1
|
Zacky Ariffin M, Yun Ng S, Nadia H, Koh D, Loh N, Michiko N, Khanna S. Neurokinin1 - cholinergic receptor mechanisms in the medial Septum-Dorsal hippocampus axis mediates experimental neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100162. [PMID: 39224764 PMCID: PMC11367143 DOI: 10.1016/j.ynpai.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The neurokinin-1 receptors (NK1Rs) in the forebrain medial septum (MS) region are localized exclusively on cholinergic neurons that partly project to the hippocampus and the cingulate cortex (Cg), regions implicated in nociception. In the present study, we explored the hypothesis that neurotransmission at septal NK1R and hippocampal cholinergic mechanisms mediate experimental neuropathic pain in the rodent chronic constriction injury model (CCI). Our investigations showed that intraseptal microinjection of substance P (SP) in rat evoked a peripheral hypersensitivity (PH)-like response in uninjured animals that was attenuated by systemic atropine sulphate, a muscarinic-cholinergic receptor antagonist. Conversely, pre-emptive destruction of septal cholinergic neurons attenuated the development of PH in the CCI model that also prevented the expression of cellular markers of nociception in the spinal cord and the forebrain. Likewise, anti-nociception was evoked on intraseptal microinjection of L-733,060, an antagonist at NK1Rs, and on bilateral or unilateral microinjection of the cholinergic receptor antagonists, atropine or mecamylamine, into the different regions of the dorsal hippocampus (dH) or on bilateral microinjection into the Cg. Interestingly, the effect of L-733,060 was accompanied with a widespread decreased in levels of CCI-induced nociceptive cellular markers in forebrain that was not secondary to behaviour, suggesting an active modulation of nociceptive processing by transmission at NK1R in the medial septum. The preceding suggest that the development and maintenance of neuropathic nociception is facilitated by septal NK1R-dH cholinergic mechanisms which co-ordinately affect nociceptive processing in the dH and the Cg. Additionally, the data points to a potential strategy for pain modulation that combines anticholinergics and anti-NKRs.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Si Yun Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hamzah Nadia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darrel Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naomi Michiko
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Kopsick JD, Hartzell K, Lazaro H, Nambiar P, Hasselmo ME, Dannenberg H. Temporal dynamics of cholinergic activity in the septo-hippocampal system. Front Neural Circuits 2022; 16:957441. [PMID: 36092276 PMCID: PMC9452968 DOI: 10.3389/fncir.2022.957441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cholinergic projection neurons in the medial septum and diagonal band of Broca are the major source of cholinergic modulation of hippocampal circuit functions that support neural coding of location and running speed. Changes in cholinergic modulation are known to correlate with changes in brain states, cognitive functions, and behavior. However, whether cholinergic modulation can change fast enough to serve as a potential speed signal in hippocampal and parahippocampal cortices and whether the temporal dynamics in such a signal depend on the presence of visual cues remain unknown. In this study, we use a fiber-photometric approach to quantify the temporal dynamics of cholinergic activity in freely moving mice as a function of the animal's movement speed and visual cues. We show that the population activity of cholinergic neurons in the medial septum and diagonal band of Broca changes fast enough to be aligned well with changes in the animal's running speed and is strongly and linearly correlated to the logarithm of the animal's running speed. Intriguingly, the cholinergic modulation remains strongly and linearly correlated to the speed of the animal's neck movements during periods of stationary activity. Furthermore, we show that cholinergic modulation is unaltered during darkness. Lastly, we identify rearing, a stereotypic behavior where the mouse stands on its hindlimbs to scan the environment from an elevated perspective, is associated with higher cholinergic activity than expected from neck movements on the horizontal plane alone. Taken together, these data show that temporal dynamics in the cholinergic modulation of hippocampal circuits are fast enough to provide a potential running speed signal in real-time. Moreover, the data show that cholinergic modulation is primarily a function of the logarithm of the animal's movement speed, both during locomotion and during stationary activity, with no significant interaction with visual inputs. These data advance our understanding of temporal dynamics in cholinergic modulation of hippocampal circuits and their functions in the context of neural coding of location and running speed.
Collapse
Affiliation(s)
- Jeffrey D. Kopsick
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| | - Kyle Hartzell
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
| | - Hallie Lazaro
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Pranav Nambiar
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Holger Dannenberg
- Department of Bioengineering, George Mason University, Fairfax, VA, United States
- Interdisciplinary Program for Neuroscience, George Mason University, Fairfax, VA, United States
| |
Collapse
|
3
|
Wander CM, Song J. The neurogenic niche in Alzheimer's disease. Neurosci Lett 2021; 762:136109. [PMID: 34271133 PMCID: PMC9013442 DOI: 10.1016/j.neulet.2021.136109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/17/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Adult hippocampal neurogenesis is the process of generation and functional incorporation of new neurons, formed by adult neural stem cells in the dentate gyrus. Adult hippocampal neurogenesis is highly dependent upon the integration of dynamic external stimuli and is instrumental in the formation of new spatial memories. Adult hippocampal neurogenesis is therefore uniquely sensitive to the summation of neuronal circuit and neuroimmune environments that comprise the neurogenic niche, and has powerful implications in diseases of aging and neurological disorders. This sensitivity underlies the neurogenic niche alterations commonly observed in Alzheimer's disease, the most common form of dementia. This review summarizes Alzheimer's disease associated changes in neuronal network activity, neuroinflammatory processes, and adult neural stem cell fate choice that ultimately result in neurogenic niche dysfunction and impaired adult hippocampal neurogenesis. A more comprehensive understanding of the complex changes mediating neurogenic niche disturbances in Alzheimer's disease will aid development of future therapies targeting adult neurogenesis.
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Juan Song
- Department of Pharmacology, University of North Carolina at Chapel Hill
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Sil’kis IG. Possible Mechanisms of the Complex Effects of Acetylcholine on Theta Activity, Learning, and Memory. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Dannenberg H, Hinman JR, Hasselmo ME. Potential roles of cholinergic modulation in the neural coding of location and movement speed. ACTA ACUST UNITED AC 2016; 110:52-64. [PMID: 27677935 DOI: 10.1016/j.jphysparis.2016.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 12/26/2022]
Abstract
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks.
Collapse
Affiliation(s)
- Holger Dannenberg
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - James R Hinman
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Department of Psychological and Brain Sciences, Center for Memory and Brain, Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Developmental alterations of the septohippocampal cholinergic projection in a lissencephalic mouse model. Exp Neurol 2015; 271:215-27. [PMID: 26079645 DOI: 10.1016/j.expneurol.2015.06.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/19/2015] [Accepted: 06/12/2015] [Indexed: 11/22/2022]
Abstract
LIS1 is one of principal genes related with Type I lissencephaly, a severe human brain malformation characterized by abnormal neuronal migration in the cortex. The LIS1 gene encodes a brain-specific 45kDa non-catalytic subunit of platelet-activating factor (PAF) acetylhydrolase-1b (PAFAH1b), an enzyme that inactivates the PAF. We have studied the role of Lis1 using a Lis1/sLis1 murine model, which has deleted the first coding exon from Lis1 gene. Homozygous mice are not viable but heterozygous have shown a delayed corticogenesis and neuronal dysplasia, with enhanced cortical excitability. Lis1/sLis1 embryos also exhibited a delay of cortical innervation by the thalamocortical fibers. We have explored in Lis1/sLis1 mice anomalies in forebrain cholinergic neuron development, which migrate from pallium to subpallium, and functionally represent the main cholinergic input to the cerebral cortex, modulating cortical activity and facilitating attention, learning, and memory. We hypothesized that primary migration anomalies and/or disorganized cortex could affect cholinergic projections from the basal forebrain and septum in Lis1/sLis1 mouse. To accomplish our objective we have first studied basal forebrain neurons in Lis1/sLis1 mice during development, and described structural and hodological differences between wild-type and Lis1/sLis1 embryos. In addition, septohippocampal projections showed altered development in mutant embryos. Basal forebrain abnormalities could contribute to hippocampal excitability anomalies secondary to Lis1 mutations and may explain the cognitive symptoms associated to cortical displasia-related mental diseases and epileptogenic syndromes.
Collapse
|
7
|
Septo-hippocampal signal processing: breaking the code. PROGRESS IN BRAIN RESEARCH 2015; 219:103-20. [PMID: 26072236 DOI: 10.1016/bs.pbr.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The septo-hippocampal connections appear to be a key element in the neuromodulatory cholinergic control of the hippocampal neurons. The cholinergic neuromodulation is well established in shifting behavioral states of the brain. The pacemaker role of medial septum in the limbic theta rhythm is demonstrated by lesions and pharmacological manipulations of GABAergic neurons, yet the link between the activity of different septal neuronal classes and limbic theta rhythm is not fully understood. We know even less about the information transfer between the medial septum and hippocampus--is there a particular kind of processed information that septo-hippocampal pathways transmit? This review encompasses fundamental findings together with the latest data of septo-hippocampal signal processing to tackle the frontiers of our understanding about the functional significance of medial septum to the hippocampal formation.
Collapse
|
8
|
Moustafa AA, Krishna R, Frank MJ, Eissa AM, Hewedi DH. Cognitive correlates of psychosis in patients with Parkinson's disease. Cogn Neuropsychiatry 2015; 19:381-98. [PMID: 24446773 DOI: 10.1080/13546805.2013.877385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Psychosis and hallucinations occur in 20-30% of patients with Parkinson's disease (PD). In the current study, we investigate cognitive functions in relation to the occurrence of psychosis in PD patients. METHODS We tested three groups of subjects - PD with psychosis, PD without psychosis and healthy controls - on working memory, learning and transitive inference tasks, which are known to assess prefrontal, basal ganglia and hippocampal functions. RESULTS In the working memory task, results show that patients with and without psychosis were more impaired than the healthy control group. In the transitive inference task, we did not find any difference among the groups in the learning phase performance. Importantly, PD patients with psychosis were more impaired than both PD patients without psychosis and controls at transitive inference. We also found that the severity of psychotic symptoms in PD patients [as measured by the Unified Parkinson Disease Rating Scale Thought Disorder (UPDRS TD) item] is directly associated with the severity of cognitive impairment [as measured by the mini-mental status exam (MMSE)], sleep disturbance [as measured by the Scales for Outcome in Parkinson Disease (SCOPA) sleep scale] and transitive inference (although the latter did not reach significance). CONCLUSIONS Although hypothetical, our data may suggest that the hippocampus is a neural substrate underlying the occurrence of psychosis, sleep disturbance and cognitive impairment in PD patients.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- a Department of Veterans Affairs , New Jersey Health Care System , East Orange , NJ , USA
| | | | | | | | | |
Collapse
|
9
|
Garrido-Sanabria ER, Perez-Cordova MG, Colom LV. Differential expression of voltage-gated K+ currents in medial septum/diagonal band complex neurons exhibiting distinct firing phenotypes. Neurosci Res 2011; 70:361-9. [PMID: 21624401 PMCID: PMC3150140 DOI: 10.1016/j.neures.2011.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 04/22/2011] [Accepted: 05/09/2011] [Indexed: 01/28/2023]
Abstract
The medial septum/diagonal band complex (MSDB) controls hippocampal excitability, rhythms and plastic processes. Medial septal neuronal populations display heterogeneous firing patterns. In addition, some of these populations degenerate during age-related disorders (e.g. cholinergic neurons). Thus, it is particularly important to examine the intrinsic properties of theses neurons in order to create new agents that effectively modulate hippocampal excitability and enhance memory processes. Here, we have examined the properties of voltage-gated, K(+) currents in electrophysiologically-identified neurons. These neurons were taken from young rat brain slices containing the MS/DB complex. Whole-cell, patch recordings of outward currents were obtained from slow firing, fast-spiking, regular-firing and burst-firing neurons. Slow firing neurons showed depolarization-activated K(+) current peaks and densities larger than in other neuronal subtypes. Slow firing total current exhibited an inactivating A-type current component that activates at subthreshold depolarization and was reliably blocked by high concentrations of 4-AP. In addition, slow firing neurons expressed a low-threshold delayed rectifier K(+) current component with slow inactivation and intermediate sensitivity to tetraethylammonium. Fast-spiking neurons exhibited the smaller I(K) and I(A) current densities. Burst and regular firing neurons displayed an intermediate firing phenotype with I(K) and I(A) current densities that were larger than the ones observed in fast-spiking neurons but smaller than the ones observed in slow-firing neurons. In addition, the prevalence of each current differed among electrophysiological groups with slow firing and regular firing neurons expressing mostly I(A) and fast spiking and bursting neurons exhibiting mostly delayer rectifier K(+) currents with only minimal contributions of the I(A). The pharmacological or genetic modulations of these currents constitute an important target for the treatment of age-related disorders.
Collapse
Affiliation(s)
- Emilio R. Garrido-Sanabria
- Department of Biological Sciences, The Center for Biomedical Studies, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
| | - Miriam G. Perez-Cordova
- Department of Biological Sciences, The Center for Biomedical Studies, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
| | - Luis V. Colom
- Department of Biological Sciences, The Center for Biomedical Studies, The University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
| |
Collapse
|
10
|
Striatum–hippocampus balance: From physiological behavior to interneuronal pathology. Prog Neurobiol 2011; 94:102-14. [DOI: 10.1016/j.pneurobio.2011.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/28/2011] [Accepted: 04/06/2011] [Indexed: 11/20/2022]
|
11
|
González JC, Albiñana E, Baldelli P, García AG, Hernández-Guijo JM. Presynaptic muscarinic receptor subtypes involved in the enhancement of spontaneous GABAergic postsynaptic currents in hippocampal neurons. Eur J Neurosci 2010; 33:69-81. [PMID: 21091801 DOI: 10.1111/j.1460-9568.2010.07475.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the effects of muscarinic acetylcholine receptor (mAChR) activation on GABAergic synaptic transmission in rat hippocampal neurons. Current-clamp recordings revealed that methacholine produced membrane depolarization and action potential firing. Methacholine augmented the bicuculline-sensitive and GABA(A) -mediated frequency of spontaneous inhibitory postsynaptic currents (sIPSCs); the action of methacholine had a slow onset and longer duration. The increase in methacholine-evoked sIPSCs was completely inhibited by atropine and was insensitive to glutamatergic receptor blockers. Interestingly, methacholine action was not inhibited by intracellular perfusion with GDP-β-S, suggesting that muscarinic effects on membrane excitability and sIPSC frequency are mainly presynaptic. McN-A-343 and pirenzepine, selective agonist and antagonist of the m1 mAChR subtype, respectively, neither enhanced sIPSCs nor inhibited the methacholine effect. However, the m3-m5 mAChR antagonist 4-DAMP, and the m2-m4 mAChR antagonist himbacine inhibited the methacholine effect. U73122, an IP(3) production inhibitor, and 2APB, an IP(3) receptor blocker, drastically decreased the methacholine effect. Recording of miniature events revealed that besides the effect exerted by methacholine on membrane firing properties and sIPSC frequency, muscarinic receptors also enhanced the frequency of mIPSCs with no effect on their amplitude, possibly modulating the molecular machinery subserving vesicle docking and fusion and suggesting a tight colocalization at the active zone of the presynaptic terminals. These data strongly suggest that by activating presynaptic m2, m3, m4 and m5 mAChRs, methacholine can increase membrane excitability and enhance efficiency in the GABA release machinery, perhaps through a mechanism involving the release of calcium from the endoplasmic reticulum.
Collapse
Affiliation(s)
- J C González
- Instituto Teófilo Hernando, IIS Hospital Universitario de la Princesa, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
12
|
Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors. J Neurosci 2010; 29:15375-85. [PMID: 20007462 DOI: 10.1523/jneurosci.3126-09.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anxiety is among the most prevalent and costly diseases of the CNS, but its underlying mechanisms are not fully understood. Although attenuated theta rhythms have been observed in human subjects with increased anxiety, no study has been done on the possible physiological link between these two manifestations. We found that the mutant mouse for phospholipase C beta 4 (PLC-beta 4(-/-)) showed attenuated theta rhythm and increased anxiety, presenting the first animal model for the human condition. PLC-beta 4 is abundantly expressed in the medial septum, a region implicated in anxiety behavior. RNA interference-mediated PLC-beta 4 knockdown in the medial septum produced a phenotype similar to that of PLC-beta 4(-/-) mice. Furthermore, increasing cholinergic signaling by administering an acetylcholinesterase inhibitor cured the anomalies in both cholinergic theta rhythm and anxiety behavior observed in PLC-beta 4(-/-) mice. These findings suggest that (1) PLC-beta 4 in the medial septum is involved in controlling cholinergic theta oscillation and (2) cholinergic theta rhythm plays a critical role in suppressing anxiety. We propose that defining the cholinergic theta rhythm profile may provide guidance in subtyping anxiety disorders in humans for more effective diagnosis and treatments.
Collapse
|
13
|
Roland JJ, Levinson M, Vetreno RP, Savage LM. Differential effects of systemic and intraseptal administration of the acetylcholinesterase inhibitor tacrine on the recovery of spatial behavior in an animal model of diencephalic amnesia. Eur J Pharmacol 2009; 629:31-9. [PMID: 20006600 DOI: 10.1016/j.ejphar.2009.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/19/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Several lines of evidence suggest that acetylcholinesterase inhibitors (AChE) have their cognitive enhancing effects by stimulating cholinergic receptors within the medial septum. However, intraseptal administration of cholinergic enhancing drugs produce mixed results that appear to depend on both the integrity of the medial septum as well as task demands. Three experiments were conducted to determine the relationship between increased cholinergic activity within the medial septum and hippocampus and behavioral recovery in a model of diencephalic amnesia produced by pyrithiamine-induced thiamine deficiency (PTD). In Experiment 1, systemic tacrine (0.0, 0.75, 1.5mg/kg) was administered to PTD and pair-fed (PF) rats prior to a spontaneous alternation task. Without tacrine, PF rats alternated at a higher rate than PTD rats. Both doses of tacrine increased alternation in PTD rats to within the range of PF rats. In Experiment 2, three doses of intraseptal tacrine (2.5, 5.0, 12.5microg) were administered to PTD and PF rats and changes in hippocampal acetylcholine efflux were assessed. Both the 5.0 and 12.5microg doses significantly increased hippocampal acetylcholine levels, but the change was greater in the PTD rats. In Experiment 3, despite the fact that both intraseptal doses of tacrine (5.0, 12.5microg) increased hippocampal acetylcholine levels, only 5.0microg significantly improved alternation scores in PTD rats. Thus, when there is basal forebrain cholinergic cell loss in conjunction with diencephalic pathology, the therapeutic range of AChE-I in the medial septum and the effective doses do not directly map onto changes in acetylcholine efflux in the hippocampus.
Collapse
Affiliation(s)
- Jessica J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, United States
| | | | | | | |
Collapse
|
14
|
Roland JJ, Savage LM. Blocking GABA-A receptors in the medial septum enhances hippocampal acetylcholine release and behavior in a rat model of diencephalic amnesia. Pharmacol Biochem Behav 2009; 92:480-7. [PMID: 19463263 PMCID: PMC2687320 DOI: 10.1016/j.pbb.2009.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 01/19/2009] [Accepted: 01/23/2009] [Indexed: 11/21/2022]
Abstract
Wernicke-Korsakoff syndrome (WKS), a form of diencephalic amnesia caused by thiamine deficiency, results in severe anterograde memory loss. Pyrithiamine-induced thiamine deficiency (PTD), an animal model of WKS, produces cholinergic abnormalities including decreased functional hippocampal acetylcholine (ACh) release and poor spatial memory. Increasing hippocampal ACh levels has increased performance in PTD animals. Intraseptal bicuculline (GABA(A) antagonist) augments hippocampal ACh release in normal animals and we found it (0.50 microg/microl and 0.75 microg/microl) also increased in-vivo hippocampal ACh release in PTD animals. However, the 0.75 microg/microl dose produced a greater change in hippocampal ACh release in control animals. The 0.50 microg/microl dose of bicuculline was then selected to determine if it could enhance spontaneous alternation performance in PTD animals. This dose of bicuculline significantly increased hippocampal ACh levels above baseline in both PTD and control rats and resulted in complete behavioral recovery in PTD animals, without altering performance in control rats. This suggests that balancing ACh-GABA interactions in the septohippocampal circuit may be an effective therapeutic approach in certain amnestic syndromes.
Collapse
Affiliation(s)
- Jessica J Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-State University of New York, NY, USA.
| | | |
Collapse
|
15
|
Roland JJ, Mark K, Vetreno RP, Savage LM. Increasing hippocampal acetylcholine levels enhance behavioral performance in an animal model of diencephalic amnesia. Brain Res 2008; 1234:116-27. [PMID: 18706897 PMCID: PMC2614338 DOI: 10.1016/j.brainres.2008.07.090] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/23/2008] [Accepted: 07/26/2008] [Indexed: 01/06/2023]
Abstract
Pyrithiamine-induced thiamine deficiency (PTD) was used to produce a rodent model of Wernicke-Korsakoff syndrome that results in acute neurological disturbances, thalamic lesions, and learning and memory impairments. There is also cholinergic septohippocampal dysfunction in the PTD model. Systemic (Experiment 1) and intrahippocampal (Experiment 2) injections of the acetylcholinesterase inhibitor physostigmine were administered to determine if increasing acetylcholine levels would eliminate the behavioral impairment produced by PTD. Prior to spontaneous alternation testing, rats received injections of either physostigmine (systemic=0.075 mg/kg; intrahippocampal=20, 40 ng/muL) or saline. In Experiment 2, intrahippocampal injections of physostigmine significantly enhanced alternation rates in the PTD-treated rats. In addition, although intrahippocampal infusions of 40 ng of physostigmine increased the available amount of ACh in both pair-fed (PF) and PTD rats, it did so to a greater extent in PF rats. The increase in ACh levels induced by the direct hippocampal application of physostigmine in the PTD model likely increased activation of the extended limbic system, which was dysfunctional, and therefore led to recovery of function on the spontaneous alternation task. In contrast, the lack of behavioral improvement by intrahippocampal physostigmine infusion in the PF rats, despite a greater rise in hippocampal ACh levels, supports the theory that there is an optimal range of cholinergic tone for optimal behavioral and hippocampal function.
Collapse
Affiliation(s)
- Jessica J. Roland
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| | - Katherine Mark
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| | - Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton NY, 13902
| |
Collapse
|
16
|
Organization of food protection behavior is differentially influenced by 192 IgG-saporin lesions of either the medial septum or the nucleus basalis magnocellularis. Brain Res 2008; 1241:122-35. [PMID: 18823954 DOI: 10.1016/j.brainres.2008.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/05/2008] [Accepted: 09/07/2008] [Indexed: 11/21/2022]
Abstract
Converging lines of evidence have supported a role for the nucleus basalis magnocellularis (NB) in attentional mechanisms; however, debate continues regarding the role of the medial septum in behavior (MS). Recent studies have supported a role for the septohippocampal system in the online processing of internally generated cues. The current study was designed to investigate a possible double dissociation in rat food protection behavior, a natural behavior that has been shown to depend on external and internal sources of information. The study examined the effects of intraparenchymal injections of 192 IgG-saporin into either the MS or NB on the organization of food protection behavior. NB cholinergic lesions reduced the number of successful food protection behaviors while sparing the temporal organization of food protection behavior. In contrast, MS cholinergic lesions disrupted the temporal organization of food protection behavior while sparing the ability to successfully protect food items. These observations are consistent with a double dissociation of NB and MS cholinergic systems' contributions to processing external and internal sources of information and provide further evidence for the septohippocampal system's involvement in processing internally generated cues.
Collapse
|
17
|
Varga V, Hangya B, Kránitz K, Ludányi A, Zemankovics R, Katona I, Shigemoto R, Freund TF, Borhegyi Z. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. J Physiol 2008; 586:3893-915. [PMID: 18565991 DOI: 10.1113/jphysiol.2008.155242] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.
Collapse
Affiliation(s)
- Viktor Varga
- Department of Cell and Network Neurobiology, Institute of Experimental Medicine of the Hungarian Academy of Sciences; Szigony u. 43. Budapest, 1083 Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Morozova E, Wu M, Dumalska I, Alreja M. Neurokinins robustly activate the majority of septohippocampal cholinergic neurons. Eur J Neurosci 2008; 27:114-22. [PMID: 18184316 DOI: 10.1111/j.1460-9568.2007.05993.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the brain, tachykinins acting via the three cloned neurokinin (NK) receptors are implicated in stress-related affective disorders. Hemokinin-1 is a novel tachykinin that reportedly prefers NK1 to NK2 or NK3 receptors. Although NK1 and NK3 receptors are abundantly expressed in the brain, NK2-receptor-mediated electrophysiological effects have rarely been described as NK2 receptors are expressed only in a few brain regions such as the nucleus of the medial septum/diagonal band. Medial septal/diagonal band neurons that control hippocampal mnemonic functions also colocalize NK1 and NK3 receptors. Functionally, intraseptal activation of all three NK receptors increases hippocampal acetylcholine release and NK2 receptors have specifically been implicated in stress-induced hippocampal acetylcholine release. Electrophysiological studies on the effects of NKs on septohippocampal cholinergic neurons are lacking and electrophysiological effects of hemokinin-1 have thus far not been reported in brain neurons. In the present study we examined the electrophysiological and pharmacological effects of multiple NKs on fluorescently tagged septohippocampal cholinergic neurons using whole-cell patch-clamp recordings in a rat brain slice preparation. We demonstrate that a vast majority of septohippocampal cholinergic cells are activated by NK1, NK2 and NK3 receptor agonists as well as by hemokinin-1 via direct post-synaptic mechanisms. Pharmacologically, hemokinin-1 recruits not only NK1 but also NK2 and NK3 receptors to activate septohippocampal cholinergic neurons that are the primary source of acetylcholine for the hippocampus.
Collapse
Affiliation(s)
- Elena Morozova
- Department of Psychiatry, Yale University School of Medicine and the Bibicoff Research Facilities, Connecticut Mental Health Center 335A, 34 Park Street, New Haven, CT 06508, USA
| | | | | | | |
Collapse
|
19
|
Garrido-Sanabria ER, Perez MG, Banuelos C, Reyna T, Hernandez S, Castaneda MT, Colom LV. Electrophysiological and morphological heterogeneity of slow firing neurons in medial septal/diagonal band complex as revealed by cluster analysis. Neuroscience 2007; 146:931-45. [PMID: 17412516 PMCID: PMC2810285 DOI: 10.1016/j.neuroscience.2007.02.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 01/24/2007] [Accepted: 02/05/2007] [Indexed: 12/15/2022]
Abstract
Slow firing septal neurons modulate hippocampal and neocortical functions. Electrophysiologically, it is unclear whether slow firing neurons belong to a homogeneous neuronal population. To address this issue, whole-cell patch recordings and neuronal reconstructions were performed on rat brain slices containing the medial septum/diagonal band complex (MS/DB). Slow firing neurons were identified by their low firing rate at threshold (<5 Hz) and lack of time-dependent inward rectification (Ih). Unsupervised cluster analysis was used to investigate whether slow firing neurons could be further classified into different subtypes. The parameters used for the cluster analysis included latency for first spike, slow after-hyperpolarizing potential, maximal frequency and action potential (AP) decay slope. Neurons were grouped into three major subtypes. The majority of neurons (55%) were grouped as cluster I. Cluster II (17% of neurons) exhibited longer latency for generation of the first action potential (246.5+/-20.1 ms). Cluster III (28% of neurons) exhibited higher maximal firing frequency (25.3+/-1.7 Hz) when compared with cluster I (12.3+/-0.9 Hz) and cluster II (11.8+/-1.1 Hz) neurons. Additionally, cluster III neurons exhibited faster action potentials at suprathreshold. Interestingly, cluster II neurons were frequently located in the medial septum whereas neurons in cluster I and III appeared scattered throughout all MS/DB regions. Sholl's analysis revealed a more complex dendritic arborization in cluster III neurons. Cluster I and II neurons exhibited characteristics of "true" slow firing neurons whereas cluster III neurons exhibited higher frequency firing patterns. Several neurons were labeled with a cholinergic marker, Cy3-conjugated 192 IgG (p75NTR), and cholinergic neurons were found to be distributed among the three clusters. Our findings indicate that slow firing medial septal neurons are heterogeneous and that soma location is an important determinant of their electrophysiological properties. Thus, slow firing neurons from different septal regions have distinct functional properties, most likely related to their diverse connectivity.
Collapse
Affiliation(s)
- E. R. Garrido-Sanabria
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
- Center for Biomedical Studies, Brownsville, Texas 78520
| | - M. G. Perez
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - C. Banuelos
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - T. Reyna
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - S. Hernandez
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - M. T. Castaneda
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
| | - L. V. Colom
- Department of Biological Sciences, The University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas 78520
- Center for Biomedical Studies, Brownsville, Texas 78520
| |
Collapse
|
20
|
Savage LM, Roland J, Klintsova A. Selective septohippocampal - but not forebrain amygdalar - cholinergic dysfunction in diencephalic amnesia. Brain Res 2007; 1139:210-9. [PMID: 17289001 PMCID: PMC1868479 DOI: 10.1016/j.brainres.2006.12.083] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 12/21/2006] [Accepted: 12/22/2006] [Indexed: 12/31/2022]
Abstract
A rodent model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), was used to investigate diencephalic-limbic interactions. In-vivo acetylcholine (ACh) efflux, a marker of memory-related activation, was measured in the hippocampus and the amygdala of PTD-treated and pair-fed (PF) control rats while they were tested on a spontaneous alternation task. During behavioral testing, all animals displayed increases in ACh efflux in both the hippocampus and amygdala. However, during spontaneous alternation testing ACh efflux in the hippocampus and the alternation scores were higher in PF rats relative to PTD-treated rats. In contrast, ACh efflux in the amygdala was not suppressed in PTD treated rats, relative to PF rats, prior to or during behavioral testing. In addition, unbiased stereological estimates of the number of choline acetyltransferase (ChAT) immunopositive neurons in the medial septal/diagonal band (MS/DB) and nucleus basalis of Meynert (NBM) also reveal a selective cholinergic dysfunction: In PTD-treated rats a significant loss of ChAT-immunopositive cells was found only in the MS/DB, but not in the NBM. Significantly, these results demonstrate that thiamine deficiency causes selective cholinergic dysfunction in the septo-hippocampal pathway.
Collapse
Affiliation(s)
- Lisa M Savage
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | | | | |
Collapse
|
21
|
Xu C, Wu M, Morozova E, Alreja M. Muscarine activates the sodium-calcium exchanger via M3receptors in basal forebrain neurons. Eur J Neurosci 2006; 24:2309-13. [PMID: 17074051 DOI: 10.1111/j.1460-9568.2006.05118.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons of the medial septum/diagonal band of Broca (MSDB) project to the hippocampus. Muscarinic cholinergic mechanisms within the MSDB are potent modulators of hippocampal functions; intraseptal scopolamine disrupts and intraseptal carbachol facilitates hippocampus-dependent learning and memory tasks, and the associated hippocampal theta rhythm. In earlier work, we demonstrated that, within the MSDB, the septohippocampal GABAergic but not cholinergic neurons are the primary target of muscarinic manipulations and that muscarinic activation of septohippocampal GABAergic neurons is mediated directly via M(3) receptors. In the present study, we examined the ionic mechanism(s) underlying the excitatory actions of muscarine in these neurons. Using whole-cell patch-clamp recording techniques in rat brain slices, we demonstrated that M(3) receptor-mediated muscarinic activation of MSDB neurons is dependent on external Na(+) and is also reduced by bath-applied Ni(2+) and KB-R7943 as well as by replacing external Na(+) with Li(+), suggesting a primary involvement of the Na(+)-Ca(2+) exchanger. We conclude that the M(3) receptor-mediated muscarinic activation of MSDB septohippocampal GABA-type neurons, that is important for cognitive functioning, is mediated via activation of the Na(+)-Ca(2+) exchanger.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychiatry, CMHC 335A, Yale University School of Medicine, Connecticut Mental Health Center, 34 Park Street, New Haven, CT 06508, USA
| | | | | | | |
Collapse
|
22
|
Garrido Sanabria ER, Castañeda MT, Banuelos C, Perez-Cordova MG, Hernandez S, Colom LV. Septal GABAergic neurons are selectively vulnerable to pilocarpine-induced status epilepticus and chronic spontaneous seizures. Neuroscience 2006; 142:871-83. [PMID: 16934946 DOI: 10.1016/j.neuroscience.2006.06.057] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/19/2006] [Accepted: 06/20/2006] [Indexed: 11/21/2022]
Abstract
The septal region of the basal forebrain plays a critical role modulating hippocampal excitability and functional states. Septal circuits may also play a role in controlling abnormal hippocampal hyperexcitability in epilepsy. Both lateral and medial septal neurons are targets of hippocampal axons. Since the hippocampus is an important epileptogenic area in temporal lobe epilepsy, we hypothesize that excessive excitatory output will promote sustained neurodegeneration of septal region neurons. Pilocarpine-induced status epilepticus (SE) was chosen as a model to generate chronic epileptic animals. To determine whether septal neuronal populations are affected by hippocampal seizures, immunohistochemical assays were performed in brain sections obtained from age-matched control, latent period (7 days post-SE) and chronically epileptic (more than one month post-SE survival) rats. An anti-NeuN (neuronal nuclei) antibody was used to study total neuronal numbers. Anti-ChAT (choline acetyltransferase), anti-GAD (glutamic acid decarboxylase) isoenzymes (65 and 67), and anti-glutamate antibodies were used to reveal cholinergic, GABAergic and glutamatergic neurons, respectively. Our results revealed a significant atrophy of medial and lateral septal areas in all chronically epileptic rats. Overall neuronal density in the septum (medial and lateral septum), assessed by NeuN immunoreactivity, was significantly reduced by approximately 40% in chronically epileptic rats. The lessening of neuronal numbers in both regions was mainly due to the loss of GABAergic neurons (80-97% reduction in medial and lateral septum). In contrast, populations of cholinergic and glutamatergic neurons were spared. Overall, these data indicate that septal GABAergic neurons are selectively vulnerable to hippocampal hyperexcitability, and suggest that the processing of information in septohippocampal networks may be altered in chronic epilepsy.
Collapse
Affiliation(s)
- E R Garrido Sanabria
- Department of Biological Sciences, University of Texas at Brownsville/Texas Southmost College, 80 Fort Brown, Brownsville, TX 78520, USA
| | | | | | | | | | | |
Collapse
|
23
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
24
|
Colom LV, Castaneda MT, Reyna T, Hernandez S, Garrido-Sanabria E. Characterization of medial septal glutamatergic neurons and their projection to the hippocampus. Synapse 2006; 58:151-64. [PMID: 16108008 DOI: 10.1002/syn.20184] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The two neuronal populations that have been typically investigated in the septum use acetylcholine and GABA as neurotransmitters. The existence of noncholinergic, non-GABAergic, most likely glutamatergic septal neurons has recently been reported. However, their morphological characteristics, numbers, distribution, and connectivity have not been determined. Furthermore, the projection of septal glutamatergic neurons to the hippocampus has not been characterized. To address these issues, subpopulations of cholinergic and GABAergic neurons were identified by immunohistochemistry. In addition, the retrograde tracer fluorogold was injected into the hippocampus to determine the characteristics of a glutamatergic septo-hippocampal projection. Our work revealed that although glutamatergic neurons are found throughout the septum, they concentrate in medial septal regions. Using stereological probes, approximately 16,000 glutamatergic neurons were estimated in the medial septal region. Triple immunostaining showed that most glutamatergic neurons do not immunoreact with cholinergic or GABAergic neuronal markers (anti-ChAT or anti-GAD67 antibodies, respectively). Fluorogold injections into CA1, CA3, and dentate gyrus of the hippocampus showed that septal glutamatergic neurons project to each of these hippocampal regions, forming approximately 23% of the septo-hippocampal projection. Most cell bodies of septo-hippocampal glutamatergic neurons were located in the medial septum. The remaining cell bodies were found in the diagonal band. This data shows that glutamatergic neurons constitute a significant neuronal population in the septum and that a subpopulation of these neurons projects to hippocampal regions. Thus, the septo-hippocampal projection needs to be reconsidered as a three neurotransmitter pathway.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences, University of Texas at Brownsville/Texas Southmost College, Brownsville, Texas.
| | | | | | | | | |
Collapse
|
25
|
Abstract
Information processing and storing by brain networks requires a highly coordinated operation of multiple neuronal groups. The function of septal neurons is to modulate the activity of archicortical (e.g. hippocampal) and neocortical circuits. This modulation is necessary for the development and normal occurrence of rhythmical cortical activities that control the processing of sensory information and memory functions. Damage or degeneration of septal neurons results in abnormal information processing in cortical circuits and consequent brain dysfunction. Septal neurons not only provide the optimal levels of excitatory background to cortical structures, but they may also inhibit the occurrence of abnormal excitability states.
Collapse
Affiliation(s)
- Luis V Colom
- Department of Biological Sciences, Center of Biomedical Studies, University of Texas at Brownsville/Texas Southmost College, Brownsville, TX 78520, USA.
| |
Collapse
|
26
|
Steffensen SC, Jones MD, Hales K, Allison DW. Dehydroepiandrosterone sulfate and estrone sulfate reduce GABA-recurrent inhibition in the hippocampus via muscarinic acetylcholine receptors. Hippocampus 2006; 16:1080-90. [PMID: 17024678 DOI: 10.1002/hipo.20232] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several recent studies have established a role for estrogens in ameliorating specific neurodegenerative disorders, mainly those associated with the cholinergic neurons of the basal forebrain and their targets in the cortex and hippocampus. We have previously demonstrated that endogenous and exogenous application of the neurosteroid dehydroepiandrosterone sulfate (DHEAS) markedly reduces GABA-mediated recurrent inhibition and synchronizes hippocampal unit activity to theta rhythm (Steffensen (1995) Hippocampus 5:320-328). In this study, we evaluated the role of muscarinic receptors in mediating the effects of DHEAS and estrone sulfate (ES), the principal circulating estrogen in humans, on short-latency-evoked potential responses, paired-pulse inhibition (PPI), paired-pulse facilitation, and GABA interneuron activity in the dentate gyrus and CA1 subfields of the rat hippocampus. In situ microelectrophoretic application of the muscarinic M2 subtype cholinergic receptor agonist cis-dioxolane, DHEAS, and ES markedly reduced PPI in the dentate and CA1 that was blocked by the M2 receptor antagonist gallamine. Similar to DHEAS, microelectrophoretic administration of ES increased population spike amplitudes, without increasing excitatory transmission, but this effect was not blocked by gallamine. Microelectrophoretic application of cis-dioxolane and ES markedly increased the firing rate of dentate hilar interneurons and CA1 oriens/alveus interneurons and enhanced their synchrony to hippocampal theta rhythm. These findings suggest that select GABA-modulating neurosteroids and neuroactive estrogen sulfates alter septohippocampal cholinergic modulation of hippocampal GABAergic interneurons mediating recurrent, but not feedforward, inhibition of hippocampal principal cell activity.
Collapse
Affiliation(s)
- Scott C Steffensen
- Department of Psychology, Brigham Young University, Provo, Utah 846022, USA.
| | | | | | | |
Collapse
|
27
|
Sabolek HR, Bunce JG, Chrobak JJ. Intraseptal tacrine-induced disruptions of spatial memory performance. Behav Brain Res 2005; 158:1-7. [PMID: 15680189 DOI: 10.1016/j.bbr.2004.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Revised: 07/18/2004] [Accepted: 07/19/2004] [Indexed: 01/07/2023]
Abstract
The medial septal nucleus regulates the physiology and emergent functions (e.g., memory formation) of the hippocampal formation. This nucleus is particularly rich in cholinergic receptors and is a putative target for the development of cholinomimetic cognitive enhancing drugs. Several studies have examined the direct effects of intraseptal cholinomimetic treatments and the results have been somewhat conflicting with both promnestic and amnestic effects. Several variables (e.g., age, task difficulty, timing of drug administration) may influence treatment outcome. The present study examined the effects of intraseptal infusion of the acetylcholinesterase inhibitor tacrine (0-25 microg/0.5 microl) on spatial memory performance. Tacrine was infused into the medial septum just prior to testing. Tacrine infusions did not significantly affect the number of correct choices in the first eight entries, or the number of correct choices until an error. This treatment did not alter the angle of arm entries, or impair the animals' ability to complete the task (enter all baited arms). However, tacrine produced a linear dose-dependent increase in errors, doubling (12.5 microg) and tripling (25.0 microg) the number of errors made before rats completed the task. The deficit demonstrates that activation of intraseptal cholinergic receptors can disrupt spatial memory performance. These findings are discussed with regards to septohippocampal-dependent memory processes and the development of therapeutic strategies in the treatment of age-related memory disorders.
Collapse
Affiliation(s)
- Helen R Sabolek
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | | | | |
Collapse
|
28
|
|
29
|
Henderson Z, Boros A, Janzso G, Westwood AJ, Monyer H, Halasy K. Somato-dendritic nicotinic receptor responses recorded in vitro from the medial septal diagonal band complex of the rodent. J Physiol 2004; 562:165-82. [PMID: 15528250 PMCID: PMC1665480 DOI: 10.1113/jphysiol.2004.070300] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The medial septal diagonal band area (MS/DB), made up of GABAergic and cholinergic neurones, plays an essential role in the generation and modulation of the hippocampal theta rhythm. To understand the part that the cholinergic neurones might play in this activity, we sought to determine whether postsynaptic nicotinic receptor responses can be detected in slices of the rodent MS/DB by puffing on acetylcholine (ACh). Neurones were characterized electrophysiologically into GABAergic and cholinergic neurones according to previous criteria. Responses of the MS/SB neurones to ACh were various combinations of fast depolarizations (1.5-2.5 s), fast hyperpolarizations (3-4 s) and slow depolarizations (20-30 s), the latter two being blocked by atropine. The fast depolarizations were partially or not blocked with cadmium and low calcium, tetrodotoxin, and antagonists of other ionotropic receptors, and were antagonized with 25 microm mecamylamine. Pharmacological investigation of the responses showed that the alpha 7* nicotinic receptor type is associated with cholinergic neurones and 10% of the GABAergic neurones, and that non alpha 7* nicotinic receptor subtypes are associated with 50% of the GABAergic neurones. Pharmacological dissection of evoked and spontaneous postsynaptic responses, however, did not provide evidence for synaptic nicotinic receptor transmission in the MS/DB. It was concluded that nicotinic receptors, although prevalent on the somatic and/or dendritic membrane compartments of neurones in the MS/DB, are on extrasynaptic sites where they presumably play a neuromodulatory role. The presence of alpha 7* nicotinic receptors on cholinergic neurones may also render these cells specifically vulnerable to degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Zaineb Henderson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Xu C, Michelsen KA, Wu M, Morozova E, Panula P, Alreja M. Histamine innervation and activation of septohippocampal GABAergic neurones: involvement of local ACh release. J Physiol 2004; 561:657-70. [PMID: 15486020 PMCID: PMC1665378 DOI: 10.1113/jphysiol.2004.071712] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies indicate that the histaminergic system, which is critical for wakefulness, also influences learning and memory by interacting with cholinergic systems in the brain. Histamine-containing neurones of the tuberomammillary nucleus densely innervate the cholinergic and GABAergic nucleus of the medial septum/diagonal band of Broca (MSDB) which projects to the hippocampus and sustains hippocampal theta rhythm and associated learning and memory functions. Here we demonstrate that histamine, acting via H(1) and/or H(2) receptor subtypes, utilizes direct and indirect mechanisms to excite septohippocampal GABA-type neurones in a reversible, reproducible and concentration-dependent manner. The indirect mechanism involves local ACh release, is potentiated by acetylcholinesterase inhibitors and blocked by atropine methylbromide and 4-DAMP mustard, an M(3) muscarinic receptor selective antagonist. This indirect effect, presumably, results from a direct histamine-induced activation of septohippocampal cholinergic neurones and a subsequent indirect activation of the septohippocampal GABAergic neurones. In double-immunolabelling studies, histamine fibres were found in the vicinity of both septohippocampal cholinergic and GABAergic cell types. These findings have significance for Alzheimer's disease and other neurodegenerative disorders involving a loss of septohippocampal cholinergic neurones as such a loss would also obtund histamine effects on septohippocampal cholinergic and GABAergic functions and further compromise hippocampal arousal and associated cognitive functions.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychiatry, CMHC 335A, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| | | | | | | | | | | |
Collapse
|
31
|
Wu M, Zaborszky L, Hajszan T, van den Pol AN, Alreja M. Hypocretin/orexin innervation and excitation of identified septohippocampal cholinergic neurons. J Neurosci 2004; 24:3527-36. [PMID: 15071100 PMCID: PMC6729747 DOI: 10.1523/jneurosci.5364-03.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypothalamic fibers containing the wake-promoting peptides, hypocretins (Hcrts) or orexins, provide a dense innervation to the medial septum-diagonal band of Broca (MSDB), a sleep-associated brain region that has been suggested to show intense axonal degeneration in canine narcoleptics. The MSDB, via its cholinergic and GABAergic projections to the hippocampus, controls the hippocampal theta rhythm and associated learning and memory functions. Neurons of the MSDB express very high levels of the Hcrt receptor 2, which is mutated in canine narcoleptics. In the present study, we investigated the electrophysiological effects of Hcrt peptides on septohippocampal cholinergic neurons that were identified in living brain slices of the MSDB using a selective fluorescent marker. Hcrt activation of septohippocampal cholinergic neurons was reversible, reproducible, and concentration dependent and mediated via a direct postsynaptic mechanism. Both Hcrt1 and Hcrt2 activated septohippocampal cholinergic neurons with similar EC(50) values. The Hcrt effect was dependent on external Na(+), reduced by external Ba(2+), and also reduced in recordings with CsCl-containing electrodes, suggesting a dual underlying ionic mechanism that involved inhibition of a K(+) current, presumably an inward rectifier, and a Na(+)-dependent component. The Na(+) component was dependent on internal Ca(2+), blocked by replacing external Na(+) with Li(+), and also blocked by bath-applied Ni(2+) and KB-R7943, suggesting involvement of the Na(+)-Ca(2+) exchanger. Using double-immunolabeling studies at light and ultrastructural levels, we also provide definitive evidence for a hypocretin innervation of cholinergic neurons. Thus Hcrt effects within the septum should increase hippocampal acetylcholine release and thereby promote hippocampal arousal.
Collapse
Affiliation(s)
- Min Wu
- Department of Psychiatry, Yale University School of Medicine and the Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, Connecticut 06508, USA
| | | | | | | | | |
Collapse
|
32
|
Wu M, Hajszan T, Xu C, Leranth C, Alreja M. Group I Metabotropic Glutamate Receptor Activation Produces a Direct Excitation of Identified Septohippocampal Cholinergic Neurons. J Neurophysiol 2004; 92:1216-25. [PMID: 15044519 DOI: 10.1152/jn.00180.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Septohippocampal cholinergic neurons innervate the hippocampus and provide it with almost its entire acetylcholine. Axon collaterals of these neurons also release acetylcholine within the septum and thereby maintain the firing activity of septohippocampal GABAergic neurons. A loss of septohippocampal cholinergic neurons occurs in various neurodegenerative disorders associated with cognitive dysfunctions. group I metabotropic glutamate receptors have been implicated in septohippocampal-dependent learning and memory tasks. In the present study, we examined the physiological and pharmacological effects of a potent and selective group I metabotropic glutamate receptor (mGluR) agonist S-3,5-dihydroxyphenylglycine (DHPG) on rat septohippocampal cholinergic neurons that were identified in brain slices using a selective fluorescent marker. In whole cell recordings, DHPG produced a reversible, reproducible and a direct postsynaptic and concentration-dependent excitation in 100% of septohippocampal cholinergic neurons tested with an EC50 of 2.1 μM. Pharmacologically, the effects of DHPG were partially/completely reduced by the mGluR1 antagonists, 7-hydrox-iminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester and (+)-2-methyl-4-carboxyphenylglycine. Addition of the mGluR5 antagonist, 2-methyl-6-(phenylethnyl)pyridine hydrochloride, reduced the remaining response to DHPG, suggesting involvement of both receptor subtypes in a subpopulation of septohippocampal cholinergic neurons. In double-immunolabeling studies, 74% of septohippocampal cholinergic neurons co-localized mGluR1α-immunoreactivity and 35% co-localized mGluR5-immunoreactivity. Double-immunolabeling studies at the light and electron-microscopic levels showed that vesicular glutamate transporter 2 terminals make asymmetric synaptic contacts with septohippocampal cholinergic neurons. These findings may be of significance in treatment of cognitive deficits associated with neurodegenerative disorders as a group I mGluR-mediated activation of septohippocampal cholinergic neurons would enhance the release of acetylcholine both in the hippocampus and in the septum.
Collapse
Affiliation(s)
- Min Wu
- Dept. of Psychiatry, CMHC 335A, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508
| | | | | | | | | |
Collapse
|