1
|
Li M, Stevens DL, Arriaga M, Townsend EA, Mendez RE, Blajkevch NA, Selley DE, Banks ML, Negus SS, Dewey WL, Zhang Y. Characterization of a Potential KOR/DOR Dual Agonist with No Apparent Abuse Liability via a Complementary Structure-Activity Relationship Study on Nalfurafine Analogues. ACS Chem Neurosci 2022; 13:3608-3628. [PMID: 36449691 PMCID: PMC10243363 DOI: 10.1021/acschemneuro.2c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Discovery of analgesics void of abuse liability is critical to battle the opioid crisis in the United States. Among many strategies to achieve this goal, targeting more than one opioid receptor seems promising to minimize this unwanted side effect while achieving a reasonable therapeutic profile. In the process of understanding the structure-activity relationship of nalfurafine, we identified a potential analgesic agent, NMF, as a dual kappa opioid receptor/delta opioid receptor agonist with minimum abuse liability. Further characterizations, including primary in vitro ADMET studies (hERG toxicity, plasma protein binding, permeability, and hepatic metabolism), and in vivo pharmacodynamic and toxicity profiling (time course, abuse liability, tolerance, withdrawal, respiratory depression, body weight, and locomotor activity) further confirmed NMF as a promising drug candidate for future development.
Collapse
Affiliation(s)
- Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
| | - David L. Stevens
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Michelle Arriaga
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - E. Andrew Townsend
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Rolando E. Mendez
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Nadejda A. Blajkevch
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Dana E. Selley
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Matthew L. Banks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - William L. Dewey
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298
- Institute for Drug and Alcohol Studies, 203 East Cary Street, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
2
|
Ahmad N, Subhan F, Islam NU, Shahid M, Ullah N, Ullah R, Khurram M, Amin MU, Akbar S, Ullah I, Sewell RDE. Pharmacological evaluation of the gabapentin salicylaldehyde derivative, gabapentsal, against tonic and phasic pain models, inflammation, and pyrexia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:2033-2047. [PMID: 34254154 DOI: 10.1007/s00210-021-02118-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/25/2021] [Indexed: 10/20/2022]
Abstract
Gabapentinoids are effective drugs in most animal models of pain and inflammation with variable effects in humans. The current study evaluated the pharmacological activity of gabapentin (GBP) and its salicylaldehyde derivative (gabapentsal; [2-(1-(((2-hydroxybenzylidene) amino) methyl) cyclohexyl) acetic acid]; GPS) in well-established mouse models of nociceptive pain, inflammatory edema, and pyrexia at doses of 25-100 mg/kg. GPS allayed tonic visceral pain as reflected by acetic acid-induced nociception and it also diminished thermally induced nociception as a mimic of phasic thermal pain. Antagonism of GPS-induced antinociceptive activities by naloxone (NLX, 1.0 mg/kg, subcutaneously, s.c), beta-funaltrexamine (β-FNT, 5.0 mg/kg, s.c), naltrindole (NT, 1.0 mg/kg, s.c), and nor-binaltorphimine (NOR-BNI, 5.0 mg/kg, s.c), and pentylenetetrazole (PTZ-15 mg/kg, intraperitoneally, i.p) implicated an involvement of both opioidergic and GABAergic mechanisms. Tail immersion test was conducted in order to delineate the mechanistic insights of antinociceptive response. Inflammatory edema induced by carrageenan, histamine, or serotonin was also effectively reversed by GPS in a fashion analogous to aspirin (150 mg/kg, i.p), chlorpheniramine (1.0 mg/kg, i.p), and mianserin (1.0 mg/kg, i.p), respectively. Additionally, yeast-induced pyrexia was decreased by GPS in a comparable manner to acetaminophen (50 mg/kg, i.p). These observations suggest that GPS possesses ameliorative properties in tonic, phasic, and tail immersion tests of nociception via opioidergic and GABAergic mechanisms, curbs inflammatory edema, and is antipyretic in nature.
Collapse
Affiliation(s)
- Nisar Ahmad
- Islam College of Pharmacy, Pasrur Road, Sialkot, Punjab, 51040, Pakistan.
| | - Fazal Subhan
- Department of Pharmacy, Cecos University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Pakistan
| | - Naseem Ullah
- Islam College of Pharmacy, Pasrur Road, Sialkot, Punjab, 51040, Pakistan
| | - Rahim Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | | | | | - Shehla Akbar
- Department of Pharmacy, Cecos University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Ihsan Ullah
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB, UK
| |
Collapse
|
3
|
Pasquinucci L, Parenti C, Georgoussi Z, Reina L, Tomarchio E, Turnaturi R. LP1 and LP2: Dual-Target MOPr/DOPr Ligands as Drug Candidates for Persistent Pain Relief. Molecules 2021; 26:molecules26144168. [PMID: 34299443 PMCID: PMC8305117 DOI: 10.3390/molecules26144168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Although persistent pain is estimated to affect about 20% of the adult population, current treatments have poor results. Polypharmacology, which is the administration of more than one drug targeting on two or more different sites of action, represents a prominent therapeutic approach for the clinical management of persistent pain. Thus, in the drug discovery process the "one-molecule-multiple targets" strategy nowadays is highly recognized. Indeed, multitarget ligands displaying a better antinociceptive activity with fewer side effects, combined with favorable pharmacokinetic and pharmacodynamic characteristics, have already been shown. Multitarget ligands possessing non-opioid/opioid and opioid/opioid mechanisms of action are considered as potential drug candidates for the management of various pain conditions. In particular, dual-target MOPr (mu opioid peptide receptor)/DOPr (delta opioid peptide receptor) ligands exhibit an improved antinociceptive profile associated with a reduced tolerance-inducing capability. The benzomorphan-based compounds LP1 and LP2 belong to this class of dual-target MOPr/DOPr ligands. In the present manuscript, the structure-activity relationships and the pharmacological fingerprint of LP1 and LP2 compounds as suitable drug candidates for persistent pain relief is described.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (L.P.); (R.T.); Tel.: +39-095-738-4273 (L.P. & R.T.)
| | - Carmela Parenti
- Department of Drug and Health Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Zafiroula Georgoussi
- Laboratory of Cellular Signaling and Molecular Pharmacology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos” Ag. Paraskevi-Attikis, 15310 Athens, Greece;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, via S. Sofia n. 97, 95100 Catania, Italy;
| | - Emilia Tomarchio
- Postgraduate School of Anesthesiology and Intensive Care, University of Milan, Via Francesco Sforza, 35, 20122 Milan, Italy;
| | - Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
- Correspondence: (L.P.); (R.T.); Tel.: +39-095-738-4273 (L.P. & R.T.)
| |
Collapse
|
4
|
Co-administration of nalbuphine attenuates the morphine-induced anxiety and dopaminergic alterations in morphine-withdrawn rats. Psychopharmacology (Berl) 2021; 238:1193-1211. [PMID: 33655408 DOI: 10.1007/s00213-021-05765-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The classical effects of exogenous opioids, such as morphine, are predominantly mediated through μ-opioid receptors. The chronic use of morphine induces anxiety-like behavior causing functional changes in the mesolimbic dopaminergic system. The mixed μ/κ-agonist, nalbuphine, used either as an analgesic or as an adjuvant with morphine, produces different and opposite effects. However, whether nalbuphine can be used to antagonize morphine-induced anxiety and dopaminergic alterations is not fully known. OBJECTIVE This study aimed to compare acute and chronic effects of nalbuphine on morphine-induced anxiety and dopaminergic alterations in rats. METHODS Male adult Wistar albino rats were made opioid-dependent by administering increasing doses of morphine (5-25 mg/kg; i.p.; b.i.d.). Withdrawal was induced by naloxone (1 mg/kg, i.p.), 4 h after the last morphine injection. Anxiety-like behavior was measured using Activity Monitor (Coulbourn Instruments, Inc. USA). Thereafter, the animals were sacrificed and the brain dissected out and the level of cAMP and the transcriptional and translational expression of TH was measured. Nalbuphine was co-administered with morphine, acutely and chronically, at various doses (0.1, 0.3, 1.0, 3.0 mg/kg, i.p.). RESULTS Morphine-dependent rats showed a significant higher anxiety and cAMP levels and a significant decrease in the expression of TH. Co-administration of chronic doses of nalbuphine attenuates the higher anxiety, cAMP levels, and upregulates the TH expressions; however, the acute nalbuphine treatment does not attenuate the morphine-induced side effects. CONCLUSION Therefore, nalbuphine might have an important role in attenuating the anxiety and the effects of the dopaminergic pathway and may have potential in the treatment of opioid addiction.
Collapse
|
5
|
Townsend EA, Schwienteck KL, Robinson HL, Lawson ST, Banks ML. A drug-vs-food "choice" self-administration procedure in rats to investigate pharmacological and environmental mechanisms of substance use disorders. J Neurosci Methods 2021; 354:109110. [PMID: 33705855 DOI: 10.1016/j.jneumeth.2021.109110] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical drug self-administration procedures are commonly used to investigate expression, mechanisms, and treatment of substance use disorders. NEW METHOD The aims were to back-translate an intravenous drug-vs-food choice procedure primarily utilized in monkeys to male and female rats and to develop a surgical method for sustained intravenous catheter patency suitable for long-term drug-choice studies. RESULTS The surgical protocol resulted in a median intravenous jugular catheter patency in male and female rats of 126 days (range: 25-365 days). Drug-vs-food choice was established with opioids (fentanyl and heroin), psychostimulants (cocaine, methamphetamine, and amphetamine), and an opioid/psychostimulant mixture (fentanyl + methamphetamine). The average time from catheter implantation to stable choice behavior across all drugs was 27 sessions (range: 16-44 sessions). Choice behavior stabilized more quickly for cocaine and fentanyl than for other drugs. Manipulations of both environmental variables (e.g., response requirement or food reinforcer magnitude) and pharmacological variables (e.g., extended access drug self-administration or continuous buprenorphine treatment via osmotic pump) significantly shifted opioid-vs-food choice consistent with previous monkey studies. COMPARISON WITH EXISTING METHODS Duration of intravenous catheter patency in rats was suitable for long-term, within-subject drug choice studies. Effects of environmental and pharmacological manipulations in rats confirmed and extended previous results from monkeys. CONCLUSIONS The concordance of behavioral results between rats and monkeys using the present drug-vs-food choice procedure supports its utility to improve our basic understanding of the expression and mechanisms of substance use disorders towards to development of more effective therapeutics.
Collapse
Affiliation(s)
- E Andrew Townsend
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| | - Kathryn L Schwienteck
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Hannah L Robinson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Stephen T Lawson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA.
| |
Collapse
|
6
|
Brice-Tutt AC, Senadheera SN, Ganno ML, Eans SO, Khaliq T, Murray TF, McLaughlin JP, Aldrich JV. Phenylalanine Stereoisomers of CJ-15,208 and [d-Trp]CJ-15,208 Exhibit Distinctly Different Opioid Activity Profiles. Molecules 2020; 25:molecules25173999. [PMID: 32887303 PMCID: PMC7504817 DOI: 10.3390/molecules25173999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
The macrocyclic tetrapeptide cyclo[Phe-d-Pro-Phe-Trp] (CJ-15,208) and its stereoisomer cyclo[Phe-d-Pro-Phe-d-Trp] exhibit different opioid activity profiles in vivo. The present study evaluated the influence of the Phe residues’ stereochemistry on the peptides’ opioid activity. Five stereoisomers were synthesized by a combination of solid-phase peptide synthesis and cyclization in solution. The analogs were evaluated in vitro for opioid receptor affinity in radioligand competition binding assays, and for opioid activity and selectivity in vivo in the mouse 55 °C warm-water tail-withdrawal assay. Potential liabilities of locomotor impairment, respiratory depression, acute tolerance development, and place conditioning were also assessed in vivo. All of the stereoisomers exhibited antinociception following either intracerebroventricular or oral administration differentially mediated by multiple opioid receptors, with kappa opioid receptor (KOR) activity contributing for all of the peptides. However, unlike the parent peptides, KOR antagonism was exhibited by only one stereoisomer, while another isomer produced DOR antagonism. The stereoisomers of CJ-15,208 lacked significant respiratory effects, while the [d-Trp]CJ-15,208 stereoisomers did not elicit antinociceptive tolerance. Two isomers, cyclo[d-Phe-d-Pro-d-Phe-Trp] (3) and cyclo[Phe-d-Pro-d-Phe-d-Trp] (5), did not elicit either preference or aversion in a conditioned place preference assay. Collectively, these stereoisomers represent new lead compounds for further investigation in the development of safer opioid analgesics.
Collapse
Affiliation(s)
- Ariana C. Brice-Tutt
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
| | | | - Michelle L. Ganno
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987, USA;
| | - Shainnel O. Eans
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
| | - Tanvir Khaliq
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA;
| | - Thomas F. Murray
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Jay P. McLaughlin
- Department of Pharmacodynamics, The University of Florida, Gainesville, FL 32610, USA; (A.C.B.-T.); (S.O.E.)
- Correspondence: (J.P.M.); (J.V.A.); Tel.: +1-352-273-7207 (J.P.M.); +1-352-273-8708 (J.V.A.)
| | - Jane V. Aldrich
- Department of Medicinal Chemistry, The University of Florida, Gainesville, FL 32610, USA;
- Correspondence: (J.P.M.); (J.V.A.); Tel.: +1-352-273-7207 (J.P.M.); +1-352-273-8708 (J.V.A.)
| |
Collapse
|
7
|
Langston JL, Moffett MC, Makar JR, Burgan BM, Myers TM. Carfentanil toxicity in the African green monkey: Therapeutic efficacy of naloxone. Toxicol Lett 2020; 325:34-42. [PMID: 32070766 DOI: 10.1016/j.toxlet.2020.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/30/2020] [Accepted: 02/14/2020] [Indexed: 11/27/2022]
Abstract
Carfentanil is an ultra-potent opioid with an analgesic potency 10,000 times that of morphine but has received little scientific investigation. Three experiments were conducted to evaluate the toxicity of carfentanil and the efficacy of naloxone in adult male African green monkeys. The first experiment determined the ED50 (found to be 0.71 μg/kg) of subcutaneous carfentanil for inducing bradypnea and/or loss of posture. Experiment 2 attempted to establish the ED50 of naloxone for rapidly reversing the bradypnea/loss of posture induced by carfentanil (1.15 μg/kg). Experiment 3 evaluated the effects of carfentanil (0.575 μg/kg) alone, the safety of naloxone (71-2841 μg/kg), and the efficacy of naloxone (71-710 μg/kg) administration at two time points following carfentanil (1.15 μg/kg) on operant choice reaction time. Collectively, these experiments characterized the temporal progression of carfentanil-induced toxic signs, determined the range of naloxone doses that restored respiratory and gross behavioral function, and determined the time course and range of naloxone doses that partially or completely reversed the effects of carfentanil on operant choice reaction time performance in African green monkeys. These results have practical relevance for the selection of opioid antagonists, initial doses, and expected functional outcomes following treatment of synthetic opioid overdose in a variety of operational/emergency response contexts.
Collapse
Affiliation(s)
- Jeffrey L Langston
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Mark C Moffett
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Jennifer R Makar
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Bradley M Burgan
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States
| | - Todd M Myers
- United States Army Medical Research Institute of Chemical Defense, 8350 Ricketts Point Rd, Aberdeen Proving Ground, MD, 21010, United States.
| |
Collapse
|
8
|
Sex differences in the effectiveness of buprenorphine to decrease rates of responding in rhesus monkeys. Behav Pharmacol 2020; 30:358-362. [PMID: 30212383 DOI: 10.1097/fbp.0000000000000437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sex differences in μ-opioid receptor (MOR) agonist-induced antinociception have been reported in nonhuman primates. The degree to which μ-opioid receptor agonist sex differences in nonhuman primates extend to other behavioral endpoints remains unknown. The present study compared the behavioral effects of three MOR ligands (fentanyl, buprenorphine, and naltrexone) that varied in efficacy to stimulate [S]-GTPγS binding (from highest to lowest: fentanyl, buprenorphine, and naltrexone) in male and female rhesus monkeys. Male (n=3) and female (n=3) monkeys were trained to respond under a fixed-ratio 10 schedule of food presentation during daily sessions consisting of multiple components. Once rates of responding were stable, cumulative dose-effect functions were determined for intramuscular fentanyl (0.00032-0.032 mg/kg), buprenorphine (0.001-1 mg/kg), and naltrexone (0.01-0.1 mg/kg). Fentanyl dose-dependently decreased rates of responding in both sexes and the corresponding ED50 values were not significantly different. Buprenorphine dose-dependently decreased rates of responding in females, but not males. Naltrexone did not significantly alter behavior in either females or males. Overall, these results suggest that the expression of sex differences in MOR pharmacology depends upon both the efficacy of the MOR ligand and the behavioral endpoint.
Collapse
|
9
|
Additive and subadditive antiallodynic interactions between μ-opioid agonists and N-methyl D-aspartate antagonists in male rhesus monkeys. Behav Pharmacol 2019; 29:41-52. [PMID: 29239974 DOI: 10.1097/fbp.0000000000000336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
μ-Opioid agonists are clinically effective analgesics, but also produce undesirable effects such as sedation and abuse potential that limit their clinical utility. Glutamatergic systems also modulate nociception and N-methyl D-aspartate (NMDA) receptor antagonists have been proposed as one useful adjunct to enhance the therapeutic effects and/or attenuate the undesirable effects of μ-opioid agonists. Whether NMDA antagonists enhance the antiallodynic effects of μ-agonists in preclinical models of thermal hypersensitivity (i.e. capsaicin-induced thermal allodynia) are unknown. The present study determined the behavioral effects of racemic ketamine, (+)-MK-801, (-)-nalbuphine, and (-)-oxycodone alone and in fixed proportion mixtures in assays of capsaicin-induced thermal allodynia and schedule-controlled responding in rhesus monkeys. Ketamine, nalbuphine, and oxycodone produced dose-dependent antiallodynia. MK-801 was inactive up to doses that produced undesirable effects. Ketamine, but not MK-801, enhanced the potency of μ-agonists to decrease rates of operant responding. Ketamine and nalbuphine interactions were additive in both procedures. Ketamine and oxycodone interactions were additive or subadditive depending on the mixture. Furthermore, oxycodone and MK-801 interactions were subadditive on antiallodynia and additive on rate suppression. These results do not support the broad clinical utility of NMDA receptor antagonists as adjuncts to μ-opioid agonists for thermal allodynic pain states.
Collapse
|
10
|
Nastase AF, Anand JP, Bender AM, Montgomery D, Griggs NW, Fernandez TJ, Jutkiewicz EM, Traynor JR, Mosberg HI. Dual Pharmacophores Explored via Structure-Activity Relationship (SAR) Matrix: Insights into Potent, Bifunctional Opioid Ligand Design. J Med Chem 2019; 62:4193-4203. [PMID: 30916966 DOI: 10.1021/acs.jmedchem.9b00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Short-acting μ-opioid receptor (MOR) agonists have long been used for the treatment of severe, breakthrough pain. However, selective MOR agonists including fentanyl and morphine derivatives are limited clinically due to high risks of dependence, tolerance, and respiratory depression. We recently reported the development of a long-acting, bifunctional MOR agonist/δ-opioid receptor (DOR) antagonist analgesic devoid of tolerance or dependence in mice (AAH8, henceforth referred to as 2B). To address the need for short-acting treatments for breakthrough pain, we present a series of novel, short-acting, high-potency MOR agonist/DOR antagonist ligands with antinociceptive activity in vivo. In this study, we utilized a two-dimensional structure-activity relationship matrix to identify pharmacological trends attributable to combinations of two key pharmacophore elements within the chemotype. This work enhances our ability to modulate efficacy at MOR and DOR, accessing a variety of bifunctional profiles while maintaining high affinity and potency at both receptors.
Collapse
|
11
|
Pasquinucci L, Turnaturi R, Montenegro L, Caraci F, Chiechio S, Parenti C. Simultaneous targeting of MOR/DOR: A useful strategy for inflammatory pain modulation. Eur J Pharmacol 2019; 847:97-102. [PMID: 30690004 DOI: 10.1016/j.ejphar.2019.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 02/03/2023]
Abstract
Development of new analgesics endowed with mu/delta opioid receptor (MOR/DOR) activity represents a promising alternative to MOR selective compounds because of their better therapeutic and tolerability profile. Lately, we have synthetized the MOR/DOR agonist LP2 that showed a long lasting antinociceptive activity in the tail flick test, an acute pain model. Here, we investigate whether LP2 is also effective in the mouse formalin test, a model of inflammatory pain sustained by mechanisms of central sensitization. Moreover, we evaluated a possible peripheral component of LP2 analgesic activity. Different doses of LP2 were tested after either intraperitoneal (i.p.) or intraplantar (i.pl.) administration. LP2 (0.75-1.00 mg/kg, i.p.), dose-dependently, counteracted both phases of the formalin test after i.p. administration. The analgesic activity of LP2 (0.75-1.00 mg/kg) was completely blocked by a pretreatment with the opioid antagonist naloxone (3 mg/kg, i.p.). Differently, the pretreatment with naloxone methiodide (5 mg/kg, i.p.), a peripherally restricted opioid antagonist, completely blocked the lower analgesic dose of LP2 (0.75 mg/kg) but only partially relieved the antinociceptive effects of LP2 at the dose of 1.00 mg/kg, thus revealing a peripheral analgesic component of LP2. I.pl. injections of LP2 (10-20 μg/10 μl) were also performed to investigate a possible effect of LP2 on peripheral nerve terminals. Nociceptive sensitization, which occur both at peripheral and central level, is a fundamental step for pain chronicization, thus LP2 is a promising drug for pain conditions characterized by nociceptive sensitization.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Santina Chiechio
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology and Toxicology Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
12
|
Cornelissen JC, Steele FF, Tenney RD, Obeng S, Rice KC, Zhang Y, Banks ML. Role of mu-opioid agonist efficacy on antinociceptive interactions between mu agonists and the nociceptin opioid peptide agonist Ro 64-6198 in rhesus monkeys. Eur J Pharmacol 2018; 844:175-182. [PMID: 30552903 DOI: 10.1016/j.ejphar.2018.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 11/30/2022]
Abstract
Mu-opioid receptor agonists are clinically effective analgesics, but also produce undesirable effects that limit their clinical utility. The nociceptin opioid peptide (NOP) receptor system also modulates nociception, and NOP agonists might be useful adjuncts to enhance the analgesic effects or attenuate the undesirable effects of mu-opioid agonists. The present study determined behavioral interactions between the NOP agonist (-)-Ro 64-6198 and mu-opioid ligands that vary in mu-opioid receptor efficacy (17-cyclopropylmethyl-3,14β-dihyroxy-4,5α-epoxy-6α-[(3 ́-isoquinolyl)acetamindo]morphinan (NAQ) < buprenorphine < nalbuphine < morphine = oxycodone < methadone) in male rhesus monkeys. For comparison, Ro 64-6198 interactions were also examined with the kappa-opioid receptor agonist nalfurafine. Each opioid ligand was examined alone and following fixed-dose Ro 64-6198 pretreatments in assays of thermal nociception (n = 3-4) and schedule-controlled responding (n = 3). Ro 64-6198 alone failed to produce significant antinociception up to doses (0.32 mg/kg, IM) that significantly decreased rates of responding. All opioid ligands, except NAQ and nalfurafine, produced dose- and thermal intensity-dependent antinociception. Ro 64-6198 enhanced the antinociceptive potency of buprenorphine, nalbuphine, methadone, and nalfurafine. Ro 64-6198 enhancement of nalbuphine antinociception was NOP antagonist SB-612111 reversible and occurred under a narrow range of dose and time conditions. All opioid ligands, except NAQ and buprenorphine, produced dose-dependent decreases in rates of responding. Ro 64-6198 did not significantly alter mu-opioid ligand rate-decreasing effects. Although these results suggest that NOP agonists may selectively enhance the antinociceptive vs. rate-suppressant effects of some mu-opioid agonists, this small enhancement occurred under a narrow range of conditions dampening enthusiasm for NOP agonists as candidate "opioid-sparing" adjuncts.
Collapse
Affiliation(s)
- Jeremy C Cornelissen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Floyd F Steele
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Rebekah D Tenney
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Samuel Obeng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
13
|
Chronic co-administration of nalbuphine attenuates the development of opioid dependence. Pharmacol Biochem Behav 2018; 175:130-138. [DOI: 10.1016/j.pbb.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 01/21/2023]
|
14
|
Minervini V, Lu HY, Padarti J, Osteicoechea DC, France CP. Interactions between kappa and mu opioid receptor agonists: effects of the ratio of drugs in mixtures. Psychopharmacology (Berl) 2018; 235:2245-2256. [PMID: 29785554 PMCID: PMC6045970 DOI: 10.1007/s00213-018-4920-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 04/25/2018] [Indexed: 12/30/2022]
Abstract
RATIONALE Pain is the leading reason for seeking health care, and mu opioid receptor agonists continue to be prescribed despite well-documented adverse effects. Kappa opioid receptor agonists have antinociceptive effects with little to no abuse liability and might be useful for treating pain in mixtures. Kappa:mu opioid mixtures might be useful if therapeutic effects of each drug can be selectively increased while reducing or avoiding the adverse effects that occur with larger doses of each drug alone. OBJECTIVE This study characterized the effects of the kappa opioid receptor agonist spiradoline alone (0.32-56 mg/kg) and in 1:10, 1:3, 1:1, and 3:1 mixtures with the mu opioid receptor agonists morphine (1.0-32 mg/kg) and etorphine (1-10 μg/kg) on warm water tail-withdrawal latency, body temperature, responding for food, and fecal output in male Sprague-Dawley rats (n = 24). RESULTS Antinociceptive effects were greater than additive for 1:10 and 1:3 spiradoline:morphine mixtures and for 1:10, 1:3, and 1:1 spiradoline:etorphine mixtures. The potency of spiradoline to produce hypothermia was greater with 1:3 and 3:1 spiradoline:etorphine mixtures but not with 1:10 or 1:1 mixtures or with any spiradoline:morphine mixture. The effects of 1:3 spiradoline:morphine on responding for food were additive, whereas 1:1 and 3:1 were greater than additive. Spiradoline did not significantly alter morphine-induced decreases in fecal output. CONCLUSIONS Overall, mixtures of kappa and mu opioids might have therapeutic potential for treating pain, particularly when the mixture has a greater ratio of mu to kappa agonist. If adverse effects of each constituent drug are reduced or avoided, then kappa:mu mixtures might be advantageous to mu opioids alone.
Collapse
MESH Headings
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Dose-Response Relationship, Drug
- Male
- Morphine/metabolism
- Morphine/pharmacology
- Morphine/therapeutic use
- Pain/drug therapy
- Pain/metabolism
- Pain Measurement/drug effects
- Pain Measurement/methods
- Pyrrolidines/metabolism
- Pyrrolidines/pharmacology
- Pyrrolidines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Vanessa Minervini
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Hannah Y Lu
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Jahnavi Padarti
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Daniela C Osteicoechea
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA
| | - Charles P France
- Department of Pharmacology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Mail Code 7764, San Antonio, TX, 78229, USA.
- Addiction Research, Treatment and Training (ARTT) Center of Excellence, University of Texas Health Science Center, San Antonio, USA.
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, USA.
| |
Collapse
|
15
|
Günther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, Steinborn R, Schulz S. Targeting multiple opioid receptors - improved analgesics with reduced side effects? Br J Pharmacol 2018; 175:2857-2868. [PMID: 28378462 PMCID: PMC6016677 DOI: 10.1111/bph.13809] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 01/12/2023] Open
Abstract
Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptor (μ receptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptor (κ receptor), δ-opioid receptor (δ receptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional μ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to μ, κ and δ receptors. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of particular multi-opioid receptor ligands, but not on their medicinal chemistry and design. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Pooja Dasgupta
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Anika Mann
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Elke Miess
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Andrea Kliewer
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Sebastian Fritzwanker
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Ralph Steinborn
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Stefan Schulz
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| |
Collapse
|
16
|
Yadlapalli JSK, Bommagani SB, Mahelona RD, Wan A, Gannon BM, Penthala NR, Dobretsov M, Crooks PA, Fantegrossi WE. Evaluation of morphine-like effects of the mixed mu/delta agonist morphine-6- O-sulfate in rats: Drug discrimination and physical dependence. Pharmacol Res Perspect 2018; 6:e00403. [PMID: 29930811 PMCID: PMC6009770 DOI: 10.1002/prp2.403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
Morphine-6-O-sulfate (M6S) is as a mixed-action mu/delta (μ/δ) opioid receptor agonist with high potency and analgesic efficacy. These studies used assays of drug discrimination and schedule-controlled responding to assess abuse-liability, tolerance, and physical dependence as compared to morphine in rats. Attempts to train 0.3 mg/kg (IP) M6S from saline failed, but all rats rapidly acquired the discrimination when the training dose was changed to 3.0 mg/kg morphine, and substitution tests showed that morphine and fentanyl both fully substituted for the training dose, M6S and M3A6S (3-O-acetyl ester of M6S) only partially substituted, and salvinorin A did not elicit morphine-like effects. Tolerance to response rate-decreasing effects was studied in rats administered either 1.0 or 3.0 mg/kg morphine or M6S before food-reinforced operant sessions. At both unit doses, tolerance to M6S-elicited rate suppression developed more slowly than tolerance to morphine-induced reductions in response rates. To assess dependence, rats were maintained on 1.0 mg/kg morphine or 1.0 mg/kg M6S until food-reinforced response rates were stable for at least 5 days. Rats were then administered saline or increasing doses of the opioid antagonist naltrexone (NTX) (0.3, 1.0, 3.0, or 10.0 mg/kg) in order to determine antagonist-precipitated withdrawal. NTX precipitated withdrawal was similar in both morphine-maintained and M6S-maintained rats. In conclusion, the mixed μ/δ agonist activity of M6S failed to completely protect against the development of physical dependence, but delayed tolerance development to behavioral effects and resulted in decreased morphine-like subjective effects, perhaps implying a decreased abuse liability over μ agonists.
Collapse
Affiliation(s)
- Jai Shankar K. Yadlapalli
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Shoban Babu Bommagani
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Ryan D. Mahelona
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Anqi Wan
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Brenda M. Gannon
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Narsimha R. Penthala
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Maxim Dobretsov
- Department of AnesthesiologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - Peter A. Crooks
- Departments of Pharmaceutical SciencesUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| | - William E. Fantegrossi
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansas72205
| |
Collapse
|
17
|
Delta/mu opioid receptor interactions in operant conditioning assays of pain-depressed responding and drug-induced rate suppression: assessment of therapeutic index in male Sprague Dawley rats. Psychopharmacology (Berl) 2018; 235:1609-1618. [PMID: 29572653 PMCID: PMC5924452 DOI: 10.1007/s00213-018-4876-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/06/2018] [Indexed: 12/23/2022]
Abstract
RATIONALE AND OBJECTIVES Although delta/mu receptor interactions vary as a function of behavioral endpoint, there have been no assessments of these interactions using assays of pain-depressed responding. This is the first report of delta/mu interactions using an assay of pain-depressed behavior. METHODS A mult-cycle FR10 operant schedule was utilized in the presence of (nociception) and in the absence of (rate suppression) a lactic acid inflammatory pain-like manipulation. SNC80 and methadone were used as selective/high efficacy delta and mu agonists, respectively. Both SNC80 and methadone alone produced a dose-dependent restoration of pain-depressed responding and dose-dependent response rate suppression. Three fixed ratio mixtures, based on the relative potencies of the drugs in the nociception assay, also produced dose-dependent antinociception and sedation. Isobolographic analysis indicated that all three mixtures produced supra-additive antinociceptive effects and simply additive sedation effects. CONCLUSIONS The therapeutic index (TI) inversely varied as a function of amount of SNC80 in the mixture, such that lower amounts of SNC80 produced a higher TI, and larger amounts produced a lower TI. Compared to literature using standard pain-elicited assays, the orderly relationship between SNC80 and TI reported here may be a unique function of assessing pain-depressed behavior.
Collapse
|
18
|
Cornelissen JC, Obeng S, Rice KC, Zhang Y, Negus SS, Banks ML. Application of Receptor Theory to the Design and Use of Fixed-Proportion Mu-Opioid Agonist and Antagonist Mixtures in Rhesus Monkeys. J Pharmacol Exp Ther 2018; 365:37-47. [PMID: 29330156 PMCID: PMC5830633 DOI: 10.1124/jpet.117.246439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/09/2018] [Indexed: 01/17/2023] Open
Abstract
Receptor theory predicts that fixed-proportion mixtures of a competitive, reversible agonist (e.g., fentanyl) and antagonist (e.g., naltrexone) at a common receptor [e.g., mu-opioid receptors (MORs)] will result in antagonist proportion-dependent decreases in apparent efficacy of the agonist/antagonist mixtures and downward shifts in mixture dose-effect functions. The present study tested this hypothesis by evaluating behavioral effects of fixed-proportion fentanyl/naltrexone mixtures in a warm-water tail-withdrawal procedure in rhesus monkeys (n = 4). Fentanyl (0.001-0.056 mg/kg) alone, naltrexone (0.032-1.0 mg/kg, i.m.) alone, and fixed-proportion mixtures of fentanyl/naltrexone (1:0.025, 1:0.074, and 1:0.22) were administered in a cumulative-dosing procedure, and the proportions were based on published fentanyl and naltrexone Kd values at MOR in monkey brain. Fentanyl alone produced dose-dependent antinociception at both 50 and 54°C thermal intensities. Up to the largest dose tested, naltrexone alone did not alter nociception. Consistent with receptor theory predictions, naltrexone produced a proportion-dependent decrease in the effectiveness of fentanyl/naltrexone mixtures to produce antinociception. The maximum effects of fentanyl, naltrexone, and each mixture were also used to generate an efficacy-effect scale for antinociception at each temperature, and this scale was evaluated for its utility in quantifying 1) efficacy requirements for antinociception at 50 and 54°C and 2) relative efficacy of six MOR agonists that vary in their efficacies to produce agonist-stimuated GTPγS binding in vitro (from lowest to highest efficacy: 17-cyclopropylmethyl-3,14β-dihyroxy-4,5α-epoxy-6α-[(3'-isoquinolyl)acetamindo]morphine, nalbuphine, buprenorphine, oxycodone, morphine, and methadone). These results suggest that fixed-proportion agonist/antagonist mixtures may offer a useful strategy to manipulate apparent drug efficacy for basic research or therapeutic purposes.
Collapse
Affiliation(s)
- Jeremy C Cornelissen
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Samuel Obeng
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Kenner C Rice
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Yan Zhang
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - S Stevens Negus
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| | - Matthew L Banks
- Department of Pharmacology and Toxicology, School of Medicine (J.C.C., S.S.N., M.L.B.), and Department of Medicinal Chemistry, School of Pharmacy (S.O., Y.Z.), Virginia Commonwealth University, Richmond, Virginia; and Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (K.C.R.)
| |
Collapse
|
19
|
Withey SL, Paronis CA, Bergman J. Concurrent Assessment of the Antinociceptive and Behaviorally Disruptive Effects of Opioids in Squirrel Monkeys. THE JOURNAL OF PAIN 2018; 19:728-740. [PMID: 29477761 DOI: 10.1016/j.jpain.2018.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/10/2018] [Accepted: 02/13/2018] [Indexed: 10/17/2022]
Abstract
Although the clinical application of opioids for pain management is often hindered by undesired behavioral impairment, preclinical assays of antinociception typically do not provide information regarding the behaviorally disruptive effects of opioids that may accompany their antinociceptive effects. To address this, we modified a warm water tail withdrawal procedure to determine concurrently the effects of opioids on tail withdrawal latency (antinociception) and indices of food-maintained operant behavior (rates of responding and reinforcement density) in squirrel monkeys. Six opioid agonists were tested, and all produced dose-dependent antinociception and impairment of operant behavior. The ratio of median effective dose (ED50) values for both measures (behavioral impairment:antinociception) was used as a quantitative measure of therapeutic index. Nalbuphine had the highest ED50 ratio (4.88), reflecting antinociception with minimal behavioral disruption. Oxycodone, heroin, buprenorphine, and methadone all produced similar ED50 ratios (.82-1.14), whereas butorphanol yielded a significantly lower ED50 ratio (.17) reflecting behavioral disruption at doses producing only minimal antinociception. The antinociceptive and behaviorally disruptive effects of oxycodone and buprenorphine were further characterized using Schild analysis to calculate apparent pA2 values for antagonism of the 2 drugs by naltrexone. These analyses suggest that µ-receptor mechanisms likely mediate the antinociceptive as well as behaviorally disruptive effects of oxycodone (pA2 values: 8.13 and 8.57) and buprenorphine (pA2 values: 8.6 and 7.9). PERSPECTIVE This article presents an assay that allows for the concurrent assessment of the antinociceptive and behaviorally disruptive effects of opioids. Our results show that the tail withdrawal assay in squirrel monkeys can provide a useful index of the behavioral selectivity with which opioids produce antinociception.
Collapse
Affiliation(s)
- Sarah L Withey
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts.
| | - Carol A Paronis
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| | - Jack Bergman
- Preclinical Pharmacology Laboratory, McLean Hospital/Harvard Medical School, Belmont, Massachusetts
| |
Collapse
|
20
|
Siemian JN, Obeng S, Zhang Y, Zhang Y, Li JX. Antinociceptive Interactions between the Imidazoline I2 Receptor Agonist 2-BFI and Opioids in Rats: Role of Efficacy at the μ-Opioid Receptor. J Pharmacol Exp Ther 2016; 357:509-19. [PMID: 27056847 DOI: 10.1124/jpet.116.232421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
Although μ-opioids have been reported to interact favorably with imidazoline I2 receptor (I2R) ligands in animal models of chronic pain, the dependence on the μ-opioid receptor ligand efficacy on these interactions had not been previously investigated. This study systematically examined the interactions between the selective I2 receptor ligand 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI) and three μ-opioid receptor ligands of varying efficacies: fentanyl (high efficacy), buprenorphine (medium-low efficacy), and 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6α-[(3'-isoquinolyl) acetamido] morphine (NAQ; very low efficacy). The von Frey test of mechanical nociception and Hargreaves test of thermal nociception were used to examine the antihyperalgesic effects of drug combinations in complete Freund's adjuvant-induced inflammatory pain in rats. Food-reinforced schedule-controlled responding was used to examine the rate-suppressing effects of each drug combination. Dose-addition and isobolographical analyses were used to characterize the nature of drug-drug interactions in each assay. 2-BFI and fentanyl fully reversed both mechanical and thermal nociception, whereas buprenorphine significantly reversed thermal but only slightly reversed mechanical nociception. NAQ was ineffective in both nociception assays. When studied in combination with fentanyl, NAQ acted as a competitive antagonist (apparent pA2 value: 6.19). 2-BFI/fentanyl mixtures produced additive to infra-additive analgesic interactions, 2-BFI/buprenorphine mixtures produced supra-additive to infra-additive interactions, and 2-BFI/NAQ mixtures produced supra-additive to additive interactions in the nociception assays. The effects of all combinations on schedule-controlled responding were generally additive. Results consistent with these were found in experiments using female rats. These findings indicate that lower-efficacy μ-opioid receptor agonists may interact more favorably with I2R ligands than high-efficacy μ-opioid receptor agonists.
Collapse
Affiliation(s)
- Justin N Siemian
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Samuel Obeng
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Yan Zhang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Yanan Zhang
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York (J.N.S., J.-X.L.); Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia (S.O., Yan.Z.); and Research Triangle Institute, Research Triangle Park, North Carolina (Yanan.Z.)
| |
Collapse
|
21
|
Saccone PA, Zelenock KA, Lindsey AM, Sulima A, Rice KC, Prinssen EP, Wichmann J, Woods JH. Characterization of the Discriminative Stimulus Effects of a NOP Receptor Agonist Ro 64-6198 in Rhesus Monkeys. J Pharmacol Exp Ther 2016; 357:17-23. [PMID: 26801398 DOI: 10.1124/jpet.115.231134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/19/2016] [Indexed: 01/11/2023] Open
Abstract
Nociceptin/orphanin FQ receptor (NOP) agonists have been reported to produce antinociceptive effects in rhesus monkeys with comparable efficacy to μ-opioid receptor (MOP) agonists, but without their limiting side effects. There are also known to be species differences between rodents and nonhuman primates (NHPs) in the behavioral effects of NOP agonists. The aims of this study were the following: 1) to determine if the NOP agonist Ro 64-6198 could be trained as a discriminative stimulus; 2) to evaluate its pharmacological selectivity as a discriminative stimulus; and 3) to establish the order of potency with which Ro 64-6198 produces discriminative stimulus effects compared with analgesic effects in NHPs. Two groups of rhesus monkeys were trained to discriminate either fentanyl or Ro 64-6198 from vehicle. Four monkeys were trained in the warm-water tail-withdrawal procedure to measure antinociception. Ro 64-6198 produced discriminative stimulus effects that were blocked by the NOP antagonist J-113397 and not by naltrexone. The discriminative stimulus effects of Ro 64-6198 partially generalized to diazepam, but not to fentanyl, SNC 80, ketocyclazocine, buprenorphine, phencyclidine, or chlorpromazine. Fentanyl produced stimulus effects that were blocked by naltrexone and not by J-113397, and Ro 64-6198 did not produce fentanyl-appropriate responding in fentanyl-trained animals. In measures of antinociception, fentanyl, but not Ro 64-6198, produced dose-dependent increases in tail-withdrawal latency. Together, these results demonstrate that Ro 64-6198 produced stimulus effects in monkeys that are distinct from other opioid receptor agonists, but may be somewhat similar to diazepam. In contrast to previous findings, Ro 64-6198 did not produce antinociception in the majority of animals tested even at doses considerably greater than those that produced discriminative stimulus effects.
Collapse
Affiliation(s)
- Phillip A Saccone
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Kathy A Zelenock
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Angela M Lindsey
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Agnieszka Sulima
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Kenner C Rice
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Eric P Prinssen
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - Jürgen Wichmann
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| | - James H Woods
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan (P.A.S., K.A.Z., A.M.L., J.H.W.); National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (A.S., K.C.R.); and Hoffman- La Roche Ltd., Basel, Switzerland (E.P.P., J.W.)
| |
Collapse
|
22
|
Multitarget opioid ligands in pain relief: New players in an old game. Eur J Med Chem 2015; 108:211-228. [PMID: 26656913 DOI: 10.1016/j.ejmech.2015.11.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 11/18/2015] [Indexed: 11/21/2022]
Abstract
Still nowadays pain is one of the most common disabling conditions and yet it remains too often unsolved. Analgesic opioid drugs, and mainly MOR agonists such as morphine, are broadly employed for pain management. MOR activation, however, has been seen to cause not only analgesia but also undesired side effects. A potential pain treatment option is represented by the simultaneous targeting of different opioid receptors. In fact, ligands possessing multitarget capabilities led to an improved pharmacological fingerprint. This review focuses on the examination of multitarget opioid ligands which have been distinguished in peptide and non-peptide and further listed as bivalent and bifunctional ligands. Moreover, the potential of these compounds, both as analgesic drugs and pharmacological tools to explore heteromer receptors, has been stressed.
Collapse
|
23
|
Abdel-Ghany R, Nabil M, Abdel-Aal M, Barakat W. Nalbuphine could decrease the rewarding effect induced by tramadol in mice while enhancing its antinociceptive activity. Eur J Pharmacol 2015; 758:11-5. [PMID: 25843409 DOI: 10.1016/j.ejphar.2015.03.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/08/2023]
Abstract
Nalbuphine, a kappa-opioid agonist and mu-opioid partial agonist, has been used as an analgesic or an adjuvant with morphine to attenuate the development of morphine dependence and rewarding effect. In this study, we investigated the effect of nalbuphine on tramadol rewarding effect and antinociception. Using the conditioned place preference (CPP) paradigm in mice, we demonstrated that co-administration of nalbuphine (7mg/kg, s.c.) with tramadol (70mg/kg, s.c.) during conditioning completely blocked the CPP induced by tramadol. Co-administration of nalbuphine blocked the increase in dopamine level in the nucleus accumbens induced by tramadol. These actions were accompanied by an increase rather than attenuation of the antinociceptive effect of tramadol. These results suggest that nalbuphine could have a great potential as a pharmacotherapy for tramadol abuse.
Collapse
Affiliation(s)
- Rasha Abdel-Ghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Mahmoud Nabil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Mohamed Abdel-Aal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Waleed Barakat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tabuk University, Saudi Arabia.
| |
Collapse
|
24
|
Stevenson GW, Luginbuhl A, Dunbar C, LaVigne J, Dutra J, Atherton P, Bell B, Cone K, Giuvelis D, Polt R, Streicher JM, Bilsky EJ. The mixed-action delta/mu opioid agonist MMP-2200 does not produce conditioned place preference but does maintain drug self-administration in rats, and induces in vitro markers of tolerance and dependence. Pharmacol Biochem Behav 2015; 132:49-55. [PMID: 25735493 DOI: 10.1016/j.pbb.2015.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
Previous work in our laboratories provides preclinical evidence that mixed-action delta/mu receptor glycopeptides have equivalent efficacy for treating pain with reduced side effect profiles compared to widely used mu agonist analgesics such as morphine. This study evaluated the rewarding and reinforcing effects of a lead candidate, mixed-action delta/mu agonist MMP-2200, using a conditioned place preference assay as well as a drug self-administration procedure in rats. In place conditioning studies, rats underwent a 2-week conditioning protocol and were then tested for chamber preference. Rats receiving MMP-2200, at previously determined analgesic doses, could not distinguish between the drug and saline-paired chamber, whereas rats receiving the opioid agonist morphine showed a strong preference for the morphine-paired chamber. In self-administration studies, rats were trained to respond for the high efficacy mu opioid receptor agonist fentanyl on an FR5 schedule of reinforcement. Following complete dose-response determinations for fentanyl, a range of doses of MMP-2200 as well as morphine were tested. Relative to the mu agonist morphine, MMP-2200 maintained a significantly lower number of drug infusions. To begin investigating potential molecular mechanisms for the reduced side effect profile of MMP-2200, we also examined βarrestin2 (βarr2) recruitment and chronic MMP-2200 induced cAMP tolerance and super-activation at the human delta and mu receptors in vitro. MMP-2200 efficaciously recruited βarr2 to both receptors, and induced cAMP tolerance and super-activation equivalent to or greater than morphine at both receptors. The in vivo findings suggest that MMP-2200 may be less reinforcing than morphine but may have some abuse potential. The reduced side effect profile cannot be explained by reduced βarr2 recruitment or reduced cAMP tolerance and superactivation at the monomeric receptors in vitro.
Collapse
Affiliation(s)
- Glenn W Stevenson
- Department of Psychology, University of New England, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States.
| | - Amy Luginbuhl
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Catherine Dunbar
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Justin LaVigne
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States
| | - Julio Dutra
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Phillip Atherton
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Brooke Bell
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Katherine Cone
- Department of Psychology, University of New England, Biddeford, ME 04005, United States
| | - Denise Giuvelis
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States
| | - Robin Polt
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, United States
| | - John M Streicher
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States
| | - Edward J Bilsky
- Department of Biomedical Sciences, University of New England College of Osteopathic Medicine, Biddeford, ME 04005, United States; Center for Excellence in the Neurosciences, University of New England, United States
| |
Collapse
|
25
|
Mabrouk OS, Viaro R, Volta M, Ledonne A, Mercuri N, Morari M. Stimulation of δ opioid receptor and blockade of nociceptin/orphanin FQ receptor synergistically attenuate parkinsonism. J Neurosci 2014; 34:12953-62. [PMID: 25253844 PMCID: PMC6608339 DOI: 10.1523/jneurosci.4677-13.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022] Open
Abstract
δ opioid peptide (DOP) receptors are considered a therapeutic target in Parkinson's disease, although the use of DOP agonists may be limited by side effects, including convulsions. To circumvent this issue, we evaluated whether blockade of nociceptin/orphanin FQ (N/OFQ) tone potentiated the antiparkinsonian effects of DOP agonists, thus allowing for reduction of their dosage. Systemic administration of the N/OFQ receptor (NOP) antagonist J-113397 [(3R,4R)-1-cyclooctylmethyl-3-hydroxymethyl-4-piperidyl]-3-ethyl-1,3-dihydro-2H benzimidazol-2-one] and the DOP receptor agonist SNC-80 [(+)-4-[(αR)-α-(2S,5R)-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxy-benzyl]-N-N-diethylbenzamide] revealed synergistic attenuation of motor deficits in 6-hydroxydopamine hemilesioned rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. In this model, repeated administration of the combination produced reproducible antiparkinsonian effects and was not associated with rescued striatal dopamine terminals. Microdialysis studies revealed that either systemic administration or local intranigral perfusion of J-113397 and SNC-80 led to the enhancement of nigral GABA, reduction of nigral Glu, and reduction of thalamic GABA levels, consistent with the view that NOP receptor blockade and DOP receptor stimulation caused synergistic overinhibition of nigro-thalamic GABA neurons. Whole-cell recording of GABA neurons in nigral slices confirmed that NOP receptor blockade enhanced the DOP receptor-induced effect on IPSCs via presynaptic mechanisms. Finally, SNC-80 more potently stimulated stepping activity in mice lacking the NOP receptor than wild-type controls, confirming the in vivo occurrence of an NOP-DOP receptor interaction. We conclude that endogenous N/OFQ functionally opposes DOP transmission in substantia nigra reticulata and that NOP receptor antagonists might be used in combination with DOP receptor agonists to reduce their dosage while maintaining their full therapeutic efficacy.
Collapse
Affiliation(s)
- Omar S Mabrouk
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, 44121 Ferrara, Italy, Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genoa, Italy
| | - Mattia Volta
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| | - Ada Ledonne
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Nicola Mercuri
- Department of System Medicine, Neurophysiopathology, University of Rome "Tor Vergata," 00133 Rome, Italy, and Foundation S. Lucia, Institute for Inpatient Treatment and Scientific Studies, Laboratory of Experimental Neurology, 00143 Rome Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, and National Institute of Neuroscience and
| |
Collapse
|
26
|
Methadone in healthy goats – Pharmacokinetics, behaviour and blood pressure. Res Vet Sci 2013; 95:231-7. [DOI: 10.1016/j.rvsc.2013.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 01/29/2013] [Accepted: 02/22/2013] [Indexed: 11/24/2022]
|
27
|
Lim HJ, Dersch CM, Rothman RB, Deschamps JR, Jacobson AE, Rice KC. Probes for narcotic receptor mediated phenomena. 48. C7- and C8-substituted 5-phenylmorphan opioids from diastereoselective alkylation. Eur J Med Chem 2013; 67:335-43. [PMID: 23880358 DOI: 10.1016/j.ejmech.2013.06.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/23/2013] [Accepted: 06/12/2013] [Indexed: 11/26/2022]
Abstract
The exploration of the effect of substituents at C7 and C8 of the 5-phenylmorphans on their affinity for opioid receptors was enabled by our recently introduced "one pot" diastereoselective synthesis that provided C7-oxo, hydroxy and alkyl substituents, C8-alkyl substituted 5-phenylmorphans, and compounds that had a new cyclohexane ring that includes the C7 and C8 carbon atoms of the 5-phenylmorphan. The affinity of the 5-phenylmorphans for opioid receptors is increased by a C8-methyl substituent, compared with its C7 analog. The affinity of the newly synthesized compounds is generally for the μ-opioid receptor, rather than the δ- or κ-receptors. Addition of a new cyclohexane ring to the C7 and C8 positions on the cyclohexane ring of the 5-phenylmorphans enhances μ-receptor affinity, bringing the Ki to the subnanomolar level. Unexpectedly, the N-methyl substituted compounds generally had higher affinity than comparable N-phenethyl-substituted relatives. The configurations of two compounds were determined by single-crystal X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Hwan Jung Lim
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 5625 Fishers Lane, Room 4N03, Bethesda, MD 20892-9415, USA
| | | | | | | | | | | |
Collapse
|
28
|
Milan-Lobo L, Enquist J, van Rijn RM, Whistler JL. Anti-analgesic effect of the mu/delta opioid receptor heteromer revealed by ligand-biased antagonism. PLoS One 2013; 8:e58362. [PMID: 23554887 PMCID: PMC3598907 DOI: 10.1371/journal.pone.0058362] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/03/2013] [Indexed: 11/18/2022] Open
Abstract
Delta (DOR) and mu opioid receptors (MOR) can complex as heteromers, conferring functional properties in agonist binding, signaling and trafficking that can differ markedly from their homomeric counterparts. Because of these differences, DOR/MOR heteromers may be a novel therapeutic target in the treatment of pain. However, there are currently no ligands selective for DOR/MOR heteromers, and, consequently, their role in nociception remains unknown. In this study, we used a pharmacological opioid cocktail that selectively activates and stabilizes the DOR/MOR heteromer at the cell surface by blocking its endocytosis to assess its role in antinociception. We found that mice treated chronically with this drug cocktail showed a significant right shift in the ED50 for opioid-mediated analgesia, while mice treated with a drug that promotes degradation of the heteromer did not. Furthermore, promoting degradation of the DOR/MOR heteromer after the right shift in the ED50 had occurred, or blocking signal transduction from the stabilized DOR/MOR heteromer, shifted the ED50 for analgesia back to the left. Taken together, these data suggest an anti-analgesic role for the DOR/MOR heteromer in pain. In conclusion, antagonists selective for DOR/MOR heteromer could provide an avenue for alleviating reduced analgesic response during chronic pain treatment.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- HEK293 Cells
- Humans
- Mice
- Mice, Knockout
- Pain/drug therapy
- Pain/genetics
- Pain/metabolism
- Pain/pathology
- Pain Management
- Protein Multimerization
- Protein Stability/drug effects
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Laura Milan-Lobo
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Johan Enquist
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Richard M. van Rijn
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
| | - Jennifer L. Whistler
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California, United States of America
- Department of Neurology, University of California San Francisco, Emeryville, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cremeans CM, Gruley E, Kyle DJ, Ko MC. Roles of μ-opioid receptors and nociceptin/orphanin FQ peptide receptors in buprenorphine-induced physiological responses in primates. J Pharmacol Exp Ther 2012; 343:72-81. [PMID: 22743574 PMCID: PMC3464037 DOI: 10.1124/jpet.112.194308] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/20/2012] [Indexed: 11/22/2022] Open
Abstract
Buprenorphine is known as a μ-opioid peptide (MOP) receptor agonist, but its antinociception is compromised by the activation of nociceptin/orphanin FQ peptide (NOP) receptors in rodents. The aim of this study was to investigate the roles of MOP and NOP receptors in regulating buprenorphine-induced physiological responses in primates (rhesus monkeys). The effects of MOP antagonist (naltrexone), NOP antagonist [(±)-1-[(3R*,4R*)-1-(cyclooctylmethyl)-3-(hydroxymethyl)-4-piperidinyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one (J-113397)], and NOP agonists [(1S,3aS)-8-(2,3,3a,4,5,6-hexahydro-1H-phenalen-1-yl)-1-phenyl-1,3,8-triaza-spiro[4.5] decan-4-one (Ro 64-6198) and 3-endo-8-[bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1]octan-3-ol (SCH 221510)] on buprenorphine were studied in three functional assays for measuring analgesia, respiratory depression, and itch in primates. Over the dose range of 0.01 to 0.1 mg/kg, buprenorphine dose-dependently produced antinociception, respiratory depression, and itch/scratching responses, and there was a ceiling effect at higher doses (0.1-1 mg/kg). Naltrexone (0.03 mg/kg) produced similar degrees of rightward shifts of buprenorphine's dose-response curves for all three endpoints. Mean pK(B) values of naltrexone (8.1-8.3) confirmed that MOP receptors mediated mainly buprenorphine-induced antinociception, respiratory depression, and itch/scratching. In contrast, J-113397 (0.1 mg/kg) did not change buprenorphine-induced physiological responses, indicating that there were no functional NOP receptors in buprenorphine-induced effects. More importantly, both NOP agonists, Ro 64-6198 and SCH 221510, enhanced buprenorphine-induced antinociception without respiratory depression and itch/ scratching. The dose-addition analysis revealed that buprenorphine in combination with the NOP agonist synergistically produced antinociceptive effects. These findings provided functional evidence that the activation of NOP receptors did not attenuate buprenorphine-induced antinociception in primates; instead, the coactivation of MOP and NOP receptors produced synergistic antinociception without other side effects. This study strongly supports the therapeutic potential of mixed MOP/NOP agonists as innovative analgesics.
Collapse
Affiliation(s)
- Colette M Cremeans
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
30
|
Yekkirala AS, Banks ML, Lunzer MM, Negus SS, Rice KC, Portoghese PS. Clinically employed opioid analgesics produce antinociception via μ-δ opioid receptor heteromers in Rhesus monkeys. ACS Chem Neurosci 2012; 3:720-7. [PMID: 23019498 DOI: 10.1021/cn300049m] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022] Open
Abstract
Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans.
Collapse
Affiliation(s)
- Ajay S. Yekkirala
- Department of Pharmacology,
Medical School, University of Minnesota, Minneapolis, Minnesota 55455,
United States
- Department of Medicinal Chemistry,
College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
55455, United States
| | - Matthew L. Banks
- Department
of Pharmacology and
Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298,
United States
| | - Mary M. Lunzer
- Department of Medicinal Chemistry,
College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
55455, United States
| | - Stevens S. Negus
- Department
of Pharmacology and
Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298,
United States
| | - Kenner C. Rice
- Chemical
Biology Research Branch,
National Institute on Drug Abuse and National Institute on Alcohol
Abuse and Alcoholism National Institutes of Health, DHHS, Bethesda,
Maryland 20892, United States
| | - Philip S. Portoghese
- Department of Pharmacology,
Medical School, University of Minnesota, Minneapolis, Minnesota 55455,
United States
- Department of Medicinal Chemistry,
College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
55455, United States
| |
Collapse
|
31
|
Opioid glycopeptide analgesics derived from endogenous enkephalins and endorphins. Future Med Chem 2012; 4:205-26. [PMID: 22300099 DOI: 10.4155/fmc.11.195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Over the past two decades, potent and selective analgesics have been developed from endogenous opioid peptides. Glycosylation provides an important means of modulating interaction with biological membranes, which greatly affects the pharmacodynamics and pharmacokinetics of the resulting glycopeptide analogues. Furthermore, manipulation of the membrane affinity allows penetration of cellular barriers that block efficient drug distribution, including the blood-brain barrier. Extremely potent and selective opiate agonists have been developed from endogenous peptides, some of which show great promise as drug candidates.
Collapse
|
32
|
Interaction between Mu and Delta Opioid Receptor Agonists in an Assay of Capsaicin-Induced Thermal Allodynia in Rhesus Monkeys. PAIN RESEARCH AND TREATMENT 2012; 2012:867067. [PMID: 22666579 PMCID: PMC3361312 DOI: 10.1155/2012/867067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/28/2012] [Indexed: 01/25/2023]
Abstract
Delta opioid agonists enhance antinociceptive effects of mu-opioid agonists in many preclinical assays of acute nociception, but delta/mu interactions in preclinical models of inflammation-associated pain have not been examined. This study examined interactions between the delta agonist SNC80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist analgesics methadone, morphine, and nalbuphine in an assay of capsaicin-induced thermal allodynia in rhesus monkeys. Thermal allodynia was produced by topical application of capsaicin to the tail. Antiallodynic effects of methadone, morphine, and nalbuphine were evaluated alone or in combination with fixed proportions of SNC80 identical to proportions previously shown to enhance acute thermal antinociceptive effects of these mu agonists in rhesus monkeys (0.9 : 1 SNC80/methadone; 0.29 : 1 SNC80/morphine; 3.6 : 1 SNC80/nalbuphine). Methadone, morphine, and nalbuphine each produced dose-dependent antiallodynia. SNC80 produced partial antiallodynia up to the highest dose tested (5.6 mg/kg). SNC80 produced a modest, enantioselective, and naltrindole-reversible enhancement of methadone-induced antiallodynia. However, SNC80 did not enhance morphine antiallodynia and only weakly enhanced nalbuphine antiallodynia. Overall, SNC80 produced modest or no enhancement of the antiallodynic effects of the three mu agonists evaluated. These results suggest that delta agonist-induced enhancement of mu agonist antiallodynia may be weaker and less reliable than previously demonstrated enhancement of mu agonist acute thermal nociception.
Collapse
|
33
|
Mundra JJ, Terskiy A, Howells RD. Naltrindole inhibits human multiple myeloma cell proliferation in vitro and in a murine xenograft model in vivo. J Pharmacol Exp Ther 2012; 342:273-87. [PMID: 22537770 DOI: 10.1124/jpet.112.194159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
It has been demonstrated previously that immune cell activation and proliferation were sensitive to the effects of naltrindole, a nonpeptidic δ-opioid receptor-selective antagonist; therefore, we hypothesized that human multiple myeloma (MM) would be a valuable model for studying potential antineoplastic properties of naltrindole. [(3)H]naltrindole exhibited saturable, low-affinity binding to intact human MM cells; however, the pharmacological profile of the binding site differed considerably from the properties of δ-, κ-, and μ-opioid receptors, and opioid receptor mRNA was not detected in MM cells by reverse transcriptase-polymerase chain reaction. Naltrindole inhibited the proliferation of cultured human U266 MM cells in a time- and dose-dependent manner with an EC(50) of 16 μM. The naltrindole-induced inhibition of U266 cell proliferation was not blocked by a 10-fold molar excess of naltrexone, a nonselective opioid antagonist. Additive inhibition of MM cell proliferation was observed when using a combination of naltrindole with the histone deacetylase inhibitor sodium valproate, the proteasome inhibitor bortezomib, the glucocorticoid receptor agonist dexamethasone, and the HMG CoA reductase inhibitor simvastatin. Treatment of U266 cells with naltrindole significantly decreased the level of the active, phosphorylated form of the kinases, extracellular signal-regulated kinase and Akt, which may be related to its antiproliferative activity. The antiproliferative activity of naltrindole toward MM cells was maintained in cocultures of MM and bone marrow-derived stromal cells, mimicking the bone marrow microenvironment. In vivo, naltrindole significantly decreased tumor cell volumes in human MM cell xenografts in severe combined immunodeficient mice. We hypothesize that naltrindole inhibits the proliferation of MM cells through a nonopioid receptor-dependent mechanism.
Collapse
Affiliation(s)
- Jyoti Joshi Mundra
- Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, New Jersey, USA
| | | | | |
Collapse
|
34
|
Bianchi BR, Zhang XF, Reilly RM, Kym PR, Yao BB, Chen J. Species Comparison and Pharmacological Characterization of Human, Monkey, Rat, and Mouse TRPA1 Channels. J Pharmacol Exp Ther 2012; 341:360-8. [DOI: 10.1124/jpet.111.189902] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Pasquinucci L, Parenti C, Turnaturi R, Aricò G, Marrazzo A, Prezzavento O, Ronsisvalle S, Georgoussi Z, Fourla DD, Scoto GM, Ronsisvalle G. The benzomorphan-based LP1 ligand is a suitable MOR/DOR agonist for chronic pain treatment. Life Sci 2011; 90:66-70. [PMID: 22100511 DOI: 10.1016/j.lfs.2011.10.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 09/05/2011] [Accepted: 10/08/2011] [Indexed: 10/15/2022]
Abstract
AIMS Powerful analgesics relieve pain primarily through activating mu opioid receptor (MOR), but the long-term use of MOR agonists, such as morphine, is limited by the rapid development of tolerance. Recently, it has been observed that simultaneous stimulation of the delta opioid receptor (DOR) and MOR limits the incidence of tolerance induced by MOR agonists. 3-[(2R,6R,11R)-8-hydroxy-6,11-dimethyl-1,4,5,6-tetrahydro-2,6-methano-3-benzazocin-3(2H)-yl]-N-phenylpropanamide (LP1) is a centrally acting agent with antinociceptive activity comparable to morphine and is able to bind and activate MOR and DOR. The aim of this work was to evaluate and compare the induction of tolerance to antinociceptive effects from treatment with LP1 and morphine. MAIN METHODS Here, we evaluated the pharmacological effects of LP1 administered at a dose of 4 mg/kg subcutaneously (s.c.) twice per day for 9 days to male Sprague-Dawley rats. In addition, the LP1 mechanism of action was assessed by measurement of LP1-induced [(35)S]GTPγS binding to the MOR and DOR. KEY FINDINGS Data obtained from the radiant heat tail flick test showed that LP1 maintained its antinociceptive profile until the ninth day, while tolerance to morphine (10mg/kg s.c. twice per day) was observed on day 3. Moreover, LP1 significantly enhanced [(35)S]GTPγS binding in the membranes of HEK293 cells expressing either the MOR or the DOR. SIGNIFICANCE LP1 is a novel analgesic agent for chronic pain treatment, and its low tolerance-inducing capability may be correlated with its ability to bind both the MOR and DOR.
Collapse
Affiliation(s)
- Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Banks ML, Roma PG, Folk JE, Rice KC, Negus SS. Effects of the delta-opioid agonist SNC80 on the abuse liability of methadone in rhesus monkeys: a behavioral economic analysis. Psychopharmacology (Berl) 2011; 216:431-9. [PMID: 21369752 PMCID: PMC3557963 DOI: 10.1007/s00213-011-2235-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 02/16/2011] [Indexed: 11/28/2022]
Abstract
RATIONALE Delta-opioid agonists enhance the antinociceptive efficacy of methadone and other mu-opioid agonists. However, relatively little is known about the degree to which delta agonists might enhance the abuse-related effects of mu agonists. OBJECTIVE This study used a behavioral economic approach to examine effects of the delta agonist SNC80 [(+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide] on the reinforcing effects of methadone in a drug self-administration assay. Interactions between SNC80 and cocaine were also examined for comparison. METHODS Rhesus monkeys (n = 4), surgically implanted with indwelling intravenous catheters, were tested in two phases. In phase 1, drug self-administration dose-effect curves for methadone (0.0032-0.1 mg/kg/injection (inj)) and cocaine (0.0032-0.32 mg/kg/inj) alone were determined under a fixed-ratio 10 (FR 10) schedule of reinforcement. In phase 2, FR values were increased every 3 days (FR 1-FR 1800) during availability of methadone alone (0.032 mg/kg/inj) and in combination with varying proportions of SNC80 (0.1:1, 0.3:1, and 0.9:1 SNC80/methadone) or of cocaine alone (0.032 mg/kg/inj) and in combination with varying proportions of SNC80 (0.33:1, 1:1, and 3:1 SNC80/cocaine). Demand curves related drug intake to FR price, and measures of reinforcement were derived. RESULTS Methadone and cocaine alone each functioned as a reinforcer. SNC80 did not alter measures of reinforcement for either methadone or cocaine. CONCLUSIONS SNC80 at proportions previously shown to enhance methadone-induced antinociception did not enhance the abuse-related effects of methadone. These results support the proposition that delta agonists may selectively enhance mu agonist analgesic effects without enhancing mu agonist abuse liability.
Collapse
Affiliation(s)
- Matthew L. Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| | - Peter G. Roma
- Institute for Behavior Resources, Baltimore, MD, USA. Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - John E. Folk
- Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - S. Stevens Negus
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| |
Collapse
|
37
|
Lowery JJ, Raymond TJ, Giuvelis D, Bidlack JM, Polt R, Bilsky EJ. In vivo characterization of MMP-2200, a mixed δ/μ opioid agonist, in mice. J Pharmacol Exp Ther 2010; 336:767-78. [PMID: 21118955 DOI: 10.1124/jpet.110.172866] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We have previously reported the chemistry and antinociceptive properties of a series of glycosylated enkephalin analogs (glycopeptides) exhibiting approximately equal affinity and efficacy at δ opioid receptors (DORs) and μ opioid receptors (MORs). More detailed pharmacology of the lead glycopeptide MMP-2200 [H₂N-Tyr-D-Thr-Gly-Phe-Leu-Ser-(O-β-D-lactose)-CONH₂] is presented. MMP-2200 produced dose-related antinociception in the 55°C tail-flick assay after various routes of administration. The antinociceptive effects of MMP-2200 were blocked by pretreatment with the general opioid antagonist naloxone and partially blocked by the MOR-selective antagonist β-funaltrexamine and the DOR-selective antagonist naltrindole. The κ opioid receptor antagonist nor-binaltorphimine and the peripherally active opioid antagonist naloxone-methiodide were ineffective in blocking the antinociceptive effects of MMP-2200. At equi-antinociceptive doses, MMP-2200 produced significantly less stimulation of locomotor activity compared with morphine. Repeated administration of equivalent doses of morphine and MMP-2200 (twice daily for 3 days) produced antinociceptive tolerance (~13- and 5-fold rightward shifts, respectively). In acute and chronic physical dependence assays, naloxone precipitated a more severe withdrawal in mice receiving morphine compared with equivalent doses of the glycopeptide. Both morphine and MMP-2200 inhibited respiration and gastrointestinal transit. In summary, MMP-2200 acts as a mixed DOR/MOR agonist in vivo, which may in part account for its high antinociceptive potency after systemic administration, as well as its decreased propensity to produce locomotor stimulation, tolerance, and physical dependence in mice, compared with the MOR-selective agonist morphine. For other measures (e.g., gastrointestinal transit and respiration), the significant MOR component may not allow differentiation from morphine.
Collapse
Affiliation(s)
- John J Lowery
- Department of Pharmacology, University of New England, College of Osteopathic Medicine, Biddeford, ME 04005, USA
| | | | | | | | | | | |
Collapse
|
38
|
Banks ML, Folk JE, Rice KC, Negus SS. Selective enhancement of fentanyl-induced antinociception by the delta agonist SNC162 but not by ketamine in rhesus monkeys: Further evidence supportive of delta agonists as candidate adjuncts to mu opioid analgesics. Pharmacol Biochem Behav 2010; 97:205-12. [PMID: 20678514 DOI: 10.1016/j.pbb.2010.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/19/2010] [Accepted: 07/25/2010] [Indexed: 11/17/2022]
Abstract
Mu-opioid receptor agonists such as fentanyl are effective analgesics, but their clinical use is limited by untoward effects. Adjunct medications may improve the effectiveness and/or safety of opioid analgesics. This study compared interactions between fentanyl and either the noncompetitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist ketamine or the delta-opioid receptor agonist SNC162 [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-phenyl)methyl]-N,N-diethylbenzamide] in two behavioral assays in rhesus monkeys. An assay of thermal nociception evaluated tail-withdrawal latencies from water heated to 50 and 54°C. An assay of schedule-controlled responding evaluated response rates maintained under a fixed-ratio 30 schedule of food presentation. Effects of each drug alone and of three mixtures of ketamine+fentanyl (22:1, 65:1, 195:1 ketamine/fentanyl) or SNC162+fentanyl (59:1, 176:1, 528:1 SNC162/fentanyl) were evaluated in each assay. All drugs and mixtures dose-dependently decreased rates of food-maintained responding, and drug proportions in the mixtures were based on relative potencies in this assay. Ketamine and SNC162 were inactive in the assay of thermal antinociception, but fentanyl and all mixtures produced dose-dependent antinociception. Drug interactions were evaluated using dose-addition and dose-ratio analysis. Dose-addition analysis revealed that interactions for all ketamine/fentanyl mixtures were additive in both assays. SNC162/fentanyl interactions were usually additive, but one mixture (176:1) produced synergistic antinociception at 50°C. Dose-ratio analysis indicated that ketamine failed to improve the relative potency of fentanyl to produce antinociception vs. rate suppression, whereas two SNC162/fentanyl mixtures (59:1 and 176:1) increased the relative potency of fentanyl to produce antinociception. These results suggest that delta agonists may produce more selective enhancement than ketamine of mu agonist-induced antinociception.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
39
|
Banks ML, Rice KC, Negus SS. Antinociceptive interactions between Mu-opioid receptor agonists and the serotonin uptake inhibitor clomipramine in rhesus monkeys: role of Mu agonist efficacy. J Pharmacol Exp Ther 2010; 335:497-505. [PMID: 20675432 DOI: 10.1124/jpet.110.169276] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mu-opioid agonists are effective analgesics but have undesirable effects such as sedation and abuse liability that limit their clinical effectiveness. Serotonergic systems also modulate nociception, and serotonin uptake inhibitors may be useful as adjuncts to enhance analgesic effects and/or attenuate undesirable effects of mu agonists. This study examined the effects of the serotonin uptake inhibitor clomipramine on behavioral effects produced in rhesus monkeys by mu agonists with varying efficacy at mu receptors (nalbuphine < morphine < methadone). Clomipramine and each mu agonist were studied alone and in fixed-proportion mixtures in assays of schedule-controlled responding, thermal nociception, and capsaicin-induced thermal allodynia. In the assay of schedule-controlled responding, all mu agonists dose-dependently decreased response rates. Clomipramine was inactive alone and did not alter the effects of mu agonists. In the assay of thermal nociception, all mu agonists produced dose-dependent antinociception. Clomipramine was inactive alone but produced a proportion-dependent enhancement of the antinociceptive effects of nalbuphine > morphine > methadone. In the assay of capsaicin-induced allodynia, nalbuphine produced dose-dependent antiallodynia. Clomipramine alone was inactive, but as in the assay of thermal nociception, it produced a proportion-dependent enhancement in the effects of nalbuphine. These findings suggest that serotonin uptake inhibitors can selectively enhance the antinociceptive effects of mu agonists in nonhuman primates. These effects of serotonin uptake inhibitors may depend on the proportion of the serotonin uptake inhibitor and the efficacy of the mu agonist. The greatest enhancement was observed with intermediate proportions of clomipramine in combination with the low-efficacy mu agonist nalbuphine.
Collapse
Affiliation(s)
- Matthew L Banks
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, P.O. Box 980613, Richmond, VA 23298, USA
| | | | | |
Collapse
|
40
|
Abstract
Similar to mu opioid receptors, kappa and delta opioid receptors reside in the periphery, the dorsal root ganglion, the spinal cord, and in supraspinal regions associated with pain modulation. Both delta and kappa opioid agonists have been shown to activate pain inhibitory pathways in the central nervous system. Yet, currently there are only a few pharmacologic agents that target kappa receptors, and none that target delta receptors. Spurred by the need for an efficacious analgesic without the unwanted side effects associated with the typical clinical profile of mu opioid agonists, new research has provided insight into why the development of effective kappa and delta opioid receptor agonists has remained elusive thus far, and importantly, how these obstacles may be overcome. For example, for delta opioid agonists to be effective, a state of inflammation may be required as this induces delta opioid receptors to migrate to the surface of neuronal cells and thereby become accessible to delta opioid agonists. Studies have shown that delta opioid agonists can provide relief of inflammatory pain and malignant bone pain. Meanwhile, peripherally restricted kappa opioid agonists have been developed to target kappa opioid receptors located on visceral and somatic afferent nerves for relief of inflammatory, visceral, and neuropathic chronic pain. The recently shown efficacy of these analgesics combined with a possible lower abuse potential and side effect burden than mu opioid receptor agonists makes delta and peripherally restricted kappa opioid receptor agonists promising targets for treating pain.
Collapse
|
41
|
Negus SS, Banks ML, Folk JE, Rice KC. Modulation of delta opioid agonist-induced antinociception by repeated morphine pretreatment in rhesus monkeys. Life Sci 2010; 86:385-92. [PMID: 20096291 DOI: 10.1016/j.lfs.2010.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/05/2010] [Accepted: 01/10/2010] [Indexed: 11/30/2022]
Abstract
AIMS Repeated treatment with morphine increases antinociceptive effects of delta opioid agonists in rodents by a mechanism that may involve increased cell-surface expression of delta receptors. The present study evaluated effects of repeated morphine treatment on behavioral effects of the delta agonist SNC80 and the mu agonist fentanyl in rhesus monkeys. MAIN METHODS In an assay of schedule-controlled responding, three monkeys responded for food reinforcement under a fixed-ratio 30 schedule. In an assay of thermal nociception, tail-withdrawal latencies were evaluated in three monkeys using thermal stimulus intensities of 48 and 54 degrees C. In both assays, the effects of SNC80 (0.032-3.2mg/kg) and fentanyl (0.001-0.056 mg/kg) were evaluated after repeated treatment with saline or a regimen of morphine doses modeled on the regimen that enhanced delta agonist antinociception and apparent delta receptor availability in previous rodent studies. KEY FINDINGS Both SNC80 and fentanyl dose-dependently decreased rates of schedule-controlled responding, and repeated morphine treatment did not significantly alter these effects. In the assay of thermal nociception, SNC80 had little effect on tail-withdrawal latencies from water heated to 48 or 54 degrees C, whereas fentanyl increased tail-withdrawal latencies at both temperatures. Repeated morphine tended to increase the antinociceptive effects of SNC80 and to decrease the antinociceptive effects of fentanyl, but these effects of repeated morphine were small and were significant only at the higher stimulus intensity (54 degrees C). SIGNIFICANCE These results provide limited support for the proposition that prior stimulation of mu receptors selectively increases the antinociceptive effects of delta agonists in rhesus monkeys.
Collapse
Affiliation(s)
- S S Negus
- Dept of Pharmacology and Toxicology, Virginia Commonwealth University, 410 N 12th St, Richmond, VA 23220, USA.
| | | | | | | |
Collapse
|
42
|
Fischer BD, Ward SJ, Henry FE, Dykstra LA. Attenuation of morphine antinociceptive tolerance by a CB(1) receptor agonist and an NMDA receptor antagonist: Interactive effects. Neuropharmacology 2009; 58:544-50. [PMID: 19699755 DOI: 10.1016/j.neuropharm.2009.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/14/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
Abstract
CB(1) cannabinoid (CB(1)) receptor agonists and N-Methyl-d-Aspartate (NMDA) receptor antagonists attenuate the development of morphine antinociceptive tolerance. The present study used dose-addition analysis to evaluate CB(1)/NMDA receptor interactions on this endpoint. Chronic morphine administration (5 days, 100 mg/kg, twice daily) resulted in a 2.8-fold rightward shift in the morphine dose-effect curve. Co-administration of either the CB(1) receptor agonist CP-55940 (5-(1,1-Dimethylheptyl)-2-[5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]phenol; 0.32-1.0 mg/kg) or the NMDA receptor antagonist (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959; 1.0-3.2 mg/kg) with morphine dose-dependently attenuated morphine tolerance. The relative potency of each drug alone was quantified using a defined level of effect (one-quarter log shift in the morphine dose-effect curve), resulting in equieffective doses of 0.42 mg/kg and 1.1 mg/kg for CP-55940 and LY235959, respectively. Subsequent experiments assessed CP-55940/LY235959 interactions using a fixed-proportion design. Co-administration of CP-55940/LY235959 mixtures (1:1, 1:3.2, or 1:10 CP-55940/LY235959) with morphine dose-dependently attenuated morphine tolerance. Isobolographic and dose-addition analysis were used to statistically compare the experimentally determined potency for each mixture (z(mix)) with predicted additive potency (z(add)). Mixtures of 1:1 and 1:3.2 CP-55940/LY235959 produced additive effects (z(add) = z(mix)), while the mixture of 1:10 CP-55940/LY235959 produced a supra-additive effect (z(add) > z(mix)). These results suggest that CP-55940 and LY235959 produce additive or supra-additive attenuation of morphine antinociceptive tolerance after repeated morphine administration, depending on their relative concentrations.
Collapse
Affiliation(s)
- Bradford D Fischer
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
43
|
Zimmermann C, Seccareccia D, Booth CM, Cottrell W. Rotation to Methadone After Opioid Dose Escalation. J Pain Palliat Care Pharmacother 2009. [DOI: 10.1080/j354v19n02_05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Negus SS, Bear AE, Folk JE, Rice KC. Role of delta opioid efficacy as a determinant of mu/delta opioid interactions in rhesus monkeys. Eur J Pharmacol 2008; 602:92-100. [PMID: 19027735 DOI: 10.1016/j.ejphar.2008.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/20/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
Abstract
Delta opioid agonists can selectively enhance the antinociceptive effects of mu opioid agonists without enhancing some other, potentially undesirable mu agonist effects. However, the degree of delta receptor efficacy required to produce this profile of interactions is unknown. To address this issue, the present study examined interactions produced by the mu agonist fentanyl and the intermediate-efficacy delta opioid MSF61 in rhesus monkeys. For comparison, interactions were also examined between fentanyl and the relatively high-efficacy delta agonist SNC243A and the delta antagonist naltrindole, which has negligible efficacy at delta receptors. Two different behavioral procedures were used: (a) a warm-water tail-withdrawal assay of thermal nociception, and (b) an assay of schedule-controlled responding for food reinforcement. Drug interactions within each procedure were evaluated using dose-addition analysis to compare experimental results with expected additivity. Drug interactions across procedures were evaluated using dose-ratio analysis to assess relative potencies to produce antinociception vs. response-rate suppression. As expected, dose-addition analysis found that fentanyl/SNC243A interactions were superadditive in the assay of antinociception but additive in the assay of schedule-controlled responding. Conversely, fentanyl/MSF61 interactions were generally additive in both procedures, and fentanyl/naltrindole interactions were additive or subadditive in both procedures. Dose-ratio analysis found that fentanyl alone produced antinociception and rate suppression with similar potencies. Some fentanyl/SNC243A mixtures produced antinociception with up to 4-fold greater potency than rate-suppression. However, fentanyl/MSF61 and fentanyl/naltrindole mixtures produced antinociception with lower potency than rate suppression. These results suggest that relatively high delta receptor efficacy is required for mu/delta antinociceptive synergy.
Collapse
Affiliation(s)
- S Stevens Negus
- Alcohol and Drug Abuse Research Center; McLean Hospital - Harvard Medical School, Belmont, MA, United States.
| | | | | | | |
Collapse
|
45
|
Negus SS, Schrode K, Stevenson GW. Micro/kappa opioid interactions in rhesus monkeys: implications for analgesia and abuse liability. Exp Clin Psychopharmacol 2008; 16:386-99. [PMID: 18837635 PMCID: PMC2604909 DOI: 10.1037/a0013088] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Micro opioid receptor agonists are clinically valuable as analgesics; however, their use is limited by high abuse liability. Kappa opioid agonists also produce antinociception, but they do not produce micro agonist-like abuse-related effects, suggesting that they may enhance the antinociceptive effects and/or attenuate the abuse-related effects of micro agonists. To evaluate this hypothesis, the present study examined interactions between the micro agonist fentanyl and the kappa agonist U69,593 in three behavioral assays in rhesus monkeys. In an assay of schedule-controlled responding, monkeys responded under a fixed-ratio 30 (FR 30) schedule of food presentation. Fentanyl and U69,593 each produced rate-decreasing effects when administered alone, and mixtures of 0.22:1, 0.65:1, and 1.96:1 U69,593/fentanyl usually produced subadditive effects. In an assay of thermal nociception, tail withdrawal latencies were measured from water heated to 50 degrees C. Fentanyl and U69,593 each produced dose-dependent antinociception, and effects were additive for all mixtures. In an assay of drug self-administration, rhesus monkeys responded for intravenous drug injection, and both dose and FR values were manipulated. Fentanyl maintained self-administration, whereas U69,593 did not. Addition of U69,593 to fentanyl produced a proportion-dependent decrease in rates of fentanyl self-administration. Moreover, addition of U69,593 increased the sensitivity of fentanyl self-administration to increases in the FR value. Taken together, these results suggest that simultaneous activation of mu and kappa receptors, either with a mixture of selective drugs or with a single drug that targets both receptors, may reduce abuse liability without reducing analgesic effects relative to selective micro agonists administered alone.
Collapse
Affiliation(s)
- S Stevens Negus
- Alcohol and Drug Abuse Research Center, McLean Hospital-Harvard Medical School, Belmont, MA, USA.
| | | | | |
Collapse
|
46
|
Cooper ZD, Truong YNT, Shi YG, Woods JH. Morphine deprivation increases self-administration of the fast- and short-acting mu-opioid receptor agonist remifentanil in the rat. J Pharmacol Exp Ther 2008; 326:920-9. [PMID: 18515643 DOI: 10.1124/jpet.108.139196] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opiate dependence and withdrawal have long been hypothesized to enhance the reinforcing effects of opiates; however, opiate agonist self-administration in these states has yet to be systematically assessed. To address this issue, the reinforcing property of the short-acting mu-opioid agonist, remifentanil, was assessed in morphine-dependent (MD), morphine-dependent and -withdrawn (MW), and nondependent, control (C) rats. Dependence was established by twice daily administration of increasing doses of morphine for 4 days (10, 20, 30, and 40 mg/kg s.c.) and then maintained with a daily injection of the large dose. Morphine deprivation-induced withdrawal (defined by weight loss and hyperalgesia) was apparent 24, but not 12, h after morphine treatment. Remifentanil self-administration (0.4, 0.8, 1.6, 3.2, or 6.4 mug/kg/infusion) was assessed over 20 successive, daily, 1-h sessions, either 12 or 24 h after the maintenance dose of morphine. Compared with the control group, the MD group demonstrated suppressed remifentanil self-administration, whereas the MW group exhibited enhanced responding for every dose of remifentanil. The increased responding observed in the MW group compared with the control and MD groups resulted in an upward shift in the remifentanil dose-response curve, an effect that was expressed only after repeated exposure to the contingency, demonstrating that morphine withdrawal ultimately enhances the reinforcing effects of remifentanil.
Collapse
Affiliation(s)
- Ziva D Cooper
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | | | | | |
Collapse
|
47
|
Do Carmo GP, Polt R, Bilsky EJ, Rice KC, Negus SS. Behavioral pharmacology of the mu/delta opioid glycopeptide MMP2200 in rhesus monkeys. J Pharmacol Exp Ther 2008; 326:939-48. [PMID: 18511649 DOI: 10.1124/jpet.108.138180] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
H(2)N-Tyr-D-Thr-Gly-Phe-Leu-Ser-(O-beta-D-lactose)-CONH(2) (MMP2200) is a novel glycopeptide opioid agonist with similar affinities for mu and delta receptors. Glycosylation promoted brain penetration and production of centrally mediated behavioral effects in mice; however, it is unknown whether the magnitude of enhanced brain penetration is sufficient to permit central mediation of drug effects and production of synergistic mu/delta antinociceptive interactions after systemic administration in primates. To address this issue, the present study compared the effects of MMP2200 and the mu-agonist morphine in four behavioral procedures in rhesus monkeys. In an assay of thermal nociception, morphine (1.0-5.6 mg/kg) produced dose-dependent antinociception, whereas MMP2200 (10-56 mg/kg) was ineffective. In an assay of capsaicin-induced thermal allodynia, both morphine (0.01-1.0 mg/kg) and MMP2200 (0.032-3.2 mg/kg) produced dose-dependent antiallodynic effects. MMP2200-induced antiallodynia was blocked by the moderately mu-selective antagonist naltrexone (0.01 mg/kg), the delta-selective antagonist naltrindole (1.0 mg/kg), and the peripherally selective opioid antagonist quaternary naltrexone (0.32 mg/kg). In an assay of schedule-controlled behavior, both morphine (0.01-1.0 mg/kg) and MMP2200 (10-56 mg/kg) decreased response rates. Morphine effects were antagonized by naltrexone (0.001-0.01 mg/kg); however, the effects of MMP2200 were not antagonized by either naltrexone (0.01 mg/kg) or naltrindole (1.0 mg/kg). In an assay of drug self-administration, morphine (0.0032-0.32 mg/kg/injection) produced reinforcing effects, whereas MMP2200 (0.032-0.32 mg/kg/injection) did not. These results suggest that systemically administered MMP2200 acted as a peripheral, mu/delta-opioid agonist with limited distribution to the central nervous system in rhesus monkeys. These results also suggest the existence of species differences in the pharmacokinetics and brain penetration of glycopeptides.
Collapse
Affiliation(s)
- Gail Pereira Do Carmo
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | | | | | | | | |
Collapse
|
48
|
Tao PL, Liang KW, Sung WY, Wu YT, Huang EYK. Nalbuphine is effective in decreasing the rewarding effect induced by morphine in rats. Drug Alcohol Depend 2006; 84:175-81. [PMID: 16517095 DOI: 10.1016/j.drugalcdep.2006.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 01/09/2006] [Accepted: 01/28/2006] [Indexed: 11/23/2022]
Abstract
Nalbuphine, a kappa-opioid agonist and mu-opioid partial agonist, has been widely used as an analgesic or an adjuvant with morphine in clinics. In rats, it attenuates tolerance and physical dependence caused by morphine, when co-administered. In this study, we investigated the effect of nalbuphine on morphine reward. Using the conditioned place preference (CPP) paradigm in rats, we demonstrated that co-administration of nalbuphine (1mg/kg, i.p.) with morphine (5mg/kg, i.p.) during conditioning could completely block the CPP induced by morphine. However, in experiments examining locomotor activity in rats, nalbuphine showed no effect on the development of behavioral sensitization induced by reported morphine administration. In microdialysis experiments, morphine induced a significant increase in the dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid in the shell region of the nucleus accumbens. Co-administration of nalbuphine blocked the increase in dopamine metabolites induced by morphine. These results may be due to the attenuating effect of nalbuphine on the dopaminergic activity of mesolimbic pathways. All of these results suggest nalbuphine could have a great potential as a pharmacotherapy for opiate abuse.
Collapse
Affiliation(s)
- Pao-Luh Tao
- Department of Pharmacology, National Defense Medical Center, 161, Min-Chuan East Road, Sec. 6, Taipei 114, Taiwan, ROC
| | | | | | | | | |
Collapse
|
49
|
Horvath G, Kekesi G. Interaction of endogenous ligands mediating antinociception. ACTA ACUST UNITED AC 2006; 52:69-92. [PMID: 16488019 DOI: 10.1016/j.brainresrev.2006.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 01/04/2006] [Accepted: 01/06/2006] [Indexed: 11/17/2022]
Abstract
It is well known that a multitude of transmitters and receptors are involved in the nociceptive system, some of them increasing and others inhibiting the pain sensation both peripherally and centrally. These substances, which include neurotransmitters, hormones, etc., can modify the activity of nerves involved in the pain pathways. Furthermore, the organism itself can express very effective antinociception under different circumstances (e.g. stress), and, during such situations, the levels of various endogenous ligands change. A very exciting field of pain research relates to the roles of endogenous ligands. Most of them have been suggested to influence pain transmission, but only a few studies have been performed on the interactions of different endogenous ligands. This review focuses on the results of antinociceptive interactions after the co-administration of endogenous ligands. The data based on 55 situations reveal that the interactions between the endogenous ligands are very different, depending on the substances, the pain tests, the species of animals and the route of administrations. It is also revealed that only a few of the possible interactions between endogenous ligands have been investigated to date, in spite of the fact that the type of antinociceptive interaction between different endogenous ligands could hardly be predicted. The results indicate that the combination of endogenous ligands should not be omitted from the pain therapy arsenal. Attention will hopefully be drawn to the complex interdependence of endogenous ligands and their potential use in clinical practice.
Collapse
Affiliation(s)
- Gyongyi Horvath
- Department of Physiology, Faculty of Medicine, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary.
| | | |
Collapse
|
50
|
Fischer BD, Dykstra LA. Interactions between an N-methyl-D-aspartate antagonist and low-efficacy opioid receptor agonists in assays of schedule-controlled responding and thermal nociception. J Pharmacol Exp Ther 2006; 318:1300-6. [PMID: 16772537 DOI: 10.1124/jpet.106.101683] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A growing body of literature has implicated N-methyl-d-aspartate (NMDA) receptor mechanisms in the acute antinociceptive effects of morphine; however, the nature of this interaction has not been thoroughly quantified. Moreover, it is not clear whether NMDA/morphine interactions extend to less efficacious opioids. Therefore, the present study examined the effects of morphine and various low-efficacy opioid agonists in combination with the NMDA antagonist (-)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959) in two different assays: schedule-controlled responding and thermal nociception. Data were examined with dose-addition analysis to provide a quantitative assessment of the drug interactions. LY235959 and the opioid agonists morphine, buprenorphine, butorphanol, and nalbuphine all decreased rates of schedule-controlled responding. LY235959/morphine and LY235959/buprenorphine mixtures produced additive or subadditive effects in this assay, whereas LY235959/butorphanol and LY235959/nalbuphine mixtures produced additive or supra-additive effects, depending on the relative proportions of each drug in mixture. Morphine, buprenorphine, butorphanol, and nalbuphine also produced dose-dependent antinociception in the assay of thermal nociception, whereas LY235959 failed to produce an effect. In this assay, LY235959 potentiated the antinociceptive effects of morphine and each of the low-efficacy opioids tested. These results suggest that LY235959 may selectively increase the antinociceptive effects of morphine and some low-efficacy opioid receptor agonists without increasing their rate-altering effects. In addition, these data confirm that the behavioral effects of drug mixtures depend on the relative concentrations of the drugs in the mixture and on the endpoint under study.
Collapse
Affiliation(s)
- Bradford D Fischer
- Department of Psychology, University of North Carolina at Chapel Hill, NC 27599-3270, USA.
| | | |
Collapse
|