1
|
Kamezaki M, Nishiwaki H. Capsaicin preferentially inhibits slow-inactivation sodium currents in insects. Toxicon 2025:108264. [PMID: 39889891 DOI: 10.1016/j.toxicon.2025.108264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Capsaicin, a pungent ingredient found in chili peppers, exhibits various pharmacological activities including inhibiting voltage-gated sodium channels (VGSCs) in mammals, suppressing sodium currents. Although capsaicin shows insecticidal activity, its underlying mechanism of action on insect VGSCs remains unclear. Here, we evaluated the effects of capsaicin on insect nerve cords and VGSCs using neurophysiological techniques. Capsaicin injection immediately induced paralysis in American cockroaches (Periplaneta americana). Extracellular recordings of their nerve cords revealed that capsaicin inhibited the allethrin-induced excitation of nerve cord activity. Furthermore, in Xenopus oocytes expressing VGSCs of German cockroaches (Blattella germanica), capsaicin inhibited the steady-state activation of VGSCs, with an IC50 value of 130.6 μM. Capsaicin significantly shifted the half-inactivation potential of the inactivation curve of insect VGSCs in a slow-inactivated state from -44.61 to -48.92 mV. Although the state dependency of sodium current inhibition by capsaicin remains unknown, based on its effective concentration, capsaicin may preferentially inhibit sodium currents by acting on insect VGSCs in a slow-inactivated state. This unique profile may serve as a foundation for the creation of novel insecticides based on capsaicin properties.
Collapse
Affiliation(s)
- Masashi Kamezaki
- The United Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Health & Crop Sciences Research Laboratory, Sumitomo Chemical Co. Ltd., Takarazuka, Hyogo, Japan.
| | - Hisashi Nishiwaki
- The United Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
2
|
Velázquez-Flores MÁ, Sánchez-Chávez G, Morales-Lázaro SL, Ruiz Esparza-Garrido R, Canizales-Ontiveros A, Salceda R. Streptozotocin-Induced Diabetic Rats Showed a Differential Glycine Receptor Expression in the Spinal Cord: A GlyR Role in Diabetic Neuropathy. Neurochem Res 2024; 49:684-691. [PMID: 38017313 PMCID: PMC10884118 DOI: 10.1007/s11064-023-04058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
In the spinal cord, attenuation of the inhibitory action of glycine is related to an increase in both inflammatory and diabetic neuropathic pain; however, the glycine receptor involvement in diabetic neuropathy has not been reported. We determined the expression of the glycine receptor subunits (α1-α3 and β) in streptozotocin-induced diabetic Long-Evans rats by qPCR and Western blot. The total mRNA and protein expression (whole spinal cord homogenate) of the α1, α3, and β subunits did not change during diabetes; however, the α2 subunit mRNA, but not the protein, was overexpressed 45 days after diabetes induction. By contrast, the synaptic expression of the α1 and α2 subunits decreased in all the studied stages of diabetes, but that of the α3 subunit increased on day 45 after diabetes induction. Intradermal capsaicin produced higher paw-licking behavior in the streptozotocin-induced diabetic rats than in the control animals. In addition, the nocifensive response was higher at 45 days than at 20 days. During diabetes, the expression of the glycine receptor was altered in the spinal cord, which strongly suggests its involvement in diabetic neuropathy.
Collapse
Affiliation(s)
- Miguel Ángel Velázquez-Flores
- Noncoding RNAs Laboratory, Unit of Medical Research on Human Genetics, Children's Hospital "Silvestre Frenk Freund", National Medical Center Century XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Gustavo Sánchez-Chávez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sara L Morales-Lázaro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Ruiz Esparza-Garrido
- Unit of Medical Research on Human Genetics, Children's Hospital "Silvestre Frenk Freund", National Medical Center Century XXI, Mexican Institute of Social Security, Mexico City, Mexico
| | - Alejandro Canizales-Ontiveros
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rocío Salceda
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Aguiar DD, da Costa Oliveira C, Fonseca FCS, de Almeida DL, Campos Pereira WV, Guimarães FS, Perez AC, Duarte IDG, Romero TRL. Peripherally injected canabidiol reduces neuropathic pain in mice: Role of the 5-HT 1A and TRPV1 receptors. Biochem Biophys Res Commun 2023; 660:58-64. [PMID: 37068389 DOI: 10.1016/j.bbrc.2023.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Cannabidiol (CBD) is the most abundant non-psychoactive component found in plants of the genus Cannabis. Its analgesic effect for the treatment of neuropathy has been widely studied. However, little is known about its effects in the acute treatment when Cannabidiol is administered peripherally. Because of that, this research was aimed to evaluate the antinociceptive effects of the CBD when administered peripherally for the treatment of acute neuropathic pain and check the involvement of the 5-HT1A and the TRPV1 receptors in this event. Neuropathic pain was induced with the constriction of the sciatic nerve while the nociceptive threshold was measured using the pressure test of the mouse paw. The technique used proved to be efficient to induce neuropathy, and the CBD (5, 10 and 30 μg/paw) induced the antinociception in a dosage-dependent manner. The dosage used that induced a more potent effect (30 μg/paw), did not induce a systemic response, as demonstrated by both the motor coordination assessment test (RotaRod) and the antinociceptive effect restricted to the paw treated with CBD. The administration of NAN-190 (10 μg/paw), a selective 5-HT1A receptor antagonist, and SB-366791 (16 μg/paw), a selective TRPV1 antagonist, partially reversed the CBD-induced antinociception. The results of the research suggest that the CBD produces the peripheral antinociception during the acute treatment of the neuropathic pain and it partially involved the participation of the 5-HT1A and TRPV1 receptors.
Collapse
Affiliation(s)
- Danielle Diniz Aguiar
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | - Andrea Castro Perez
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
4
|
Fan T, Yu Y, Chen YL, Gu P, Wong S, Xia ZY, Liu JA, Cheung CW. Histone deacetylase 5-induced deficiency of signal transducer and activator of transcription-3 acetylation contributes to spinal astrocytes degeneration in painful diabetic neuropathy. Glia 2023; 71:1099-1119. [PMID: 36579750 DOI: 10.1002/glia.24328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Yu
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yong-Long Chen
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Stanley Wong
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zheng-Yuan Xia
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chi-Wai Cheung
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Leavell Y, Simpson DM. The role of the capsaicin 8% patch in the treatment of painful diabetic peripheral neuropathy. Pain Manag 2022; 12:595-609. [PMID: 35152709 DOI: 10.2217/pmt-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treatment of painful diabetic peripheral neuropathy (PDPN) is challenging and often limited by drug tolerability and adverse effects. This review article focuses on the high-dose (8%) capsaicin patch that allows for improved efficacy and reduced application frequency in comparison to low-dose capsaicin formulations. Systemic absorption is minimal resulting in fewer systemic side effects than first-line oral medications. There is evidence that capsaicin patch treatment is well-tolerated, safe and provides effective pain relief maintained for several weeks; well-powered studies are needed to confirm these findings. The capsaicin 8% patch may benefit patients at high risk for adverse effects from oral medication, polypharmacy or inadequate pain relief from first-line therapies.
Collapse
Affiliation(s)
- Yaowaree Leavell
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | - David M Simpson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Multifunctional Opioid-Derived Hybrids in Neuropathic Pain: Preclinical Evidence, Ideas and Challenges. Molecules 2020; 25:molecules25235520. [PMID: 33255641 PMCID: PMC7728063 DOI: 10.3390/molecules25235520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
When the first- and second-line therapeutics used to treat neuropathic pain (NP) fail to induce efficient analgesia—which is estimated to relate to more than half of the patients—opioid drugs are prescribed. Still, the pathological changes following the nerve tissue injury, i.a. pronociceptive neuropeptide systems activation, oppose the analgesic effects of opiates, enforcing the use of relatively high therapeutic doses in order to obtain satisfying pain relief. In parallel, the repeated use of opioid agonists is associated with burdensome adverse effects due to compensatory mechanisms that arise thereafter. Rational design of hybrid drugs, in which opioid ligands are combined with other pharmacophores that block the antiopioid action of pronociceptive systems, delivers the opportunity to ameliorate the NP-oriented opioid treatment via addressing neuropathological mechanisms shared both by NP and repeated exposition to opioids. Therewith, the new dually acting drugs, tailored for the specificity of NP, can gain in efficacy under nerve injury conditions and have an improved safety profile as compared to selective opioid agonists. The current review presents the latest ideas on opioid-comprising hybrid drugs designed to treat painful neuropathy, with focus on their biological action, as well as limitations and challenges related to this therapeutic approach.
Collapse
|
7
|
Lysophosphatidic Acid Receptor 1- and 3-Mediated Hyperalgesia and Hypoalgesia in Diabetic Neuropathic Pain Models in Mice. Cells 2020; 9:cells9081906. [PMID: 32824296 PMCID: PMC7465054 DOI: 10.3390/cells9081906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 12/28/2022] Open
Abstract
Lysophosphatidic acid (LPA) signaling is known to play key roles in the initiation and maintenance of various chronic pain models. Here we examined whether LPA signaling is also involved in diabetes-induced abnormal pain behaviors. The high-fat diet (HFD) showing elevation of blood glucose levels and body weight caused thermal, mechanical hyperalgesia, hypersensitivity to 2000 or 250 Hz electrical-stimulation and hyposensitivity to 5 Hz stimulation to the paw in wild-type (WT) mice. These HFD-induced abnormal pain behaviors and body weight increase, but not elevated glucose levels were abolished in LPA1−/− and LPA3−/− mice. Repeated daily intrathecal (i.t.) treatments with LPA1/3 antagonist AM966 reversed these abnormal pain behaviors. Similar abnormal pain behaviors and their blockade by daily AM966 (i.t.) or twice daily Ki16425, another LPA1/3 antagonist was also observed in db/db mice which show high glucose levels and body weight. Furthermore, streptozotocin-induced similar abnormal pain behaviors, but not elevated glucose levels or body weight loss were abolished in LPA1−/− and LPA3−/− mice. These results suggest that LPA1 and LPA3 play key roles in the development of both type I and type II diabetic neuropathic pain.
Collapse
|
8
|
Ueda H. LPA receptor signaling as a therapeutic target for radical treatment of neuropathic pain and fibromyalgia. Pain Manag 2019; 10:43-53. [PMID: 31852400 DOI: 10.2217/pmt-2019-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the first discovery that the bioactive lipid, lysophosphatidic acid (LPA) and LPA1 receptor signaling play a role in the initiation of neuropathic pain (NeuP), accumulated reports have supported the original findings and extended the study toward possible therapeutic applications. The present review describes beneficial roles of LPA receptor signaling in a variety of chronic pain, such as peripheral NeuP induced by nerve injury, chemotherapy and diabetes, central NeuP induced by cerebral ischemia with hemorrhage and spinal cord injury, and fibromyalgia-like wide spread pain induced by repeated cold, psychological and muscular acidic stress. Emerging mechanistic findings are the feed-forward amplification of LPA production through LPA1, LPA3 and microglia and the evidence for maintenance of chronic pain by LPA receptor signaling.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Molecular Pharmacology, Kyoto University Graduate School of Pharmaceutical Sciences, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Zhang S, Zhao J, Meng Q. AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain. Neurol Res 2019; 41:972-979. [PMID: 31296147 DOI: 10.1080/01616412.2019.1639317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuangli Zhang
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Jun Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang Province, China
| | - Qinggang Meng
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| |
Collapse
|
10
|
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose. PLoS One 2018; 13:e0193312. [PMID: 29474476 PMCID: PMC5825096 DOI: 10.1371/journal.pone.0193312] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/08/2018] [Indexed: 01/17/2023] Open
Abstract
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.
Collapse
|
11
|
Quantitative Thermal Testing Profiles as a Predictor of Treatment Response to Topical Capsaicin in Patients with Localized Neuropathic Pain. PAIN RESEARCH AND TREATMENT 2017; 2017:7425907. [PMID: 28321335 PMCID: PMC5339491 DOI: 10.1155/2017/7425907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/15/2017] [Accepted: 01/30/2017] [Indexed: 01/17/2023]
Abstract
There are no reliable predictors of response to treatment with capsaicin. Given that capsaicin application causes heat sensation, differences in quantitative thermal testing (QTT) profiles may predict treatment response. The aim of this study was to determine whether different QTT profiles could predict treatment outcomes in patients with localized peripheral neuropathic pain (PeLNP). We obtained from medical records QTT results and treatment outcomes of 55 patients treated between 2010 and 2013. Warm sensation threshold (WST) and heat pain threshold (HPT) values were assessed at baseline at the treatment site and in the asymptomatic, contralateral area. Responders were defined as those who achieved a > 30% decrease in pain lasting > 30 days. Two distinct groups were identified based on differences in QTT profiles. Most patients (27/31; 87.1%) with a homogenous profile were nonresponders. By contrast, more than half of the patients (13/24, 54.2%) with a nonhomogenous profile were responders (p = 0.0028). A nonhomogenous QTT profile appears to be predictive of response to capsaicin. We hypothesize patients with a partial loss of cutaneous nerve fibers or receptors are more likely to respond. By contrast, when severe nerve damage or normal cutaneous sensations are present, the pain is likely due to central sensitization and thus not responsive to capsaicin. Prospective studies with larger patient samples are needed to confirm this hypothesis.
Collapse
|
12
|
Reinhart B, Goins WF, Harel A, Chaudhry S, Goss JR, Yoshimura N, de Groat WC, Cohen JB, Glorioso JC. An HSV-based library screen identifies PP1α as a negative TRPV1 regulator with analgesic activity in models of pain. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16040. [PMID: 27382601 PMCID: PMC4916946 DOI: 10.1038/mtm.2016.40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/06/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is a pronociceptive cation channel involved in persistent inflammatory and neuropathic pain. Herpes simplex virus (HSV) vector expression of TRPV1 causes cell death in the presence of capsaicin, thereby completely blocking virus replication. Here we describe a selection system for negative regulators of TRPV1 based on rescue of virus replication. HSV-based coexpression of TRPV1 and a PC12 cell-derived cDNA library identified protein phosphatase 1α (PP1α) as a negative regulator of TRPV1, mimicking the activity of “poreless” (PL), a dominant-negative mutant of TRPV1. Vectors expressing PP1α or PL reduced thermal sensitivity following virus injection into rat footpads, but failed to reduce the nocifensive responses to menthol/icilin-activated cold pain or formalin, demonstrating that the activity identified in vitro is functional in vivo with a degree of specificity. This system should prove powerful for identifying other cellular factors that can inhibit ion channel activity.
Collapse
Affiliation(s)
- Bonnie Reinhart
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| | - William F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| | - Asaff Harel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| | - Suchita Chaudhry
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| | - James R Goss
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| | - Justus B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| | - Joseph C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Masuoka T, Kudo M, Yoshida J, Ishibashi T, Muramatsu I, Kato N, Imaizumi N, Nishio M. Long-Term Activation of Group I Metabotropic Glutamate Receptors Increases Functional TRPV1-Expressing Neurons in Mouse Dorsal Root Ganglia. Front Cell Neurosci 2016; 10:79. [PMID: 27064319 PMCID: PMC4814719 DOI: 10.3389/fncel.2016.00079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 12/17/2022] Open
Abstract
Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1) in dorsal root ganglion (DRG) neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h) treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG) increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC), a transient receptor potential ankyrin type 1 (TRPA1) agonist. Increase in the proportion was suppressed by phospholipase C (PLC), protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.
Collapse
Affiliation(s)
- Takayoshi Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University Uchinada, Japan
| | - Makiko Kudo
- Department of Pharmacology, School of Medicine, Kanazawa Medical University Uchinada, Japan
| | - Junko Yoshida
- Department of Pharmacology, School of Medicine, Kanazawa Medical University Uchinada, Japan
| | - Takaharu Ishibashi
- Department of Pharmacology, School of Medicine, Kanazawa Medical UniversityUchinada, Japan; Department of Pharmacology, School of Nursing, Kanazawa Medical UniversityUchinada, Japan
| | - Ikunobu Muramatsu
- Department of Pharmacology, School of Medicine, Kanazawa Medical University Uchinada, Japan
| | - Nobuo Kato
- Department of Physiology I, School of Medicine, Kanazawa Medical University Uchinada, Japan
| | - Noriko Imaizumi
- Department of Pharmacology, School of Medicine, Kanazawa Medical University Uchinada, Japan
| | - Matomo Nishio
- Department of Pharmacology, School of Medicine, Kanazawa Medical University Uchinada, Japan
| |
Collapse
|
14
|
Malek N, Pajak A, Kolosowska N, Kucharczyk M, Starowicz K. The importance of TRPV1-sensitisation factors for the development of neuropathic pain. Mol Cell Neurosci 2015; 65:1-10. [PMID: 25662734 DOI: 10.1016/j.mcn.2015.02.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/20/2015] [Accepted: 02/02/2015] [Indexed: 12/17/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1), classically associated with transduction of high-temperature and low-pH pain, underlies pain hypersensitivity in neuropathic pain. The molecular regulation of TRPV1 channel activity is not yet fully understood. Therefore, we investigated factors regulating sensitisation of this receptor during development of neuropathic pain in a rat model of chronic construction injury (CCI) in the dorsal root ganglia (DRG). In the rat CCI model, elevated levels of pro-inflammatory cytokines (TNFα, IL-1β and IL-6) in DRG corresponded to development of neuropathic pain. We assessed the expression of known kinases influencing TRPV1 sensitisation at the mRNA and/or protein level. Protein kinase C ε (PKCε) showed the strongest upregulation at the mRNA and protein levels among all tested kinases. Co-expression of PKCε and TRPV1 in L5 DRG of CCI animals was high during the development of neuropathic pain. The number of neurons expressing PKCε increased throughout the experiment. We provide complex data on the expression of a variety of factors involved in TRPV1 sensitisation in a CCI model of neuropathic pain. Our study supports evidence for involvement of TRPV1 in the development of neuropathic pain, by showing increased expression of interleukins and kinases responsible for the channel sensitisation. TNFα and NGF seem to play a role in the transition from acute to neuropathic pain, while PKCε in its maintenance. Further studies might confirm their significance as novel targets for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Natalia Malek
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Agnieszka Pajak
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Natalia Kolosowska
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Mateusz Kucharczyk
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| | - Katarzyna Starowicz
- Laboratory of Pain Pathophysiology, Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12 Street, 31-343 Krakow, Poland.
| |
Collapse
|
15
|
Sałat K, Jakubowska A, Kulig K. Zucapsaicin for the treatment of neuropathic pain. Expert Opin Investig Drugs 2014; 23:1433-40. [DOI: 10.1517/13543784.2014.956079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Murai N, Tsukamoto M, Tamura S, Aoki T, Matsuoka N. Antinociceptive effects of AS1069562, the (+)-isomer of indeloxazine, on spinal hypersensitivity induced by intrathecal injection of prostaglandin in mice: Comparison with duloxetine and amitriptyline. Eur J Pharmacol 2014; 733:54-61. [DOI: 10.1016/j.ejphar.2014.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/25/2014] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
|
17
|
Schumacher M, Pasvankas G. Topical capsaicin formulations in the management of neuropathic pain. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:105-128. [PMID: 24941666 DOI: 10.1007/978-3-0348-0828-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This chapter reviews the scientific and clinical evidence supporting the use of topical formulations containing the pungent principle of chili peppers--capsaicin, for the treatment of peripheral neuropathic pain. Given the limitations of current oral and parenteral therapies for the management of pain arising from various forms of nerve injury, alternate therapeutic approaches that are not associated with systemic adverse events that limit quality of life, impair function, or threaten respiratory depression are critically needed. Moreover, neuropathic conditions can be complicated by progressive changes in the central and peripheral nervous system, leading to persistent reorganization of pain pathways and chronic neuropathic pain. Recent advances in the use of high-dose topical capsaicin preparations hold promise in managing a wide range of painful conditions associated with peripheral neuropathies and may in fact help reduce suffering by reversing progressive changes in the nervous system associated with chronic neuropathic pain conditions.
Collapse
|
18
|
Li Y, Cai J, Han Y, Xiao X, Meng X, Su L, Liu F, Xing G, Wan Y. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain. Eur J Pain 2013; 18:774-84. [DOI: 10.1002/j.1532-2149.2013.00420.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Y. Li
- Neuroscience Research Institute; Peking University; Beijing China
| | - J. Cai
- Neuroscience Research Institute; Peking University; Beijing China
| | - Y. Han
- Neuroscience Research Institute; Peking University; Beijing China
| | - X. Xiao
- Neuroscience Research Institute; Peking University; Beijing China
| | - X.L. Meng
- Neuroscience Research Institute; Peking University; Beijing China
| | - L. Su
- Neuroscience Research Institute; Peking University; Beijing China
| | - F.Y. Liu
- Neuroscience Research Institute; Peking University; Beijing China
| | - G.G. Xing
- Neuroscience Research Institute; Peking University; Beijing China
| | - Y. Wan
- Neuroscience Research Institute; Peking University; Beijing China
- Department of Neurobiology; Peking University; Beijing China
- Key Laboratory for Neuroscience; Ministry of Education/National Health and Family Planning Commission; Peking University; Beijing China
| |
Collapse
|
19
|
Ohsawa M, Miyabe Y, Katsu H, Yamamoto S, Ono H. Identification of the sensory nerve fiber responsible for lysophosphatidic acid-induced allodynia in mice. Neuroscience 2013; 247:65-74. [DOI: 10.1016/j.neuroscience.2013.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|
20
|
Zychowska M, Rojewska E, Kreiner G, Nalepa I, Przewlocka B, Mika J. Minocycline influences the anti-inflammatory interleukins and enhances the effectiveness of morphine under mice diabetic neuropathy. J Neuroimmunol 2013; 262:35-45. [PMID: 23870534 DOI: 10.1016/j.jneuroim.2013.06.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/10/2013] [Accepted: 06/16/2013] [Indexed: 01/27/2023]
Abstract
A single streptozotocin (STZ) injection in mice can induce significant neuropathic pain along with an increase in plasma glucose levels and a decrease in body weight. Seven days after the administration of STZ, an upregulation of C1q-positive cells was observed. Additionally, interleukins (IL-1beta, IL-3, IL-4, IL-6, IL-9, IL12p70, IL-17); proteins of the tumor necrosis factor (TNF) family, e.g., IFNgamma and sTNF RII, were upregulated. Chronic administration of minocycline increases antinociceptive factors (IL-1alpha, IL-2, IL-10, sTNFRII) in diabetic mice. Minocycline also reduces the occurrence of neuropathic pain and significantly potentiates the antiallodynic and antihyperalgesic effects of morphine.
Collapse
Affiliation(s)
- Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
21
|
Dang K, Bielefeldt K, Gebhart GF. Cyclophosphamide-induced cystitis reduces ASIC channel but enhances TRPV1 receptor function in rat bladder sensory neurons. J Neurophysiol 2013; 110:408-17. [PMID: 23636721 DOI: 10.1152/jn.00945.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Using patch-clamp techniques, we studied the plasticity of acid-sensing ion channels (ASIC) and transient receptor potential V1 (TRPV1) channel function in dorsal root ganglia (DRG) neurons retrogradely labeled from the bladder. Saline (control) or cyclophosphamide (CYP) was given intraperitoneally on days 1, 3, and 5. On day 6, lumbosacral (LS, L6-S2) or thoracolumbar (TL, T13-L2) DRG were removed and dissociated. Bladders and bladder DRG neurons from CYP-treated rats showed signs of inflammation (greater myeloperoxidase activity; lower intramuscular wall pH) and increased size (whole cell capacitance), respectively, compared with controls. Most bladder neurons (>90%) responded to protons and capsaicin. Protons produced multiphasic currents with distinct kinetics, whereas capsaicin always triggered a sustained response. The TRPV1 receptor antagonist A-425619 abolished capsaicin-triggered currents and raised the threshold of heat-activated currents. Prolonged exposure to an acidic environment (pH range: 7.2 to 6.6) inhibited proton-evoked currents, potentiated the capsaicin-evoked current, and reduced the threshold of heat-activated currents in LS and TL bladder neurons. CYP treatment reduced density but not kinetics of all current components triggered by pH 5. In contrast, CYP-treatment was associated with an increased current density in response to capsaicin in LS and TL bladder neurons. Correspondingly, heat triggered current at a significantly lower temperature in bladder neurons from CYP-treated rats compared with controls. These results reveal that cystitis differentially affects TRPV1- and ASIC-mediated currents in both bladder sensory pathways. Acidification of the bladder wall during inflammation may contribute to changes in nociceptive transmission mediated through the TRPV1 receptor, suggesting a role for TRPV1 in hypersensitivity associated with cystitis.
Collapse
Affiliation(s)
- Khoa Dang
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
22
|
Kitagawa Y, Tamai I, Hamada Y, Usui K, Wada M, Sakata M, Matsushita M. The Orally Administered Selective TRPV1 Antagonist, JTS-653, Attenuates Chronic Pain Refractory to Non-steroidal Anti-inflammatory Drugs in Rats and Mice Including Post-herpetic Pain. J Pharmacol Sci 2013; 122:128-37. [DOI: 10.1254/jphs.12276fp] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
23
|
Ma L, Nagai J, Sekino Y, Goto Y, Nakahira S, Ueda H. Single application of A2 NTX, a botulinum toxin A2 subunit, prevents chronic pain over long periods in both diabetic and spinal cord injury-induced neuropathic pain models. J Pharmacol Sci 2012; 119:282-6. [PMID: 22785019 DOI: 10.1254/jphs.12080sc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Botulinum toxin type A is a unique candidate for inhibition of pain transmission. In the present study we attempted to see the beneficial actions of A2 neurotoxin (NTX), an active subunit of botulinum toxin type A. Intraplantar injection of A2 NTX significantly suppressed mechanical allodynia and hypersensitivities to A-fiber stimuli in the diabetic neuropathic pain model. Spinal application of A2 NTX also showed a potent suppression of thermal hyperalgesia and mechanical allodynia in the spinal cord injury-induced neuropathic pain model. A2 NTX seems to be a long-lasting treatment for diabetic and spinal cord injury-induced neuropathic pain.
Collapse
Affiliation(s)
- Lin Ma
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Sooampon S, Manokawinchoke J, Pavasant P. Transient receptor potential vanilloid-1 regulates osteoprotegerin/RANKL homeostasis in human periodontal ligament cells. J Periodontal Res 2012; 48:22-9. [PMID: 22587561 DOI: 10.1111/j.1600-0765.2012.01493.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Increasing evidence has shown the presence of transient receptor potential vanilloid-1 (TRPV1) in a variety of nonneuronal tissues; however, the function of TRPV1 in these cells is not well understood. In this study, we aimed to investigate the expression and function of TRPV1 in human periodontal ligament (HPDL) cells. As HPDL cells are known to play an important role in the bone-remodeling process, we hypothesized that TRPV1 might be implicated in the regulation of osteoprotegerin (OPG) and RANKL expression. MATERIAL AND METHODS TRPV1 expression was examined by western blot analysis. The function of TRPV1 was studied using capsaicin, a well-known TRPV1 agonist. RT-PCR was performed to study the expression of OPG and RANKL mRNAs. The expression of OPG and RANKL proteins was analyzed by ELISA and western blotting, respectively. The mechanisms of capsaicin-induced OPG expression in HPDL cells were studied using inhibitors. RESULTS In this study we found that TRPV1 was present in HPDL cells. Treatment with capsaicin induced OPG expression in a dose-dependent manner but did not affect the expression of RANKL. The increase of the OPG/RANKL ratio was also found in human osteoblasts, but not in MC3T3-E1 cells, a mouse osteoblastic cell line, suggesting species specificity. Capsazepine, the competitive TRPV1 antagonist, significantly abolished the effect of capsaicin on OPG expression in HPDL cells. In addition, studies investigating the effects of a calcium chelator and a phospholipase C inhibitor indicated that calcium ions and phospholipase C were required for the induction. Interestingly, capsaicin was able to increase the OPG/RANKL ratio, even in the presence of prostaglandin E2, a potent inducer of RANKL. CONCLUSION Our study demonstrates that activation of TRPV1 leads to an increase of the OPG/RANKL ratio in HPDL cells. These findings suggest the novel function of TRPV1 in periodontal tissues, at least, as the regulator of the OPG/RANKL axis.
Collapse
Affiliation(s)
- S Sooampon
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | |
Collapse
|
25
|
Sadofsky LR, Ramachandran R, Crow C, Cowen M, Compton SJ, Morice AH. Inflammatory stimuli up-regulate transient receptor potential vanilloid-1 expression in human bronchial fibroblasts. Exp Lung Res 2012; 38:75-81. [PMID: 22242698 DOI: 10.3109/01902148.2011.644027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lung fibroblasts are involved in interstitial lung disease, chronic asthma, and chronic obstructive pulmonary disease (COPD). The expanded fibroblast population in airway disease leads to airway remodeling and contributes to the inflammatory process seen in these diseases. The cation channel transient receptor potential vanilloid-1 (TRPV1) is activated by noxious stimuli, including capsaicin, protons, and high temperatures and is thought to have a role in inflammation. Although TRPV1 expression is primarily reported to be neuronal, some extraneuronal expression has been reported. The authors therefore sought to determine whether human primary bronchial fibroblasts (HPBFs) express TRPV1 and whether inflammatory mediators can induce TRPV1 expression. The authors show that fibroblasts are predominantly TRPV1 negative; however, following stimulation with 3 common inflammatory mediators, tumor necrosis factor α (TNF-α), lipopolysaccharide (LPS), and interleukin-1α (IL-1α), TRPV1 mRNA was observed at 24 and 48 hours post treatment with all 3 mediators. Using Western blotting an increase in TRPV1 expression with all 3 inflammatory mediators was detected with significant increases seen at 72 hours post LPS and IL-1α treatment. In stark contrast to the untreated fibroblasts, significant calcium signaling in response to capsaicin and resiniferatoxin in HPBFs treated for 24 and 48 hours with TNF-α, LPS, or IL-1α was also observed. These results indicate that TRPV1 can be expressed on bronchial fibroblasts in situations where an underlying inflammatory stimulus exists, as is the case in airway diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Laura R Sadofsky
- Cardiovascular and Respiratory Studies, University of Hull, Castle Hill Hospital, Cottingham, East Yorkshire, UK.
| | | | | | | | | | | |
Collapse
|
26
|
Giordano C, Cristino L, Luongo L, Siniscalco D, Petrosino S, Piscitelli F, Marabese I, Gatta L, Rossi F, Imperatore R, Palazzo E, de Novellis V, Di Marzo V, Maione S. TRPV1-dependent and -independent alterations in the limbic cortex of neuropathic mice: impact on glial caspases and pain perception. ACTA ACUST UNITED AC 2011; 22:2495-518. [PMID: 22139792 DOI: 10.1093/cercor/bhr328] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
During neuropathic pain, caspases are activated in the limbic cortex. We investigated the role of TRPV1 channels and glial caspases in the mouse prelimbic and infralimbic (PL-IL) cortex after spared nerve injury (SNI). Reverse transcriptase-polymerase chain reaction, western blots, and immunfluorescence showed overexpression of several caspases in the PL-IL cortex 7 days postinjury. Caspase-3 release and upregulation of AMPA receptors in microglia, caspase-1 and IL-1β release in astrocytes, and upregulation of Il-1 receptor-1, TRPV1, and VGluT1 in glutamatergic neurons, were also observed. Of these alterations, only those in astrocytes persisted in SNI Trpv1(-/-) mice. A pan-caspase inhibitor, injected into the PL-IL cortex, reduced mechanical allodynia, this effect being reduced but not abolished in Trpv1(-/-) mice. Single-unit extracellular recordings in vivo following electrical stimulation of basolateral amygdala or application of pressure on the hind paw, showed increased excitatory pyramidal neuron activity in the SNI PL-IL cortex, which also contained higher levels of the endocannabinoid 2-arachidonoylglycerol. Intra-PL-IL cortex injection of mGluR5 and NMDA receptor antagonists and AMPA exacerbated, whereas TRPV1 and AMPA receptor antagonists and a CB(1) agonist inhibited, allodynia. We suggest that SNI triggers both TRPV1-dependent and independent glutamate- and caspase-mediated cross-talk among IL-PL cortex neurons and glia, which either participates or counteracts pain.
Collapse
Affiliation(s)
- Catia Giordano
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology L. Donatelli, Second University of Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Functional plasticity of central TRPV1 receptors in brainstem dorsal vagal complex circuits of streptozotocin-treated hyperglycemic mice. J Neurosci 2011; 31:14024-31. [PMID: 21957263 DOI: 10.1523/jneurosci.2081-11.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Emerging data indicate that central neurons participate in diabetic processes by modulating autonomic output from neurons in the dorsal motor nucleus of the vagus (DMV). We tested the hypothesis that synaptic modulation by transient receptor potential vanilloid type 1 (TRPV1) receptors is reduced in the DMV in slices from a murine model of type 1 diabetes. The TRPV1 agonist capsaicin robustly enhanced glutamate release onto DMV neurons by acting at preterminal receptors in slices from intact mice, but failed to do so in slices from diabetic mice. TRPV1 receptor protein expression in the vagal complex was unaltered. Brief insulin preapplication restored TRPV1-dependent modulation of glutamate release in a PKC- and PI3K-dependent manner. The restorative effect of insulin was prevented by brefeldin A, suggesting that insulin induced TRPV1 receptor trafficking to the terminal membrane. Central vagal circuits critical to the autonomic regulation of metabolism undergo insulin-dependent synaptic plasticity involving TRPV1 receptor modulation in diabetic mice after several days of chronic hyperglycemia.
Collapse
|
28
|
Gewehr C, da Silva MA, dos Santos GT, Rossato MF, de Oliveira SM, Drewes CC, Pazini AM, Guerra GP, Rubin MA, Ferreira J. Contribution of peripheral vanilloid receptor to the nociception induced by injection of spermine in mice. Pharmacol Biochem Behav 2011; 99:775-81. [PMID: 21763717 DOI: 10.1016/j.pbb.2011.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 10/18/2022]
Abstract
Polyamines (putrescine, spermidine and spermine) are important endogenous regulators of ion channels, such as vanilloid (TRPV1), glutamatergic (NMDA or AMPA/kainate) and acid-sensitive (ASIC) receptors. In the present study, we have investigated the possible nociceptive effect induced by polyamines and the mechanisms involved in this nociception in vivo. The subcutaneous (s.c.) injection of capsaicin (as positive control), spermine, spermidine or putrescine produced nociception with ED(50) of 0.16 (0.07-0.39)nmol/paw, 0.4 (0.2-0.7) μmol/paw, 0.3 (0.1-0.9) μmol/paw and 3.2 (0.9-11.5) μmol/paw, respectively. The antagonists of NMDA (MK801, 1 nmol/paw), AMPA/kainate (DNQX, 1 nmol/paw) or ASIC receptors (amiloride, 100 nmol/paw) failed to reduce the spermine-trigged nociception. However, the TRPV1 antagonists capsazepine or SB366791 (1 nmol/paw) reduced spermine-induced nociception, with inhibition of 81 ± 10 and 68 ± 9%, respectively. The previous desensitization with resiniferatoxin (RTX) largely reduced the spermine-induced nociception and TRPV1 expression in the sciatic nerve, with reductions of 82 ± 9% and 67 ± 11%, respectively. Furthermore, the combination of spermine (100 nmol/paw) and RTX (0.005 fmol/paw), in doses which alone were not capable of inducing nociception, produced nociceptive behaviors. Moreover, different concentrations of spermine (3-300 μM) enhanced the specific binding of [(3)H]-RTX to TRPV1 receptor. Altogether, polyamines produce spontaneous nociceptive effect through the stimulation of TRPV1, but not of ionotropic glutamate or ASIC receptors.
Collapse
Affiliation(s)
- Camila Gewehr
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hypoxia-induced sensitization of transient receptor potential vanilloid 1 involves activation of hypoxia-inducible factor-1 alpha and PKC. Pain 2011; 152:936-945. [DOI: 10.1016/j.pain.2011.02.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 12/26/2010] [Accepted: 02/07/2011] [Indexed: 02/01/2023]
|
30
|
Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Elphick MR, Greasley PJ, Hansen HS, Kunos G, Mackie K, Mechoulam R, Ross RA. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB₁ and CB₂. Pharmacol Rev 2011; 62:588-631. [PMID: 21079038 DOI: 10.1124/pr.110.003004] [Citation(s) in RCA: 1219] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are at least two types of cannabinoid receptors (CB(1) and CB(2)). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ(9)-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB(1), non-CB(2) established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB(1) and/or CB(2) receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel "CB(3)" cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB(1), non-CB(2) pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB(3) receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB(1) receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB(1)/CB(2) receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB(1), non-CB(2) cannabinoid receptors; and 4) current cannabinoid receptor nomenclature.
Collapse
Affiliation(s)
- R G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dobretsov M, Backonja MM, Romanovsky D, Stimers JR. Animal Models of Diabetic Neuropathic Pain. ANIMAL MODELS OF PAIN 2011. [DOI: 10.1007/978-1-60761-880-5_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
TRPV1: A Therapy Target That Attracts the Pharmaceutical Interests. TRANSIENT RECEPTOR POTENTIAL CHANNELS 2011; 704:637-65. [DOI: 10.1007/978-94-007-0265-3_34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Watabiki T, Kiso T, Tsukamoto M, Aoki T, Matsuoka N. Intrathecal Administration of AS1928370, a Transient Receptor Potential Vanilloid 1 Antagonist, Attenuates Mechanical Allodynia in a Mouse Model of Neuropathic Pain. Biol Pharm Bull 2011; 34:1105-8. [DOI: 10.1248/bpb.34.1105] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Tetsuo Kiso
- Pharmacology Research Labs., Astellas Pharma Inc
| | | | | | | |
Collapse
|
34
|
Watabiki T, Kiso T, Kuramochi T, Yonezawa K, Tsuji N, Kohara A, Kakimoto S, Aoki T, Matsuoka N. Amelioration of neuropathic pain by novel transient receptor potential vanilloid 1 antagonist AS1928370 in rats without hyperthermic effect. J Pharmacol Exp Ther 2010; 336:743-50. [PMID: 21098091 DOI: 10.1124/jpet.110.175570] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is activated by a variety of stimulations, such as endogenous ligands and low pH, and is believed to play a role in pain transmission. TRPV1 antagonists have been reported to be effective in several animal pain models; however, some compounds induce hyperthermia in animals and humans. We discovered the novel TRPV1 antagonist (R)-N-(1-methyl-2-oxo-1,2,3,4-tetrahydro-7-quinolyl)-2-[(2-methylpyrrolidin-1-yl)methyl]biphenyl-4-carboxamide (AS1928370) in our laboratory. AS1928370 bound to the resiniferatoxin-binding site on TRPV1 and inhibited capsaicin-mediated inward currents with an IC₅₀ value of 32.5 nM. Although AS1928370 inhibited the capsaicin-induced Ca²(+) flux in human and rat TRPV1-expressing cells, the inhibitory effect on proton-induced Ca²(+) flux was extremely small. In addition, AS1928370 showed no inhibitory effects on transient receptor potential vanilloid 4, transient receptor potential ankyrin 1, and transient receptor potential melastatin 8 in concentrations up to 10 μM. AS1928370 improved capsaicin-induced secondary hyperalgesia and mechanical allodynia in an L5/L6 spinal nerve ligation model in rats with respective ED₅₀ values of 0.17 and 0.26 mg/kg p.o. Furthermore, AS1928370 alleviated inflammatory pain in a complete Freund's adjuvant model at 10 mg/kg p.o. AS1928370 had no effect on rectal body temperature up to 10 mg/kg p.o., although a significant hypothermic effect was noted at 30 mg/kg p.o. In addition, AS1928370 showed no significant effect on motor coordination. These results suggest that blockage of the TRPV1 receptor without affecting the proton-mediated TRPV1 activation is a promising approach to treating neuropathic pain because of the potential wide safety margin against hyperthermic effects. As such, compounds such as ASP1928370 may have potential as new analgesic agents for treating neuropathic pain.
Collapse
Affiliation(s)
- Tomonari Watabiki
- Pain Research, Pharmacology Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Palazzo E, Luongo L, de Novellis V, Berrino L, Rossi F, Maione S. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain 2010; 6:66. [PMID: 20937102 PMCID: PMC2959024 DOI: 10.1186/1744-8069-6-66] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/11/2010] [Indexed: 12/20/2022] Open
Abstract
Transient receptor potential vanilloid type 1 (TRPV1) receptor is a non selective ligand-gated cation channel activated by capsaicin, heat, protons and endogenous lipids termed endovanilloids. As well as peripheral primary afferent neurons and dorsal root ganglia, TRPV1 receptor is also expressed in spinal and supraspinal structures such as those belonging to the endogenous antinociceptive descending pathway which is a circuitry of the supraspinal central nervous system whose task is to counteract pain. It includes periaqueductal grey (PAG) and rostral ventromedial medulla (RVM) whose activation leads to analgesia. Such an effect is associated with a glutamate increase and the activation of OFF and inhibition of ON cell population in the rostral ventromedial medulla (RVM). Activation of the antinociceptive descending pathway via TPRV1 receptor stimulation in the PAG may be a novel strategy for producing analgesia in chronic pain. This review will summarize the more recent insights into the role of TRPV1 receptor within the antinociceptive descending pathway and its possible exploitation as a target for new pain-killer agents in chronic pain conditions, with particular emphasis on the most untreatable pain state: neuropathic pain.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, The Second University of Naples, Naples, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Kawamata T, Niiyama Y, Yamamoto J, Furuse S. Reduction of bone cancer pain by CB1 activation and TRPV1 inhibition. J Anesth 2010; 24:328-32. [DOI: 10.1007/s00540-010-0919-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Indexed: 01/29/2023]
|
37
|
Ta LE, Bieber AJ, Carlton SM, Loprinzi CL, Low PA, Windebank AJ. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice. Mol Pain 2010; 6:15. [PMID: 20205720 PMCID: PMC2848188 DOI: 10.1186/1744-8069-6-15] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 03/05/2010] [Indexed: 12/16/2022] Open
Abstract
Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR), we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG) neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG) were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.
Collapse
Affiliation(s)
- Lauren E Ta
- Program in Molecular Neuroscience, Mayo Graduate School, Mayo Clinic, College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Ye Y, Woodbury CJ. Early postnatal loss of heat sensitivity among cutaneous myelinated nociceptors in Swiss-Webster mice. J Neurophysiol 2010; 103:1385-96. [PMID: 20071635 DOI: 10.1152/jn.00472.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous myelinated nociceptors are known to exhibit considerable heterogeneity in their response to noxious heat. In the present experiments, we studied heat sensitivity among myelinated nociceptors during early postnatal life to determine whether this heterogeneity is correlated with other physiological and anatomical properties. A total of 129 cutaneous myelinated nociceptors were recorded intracellularly and characterized using mechanical and thermal skin stimuli in ex vivo preparations from neonatal Swiss-Webster (SW) mice across postnatal ages P2-P10; physiologically identified cells were iontophoretically labeled with neurobiotin for analyses of dorsal horn terminations from heat-sensitive and heat-insensitive cells. Our results show that heat sensitivity is not strictly correlated with other physiological or anatomical properties, most notably mechanical threshold or laminar termination patterns, of myelinated nociceptors at these ages. Further, we found a marked decline in the number of heat-sensitive myelinated mechanonociceptors (A-mechanoheat nociceptors [AMHs]) during this early postnatal period. Indeed, 68% of myelinated nociceptors were AMHs between P2 and P5, whereas this percentage dropped to 36% between P6 and P10. Multiple independent lines of evidence suggest that this decrease reflects a change in phenotype in a subset of myelinated nociceptors that lose sensitivity to noxious heat in early postnatal life. Interestingly, evidence was also obtained for a significant strain difference since the early transient excess in the number of AMHs in P2-P5 SW neonates was not present in similarly aged neonates from the C57Bl/6 strain. Potential mechanisms underlying these postnatal changes in AMH number are discussed.
Collapse
Affiliation(s)
- Yi Ye
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
39
|
Darmani NA, Izzo AA, Degenhardt B, Valenti M, Scaglione G, Capasso R, Sorrentini I, Di Marzo V. Involvement of the cannabimimetic compound, N-palmitoyl-ethanolamine, in inflammatory and neuropathic conditions: review of the available pre-clinical data, and first human studies. Neuropharmacology 2009; 48:1154-63. [PMID: 15910891 DOI: 10.1016/j.neuropharm.2005.01.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 12/14/2004] [Accepted: 01/06/2005] [Indexed: 11/17/2022]
Abstract
The endogenous cannabimimetic compound, and anandamide analogue, N-palmitoyl-ethanolamine (PEA), was shown to exert potent anti-inflammatory and analgesic effects in experimental models of visceral, neuropathic and inflammatory pain by acting via several possible mechanisms. However, only scant data have been reported on the regulation of PEA levels during pathological conditions in animals or, particularly, humans. We review the current literature on PEA and report the results of three separate studies indicating that its concentrations are significantly increased during three different inflammatory and neuropathic conditions, two of which have been assessed in humans, and one in a mouse model. In patients affected with chronic low back pain, blood PEA levels were not significantly different from those of healthy volunteers, but were significantly and differentially increased (1.6-fold, P<0.01, N=10 per group) 30 min following an osteopathic manipulative treatment. In the second study, the paw skin levels of PEA in mice with streptozotocin-induced diabetic neuropathic pain were found to be significantly higher (1.5-fold, P<0.005, N=5) than those of control mice. In the third study, colonic PEA levels in biopsies from patients with ulcerative colitis were found to be 1.8-fold higher (P<0.05, N=8-10) than those in healthy subjects. These heterogeneous data, together with previous findings reviewed here, substantiate the hypothesis that PEA is an endogenous mediator whose levels are increased following neuroinflammatory or neuropathic conditions in both animals and humans, possibly to exert a local anti-inflammatory and analgesic action.
Collapse
Affiliation(s)
- Nissar A Darmani
- Department of Pharmacology and the A. T. Still Research Institute, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Li FN, Kim NJ, Paek SM, Kwon DY, Min KH, Jeong YS, Kim SY, Park YH, Kim HD, Park HG, Suh YG. Design, synthesis, and biological evaluation of novel diarylalkyl amides as TRPV1 antagonists. Bioorg Med Chem 2009; 17:3557-67. [DOI: 10.1016/j.bmc.2009.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/07/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
|
41
|
McGarvey L, McKeagney P, Polley L, MacMahon J, Costello R. Are there clinical features of a sensitized cough reflex? Pulm Pharmacol Ther 2009; 22:59-64. [DOI: 10.1016/j.pupt.2008.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/04/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
42
|
Joshi S, Honore P, Hernandez G, Schmidt R, Gomtsyan A, Scanio M, Kort M, Jarvis MF. Additive Antinociceptive Effects of the Selective Nav1.8 Blocker A-803467 and Selective TRPV1 Antagonists in Rat Inflammatory and Neuropathic Pain Models. THE JOURNAL OF PAIN 2009; 10:306-15. [DOI: 10.1016/j.jpain.2008.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 08/26/2008] [Accepted: 09/22/2008] [Indexed: 11/25/2022]
|
43
|
Islam MS, Choi H. Dietary red chilli (Capsicum frutescens L.) is insulinotropic rather than hypoglycemic in type 2 diabetes model of rats. Phytother Res 2008; 22:1025-9. [PMID: 18668490 DOI: 10.1002/ptr.2417] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The present study was conducted to clarify whether a low or a high, but tolerable, dietary dose of red chilli (RC) can ameliorate the diabetes related complications in a high-fat (HF) diet-fed streptozotocin (STZ)-induced type 2 diabetes model of rats. Five-week-old male Sprague Dawley rats were fed a HF diet for 2 weeks then randomly divided into four groups namely: normal control (NC), diabetic control (DBC), red chilli low (RCL, 0.5%) and red chilli high (RCH, 2.0%) groups. Diabetes was induced by an intraperitoneal (i.p.) injection of STZ (40 mg/kg BW) in all groups except the NC group. After 4 weeks feeding of experimental diets, the fasting blood glucose concentrations in both RC fed groups were not significantly different. The serum insulin concentration was significantly (p < 0.05) increased in the RCH group compared with the DBC and RCL groups. Blood HbA1c, liver weight, liver glycogen and serum lipids were not influenced by the feeding of RC-containing diets. The data of this study suggest that 2% dietary RC is insulinotropic rather than hypoglycemic at least in this experimental condition.
Collapse
Affiliation(s)
- Md Shahidul Islam
- Department of Food and Nutrition, Seoul National University, Seoul 151-742, South Korea.
| | | |
Collapse
|
44
|
McGaraughty S, Chu KL, Brown BS, Zhu CZ, Zhong C, Joshi SK, Honore P, Faltynek CR, Jarvis MF. Contributions of central and peripheral TRPV1 receptors to mechanically evoked and spontaneous firing of spinal neurons in inflamed rats. J Neurophysiol 2008; 100:3158-66. [PMID: 18829846 DOI: 10.1152/jn.90768.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
TRPV1 receptors are activated and/or modulated by noxious heat, capsaicin, protons and other endogenous agents released following tissue injury. There is a growing appreciation that this molecular integrator may also have a role in mechanosensation. To further understand this role, we investigated the systemic and site-specific effects of a selective TRPV1 receptor antagonist, A-889425, on low-intensity mechanical stimulation in inflamed rats. Systemic administration of A-889425 (30 and 100 micromol/kg po) reduced mechanical allodynia in complete Freund's adjuvant (CFA)-inflamed rats. Systemic A-889425 (3 and 10 micromol/kg iv) also decreased the responses of spinal wide dynamic range (WDR) neurons to low-intensity mechanical stimulation in CFA-inflamed but not uninjured rats. This effect of A-889425 was likely mediated via multiple sites since local injection of A-889425 into the spinal cord (1-3 nmol), ipsilateral hindpaw (200 nmol), and cerebral ventricles (30-300 nmol) all attenuated WDR responses to low-intensity mechanical stimulation. In addition to an effect on mechanotransmission, systemic administration of A-889425 reduced the spontaneous firing of WDR neurons in inflamed but not uninjured rats. Spontaneous firing is elevated after injury and may reflect ongoing pain in the animal. Local injection experiments indicated that this effect of A-889425 on spontaneous firing was mainly mediated via TRPV1 receptors in the spinal cord. Thus the current data demonstrate that TRPV1 receptors have an enhanced role after an inflammatory injury, impacting both low-intensity mechanotransmission and possibly spontaneous pain. Furthermore this study delineates the differential contribution of central and peripheral TRPV1 receptors to affect spontaneous or mechanically evoked firing of WDR neurons.
Collapse
Affiliation(s)
- Steve McGaraughty
- Neuroscience Research, Abbott Laboratories, Abbott Park, IL 60064-6118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Meisner JG, Reid AR, Sawynok J. Adrenergic regulation of P2X3 and TRPV1 receptors: differential effects of spared nerve injury. Neurosci Lett 2008; 444:172-5. [PMID: 18722504 DOI: 10.1016/j.neulet.2008.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 02/01/2023]
Abstract
Local application of alphabetaMeATP (ligand for P2X3 receptors) and capsaicin (ligand for TRPV1 receptors) to the rat hindpaw produces pain behaviors (flinching) which are enhanced by noradrenaline (NA). In this study, we have examined the effect of nerve injury on adrenergic regulation of P2X3 and TRPV1 receptors by administering alphabetaMeATP and capsaicin, alone and in combination with NA, into the lateral and medial hindpaw in the spared nerve injury (SNI) model; this allows for an exploration of the role of injured and uninjured afferents in their effects on nociceptive signaling using a behavioral model. Following lateral hindpaw injections (sural sensory field), effects of NA and alphabetaMeATP, both alone and in combination, were increased following SNI, but no such effects were seen following medial hindpaw injections (saphenous sensory field). Following lateral hindpaw injections, the effect of capsaicin alone was unaltered following SNI, but the effect of NA/capsaicin was reduced; this latter effect was not seen following medial hindpaw injections. At the lateral site, prazosin (alpha1-adrenergic receptor antagonist) inhibited the effect of NA/alphabetaMeATP following SNI, but neither prazosin nor GF109203X (protein kinase C inhibitor) inhibited the effect of NA/capsaicin following SNI. These results demonstrate: (a) an enhanced adrenergic regulation of P2X3 receptor activity at lateral sites following SNI where signaling afferents are directly influenced by injured neurons; (b) differential effects on adrenergic regulation of TRPV1 receptors under the same conditions; (c) lack of such changes when agents are administered into medial sites following SNI.
Collapse
Affiliation(s)
- Jason G Meisner
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
46
|
Czaja K, Burns GA, Ritter RC. Capsaicin-induced neuronal death and proliferation of the primary sensory neurons located in the nodose ganglia of adult rats. Neuroscience 2008; 154:621-30. [PMID: 18456414 DOI: 10.1016/j.neuroscience.2008.03.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/07/2008] [Accepted: 03/20/2008] [Indexed: 01/15/2023]
Abstract
To evaluate the potential for neuronal replacement following destruction of vagal afferent neurons, we examined nodose ganglia following i.p. capsaicin treatment of adult rats. Rats received capsaicin or vehicle followed by a regimen of 5'-bromo-2'-deoxyuridine injections (BrdU) to reveal DNA replication. Nodose ganglia were harvested at various times post-treatment and processed for 4',6-diamidino-2-phenylindole (DAPI) nuclear staining and immunofluorescence to estimate neuronal numbers and to determine vanilloid receptor, cleaved caspase 3, TUNEL, BrdU, the neuron-selective marker protein gene product (PGP) -9.5 and neurofilament-M-immunoreactivity. Twenty-four hours after capsaicin approximately 40% of nodose ganglion neurons expressed cleaved caspase 3-immunoreactivity and 16% revealed TUNEL staining, indicating that primary sensory neurons are killed by the capsaicin treatment of adult rats. The occurrence of neuronal death was confirmed by counts of DAPI-stained neuronal nuclei, which revealed >or=50% reduction of nodose neuron number by 30 days post-capsaicin. However, by 60 days post-capsaicin, the total numbers of neuronal nuclei in nodose ganglia from capsaicin-treated rats were not different from controls, suggesting that new neurons had been added to the nodose ganglia. Neuronal proliferation was confirmed by significant BrdU incorporation in nuclei of nodose ganglion cells immunoreactive for the neuron-specific antigen PGP-9.5 revealed 30 and 60 days post-capsaicin. Collectively, these observations suggest that in adult rats massive scale neurogenesis occurs in nodose ganglia following capsaicin-induced neuronal destruction. The adult nodose ganglion, therefore, provides a novel system for studying neural plasticity and adult neurogenesis after peripheral injury of primary sensory neurons.
Collapse
Affiliation(s)
- K Czaja
- Department of Veterinary, Comparative Anatomy, Pharmacology, and Physiology, College of Veterinary Medicine, Washington State University, Pullman, WA 99163-6520, USA.
| | | | | |
Collapse
|
47
|
Mandadi S, Roufogalis BD. ThermoTRP channels in nociceptors: taking a lead from capsaicin receptor TRPV1. Curr Neuropharmacol 2008; 6:21-38. [PMID: 19305786 PMCID: PMC2645548 DOI: 10.2174/157015908783769680] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/27/2007] [Accepted: 07/15/2007] [Indexed: 01/08/2023] Open
Abstract
Nociceptors with peripheral and central projections express temperature sensitive transient receptor potential (TRP) ion channels, also called thermoTRP's. Chemosensitivity of thermoTRP's to certain natural compounds eliciting pain or exhibiting thermal properties has proven to be a good tool in characterizing these receptors. Capsaicin, a pungent chemical in hot peppers, has assisted in the cloning of the first thermoTRP, TRPV1. This discovery initiated the search for other receptors encoding the response to a wide range of temperatures encountered by the body. Of these, TRPV1 and TRPV2 encode unique modalities of thermal pain when exposed to noxious heat. The ability of TRPA1 to encode noxious cold is presently being debated. The role of TRPV1 in peripheral inflammatory pain and central sensitization during chronic pain is well known. In addition to endogenous agonists, a wide variety of chemical agonists and antagonists have been discovered to activate and inhibit TRPV1. Efforts are underway to determine conditions under which agonist-mediated desensitization of TRPV1 or inhibition by antagonists can produce analgesia. Also, identification of specific second messenger molecules that regulate phosphorylation of TRPV1 has been the focus of intense research, to exploit a broader approach to pain treatment. The search for a role of TRPV2 in pain remains dormant due to the lack of suitable experimental models. However, progress into TRPA1's role in pain has received much attention recently. Another thermoTRP, TRPM8, encoding for the cool sensation and also expressed in nociceptors, has recently been shown to reduce pain via a central mechanism, thus opening a novel strategy for achieving analgesia. The role of other thermoTRP's (TRPV3 and TRPV4) encoding for detection of warm temperatures and expressed in nociceptors cannot be excluded. This review will discuss current knowledge on the role of nociceptor thermoTRPs in pain and therapy and describes the activator and inhibitor molecules known to interact with them and modulate their activity.
Collapse
Affiliation(s)
- Sravan Mandadi
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | | |
Collapse
|
48
|
Sullivan KA, Lentz SI, Roberts JL, Feldman EL. Criteria for creating and assessing mouse models of diabetic neuropathy. Curr Drug Targets 2008; 9:3-13. [PMID: 18220709 DOI: 10.2174/138945008783431763] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy (DN) is a serious and debilitating complication of both type 1 and type 2 diabetes. Despite intense research efforts into multiple aspects of this complication, including both vascular and neuronal metabolic derangements, the only treatment remains maintenance of euglycemia. Basic research into the mechanisms responsible for DN relies on using the most appropriate animal model. The advent of genetic manipulation has moved mouse models of human disease to the forefront. The ability to insert or delete genes affected in human patients offers unique insight into disease processes; however, mice are still not humans and difficulties remain in interpreting data derived from these animals. A number of studies have investigated and described DN in mice but it is difficult to compare these studies with each other or with human DN due to experimental differences including background strain, type of diabetes, method of induction and duration of diabetes, animal age and gender. This review describes currently used DN animal models. We followed a standardized diabetes induction protocol and designed and implemented a set of phenotyping parameters to classify the development and severity of DN. By applying standard protocols, we hope to facilitate the comparison and characterization of DN across different background strains in the hope of discovering the most human like model in which to test potential therapies.
Collapse
Affiliation(s)
- Kelli A Sullivan
- University of Michigan, Departments of Neurology and Internal Medicine, USA
| | | | | | | |
Collapse
|
49
|
Gharat LA, Szallasi A. Advances in the design and therapeutic use of capsaicin receptor TRPV1 agonists and antagonists. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.2.159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Wang ST, Chen S, Guo M, Liu XM. Inhibitory effect of cochinchinenin B on capsaicin-activated responses in rat dorsal root ganglion neurons. Brain Res 2008; 1201:34-40. [PMID: 18294619 DOI: 10.1016/j.brainres.2007.12.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 12/19/2007] [Accepted: 12/30/2007] [Indexed: 01/23/2023]
Abstract
Vanilloid receptor 1 (VR1) is a noxious receptor and a novel target for pain therapy. Cochinchinenin B (6-hydroxy-7-methoxy-3-(4'-hydroxybenzyl) chromone; CB) is one of the small-molecular components from the flavonoids of Dragon's Blood, a well-known herbal medicine to treat various types of pain. Using whole-cell patch clamp technique, we found that capsaicin (CAP)-activated currents (ICAP) was inhibited by CB with an IC50 of 0.92 mM in acutely isolated rat dorsal root ganglion (DRG) neurons. The inhibition was reversible and not competitive. We also found that the inhibition was neither voltage- nor agonist-dependent. The bind site was on the extracellular part of the channel since intracellular application of CB did not alter the inhibition effect on ICAP. In addition, CB inhibited CAP-evoked depolarization under current-clamp condition. Our findings indicate that CB may be a candidate in developing new analgesic drugs targeting the VR1 receptor.
Collapse
Affiliation(s)
- Song-tao Wang
- Department of Biomedical Engineering, Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | | | | | | |
Collapse
|