cell layer of the retina and in RGC primary cultures. High performance liquid chromatography has revealed that Müller cells constitutively release uridine triphosphate, which is immediately metabolized into uridine diphosphate, an endogenous agonist for P2Y6 receptor. In the in vitro ocular hypertension model (i.e., glaucoma model), neurite outgrowth in RGCs was significantly reduced, which was associated with a decrease in P2Y6 receptors. Taken together, Müller cells control neurite outgrowth of RGCs by activating P2 receptors such as P2Y6 receptor, and the receptor expression level might be down-regulated in glaucoma. Müller cells support various functions of retina including those of retinal ganglion cells (RGCs). Here, we report an importance of nucleotide-mediated communication between these two types of cells. Müller cells were found to release uridine diphosphate (UTD), uridine triphosphate (UTP), and activate P2Y6 receptors in RGCs, which was essential for neurite outgrowth of RGCs. In addition, P2Y6 receptors in RGCs were reduced in a glaucoma model in vitro, suggesting an involvement of their dysfunction in the pathogenesis of glaucoma.
Collapse
Affiliation(s)
- Masanori Taguchi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kenji Kashiwagi
- Department of Ophthalmology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Bernard Robaye
- Institute of Interdisciplinary Research, Institute of Biology and Molecular Medicine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| |
Collapse
|
21
|
Peral A, Carracedo G, Pintor J. Diadenosine polyphosphates in the tears of aniridia patients. Acta Ophthalmol 2015; 93:e337-e342. [PMID: 25545014 DOI: 10.1111/aos.12626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 11/11/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE To quantify diadenosine polyphosphate levels in tears of congenital aniridia patients to estimate the ocular surface changes associated with congenital aniridia compared to normal individuals. METHODS Fifteen patients diagnosed with congenital aniridia and a control group of forty volunteers were studied. Tears were collected to quantify the levels of diadenosine polyphosphates Ap4 A and Ap5 A by high-performance liquid chromatography (H.P.L.C). Break-up time (BUT), corneal staining, McMonnies questionnaire and the Schirmer I test were applied to both groups. RESULTS Dinucleotides in congenital aniridia patients were higher than in control subjects. For the congenital aniridia group, under 15 years old, the values were 0.77 ± 0.01 μm and 0.17 ± 0.02 μm for Ap4 A and Ap5 A, respectively. The group aged from 15 to 40 years old provided concentrations of 4.37 ± 0.97 μm and 0.46 ± 0.05 μm for Ap4 A and Ap5 A, the group over 40 gave concentrations of 11.17 ± 5.53 μm and 0.68 ± 0.17 μm for Ap4 A and Ap5 A. Dinucleotide concentrations increased with age, being statistically significant different among the three age groups (p < 0.05). Congenital aniridia patients showed a normal tear secretion and no dry eye McMonnies scores, except for the group over 40 years old. BUT values decreased and corneal staining increased with age and correlated with the levels of diadenosine polyphosphates (p < 0.05). CONCLUSIONS The levels of dinucleotides in tears increase in aniridia patients compared with healthy subjects, and they seem to be related with the progression of corneal disorders in aniridia patients, both of which increase with ageing.
Collapse
Affiliation(s)
- Assumpta Peral
- Department of Optics II (Optometry & Vision); Faculty of Optics and Optometry; University Complutense of Madrid; Madrid Spain
| | - Gonzalo Carracedo
- Department of Optics II (Optometry & Vision); Faculty of Optics and Optometry; University Complutense of Madrid; Madrid Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV; Faculty of Optics and Optometry; University Complutense of Madrid; Madrid Spain
| |
Collapse
|
22
|
Loukovaara S, Sahanne S, Jalkanen S, Yegutkin GG. Increased intravitreal adenosine 5'-triphosphate, adenosine 5'-diphosphate and adenosine 5'-monophosphate levels in patients with proliferative diabetic retinopathy. Acta Ophthalmol 2015; 93:67-73. [PMID: 25079888 DOI: 10.1111/aos.12507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/04/2014] [Indexed: 12/28/2022]
Abstract
PURPOSE Extracellular purines play important role in ocular physiology, diabetes, vascular remodelling and adaptation to inflammation. This study was aimed to evaluate intravitreal purine levels in patients with diabetic retinopathy (DR) and other non-vascular vitreoretinal eye diseases. METHODS Vitreous samples were collected at the start of the three-port pars plana vitrectomy. Study group comprised 55 eyes operated due to sight-threatening forms of DR, including eyes of 24 patients with proliferative DR. Of the 143 non-diabetic controls, 112 had rhegmatogenous retinal detachment and 31 macular hole or pucker. Intravitreal purine concentrations were determined using a combination of bioluminescent [adenosine 5'-triphosphate (ATP), adenosine 5'-diphosphate (ADP)] and fluorometric [adenosine 5'-monophosphate (AMP), adenosine, inosine] enzyme-coupled sensing assays. RESULTS Compared with non-diabetic controls, DR eyes contained significantly higher (p < 0.01) concentrations of ATP (4.2 ± 0.6 versus 34.5 ± 13.7 nm; mean ± SEM), ADP (19.5 ± 2.7 versus 43.7 ± 14.5 nm) and AMP (1290 ± 115 versus 1876 ± 190 nm). Intravitreal adenosine and inosine levels varied within submicromolar to low micromolar range, and their concentrations did not differ between the groups studied. CONCLUSIONS High concentrations of intravitreal nucleotides ATP, ADP and AMP may be related to the pathogenesis of sight-threatening forms of DR.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery; Department of Ophthalmology; Helsinki University Central Hospital; Helsinki Finland
| | - Sari Sahanne
- Unit of Anesthesiology and Intensive Care Medicine; Eye-ENT Hospital; Helsinki University Central Hospital; Helsinki Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory; University of Turku and Turku University Hospital; Turku Finland
- National Institute for Health and Welfare; Turku Finland
| | - Gennady G. Yegutkin
- MediCity Research Laboratory; University of Turku and Turku University Hospital; Turku Finland
- National Institute for Health and Welfare; Turku Finland
| |
Collapse
|
23
|
Loma P, Guzman-Aranguez A, Pérez de Lara MJ, Pintor J. Diadenosine tetraphosphate induces tight junction disassembly thus increasing corneal epithelial permeability. Br J Pharmacol 2014; 172:1045-58. [PMID: 25297531 DOI: 10.1111/bph.12972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/26/2014] [Accepted: 09/29/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Here, we have studied the effects of the dinucleotide P(1), P(4)-Di (adenosine-5') tetraphosphate (Ap4 A) on corneal barrier function conferred by the tight junction (TJ) proteins and its possible involvement in ocular drug delivery and therapeutic efficiency. EXPERIMENTAL APPROACH Experiments in vitro were performed using human corneal epithelial cells (HCLEs) treated with Ap4 A (100 μM) for 5 min. Western blot analysis and transepithelial electrical resistance (TEER) were performed to study the TJ protein levels and barrier function respectively. Intracellular pathways involved were determined using an ERK inhibitor and P2Y(2) receptor siRNAs. In in vivo assays with New Zealand rabbits, TJ integrity was examined by zonula occludens-1 (ZO-1) staining. The hypotensive compound 5-methoxycarbonylamino-N-acetyltryptamine (5-MCA-NAT) was used to assess improved delivery, measuring its levels by HPLC and measuring intraocular pressure using 5-MCA-NAT, P2Y receptor antagonists and P2Y2 siRNAs. KEY RESULTS Two hours after Ap4 A pretreatment, TJ protein levels in HCLE cells were reduced around 40% compared with control. TEER values were significantly reduced at 2 and 4 h (68 and 52% respectively). TJ reduction and ERK activation were blocked by the ERK inhibitor U012 and P2Y(2) siRNAs. In vivo, topical application of Ap4 A disrupted ZO-1 membrane distribution. 5-MCA-NAT levels in the aqueous humour were higher when Ap4 A was previously instilled and its hypotensive effect was also increased. This action was reversed by P2Y receptor antagonists and P2Y(2) siRNA. CONCLUSIONS AND IMPLICATIONS Ap4 A increased corneal epithelial barrier permeability. Its application could improve ocular drug delivery and consequently therapeutic efficiency.
Collapse
Affiliation(s)
- P Loma
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Diadenosine tetraphosphate contributes to carbachol-induced tear secretion. Purinergic Signal 2014; 11:87-93. [PMID: 25398705 DOI: 10.1007/s11302-014-9434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022] Open
Abstract
The purpose of this study is to investigate if the cholinergic stimulation by carbachol on tear secretion is a direct process or if it is also mediated by purinergic mechanisms. Experiments were performed in New Zealand male rabbits. The amount of tear secretion was measured with Schirmer's test and then analyzed by a HPLC protocol in order to study the nucleotide levels. Animal eyes were instilled with carbachol (a cholinergic agonist), pirenzepine, gallamine and 4-DAMP (muscarinic antagonists), PPADS, suramin and reactive blue 2 (purinergic antagonists), and a P2Y2 receptor small interfering RNA (siRNA). Tear secretion increased with the instillation of carbachol, approximately 84 % over control values 20 min after the instillation and so did Ap4A and ATP release. When we applied carbachol in the presence of muscarinic antagonists, tear volume only increased to 4 % with atropine, 12 % in the case of pirenzepine, 3 % with gallamine, and 8 % with 4-DAMP. In the presence of carbachol and purinergic antagonists, tear secretion was increased to 12 % (all values compared to basal tear secretion). By analyzing tear secretion induced with carbachol in presence of a P2Y2 receptor siRNA, we found that tear secretion was diminished to 60 %. The inhibition of tear secretion in the presence of carbachol and purinergic antagonists or P2Y2 siRNA occurred with no apparent change in the tear amount of Ap4A. These experiments demonstrated the participation of Ap4A in lacrimal secretion process.
Collapse
|
25
|
Carracedo G, Guzman-Aranguez A, Loma P, Pintor J. Diadenosine polyphosphates release by human corneal epithelium. Exp Eye Res 2013; 113:156-61. [PMID: 23791635 DOI: 10.1016/j.exer.2013.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 01/11/2023]
Abstract
Diadenosine polyphosphates are a type of dinucleotides that have been detected in rabbit and human tears. However, their origin and their mechanism of release have not been fully elucidated. In this work we investigated whether the dinucleotides Ap4A and Ap5A can be released from human corneal epithelia as a consequence of shear stress stimuli. In in vitro experiments, concentrations of Ap4A and Ap5A before mechanical stimulus of stratified human corneal epithelial cells were 3.18 ± 0.43 nM and 0.81 ± 0.13 nM, respectively. After shear stimulation, concentrations significantly increased to 12.01 ± 2.19 nM for Ap4A and 2.83 ± 0.41 nM for Ap5A. No significant differences in lactate dehydrogenase activity were detected between non-stimulated stratified human corneal epithelial cells and cells exposed to mechanical shear-stress, indicating that the rise of dinucleotide levels was not due to cell lysis. In in vivo experiments, individuals subjected to a rise in blinking frequency showed a significant increase of Ap4A (∼25-fold when experiment was performed without anaesthetic and 75-fold with anaesthetic) and Ap5A concentration in tears (∼50-fold when experiment was performed without anaesthetic and 125-fold with anaesthetic). Shear-stress stimuli induces Ap4A and Ap5A release from human corneal epithelium, thus explaining the origin of these relevant compounds for the ocular surface biochemistry and physiology.
Collapse
Affiliation(s)
- Gonzalo Carracedo
- Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
26
|
Guzman-Aranguez A, Santano C, Martin-Gil A, Fonseca B, Pintor J. Nucleotides in the eye: focus on functional aspects and therapeutic perspectives. J Pharmacol Exp Ther 2013; 345:331-41. [PMID: 23504005 DOI: 10.1124/jpet.112.202473] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence and activity of nucleotides and dinucleotides in the physiology of most, if not all, organisms, from bacteria to humans, have been recognized by the scientific community, and the eye is no exception. Nucleotides in the dynamic fluids interact with many ocular structures, such as the tears and aqueous humor. Moreover, high concentrations of nucleotides in these secretions may reflect disease states such as dry eye and glaucoma. Apart from the nucleotide concentration in these fluids, P2 purinergic receptors have been described on the ocular surface (cornea and conjunctiva), anterior pole (ciliary body, trabecular meshwork), and posterior pole (retina). P2X and P2Y purinergic receptors are essential in maintaining the homeostasis of ocular processes, such as tear secretion, aqueous humor production, or retinal modulation. When they are functioning properly, they allow the eye to do its job (to see), but in some cases, a lack or an excess of nucleotides or a malfunction in the corresponding purinergic receptors leads to disease. This Perspective is focused on the nucleotides and dinucleotides and the P2 purinergic receptors in the eye and how they contribute to normal and disease states. We also emphasize the action of nucleotides and their receptors and antagonists as potential therapeutic agents.
Collapse
Affiliation(s)
- Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Wright M, Miller AD. Quantification of diadenosine polyphosphates in blood plasma using a tandem boronate affinity-ion exchange chromatography system. Anal Biochem 2012; 432:103-5. [PMID: 23046945 DOI: 10.1016/j.ab.2012.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 10/27/2022]
Abstract
Endogenous diadenosine polyphosphates (Ap(n)As) have been associated with a variety of biological effects but quantifying their concentration in blood is difficult. We report on the development of a tandem affinity-ion exchange high-performance liquid chromatography (HPLC) system that employs boronate affinity upstream of ion exchange chromatography for automated rapid (45-min) resolution and extraction of Ap(n)As from human plasma. This system obviates previous requirements for multiple column separations and handling steps, so it is ideally set up for time- and cost-efficient screening of blood samples for Ap(n)A pharmacokinetic and biodistribution studies.
Collapse
Affiliation(s)
- Michael Wright
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, UK
| | | |
Collapse
|
28
|
Guzman-Aranguez A, Díez LM, Martín-Gil A, Gualix J, Miras-Portugal MT, Pintor J. Effect of diinosine polyphosphates on intraocular pressure in normotensive rabbits. Exp Eye Res 2012; 101:49-55. [PMID: 22677090 DOI: 10.1016/j.exer.2012.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/27/2012] [Accepted: 05/29/2012] [Indexed: 12/01/2022]
Abstract
The ability of diinosine polyphosphates, diinosine triphosphate (Ip(3)I), diinosine tetraphosphate (Ip(4)I) and diinosine pentaphosphate (Ip(5)I) to modify intraocular pressure in normotensive New Zealand white rabbits was tested. Ip(5)I produced increase in intraocular pressure, while Ip(3)I and Ip(4)I produced a decrease. Ip(4)I was the most effective reducing intraocular pressure inducing a maximal decrease of intraocular pressure to 74.2 ± 2.5% compared with the control value. Dose-response analysis demonstrated a concentration dependent pattern which presented a pD(2) value of 6.19 ± 0.18, equivalent to an EC(50) of 0.63 μM. Regarding the underlying mechanism used by Ip(4)I to reduce intraocular pressure, studies with agonists and antagonists revealed that Ip(4)I reduces intraocular pressure via P2Y receptors in the eye. We suggest that topical application of Ip(4)I to the cornea has therapeutic potential for lowering intraocular pressure, a major risk factor for glaucoma.
Collapse
Affiliation(s)
- Ana Guzman-Aranguez
- Dep. Bioquímica y Biología Molecular, Escuela Universitaria de Óptica, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Glaucoma patients present increased levels of diadenosine tetraphosphate, Ap(4)A, in the aqueous humour. Exp Eye Res 2010; 92:221-6. [PMID: 21147104 DOI: 10.1016/j.exer.2010.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/28/2010] [Accepted: 12/02/2010] [Indexed: 11/23/2022]
Abstract
Previous studies have shown the presence of diadenosine tetraphosphate (Ap(4)A) and pentaphosphate (Ap(5)A) in the aqueous humour (AH) of different species. When topically applied to the rabbit cornea, Ap(4)A decreased IOP while Ap(5)A increased it. Here we study the presence of dinucleoside polyphosphates in the AH from human patients with or without glaucoma. AH was obtained at the time of cataract surgery from patients with (n=16) or without (n=10) primary open-angle glaucoma. AH (0.1-0.2 ml) was collected at the beginning of surgery through a corneal paracentesis and immediately cooled in liquid nitrogen, kept frozen and protected from light. AH aliquots were analyzed by HPLC for the presence of Ap(4)A and Ap(5)A. Both, Ap(4)A and Ap(5)A were detected in the AH of both experimental groups. No significant differences were found for Ap(5)A. In contrast, Ap(4)A levels were increased by ∼15-fold in the AH from glaucomatous eyes ranging from 19.5±9.2 nM in normal individuals to 286.03±30.9 nM in glaucomatous patients. In conclusion, both Ap(4)A and Ap(5)A were detected for the first time in human AH. Interestingly, glaucomatous eyes presented elevated concentrations of Ap(4)A compared to controls. The role of Ap(4)A needs to be elucidated but it may help to protect the autonomic innervation in the ciliary body/trabecular meshwork. Also, because of its higher levels in glaucoma patients it may be considered as a possible glaucoma biomarker.
Collapse
|
30
|
Yeghiazaryan K, Flammer J, Golubnitschaja O. Predictive molecular profiling in blood of healthy vasospastic individuals: clue to targeted prevention as personalised medicine to effective costs. EPMA J 2010. [PMID: 23199064 PMCID: PMC3405317 DOI: 10.1007/s13167-010-0032-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paradigm change from late interventional approach to predictive diagnostics followed by targeted prevention before manifest pathology, presents innovative concept for advanced healthcare. Preselection of healthy but pathology-predisposed individuals is the primary task in the overall action. Vasospasm is a frequent syndrome defined as an inappropriate constriction or insufficient dilatation in microcirculation. Vasospastic individuals are considered as healthy subpopulation predisposed to several pathologies including neurodegeneration. Clinical observations, subcellular imaging and “gene hunting”-investigations provide evidence for vasospasm as predisposition to glaucoma; development of further related pathologies cannot be excluded. Predictive molecular-profiling in blood can specify individual predisposition for effective prevention.
Collapse
Affiliation(s)
- Kristina Yeghiazaryan
- Department of Radiology, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany ; European Association for Predictive, Preventive & Personalised Medicine, www.epmanet.eu
| | | | | |
Collapse
|
31
|
Hoyle CHV, Pintor JJ. Diadenosine tetraphosphate protects sympathetic terminals from 6-hydroxydopamine-induced degeneration in the eye. Acta Physiol (Oxf) 2010; 199:205-10. [PMID: 20121713 DOI: 10.1111/j.1748-1716.2010.02089.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To examine diadenosine tetraphosphate (Ap(4)A) for its ability to protect the eye from neurodegeneration induced by subconjunctival application of 6-hydroxydopamine (6-OHDA). METHODS Intraocular neurodegeneration of anterior structures was induced by subconjunctival injections of 6-OHDA. Animals were pre-treated with topical corneal applications of Ap(4)A or saline. RESULTS 6-OHDA caused miosis, abnormal pupillary light reflexes, a precipitous drop in intraocular pressure and loss of VMAT2-labelled (vesicle monoamine transporter-2, a marker for sympathetic neurones) intraocular neurones. Pre-treatment with Ap(4)A prevented all of these changes from being induced by 6-OHDA, demonstrably preserving the sympathetic innervation of the ciliary processes. This neuroprotective action of Ap(4)A was not shared with the related compounds adenosine, ATP or diadenosine pentaphosphate. P2-receptor antagonists showed that the effects of Ap(4)A were mediated via a P2-receptor. CONCLUSION Ap4A is a natural component of tears and aqueous humour, and its neuroprotective effect indicates that one of its physiological roles is to maintain neurones within the eye. Ap(4)A can prevent the degeneration of intraocular nerves, and it is suggested that this compound may provide the basis for a therapeutic intervention aimed at preventing or ameliorating the development of glaucoma associated with neurodegenerative diseases. Furthermore, subconjunctival application of 6-OHDA provides a useful model for studying diseases that cause ocular sympathetic dysautonomia.
Collapse
Affiliation(s)
- C H V Hoyle
- Dep. Bioquímica, Escuela Universitaria de Optica, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
32
|
Eliahu S, Martín-Gil A, de Lara MJP, Pintor J, Camden J, Weisman GA, Lecka J, Sévigny J, Fischer B. 2-MeS-beta,gamma-CCl2-ATP is a potent agent for reducing intraocular pressure. J Med Chem 2010; 53:3305-19. [PMID: 20337495 PMCID: PMC4358770 DOI: 10.1021/jm100030u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extracellular nucleotides can modify the production or drainage of the aqueous humor via activation of P2 receptors and therefore affect the intraocular pressure (IOP). We have synthesized slowly hydrolyzable nucleoside di- and triphosphate analogues, 1, and 8-14. Analogues 8-14 were completely resistant to hydrolysis by alkaline phosphatase over 30 min at 37 degrees C. In human blood serum, analogues 8-14 exhibited high stability, e.g., analogues 9 and 10-14 were only 15% and 0% degraded after 24 h, respectively. Moreover, analogues 8-14 were highly stable at pH 1.4 (t(1/2) 1 h-30 days). Analogues 8-14 were agonists of the P2Y(1) receptor (EC(50) 0.57-9.54 muM). Ocular administration of most analogues into rabbits reduced IOP, e.g., analogue 9 reduced IOP by 32% (EC(50) 95.5 nM). Analogue 9 was more effective at reducing IOP than several common glaucoma drugs and represents a promising alternative to timolol maleate, which cannot be used for the treatment of patients suffering from asthma or cardiac problems.
Collapse
Affiliation(s)
- Shay Eliahu
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Alba Martín-Gil
- Dept. Bioquímica, E.U. Optica, Universidad Complutense de Madrid, c/Arcos de Jalon s/n, E-28037 Madrid, Spain
| | - María Jesús Perez de Lara
- Dept. Bioquímica, E.U. Optica, Universidad Complutense de Madrid, c/Arcos de Jalon s/n, E-28037 Madrid, Spain
| | - Jesús Pintor
- Dept. Bioquímica, E.U. Optica, Universidad Complutense de Madrid, c/Arcos de Jalon s/n, E-28037 Madrid, Spain
| | - Jean Camden
- Biochemistry Department, 540E Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Gary A. Weisman
- Biochemistry Department, 540E Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Joanna Lecka
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
33
|
Abstract
P2X and P2Y nucleotide receptors are described on sensory neurons and their peripheral and central terminals in dorsal root, nodose, trigeminal, petrosal, retinal and enteric ganglia. Peripheral terminals are activated by ATP released from local cells by mechanical deformation, hypoxia or various local agents in the carotid body, lung, gut, bladder, inner ear, eye, nasal organ, taste buds, skin, muscle and joints mediating reflex responses and nociception. Purinergic receptors on fibres in the dorsal spinal cord and brain stem are involved in reflex control of visceral and cardiovascular activity, as well as relaying nociceptive impulses to pain centres. Purinergic mechanisms are enhanced in inflammatory conditions and may be involved in migraine, pain, diseases of the special senses, bladder and gut, and the possibility that they are also implicated in arthritis, respiratory disorders and some central nervous system disorders is discussed. Finally, the development and evolution of purinergic sensory mechanisms are considered.
Collapse
|
34
|
Gómez-Villafuertes R, del Puerto A, Díaz-Hernández M, Bustillo D, Díaz-Hernández JI, Huerta PG, Artalejo AR, Garrido JJ, Miras-Portugal MT. Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. FEBS J 2009; 276:5307-25. [PMID: 19682070 DOI: 10.1111/j.1742-4658.2009.07228.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ATP, via purinergic P2X receptors, acts as a neurotransmitter and modulator in both the central and peripheral nervous systems, and is also involved in many biological processes, including cell proliferation, differentiation and apoptosis. Previously, we have reported that P2X7 receptor inhibition promotes axonal growth and branching in cultured hippocampal neurons. In this article, we demonstrate that the P2X7 receptor negatively regulates neurite formation in mouse Neuro-2a neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. Using both molecular and immunocytochemical techniques, we characterized the presence of endogenous P2X1, P2X3, P2X4 and P2X7 subunits in these cells. Of these, the P2X7 receptor was the only functional receptor, as its activation induced intracellular calcium increments similar to those observed in primary neuronal cultures, exhibiting pharmacological properties characteristic of homomeric P2X7 receptors. Patch-clamp experiments were also conducted to fully demonstrate that ionotropic P2X7 receptors mediate nonselective cation currents in this cell line. Pharmacological inhibition of the P2X7 receptor and its knockdown by small hairpin RNA interference resulted in increased neuritogenesis in cells cultured in low serum-containing medium, whereas P2X7 overexpression significantly reduced the formation of neurites. Interestingly, P2X7 receptor inhibition also modified the phosphorylation state of focal adhesion kinase, Akt and glycogen synthase kinase 3, protein kinases that participate in the Ca2+/calmodulin-dependent kinase II signalling cascade and that have been related to neuronal differentiation and axonal growth. Taken together, our results provide the first mechanistic insight into P2X7 receptor-triggered signalling pathways that regulate neurite formation in neuroblastoma cells.
Collapse
Affiliation(s)
- Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Adenine nucleotide effect on intraocular pressure: Involvement of the parasympathetic nervous system. Exp Eye Res 2009; 89:63-70. [PMID: 19250934 DOI: 10.1016/j.exer.2009.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/18/2009] [Accepted: 02/16/2009] [Indexed: 01/02/2023]
Abstract
Nucleotides are present in the aqueous humor possibly exerting physiological effects on intraocular pressure (IOP). To determine the effect of nucleotides such as ATP and its related derivatives on IOP, New Zealand white rabbits were used. IOP was measured in rabbits treated topically either with saline (control) or with a single dose (10 microg/microL) of adenine nucleotides (ATP, 2-meS-ATP, ATP-gamma-S, alpha,beta-meADP, alpha,beta-meATP and beta,gamma-meATP). Those nucleotides reducing IOP (alpha,beta-meATP and beta,gamma-meATP) were then tested in concentrations ranging from 1 to 100 microg/microL to obtain the IC(50) value. Several antagonists for the P2 and adenosine A1 receptors (all at 10 microg/microL) were assayed 30 min before the application of the hypotensive nucleotide beta,gamma-meATP. To see whether the nucleotide was acting directly on the structures involved in aqueous humor dynamics or on the autonomic nerves controlling IOP, animal denervation and sympathetic (yohimbine and ICI-118,551 at 10 microg/microL) and parasympathetic (atropine and hexametonium at 10 microg/microL) receptors' antagonists were used 30 min before the instillation of beta,gamma-meATP. alpha,beta-meATP and beta,gamma-meATP decreased IOP to 60% of control value (basal IOP=23.2+/-1.3 mmHg), with IC(50) of 1.59+/-0.21 microg/microLand 0.56+/-0.62 microg/microL, which corresponds to 3mM and 1mM respectively. Denervation completely abolished the effect of beta,gamma-meATP. Sympathetic antagonists did not modify the hypotensive effect of beta,gamma-meATP, but parasympathetic antagonists were able to abolish it. Among the series of adenine nucleotide tested, alpha,beta-meATP and beta,gamma-meATP presented hypotensive actions on IOP. beta,gamma-meATP seems to stimulate cholinergic terminals being its final effect the IOP reduction. Therefore, these two nucleotides are interesting pharmacological tools for those pathologies related with high intraocular pressure.
Collapse
|
36
|
New treatments for ocular hypertension. Auton Neurosci 2009; 147:14-9. [PMID: 19176290 DOI: 10.1016/j.autneu.2008.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/18/2008] [Accepted: 12/22/2008] [Indexed: 12/15/2022]
Abstract
Glaucoma is a neurodegenerative pathology that affects the optic nerve producing blindness. This disease is often a consequence of an abnormal increase of intraocular pressure (IOP) due to a reduction in the ability of the eye to drain a transparent fluid termed aqueous humour. The dynamics of the aqueous humour is highly controlled by the autonomic nervous system, mainly the sympathetic, regulating its production and parasympathetic controlling the evacuation of aqueous humour. This has led pharmaceutical companies to develop chemicals which, by acting via different targets can substantially reduce IOP. Parasympathomimetics, adrenergic antagonists, plus eventually adrenergic agonists, are commonly used for the reduction of IOP and therefore for treatment of glaucoma. New substances linked to the nervous system that innervates the eye are emerging as interesting candidates. Nucleotides, commonly costored with catecholamines or acetylcholine or the indole melatonin, present interesting properties reducing IOP. Moreover new technological ideas such as the use of siRNA (small interference RNA) to silence protein expression demonstrate the relevance of this method to approach ocular hypertension and glaucoma from a different point of view. These three main groups of molecules: nucleotides, melatonins and siRNAs, are reviewed since they appear as firm candidates for the treatment of glaucoma in the near future.
Collapse
|
37
|
|
38
|
Crooke A, Guzmán-Aranguez A, Peral A, Abdurrahman MKA, Pintor J. Nucleotides in ocular secretions: their role in ocular physiology. Pharmacol Ther 2008; 119:55-73. [PMID: 18562011 DOI: 10.1016/j.pharmthera.2008.04.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 12/15/2022]
Abstract
The eye is the sense organ that permits the detection of light owing to the existence of a sophisticated neuronal array, called the retina, which is responsive to photons. The correct functioning of this complex system requires the coordination of several intraocular structures that ultimately permit the perfect focusing of images on the neural retina. Light has to pass through different media: the tear, the cornea, aqueous humour, lens, and vitreous humour before it reaches the retina. Moreover, the composition and structure of some of these media can change due to several physiological mechanisms. Nucleotides are active components of the humours bathing relevant ocular structures. The tear contains nucleotides and dinucleotides that control the process of tearing, wound healing and protects of superficial infections. In the inner eye, the aqueous humour also presents a collection of mono and dinucleotides that affect pupil contraction, aqueous humour production and accommodation. Behind the lens and between this structure and the retina the vitreous humour can modify the physiology of the retinal cells, mostly the ganglion cells. By investigating the actions of nucleotides and dinucleotide present in the ocular humours we will be able not only to understand the functioning of the ocular structures but also to develop new pharmacological therapies for pathologies such as dry eye, glaucoma or retinal detachment.
Collapse
Affiliation(s)
- Almudena Crooke
- Departamento de Bioquímica, E.U. Optica, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE This review is intended to bring to the informed reader the current state of knowledge about meibomian lipids and the art for analyzing them. METHODS At the forefront of any endeavor, there are controversies, and these, along with future directions in the field, are brought to the reader's attention. RESULTS Function and anatomy of meibomian glands are briefly covered, giving insight into possible mechanisms for secretory controls. Anatomically, some anomalies in meibomian gland distribution of different species, such as whales versus dolphins, are presented, and, for the first time, the structure of the meibomian glands in a selection of marsupials is presented. In attempting to make the literature more accessible, lipid structure and nomenclature are described, and these structures are related to their possible effects on the physicochemical properties of meibomian lipids. The advantages and disadvantages of various collection and storage techniques are described, as well as how gas chromatography and combined HPLC and mass spectrometry coupled with fragmentation are currently enabling us to determine the nature of the lipids in very small samples. CONCLUSIONS This review extends to discussing the lipids in tears (as opposed to meibomian gland lipids) and briefly highlights new thoughts about the interactions between proteins of the tear film and meibomian lipids. A model that includes proteins in the outer layer of the tear film is also presented. This model is currently being critically analyzed by the ocular community. It concludes briefly by highlighting possible further areas of research in this area.
Collapse
Affiliation(s)
- Igor A Butovich
- Department of Ophthalmology and Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
40
|
Oaknin S, Rodríguez-Ferrer CR, Ramos A, Aguilar JS, Rotllán P. Binding of 5'-O-(2-thiodiphosphate) to rat brain membranes is prevented by diadenosine tetraphosphate and correlates with ecto-nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) activity. Neurosci Lett 2007; 432:25-9. [PMID: 18162317 DOI: 10.1016/j.neulet.2007.11.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/09/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
The distribution of binding sites for [(35)S]5'-O-(2-thiodiphosphate) ([(35)S]ADPbetaS), a radioligand of P2Y(1,12,13) receptors, and of ecto-nucleotide pyrophosphatase phosphodiesterase activity were analyzed in the rat forebrain. Binding sites for the radilogand are widespreadly distributed in the rat forebrain, showing the highest density in hypothalamus. K(d) values were in the range 1-2 nM. Diadenosine tetraphosphate (Ap(4)A) and diethenoadenosine tetraphosphate, epsilon-(Ap(4)A), displaced the radioligand, indicating dinucleotide binding to ADPbetaS-recognizing P2Y receptors. Activity ecto-nucleotide pyrophosphatase phosphodiesterase 1 (NPP1), able to hydrolyze Ap(4)A and other diadenosine polyphosphates, is also widely distributed through the rat forebrain, with the highest activity in hypothalamus. These results suggests that Ap(4)A signalling mediated by P2Y(1,12,13) receptors and enzymatically regulated by NPP1 activity may be particularly important in hypothalamus and add new support for neurotransmitter/neuromodulatory functions of diadenosine polyphosphates in brain.
Collapse
Affiliation(s)
- Sol Oaknin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of La Laguna, 38206 La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
41
|
Markovskaya A, Crooke A, Guzmán-Aranguez AI, Peral A, Ziganshin AU, Pintor J. Hypotensive effect of UDP on intraocular pressure in rabbits. Eur J Pharmacol 2007; 579:93-7. [PMID: 18031728 DOI: 10.1016/j.ejphar.2007.10.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 10/11/2007] [Accepted: 10/16/2007] [Indexed: 11/30/2022]
Abstract
Nucleotides can modify intraocular pressure (IOP). We have tested the ability of uridine-5'-diphosphate, UDP, for modulating IOP in New Zealand white rabbits. Uridine 5' diphosphate, UDP, reduced IOP by 82.9+/-2.6% compared to control. Dose-response analysis demonstrated a concentration dependent pattern which presented a pD(2) value of 7.57+/-1.45, equivalent to an EC(50) of 26.91 nM. Of all the tested P2 receptor antagonists, suramin, pyridoxalphosphate-6-azophenyl-2, 4-disulfonic acid (PPADS) and Reactive Blue 2 (RB-2), only the last two were able to reverse the action triggered by UDP. Altogether, UDP acting probably on P2Y(6) receptors present on the ciliary processes, can reduce intraocular pressure, indicating that this substance may be used for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Anna Markovskaya
- Department of Pharmacology, Kazan State Medical University, Kazan, Russia
| | | | | | | | | | | |
Collapse
|
42
|
Guzmán-Aranguez A, Crooke A, Peral A, Hoyle CHV, Pintor J. Dinucleoside polyphosphates in the eye: from physiology to therapeutics. Prog Retin Eye Res 2007; 26:674-87. [PMID: 17931952 DOI: 10.1016/j.preteyeres.2007.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Diadenosine polyphosphates are a family of dinucleotides with emerging biochemical, physiological, pharmacological and therapeutic properties in the eye and other tissues. These compounds are formed by two adenosine moieties linked by their ribose 5'-ends to a variable number of phosphates. Diadenosine polyphosphates are present as active components of ocular secretions such as tears and aqueous humour and they can activate P2 purinergic receptors present on the ocular surface, anterior segment and retina. Both metabotropic and ionotropic actions mediated by P2Y and P2X receptors, respectively are responsible for the control of processes such as induction of tear secretion, lysozyme production or acceleration of corneal wound healing. Inside the eye the dinucleotide Ap(4)A can reduce intraocular pressure by acting on P2Y(1) receptors present in trabecular meshwork cells and on P2X(2) receptors present on the cholinergic terminals located in the ciliary muscle. In the retina, derivatives of diadenosine polyphosphates can improve the re-absorption of fluids in retinal detachment. Altogether, diadenosine polyphosphates are not only dinucleotides with roles in the physiology of the eye but it is also possible that their properties may serve to help in the treatment of some ocular pathologies.
Collapse
Affiliation(s)
- Ana Guzmán-Aranguez
- Departamento de Bioquímica, E.U. de Optica, Universidad Complutense de Madrid (UCM), C/Arcos de Jalón s/n, 28037 Madrid, Spain
| | | | | | | | | |
Collapse
|
43
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
44
|
Gómez-Villafuertes R, Sánchez-Nogueiro J, Marín-García P, Miras-Portugal MT. Existence of high and low affinity dinucleotides pentaphosphate-induced calcium responses in individual synaptic terminals and lack of correlation with the distribution of P2X1-7 subunits. Neurochem Int 2006; 50:628-41. [PMID: 17229490 DOI: 10.1016/j.neuint.2006.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/20/2006] [Accepted: 12/05/2006] [Indexed: 11/24/2022]
Abstract
Individual analysis of synaptic terminals calcium responses, induced by dinucleotides pentaphosphate, Ap(5)A or Gp(5)G, demonstrates the presence of two main groups considering the concentration required for stimulation. The first group corresponds to those responding to Ap(5)A or Gp(5)G at nanomolar concentration, representing 16% and 12%, respectively, and the second one responds to micromolar concentration and represents, respectively, 17% and 14%, of the total functional synaptosomal population in rat midbrain. Dose-response curves in single terminals showed an Ap(5)A EC(50) values of 0.9+/-0.2 nM and 11.8+/-0.9 microM, being the maximal intrasynaptosomal calcium increase of 200+/-0.3 and 125+/-0.2 nM for the high and low affinity responding terminals, respectively. Combination of microfluorimetric and immunocytochemical studies showed lack of correlation between dinucleotides pentaphosphate responses and P2X receptor subunits expression, in spite of the abundance of P2X(2), P2X(3) and P2X(7) at the presynaptic level in rat midbrain synaptosomes. Pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), a P2X receptors antagonist, showed no effect on low affinity dinucleotides receptors population, and partial inhibition on the high affinity one. On the other hand, diinosine pentaphosphate (Ip(5)I) completely abolished the low affinity dinucleotides responses, and 60% inhibition of the high affinity ones.
Collapse
Affiliation(s)
- R Gómez-Villafuertes
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; Centro Nacional de Biotecnología, C.S.I.C., 28049 Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Hoyle CHV, Peral A, Pintor J. Melatonin potentiates tear secretion induced by diadenosine tetraphosphate in the rabbit. Eur J Pharmacol 2006; 552:159-61. [PMID: 17056033 DOI: 10.1016/j.ejphar.2006.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/29/2022]
Abstract
Diadenosine tetraphosphate (Ap(4)A, 0.03 nmol) applied topically to the cornea of New Zealand white rabbits, evoked an increase in tear secretion of 9.7 +/- 2.60% (N=7). Melatonin (1 nmol) had no significant effect. Application of Ap(4)A in combination with melatonin, evoked a significantly greater increase in tear secretion of 34.2 +/- 5.8% (N=11). This potentiating effect of melatonin was blocked by pretreating the cornea with a topical application of the melatonin receptor antagonist, luzindole (240 nmol). Melatonin combined with Ap(4)A may be useful for treating dry eye conditions.
Collapse
Affiliation(s)
- Charles H V Hoyle
- Institute of Medicine, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam.
| | | | | |
Collapse
|
46
|
Wright M, Boonyalai N, Tanner JA, Hindley AD, Miller AD. The duality of LysU, a catalyst for both Ap4A and Ap3A formation. FEBS J 2006; 273:3534-44. [PMID: 16884494 DOI: 10.1111/j.1742-4658.2006.05361.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heat shock inducible lysyl-tRNA synthetase of Escherichia coli (LysU) is known to be a highly efficient diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) synthase. However, we use an ion-exchange HPLC technique to demonstrate that active LysU mixtures actually have a dual catalytic activity, initially producing Ap4A from ATP, before converting that tetraphosphate to a triphosphate. LysU appears to be an effective diadenosine 5',5'''-P1,P3-triphosphate (Ap3A) synthase. Mechanistic investigations reveal that Ap3A formation requires: (a) that the second step of Ap4A formation is slightly reversible, thereby leading to a modest reappearance of adenylate intermediate; and (b) that phosphate is present to trap the intermediate (either as inorganic phosphate, as added ADP, or as ADP generated in situ from inorganic phosphate). Ap3A forms readily from Ap4A in the presence of such phosphate-based adenylate traps (via a 'reverse-trap' mechanism). LysU is also clearly demonstrated to exist in a phosphorylated state that is more physically robust as a catalyst of Ap4A formation than the nonphosphorylated state. However, phosphorylated LysU shows only marginally improved catalytic efficiency. We note that Ap3A effects have barely been studied in prokaryotic organisms. By contrast, there is a body of literature that describes Ap3A and Ap4A having substantially different functions in eukaryotic cells. Our data suggest that Ap3A and Ap4A biosynthesis could be linked together through a single prokaryotic dual 'synthase' enzyme. Therefore, in our view there is a need for new research into the effects and impact of Ap3A alone and the intracellular [Ap3A]/[Ap4A] ratio on prokaryotic organisms.
Collapse
Affiliation(s)
- Michael Wright
- Imperial College Genetic Therapies Centre, Department of Chemistry, Imperial College London, London, UK
| | | | | | | | | |
Collapse
|
47
|
Campiglio M, Bianchi F, Andriani F, Sozzi G, Tagliabue E, Ménard S, Roz L. Diadenosines as FHIT-ness instructors. J Cell Physiol 2006; 208:274-81. [PMID: 16547961 DOI: 10.1002/jcp.20633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FHIT is a tumor suppressor gene that is frequently inactivated in human cancer. Although the Fhit protein is known to hydrolyze diadenosine triphosphate (Ap(3)A), this hydrolase activity is not required for Fhit-mediated oncosuppression. Indeed, the molecular mechanisms and the regulatory elements of Fhit oncosuppression are largely unknown. Here, we review physiological and pathological aspects of Fhit in the context of the Ap(n)A family of signaling molecules, as well as the involvement of Fhit in apoptosis and the cell cycle in cancer models. We also discuss recent findings of novel Fhit interactions that may lead to new hypotheses about biochemical mechanisms underlying the oncosuppressor activity of this gene.
Collapse
Affiliation(s)
- Manuela Campiglio
- Department of Experimental Oncology, Molecular Biology Unit, Istituto Nazionale Tumori, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
Tanner JA, Wright M, Christie EM, Preuss MK, Miller AD. Investigation into the interactions between diadenosine 5',5'''-P1,P4-tetraphosphate and two proteins: molecular chaperone GroEL and cAMP receptor protein. Biochemistry 2006; 45:3095-106. [PMID: 16503665 DOI: 10.1021/bi052529k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap(4)A) is a dinucleoside polyphosphate found ubiquitously in eukaryotic and prokaryotic cells. Despite Ap(4)A being universal, its functions have proved to be difficult to define, although they appear to have a strong presence during cellular stress. Here we report on our investigations into the nature and properties of putative Ap(4)A interactions with Escherichia coli molecular chaperone GroEL and cAMP receptor protein (CRP). We confirm previous literature observations that GroEL is an Ap(4)A binding protein and go on to prove that binding of Ap(4)A to GroEL involves a set of binding sites (one per monomer) distinct from the well-known GroEL ATP/ADP sites. Binding of Ap(4)A to GroEL appears to enhance ATPase rates at higher temperatures, encourages the release of bound ADP, and may promote substrate protein release through differential destabilization of the substrate protein-GroEL complex. We suggest that such effects should result in enhanced GroEL/GroES chaperoning activities that could be a primary reason for the improved yields of the refolded substrate protein observed during GroEL/GroES-assisted folding and refolding at >or=30 degrees C in the presence of Ap(4)A. In contrast, we were unable to obtain any data to support a direct role for Ap(4)A interactions with CRP.
Collapse
Affiliation(s)
- Julian A Tanner
- Imperial College Genetic Therapies Centre, Department of Chemistry, Flowers Building, Armstrong Road, Imperial College London, UK
| | | | | | | | | |
Collapse
|
49
|
Abstract
The concept of a purinergic signaling system, using purine nucleotides and nucleosides as extracellular messengers, was first proposed over 30 years ago. After a brief introduction and update of purinoceptor subtypes, this article focuses on the diverse pathophysiological roles of purines and pyrimidines as signaling molecules. These molecules mediate short-term (acute) signaling functions in neurotransmission, mechanosensory transduction, secretion and vasodilatation, and long-term (chronic) signaling functions in cell proliferation, differentiation, and death involved in development and regeneration. Plasticity of purinoceptor expression in pathological conditions is frequently observed, including an increase in the purinergic component of autonomic cotransmission. Recent advances in therapies using purinergic-related drugs in a wide range of pathological conditions will be addressed with speculation on future developments in the field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London NW3 2PF, UK.
| |
Collapse
|
50
|
Soto D, Pintor J, Peral A, Gual A, Gasull X. Effects of dinucleoside polyphosphates on trabecular meshwork cells and aqueous humor outflow facility. J Pharmacol Exp Ther 2005; 314:1042-51. [PMID: 15947035 DOI: 10.1124/jpet.105.085274] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most important risk factor for the development of glaucoma is elevated intraocular pressure (IOP). Hypotensive drugs decrease IOP, preventing optic nerve damage and further vision loss. The balance between aqueous humor (AH) production and drainage determines IOP, and problems in AH outflow pathways are associated with open-angle glaucoma development. Previous studies have shown the presence of diadenosine tetraphosphate (Ap(4)A) and pentaphosphate (Ap(5)A) in the AH. Topic application of Ap(4)A to the cornea decreased IOP, whereas Ap(5)A increased it. Because dinucleoside polyphosphates stimulate P2Y purinergic receptors, we studied their presence in trabecular meshwork (TM) cells. Additionally, the effects of diadenosine polyphosphates (Ap(n)As; n = 3-5) and Up(4)U (P(1),P(4)-(diuridine 5')-tetraphosphate; INS365) in outflow facility were tested. P2Y(1), P2Y(2), and P2Y(4) receptors were detected in TM cells by Western blot and immunocytochemistry. In TM cells, Ap(3)A, Ap(4)A, and Ap(5)A induced discrete intracellular calcium concentration ([Ca(2+)](i)) mobilizations compared with higher and more sustained [Ca(2+)](i) mobilizations after Up(4)U application. In bovine ocular anterior segments perfused at constant pressure, 1 microM Ap(3)A or Ap(4)A increased outflow facility, whereas Up(4)U or Ap(5)A did not modify it. 2-MeSADP, a selective P2Y(1) agonist, induced outflow facility increases similar to those obtained after Ap(3)A and Ap(4)A, and these were prevented by addition of the selective P2Y(1) receptor antagonist MRS-2179 (2'-deoxy-N(6)-methyladenosine-3',5'-diphosphate). Our results demonstrate that the hypotensive effect of Ap(4)A and other dinucleotides is mediated, at least in part, by increasing trabecular outflow facility through activation of P2Y(1) receptors. The latter would seem to be an interesting target in the development of antiglaucomatous drugs to selectively increase AH outflow.
Collapse
Affiliation(s)
- David Soto
- Laboratori de Neurofisiologia, Facultat de Medicina-Institut d'Investigacions Biomèdiques August Pi i Sunyer, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|