1
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
3
|
Fontana RJ, Li YJ, Chen V, Kleiner D, Stolz A, Odin J, Vuppalanchi R, Gu J, Dara L, Barnhart H. Genetic variants associated with immune-mediated liver injury from checkpoint inhibitors. Hepatol Commun 2024; 8:e0518. [PMID: 39185906 PMCID: PMC11357698 DOI: 10.1097/hc9.0000000000000518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/14/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The clinical features, liver histology, and genetic variants in 57 patients with moderate to severe immune-mediated liver injury from checkpoint inhibitors (ILICI) are presented. METHODS Between 2010 and 2022, 57 high-causality ILICI cases were enrolled in the Drug-Induced Liver Injury Network. HLA and selected candidate gene variants were tested for association with ILICI risk compared to the general population and other DILI controls. RESULTS The 57 high-causality cases were attributed to pembrolizumab (16), ipilimumab (15), ipilimumab and nivolumab (13), and other immune checkpoint inhibitors (13) and occurred at a median of 72 days after the first infusion. Median age was 57.8 years, 66% male, and 89% were non-Hispanic Whites. At DILI onset, 53% had hepatocellular, 35% mixed, and 15% cholestatic, with younger patients more likely to have hepatocellular injury. The incidence of ANA, smooth muscle antibody, and elevated IgG levels was low (17%, 23%, and 0%), but corticosteroids were given to 86%. Microgranulomas and hepatic steatosis were seen in 54% and 46% of the 26 liver biopsies, respectively. The HLA alleles associated with autoimmune hepatitis were not over-represented, but 2 host immune response genes (EDIL3 and SAMA5A) and 3 other genes (GABRP, SMAD3, and SLCO1B1) were associated with ILICI (OR: 2.08-2.4, p<0.01). CONCLUSIONS ILICI typically arises within 12 weeks of initiating immunotherapy and is self-limited in most cases. Genetic variants involved in host T-cell regulation and drug disposition were identified, implicating these pathways in the pathogenesis of ILICI. If validated, these findings could lead to improved diagnostic instruments and possible treatments for ILICI.
Collapse
Affiliation(s)
- Robert J. Fontana
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke School of Medicine, Durham, North Carolina, USA
| | - Vincent Chen
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David Kleiner
- Laboratory of Pathology, Intramural Division, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andrew Stolz
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joe Odin
- Recanati-Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Raj Vuppalanchi
- Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jiezhun Gu
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Lily Dara
- Department of Medicine, University of Southern California, Los Angeles, California, USA
| | - Huiman Barnhart
- Duke Clinical Research Institute, Durham, North Carolina, USA
| |
Collapse
|
4
|
Paglialunga S, Benrimoh N, van Haarst A. Innovative Approaches to Optimize Clinical Transporter Drug-Drug Interaction Studies. Pharmaceutics 2024; 16:992. [PMID: 39204337 PMCID: PMC11359485 DOI: 10.3390/pharmaceutics16080992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug-drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter DDIs is recommended if an investigational product is intestinally absorbed, undergoes renal or hepatic elimination, or is suspected to either be a transporter substrate or perpetrator. However, many of the transporter substrates and inhibitors administered during a DDI study also affect cytochrome P450 (CYP) activity, which can complicate data interpretation. To overcome these challenges, the assessment of endogenous biomarkers can help elucidate the mechanism of complex DDIs when multiple transporters or CYPs may be involved. This perspective article will highlight how creative study designs are currently being utilized to address complex transporter DDIs and the role of physiology-based -pharmacokinetic (PBPK) models can play.
Collapse
Affiliation(s)
| | - Natacha Benrimoh
- Data Management and Biometrics, Celerion, Montreal, QC H4M 2N8, Canada
| | | |
Collapse
|
5
|
Bechtold BJ, Lynch KD, Oyanna VO, Call MR, Graf TN, Oberlies NH, Clarke JD. Rifampin- and Silymarin-Mediated Pharmacokinetic Interactions of Exogenous and Endogenous Substrates in a Transgenic OATP1B Mouse Model. Mol Pharm 2024; 21:2284-2297. [PMID: 38529622 PMCID: PMC11073900 DOI: 10.1021/acs.molpharmaceut.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3, encoded by the SLCO gene family of the solute carrier superfamily, are involved in the disposition of many exogenous and endogenous compounds. Preclinical rodent models help assess risks of pharmacokinetic interactions, but interspecies differences in transporter orthologs and expression limit direct clinical translation. An OATP1B transgenic mouse model comprising a rodent Slco1a/1b gene cluster knockout and human SLCO1B1 and SLCO1B3 gene insertions provides a potential physiologically relevant preclinical tool to predict pharmacokinetic interactions. Pharmacokinetics of exogenous probe substrates, pitavastatin and pravastatin, and endogenous OATP1B biomarkers, coproporphyrin-I and coproporphyrin-III, were determined in the presence and absence of known OATP/Oatp inhibitors, rifampin or silymarin (an extract of milk thistle [Silybum marianum]), in wild-type FVB mice and humanized OATP1B mice. Rifampin increased exposure of pitavastatin (4.6- and 2.8-fold), pravastatin (3.6- and 2.2-fold), and coproporphyrin-III (1.6- and 2.1-fold) in FVB and OATP1B mice, respectively, but increased coproporphyrin-I AUC0-24h only (1.8-fold) in the OATP1B mice. Silymarin did not significantly affect substrate AUC, likely because the silymarin flavonolignan concentrations were at or below their reported IC50 values for the relevant OATPs/Oatps. Silymarin increased the Cmax of pitavastatin 2.7-fold and pravastatin 1.9-fold in the OATP1B mice. The data of the OATP1B mice were similar to those of the pitavastatin and pravastatin clinical data; however, the FVB mice data more closely recapitulated pitavastatin clinical data than the data of the OATP1B mice, suggesting that the OATP1B mice are a reasonable, though costly, preclinical strain for predicting pharmacokinetic interactions when doses are optimized to achieve clinically relevant plasma concentrations.
Collapse
Affiliation(s)
- Baron J. Bechtold
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Katherine D. Lynch
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Victoria O. Oyanna
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - M. Ridge Call
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| | - Tyler N. Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina, 27412, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina, 27412, United States
| | - John D. Clarke
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, Washington 99202, United States
| |
Collapse
|
6
|
Zhang Y, Huang J, Huang S, Liu J, Deng L, Liang C, Guo Y, Yao B, Wang X. Construction and characterization of a humanized SLCO1B1 rat model with its application in evaluating the uptake of different statins. Acta Pharm Sin B 2024; 14:1592-1604. [PMID: 38572097 PMCID: PMC10985027 DOI: 10.1016/j.apsb.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 04/05/2024] Open
Abstract
Organic anion-transporting polypeptides 1B1 (OATP1B1) plays a crucial role in the transport of statins. However, there are too few animal models related to OATP1B1, especially humanized animal models. In this study, the human SLCO1B1 cDNA was inserted into the second exon of the rat Slco1b2 gene using CRISPR/Cas9 technology. Pharmacokinetic characteristics of statins were conducted in wild-type (WT), humanized OATP1B1 (hOATP1B1), and OATP1B2 knockout (OATP1B2 KO) rats, respectively. The results showed that human OATP1B1 was successfully expressed in rat liver and exhibited transport function. Furthermore, the pharmacokinetic results revealed that OATP1B1 exhibited varying uptake levels of pivastatin, rosuvastatin, and fluvastatin, leading to different levels of exposure within the body. These results were consistent with those obtained from in vitro experiments using overexpressed cell lines. In conclusion, we established a novel humanized SLCO1B1 transgenic rat model to assess the role of human OATP1B1 in the uptake of different statins. The different uptake mediated by OATP1B1 may be an important reason for the different efficacy of statins. The hOATP1B1 rat is a promising model for improving the prediction of human drug transport.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Junze Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Jie Liu
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Luyao Deng
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Chenmeizi Liang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yuanqing Guo
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital and School of Life Sciences, Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| |
Collapse
|
7
|
Kowal-Chwast A, Gabor-Worwa E, Gaud N, Gogola D, Piątek A, Zarębski A, Littlewood P, Smoluch M, Brzózka K, Kuś K. Novel method of measurement of in vitro drug uptake in OATP1B3 overexpressing cells in the presence of dextran. Pharmacol Rep 2024; 76:400-415. [PMID: 38530582 DOI: 10.1007/s43440-024-00583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND In predictions about hepatic clearance (CLH), a number of studies explored the role of albumin and transporters in drug uptake by liver cells, challenging the traditional free-drug theory. It was proposed that liver uptake can occur for transporter substrate compounds not only from the drug's unbound form but also directly from the drug-albumin complex, a phenomenon known as uptake facilitated by albumin. In contrast to albumin, dextran does not exhibit binding properties for compounds. However, as a result of its inherent capacity for stabilization, it is widely used to mimic conditions within cells. METHODS The uptake of eight known substrates of the organic anion-transporting polypeptide 1B3 (OATP1B3) was assessed using a human embryonic kidney cell line (HEK293), which stably overexpresses this transporter. An inert polymer, dextran, was used to simulate cellular conditions, and the results were compared with experiments involving human plasma and human serum albumin (HSA). RESULTS This study is the first to demonstrate that dextran increases compound uptake in cells with overexpression of the OATP1B3 transporter. Contrary to the common theory that highly protein-bound ligands interact with hepatocytes to increase drug uptake, the results indicate that dextran's interaction with test compounds does not significantly increase concentrations near the cell membrane surface. CONCLUSIONS We evaluated the effect of dextran on the uptake of known substrates using OATP1B3 overexpressed in the HEK293 cell line, and we suggest that its impact on drug concentrations in liver cells may differ from the traditional role of plasma proteins and albumin.
Collapse
Affiliation(s)
- Anna Kowal-Chwast
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland.
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Ewelina Gabor-Worwa
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Nilesh Gaud
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Dawid Gogola
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Agnieszka Piątek
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Adrian Zarębski
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Peter Littlewood
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059, Kraków, Poland
| | - Krzysztof Brzózka
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Kamil Kuś
- Ryvu Therapeutics S.A., Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| |
Collapse
|
8
|
Cho CK, Mo JY, Ko E, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling of pitavastatin in relation to SLCO1B1 genetic polymorphism. Arch Pharm Res 2024; 47:95-110. [PMID: 38159179 DOI: 10.1007/s12272-023-01476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Pitavastatin, a potent 3-hydroxymethylglutaryl coenzyme A reductase inhibitor, is indicated for the treatment of hypercholesterolemia and mixed dyslipidemia. Hepatic uptake of pitavastatin is predominantly occupied by the organic anion transporting polypeptide 1B1 (OATP1B1) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) gene, which is a polymorphic gene that encodes OATP1B1. SLCO1B1 genetic polymorphism significantly alters the pharmacokinetics of pitavastatin. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict pitavastatin pharmacokinetics according to SLCO1B1 genetic polymorphism. PK-Sim® version 10.0 was used to establish the whole-body PBPK model of pitavastatin. Our pharmacogenomic data and a total of 27 clinical pharmacokinetic data with different dose administration and demographic properties were used to develop and validate the model, respectively. Physicochemical properties and disposition characteristics of pitavastatin were acquired from previously reported data or optimized to capture the plasma concentration-time profiles in different SLCO1B1 diplotypes. Model evaluation was performed by comparing the predicted pharmacokinetic parameters and profiles to the observed data. Predicted plasma concentration-time profiles were visually similar to the observed profiles in the non-genotyped populations and different SLCO1B1 diplotypes. All fold error values for AUC and Cmax were included in the two fold range of observed values. Thus, the PBPK model of pitavastatin in different SLCO1B1 diplotypes was properly established. The present study can be useful to individualize the dose administration strategy of pitavastatin in individuals with various ages, races, and SLCO1B1 diplotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Yeon Mo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
9
|
Liang X, Koleske ML, Yang J, Lai Y. Building a Predictive PBPK Model for Human OATP Substrates: a Strategic Framework for Early Evaluation of Clinical Pharmacokinetic Variations Using Pitavastatin as an Example. AAPS J 2024; 26:13. [PMID: 38182946 DOI: 10.1208/s12248-023-00882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024] Open
Abstract
To select a drug candidate for clinical development, accurately and promptly predicting human pharmacokinetic (PK) profiles, assessing drug-drug interactions (DDIs), and anticipating potential PK variations in disease populations are crucial steps in drug discovery. The complexity of predicting human PK significantly increases when hepatic transporters are involved in drug clearance (CL) and volume of distribution (Vss). A strategic framework is developed here, utilizing pitavastatin as an example. The framework includes the construction of a monkey physiologically-based PK (PBPK) model, model calibration to obtain scaling factors (SF) of in vitro-in vivo extrapolation (IVIVE) for various clearance parameters, human model development and validation, and assessment of DDIs and PK variations in disease populations. Through incorporating in vitro human parameters and calibrated SFs from the monkey model of 3.45, 0.14, and 1.17 for CLint,active, CLint,passive, and CLint,bile, respectively, and together with the relative fraction transported by individual transporters obtained from in vitro studies and the optimized Ki values for OATP inhibition, the model reasonably captured observed pitavastatin PK profiles, DDIs and PK variations in human subjects carrying genetic polymorphisms, i.e., AUC within 20%. Lastly, when applying the functional reduction based on measured OATP1B biomarkers, the model adequately predicted PK changes in the hepatic impairment population. The present study presents a strategic framework for early-stage drug development, enabling the prediction of PK profiles and assessment of PK variations in scenarios like DDIs, genetic polymorphism, and hepatic impairment-related disease states, specifically focusing on OATP substrates.
Collapse
Affiliation(s)
- Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Megan L Koleske
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Jesse Yang
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., 333 Lakeside Dr., Foster City, California, 94404, USA.
| |
Collapse
|
10
|
Powell JT, Kayesh R, Ballesteros-Perez A, Alam K, Niyonshuti P, Soderblom EJ, Ding K, Xu C, Yue W. Assessing Trans-Inhibition of OATP1B1 and OATP1B3 by Calcineurin and/or PPIase Inhibitors and Global Identification of OATP1B1/3-Associated Proteins. Pharmaceutics 2023; 16:63. [PMID: 38258074 PMCID: PMC10818623 DOI: 10.3390/pharmaceutics16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are key determinants of drug-drug interactions (DDIs). Various drugs including the calcineurin inhibitor (CNI) cyclosporine A (CsA) exert preincubation-induced trans-inhibitory effects upon OATP1B1 and/or OATP1B3 (abbreviated as OATP1B1/3) by unknown mechanism(s). OATP1B1/3 are phosphoproteins; calcineurin, which dephosphorylates and regulates numerous phosphoproteins, has not previously been investigated in the context of preincubation-induced trans-inhibition of OATP1B1/3. Herein, we compare the trans-inhibitory effects exerted on OATP1B1 and OATP1B3 by CsA, the non-analogous CNI tacrolimus, and the non-CNI CsA analogue SCY-635 in transporter-overexpressing human embryonic kidney (HEK) 293 stable cell lines. Preincubation (10-60 min) with tacrolimus (1-10 µM) rapidly and significantly reduces OATP1B1- and OATP1B3-mediated transport up to 0.18 ± 0.03- and 0.20 ± 0.02-fold compared to the control, respectively. Both CsA and SCY-635 can trans-inhibit OATP1B1, with the inhibitory effects progressively increasing over a 60 min preincubation time. At each equivalent preincubation time, CsA has greater trans-inhibitory effects toward OATP1B1 than SCY-635. Preincubation with SCY-635 for 60 min yielded IC50 of 2.2 ± 1.4 µM against OATP1B1, which is ~18 fold greater than that of CsA (0.12 ± 0.04 µM). Furthermore, a proteomics-based screening for protein interactors was used to examine possible proteins and processes contributing to OATP1B1/3 regulation and preincubation-induced inhibition by CNIs and other drugs. A total of 861 and 357 proteins were identified as specifically associated with OATP1B1 and OATP1B3, respectively, including various protein kinases, ubiquitin-related enzymes, the tacrolimus (FK506)-binding proteins FKBP5 and FKBP8, and several known regulatory targets of calcineurin. The current study reports several novel findings that expand our understanding of impaired OATP1B1/3 function; these include preincubation-induced trans-inhibition of OATP1B1/3 by the CNI tacrolimus, greater preincubation-induced inhibition by CsA compared to its non-CNI analogue SCY-635, and association of OATP1B1/3 with various proteins relevant to established and candidate OATP1B1/3 regulatory processes.
Collapse
Affiliation(s)
- John T. Powell
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Alexandra Ballesteros-Perez
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Pascaline Niyonshuti
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University School of Medicine, Durham, NC 27708, USA
| | - Kai Ding
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Chao Xu
- Department of Biostatistics & Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (K.D.); (C.X.)
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (J.T.P.)
| |
Collapse
|
11
|
Shan Z, Yang X, Liu H, Yuan Y, Xiao Y, Nan J, Zhang W, Song W, Wang J, Wei F, Zhang Y. Cryo-EM structures of human organic anion transporting polypeptide OATP1B1. Cell Res 2023; 33:940-951. [PMID: 37674011 PMCID: PMC10709409 DOI: 10.1038/s41422-023-00870-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023] Open
Abstract
Members of the solute carrier organic anion transporting polypeptide (OATPs) family function as transporters for a large variety of amphipathic organic anions including endogenous metabolites and clinical drugs, such as bile salts, steroids, thyroid hormones, statins, antibiotics, antivirals, and anticancer drugs. OATP1B1 plays a vital role in transporting such substances into the liver for hepatic clearance. FDA and EMA recommend conducting in vitro testing of drug-drug interactions (DDIs) involving OATP1B1. However, the structure and working mechanism of OATPs still remains elusive. In this study, we determined cryo-EM structures of human OATP1B1 bound with representative endogenous metabolites (bilirubin and estrone-3-sulfate), a clinical drug (simeprevir), and a fluorescent indicator (2',7'-dichlorofluorescein), in both outward- and inward-open states. These structures reveal major and minor substrate binding pockets and conformational changes during transport. In combination with mutagenesis studies and molecular dynamics simulations, our work comprehensively elucidates the transport mechanism of OATP1B1 and provides the structural basis for DDI predictions involving OATP1B1, which will greatly promote our understanding of OATPs.
Collapse
Affiliation(s)
- Ziyang Shan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xuemei Yang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huihui Liu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Yafei Yuan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Xiao
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Nan
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Song
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jufang Wang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Feiwen Wei
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhang
- Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
12
|
Yajima K, Akiyoshi T, Sakamoto K, Suzuki Y, Oka T, Imaoka A, Yamamura H, Kurokawa J, Ohtani H. Determination of single-molecule transport activity of OATP2B1 by measuring the number of transporter molecules using electrophysiological approach. J Pharmacol Sci 2023; 153:153-160. [PMID: 37770156 DOI: 10.1016/j.jphs.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/12/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Transporter-mediated clearance is determined by two factors, its single-molecule clearance, and expression level. However, no reliable method has been developed to evaluate them separately. This study aimed to develop a reliable method for evaluating the single-molecule activity of membrane transporters, such as organic anion transporting polypeptide (OATP) 2B1. HEK293 cells that co-expressed large conductance calcium-activated potassium (BK) channel and OATP2B1 were established and used for the following experiments. i) BK channel-mediated whole-cell conductance was measured using patch-clamp technique and divided by its unitary conductance to estimate the number of channels on plasma membrane (QI). ii) Using plasma membrane fraction, quantitative targeted absolute proteomics determined the stoichiometric ratio (ρ) of OATP2B1 to BK channel. iii) The uptake of estrone 3-sulfate was evaluated to calculate the Michaelis constant and uptake clearance (CL) per cell. Single-molecule clearance (CLint) was calculated by dividing CL by QI·ρ. QI and ρ values were estimated to be 916 and 2.16, respectively, yielding CLint of 5.23 fL/min/molecule. We successfully developed a novel method to reliably measure the single-molecule activity of a transporter, which could be used to evaluate the influences of factors such as genetic variations and post-translational modifications on the intrinsic activity of transporters.
Collapse
Affiliation(s)
- Kodai Yajima
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| | - Takeshi Akiyoshi
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan; Department of Clinical Pharmacy, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8526, Japan.
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Takayuki Oka
- Nanion Technologies Japan K.K., Tokyo Laboratory, Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-0056, Japan.
| | - Ayuko Imaoka
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan.
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka, 422-8526, Japan.
| | - Hisakazu Ohtani
- Division of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen Minato-ku, Tokyo, 105-8512, Japan; Department of Clinical Pharmacy, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan; Department of Pharmacy, Keio University Hospital, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
13
|
Kotliarova MS, Shchulkin AV, Erokhina PD, Mylnikov PY, Yakusheva EN, Nadolinskaia NI, Zamakhaev MV, Goncharenko AV. Generation of a Cell Line Selectively Producing Functionally Active OATP1B1 Transporter. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1267-1273. [PMID: 37770393 DOI: 10.1134/s0006297923090067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
The solute carrier organic anion transporter family member, OATP1B1, is one of the most important transporter proteins, which mediate penetration of many endogenous substances and xenobiotics into hepatocytes. A model system providing expression of the functional protein is needed to assess interaction of OATP1B1 with various substances. Based on the HEK293 cells, we obtained the HEK293-OATP1B1 cell line, constitutively expressing the SLCO1B1 gene encoding the OATP1B1 transporter. Expression of the SLCO1B1 gene was confirmed by real-time PCR analysis and Western blotting. Functionality of the transporter was assessed by the transport of atorvastatin, which is a substrate of OATP1B1. Cells of the resulting cell line, which selectively express the functionally active recombinant OATP1B1 transporter, can be used to study functions of the protein and to test drugs for being substrates, inducers, and inhibitors of OATP1B1, and to assess the risks of drug interactions.
Collapse
Affiliation(s)
- Mariia S Kotliarova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | | | | | | | | | - Nonna I Nadolinskaia
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail V Zamakhaev
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia
| | - Anna V Goncharenko
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
14
|
Maeda K. Quantitative Prediction of Intestinal Absorption of Drugs from In Vitro Study: Utilization of Differentiated Intestinal Epithelial Cells Derived from Intestinal Stem Cells at Crypts. Drug Metab Dispos 2023; 51:1136-1144. [PMID: 37142427 DOI: 10.1124/dmd.122.000966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Prediction of intestinal absorption of drugs in humans is one of the critical elements in the development process for oral drugs. However, it remains challenging, because intestinal absorption of drugs is influenced by multiple factors, including the function of various metabolic enzymes and transporters, and large species differences in drug bioavailability hinder the prediction of human bioavailability directly from in vivo animal experiments. For the screening of intestinal absorption properties of drugs, a transcellular transport assay with Caco-2 cells is still routinely used by pharmaceutical companies because of its convenience, but the predictability of the fraction of the oral dose that goes to the portal vein of metabolic enzyme/transporter substrate drugs was not always good because the cellular expression of metabolic enzymes and transporters is different from that in the human intestine. Recently, various novel in vitro experimental systems have been proposed such as the use of human-derived intestinal samples, transcellular transport assay with induced pluripotent stem-derived enterocyte-like cells, or differentiated intestinal epithelial cells derived from intestinal stem cells at crypts. Crypt-derived differentiated epithelial cells have an excellent potential to characterize species differences and regional differences in intestinal absorption of drugs because a unified protocol can be used for the proliferation of intestinal stem cells and their differentiation into intestinal absorptive epithelial cells regardless of the animal species and the gene expression pattern of differentiated cells is maintained at the site of original crypts. The advantages and disadvantages of novel in vitro experimental systems for characterizing intestinal absorption of drugs are also discussed. SIGNIFICANCE STATEMENT: Among novel in vitro tools for the prediction of human intestinal absorption of drugs, crypt-derived differentiated epithelial cells have many advantages. Cultured intestinal stem cells are rapidly proliferated and easily differentiated into intestinal absorptive epithelial cells simply by changing the culture media. A unified protocol can be used for the establishment of intestinal stem cell culture from preclinical species and humans. Region-specific gene expression at the collection site of crypts can be reproduced in differentiated cells.
Collapse
Affiliation(s)
- Kazuya Maeda
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
15
|
Chan GH, Houle R, Zhang J, Katwaru R, Li Y, Chu X. Evaluation of the Selectivity of Several Organic Anion Transporting Polypeptide 1B Biomarkers Using Relative Activity Factor Method. Drug Metab Dispos 2023; 51:1089-1104. [PMID: 37137718 DOI: 10.1124/dmd.122.000972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/13/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023] Open
Abstract
In recent years, some endogenous substrates of organic anion transporting polypeptide 1B (OATP1B) have been identified and characterized as potential biomarkers to assess OATP1B-mediated clinical drug-drug interactions (DDIs). However, quantitative determination of their selectivity to OATP1B is still limited. In this study, we developed a relative activity factor (RAF) method to determine the relative contribution of hepatic uptake transporters OATP1B1, OATP1B3, OATP2B1, and sodium-taurocholate co-transporting polypeptide (NTCP) on hepatic uptake of several OATP1B biomarkers, including coproporphyrin I (CPI), coproporphyrin I CPIII, and sulfate conjugates of bile acids: glycochenodeoxycholic acid sulfate (GCDCA-S), glycodeoxycholic acid sulfate (GDCA-S), and taurochenodeoxycholic acid sulfate (TCDCA-S). RAF values for OATP1B1, OATP1B3, OATP2B1, and NTCP were determined in cryopreserved human hepatocytes and transporter transfected cells using pitavastatin, cholecystokinin, resveratrol-3-O-β-D-glucuronide, and taurocholic acid (TCA) as reference compounds, respectively. OATP1B1-specific pitavastatin uptake in hepatocytes was measured in the absence and presence of 1 µM estropipate, whereas NTCP-specific TCA uptake was measured in the presence of 10 µM rifampin. Our studies suggested that CPI was a more selective biomarker for OATP1B1 than CPIII, whereas GCDCA-S and TCDCA-S were more selective to OATP1B3. OATP1B1 and OATP1B3 equally contributed to hepatic uptake of GDCA-S. The mechanistic static model, incorporating the fraction transported of CPI/III estimated by RAF and in vivo elimination data, predicted several perpetrator interactions with CPI/III. Overall, RAF method combined with pharmacogenomic and DDI studies is a useful tool to determine the selectivity of transporter biomarkers and facilitate the selection of appropriate biomarkers for DDI evaluation. SIGNIFICANCE STATEMENT: The authors developed a new relative activity factor (RAF) method to quantify the contribution of hepatic uptake transporters organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, and sodium taurocholate co-transporting polypeptide (NTCP) on several OATP1B biomarkers and evaluated their predictive value on drug-drug interactions (DDI). These studies suggest that the RAF method is a useful tool to determine the selectivity of transporter biomarkers. This method combined with pharmacogenomic and DDI studies will mechanistically facilitate the selection of appropriate biomarkers for DDI prediction.
Collapse
Affiliation(s)
- Grace Hoyee Chan
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Robert Houle
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Jinghui Zhang
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Ravi Katwaru
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Yang Li
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| | - Xiaoyan Chu
- ADME and Discovery Toxicity, Merck & Co., Inc., Rahway, New Jersey
| |
Collapse
|
16
|
Orozco CC, Neuvonen M, Bi YA, Cerny MA, Mathialagan S, Tylaska L, Rago B, Costales C, King-Ahmad A, Niemi M, Rodrigues AD. Characterization of Bile Acid Sulfate Conjugates as Substrates of Human Organic Anion Transporting Polypeptides. Mol Pharm 2023. [PMID: 37134201 DOI: 10.1021/acs.molpharmaceut.3c00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Drug interactions involving the inhibition of hepatic organic anion transporting polypeptides (OATPs) 1B1 and OATP1B3 are considered important. Therefore, we sought to study various sulfated bile acids (BA-S) as potential clinical OATP1B1/3 biomarkers. It was determined that BA-S [e.g., glycochenodeoxycholic acid 3-O-sulfate (GCDCA-S) and glycodeoxycholic acid 3-O-sulfate (GDCA-S)] are substrates of OATP1B1, OATP1B3, and sodium-dependent taurocholic acid cotransporting polypeptide (NTCP) transfected into human embryonic kidney 293 cells, with minimal uptake evident for other solute carriers (SLCs) like OATP2B1, organic anion transporter 2, and organic cation transporter 1. It was also shown that BA-S uptake by plated human hepatocytes (PHH) was inhibited (≥96%) by a pan-SLC inhibitor (rifamycin SV), and there was greater inhibition (≥77% versus ≤12%) with rifampicin (OATP1B1/3-selective inhibitor) than a hepatitis B virus myristoylated-preS1 peptide (NTCP-selective inhibitor). Estrone 3-sulfate was also used as an OATP1B1-selective inhibitor. In this instance, greater inhibition was observed with GDCA-S (76%) than GCDCA-S (52%). The study was expanded to encompass the measurement of GCDCA-S and GDCA-S in plasma of SLCO1B1 genotyped subjects. The geometric mean GDCA-S concentration was 2.6-fold (90% confidence interval 1.6, 4.3; P = 2.1 × 10-4) and 1.3-fold (1.1, 1.7; P = 0.001) higher in individuals homozygous and heterozygous for the SLCO1B1 c.521T > C loss-of-function allele, respectively. For GCDCA-S, no significant difference was noted [1.2-fold (0.8, 1.7; P = 0.384) and 0.9-fold (0.8, 1.1; P = 0.190), respectively]. This supported the in vitro data indicating that GDCA-S is a more OATP1B1-selective substrate (versus GCDCA-S). It is concluded that GCDCA-S and GDCA-S are viable plasma-based OATP1B1/3 biomarkers, but they are both less OATP1B1-selective when compared to their corresponding 3-O-glucuronides (GCDCA-3G and GDCA-3G). Additional studies are needed to determine their utility versus more established biomarkers, such as coproporphyrin I, for assessing inhibitors with different OATP1B1 (versus OATP1B3) inhibition signatures.
Collapse
Affiliation(s)
- Christine C Orozco
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | - Yi-An Bi
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Matthew A Cerny
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sumathy Mathialagan
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Laurie Tylaska
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Brian Rago
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Chester Costales
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Amanda King-Ahmad
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki FI-00014, Finland
- Individualized Drug Therapy Research Program, University of Helsinki, Helsinki FI-00014, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki FI-00029, Finland
| | - A David Rodrigues
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| |
Collapse
|
17
|
Kayesh R, Tambe V, Xu C, Yue W. Differential Preincubation Effects of Nicardipine on OATP1B1- and OATP1B3-Mediated Transport in the Presence and Absence of Protein: Implications in Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interactions. Pharmaceutics 2023; 15:1020. [PMID: 36986880 PMCID: PMC10052025 DOI: 10.3390/pharmaceutics15031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Impaired transport activity of hepatic OATP1B1 and OATP1B3 due to drug-drug interactions (DDIs) often leads to increased systemic exposure to substrate drugs (e.g., lipid-lowering statins). Since dyslipidemia and hypertension frequently coexist, statins are often concurrently used with antihypertensives, including calcium channel blockers (CCBs). OATP1B1/1B3-related DDIs in humans have been reported for several CCBs. To date, the OATP1B1/1B3-mediated DDI potential of CCB nicardipine has not been assessed. The current study was designed to assess the OATP1B1- and OATP1B3-mediated DDI potential of nicardipine using the R-value model, following the US-FDA guidance. IC50 values of nicardipine against OATP1B1 and OATP1B3 were determined in transporter-overexpressing human embryonic kidney 293 cells using [3H]-estradiol 17β-D-glucuronide and [3H]-cholecystokinin-8 as substrates, respectively, with or without nicardipine-preincubation in protein-free Hanks' Balanced Salt Solution (HBSS) or in fetal bovine serum (FBS)-containing culture medium. Preincubation with nicardipine for 30 min in protein-free HBSS buffer produced lower IC50 and higher R-values for both OATP1B1 and OATP1B3 compared to in FBS-containing medium, yielding IC50 values of 0.98 and 1.63 µM and R-values of 1.4 and 1.3 for OATP1B1 and OATP1B3, respectively. The R-values were higher than the US-FDA cut-off value of 1.1, supporting that nicardipine has the potential to cause OATP1B1/3-mediated DDIs. Current studies provide insight into the consideration of optimal preincubation conditions when assessing the OATP1B1/3-mediated DDIs in vitro.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Vishakha Tambe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
18
|
Wang J, Chen J, Wang L, Yang D, Shao R, Lou H, Ruan Z, Jiang B. Evaluating the bioequivalence of two pitavastatin calcium formulations based on IVIVC modeling and clinical study. Clin Transl Sci 2023; 16:85-91. [PMID: 36178248 PMCID: PMC9841298 DOI: 10.1111/cts.13426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/06/2023] Open
Abstract
In vitro-in vivo correlation (IVIVC) allows prediction of the in vivo performance of a pharmaceutical product based on its in vitro drug release profiles and can be used to reduce the number of bioequivalence (BE) studies during product development, and facilitate certain regulatory decisions. Here, we developed an IVIVC model for pitavastatin calcium, a basic Biopharmaceutics Classification System (BCS) II lipid-lowering drug, which was then used to predict the BE outcome of formulations manufactured at two manufacturers. In addition, virtual trials using the IVIVC model using pH 4.0 acetate buffer dissolution showed similarity in areas under the curves and maximum plasma concentration (Cmax ) for test and reference tablets under fasting condition. These predicted results were verified in definitive BE study. In conclusion, we demonstrated that for certain BCS II molecules, IVIVC modeling could be used as a priori to predict the BE outcome.
Collapse
Affiliation(s)
- Jiaying Wang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Jinliang Chen
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Lu Wang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Dandan Yang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Rong Shao
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Honggang Lou
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Zourong Ruan
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Bo Jiang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
19
|
Marie S, Frost KL, Hau RK, Martinez-Guerrero L, Izu JM, Myers CM, Wright SH, Cherrington NJ. Predicting disruptions to drug pharmacokinetics and the risk of adverse drug reactions in non-alcoholic steatohepatitis patients. Acta Pharm Sin B 2023; 13:1-28. [PMID: 36815037 PMCID: PMC9939324 DOI: 10.1016/j.apsb.2022.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/18/2022] Open
Abstract
The liver plays a central role in the pharmacokinetics of drugs through drug metabolizing enzymes and transporters. Non-alcoholic steatohepatitis (NASH) causes disease-specific alterations to the absorption, distribution, metabolism, and excretion (ADME) processes, including a decrease in protein expression of basolateral uptake transporters, an increase in efflux transporters, and modifications to enzyme activity. This can result in increased drug exposure and adverse drug reactions (ADRs). Our goal was to predict drugs that pose increased risks for ADRs in NASH patients. Bibliographic research identified 71 drugs with reported ADRs in patients with liver disease, mainly non-alcoholic fatty liver disease (NAFLD), 54 of which are known substrates of transporters and/or metabolizing enzymes. Since NASH is the progressive form of NAFLD but is most frequently undiagnosed, we identified other drugs at risk based on NASH-specific alterations to ADME processes. Here, we present another list of 71 drugs at risk of pharmacokinetic disruption in NASH, based on their transport and/or metabolism processes. It encompasses drugs from various pharmacological classes for which ADRs may occur when used in NASH patients, especially when eliminated through multiple pathways altered by the disease. Therefore, these results may inform clinicians regarding the selection of drugs for use in NASH patients.
Collapse
Affiliation(s)
- Solène Marie
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Kayla L. Frost
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Raymond K. Hau
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Lucy Martinez-Guerrero
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jailyn M. Izu
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Cassandra M. Myers
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Stephen H. Wright
- College of Medicine, Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Nathan J. Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA,Corresponding author. Tel.: +1 520 6260219; fax: +1 520 6266944.
| |
Collapse
|
20
|
Kim MC, Lee YJ. Analysis of Time-Dependent Pharmacokinetics Using In Vitro-In Vivo Extrapolation and Physiologically Based Pharmacokinetic Modeling. Pharmaceutics 2022; 14:pharmaceutics14122562. [PMID: 36559055 PMCID: PMC9780873 DOI: 10.3390/pharmaceutics14122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
SCR430, a sorafenib derivative, is an investigational drug exhibiting anti-tumor action. This study aimed to have a mechanistic understanding of SCR430's time-dependent pharmacokinetics (TDPK) through an ex vivo study combined with an in vitro-in vivo extrapolation (IVIVE) and physiologically based pharmacokinetic (PBPK) modeling. A non-compartmental pharmacokinetic analysis was performed after intravenous SCR430 administration in female Sprague-Dawley rats for a control group (no treatment), a vehicle group (vehicle only, 14 days, PO), and a repeated-dosing group (SCR430, 30 mg/kg/day, 14 days, PO). In addition, hepatic uptake and metabolism modulation were investigated using isolated hepatocytes from each group of rats. The minimal PBPK model based on IVIVE was constructed to explain SCR430's TDPK. Repeated SCR430 administration decreased the systemic exposure by 4.4-fold, which was explained by increased hepatic clearance (4.7-fold). The ex vivo study using isolated hepatocytes from each group suggested that the increased hepatic uptake (9.4-fold), not the metabolic activity, contributes to the increased hepatic clearance. The minimal PBPK modeling based on an ex vivo study could explain the decreased plasma levels after the repeated doses. The current study demonstrates the TDPK after repeated dosing by hepatic uptake induction, not hepatic metabolism, as well as the effectiveness of an ex vivo approach combined with IVIVE and PBPK modeling to investigate the TDPK.
Collapse
Affiliation(s)
- Min-Chang Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemungu, Seoul 02453, Republic of Korea
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young-Joo Lee
- Division of Biopharmaceutics, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence:
| |
Collapse
|
21
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
22
|
Auwerx C, Sadler MC, Reymond A, Kutalik Z. From pharmacogenetics to pharmaco-omics: Milestones and future directions. HGG ADVANCES 2022; 3:100100. [PMID: 35373152 PMCID: PMC8971318 DOI: 10.1016/j.xhgg.2022.100100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The origins of pharmacogenetics date back to the 1950s, when it was established that inter-individual differences in drug response are partially determined by genetic factors. Since then, pharmacogenetics has grown into its own field, motivated by the translation of identified gene-drug interactions into therapeutic applications. Despite numerous challenges ahead, our understanding of the human pharmacogenetic landscape has greatly improved thanks to the integration of tools originating from disciplines as diverse as biochemistry, molecular biology, statistics, and computer sciences. In this review, we discuss past, present, and future developments of pharmacogenetics methodology, focusing on three milestones: how early research established the genetic basis of drug responses, how technological progress made it possible to assess the full extent of pharmacological variants, and how multi-dimensional omics datasets can improve the identification, functional validation, and mechanistic understanding of the interplay between genes and drugs. We outline novel strategies to repurpose and integrate molecular and clinical data originating from biobanks to gain insights analogous to those obtained from randomized controlled trials. Emphasizing the importance of increased diversity, we envision future directions for the field that should pave the way to the clinical implementation of pharmacogenetics.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Marie C. Sadler
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- University Center for Primary Care and Public Health, Lausanne, Switzerland
| |
Collapse
|
23
|
Characterization of Clofazimine as a Potential Substrate of Drug Transporter. Antimicrob Agents Chemother 2022; 66:e0215821. [PMID: 35254089 DOI: 10.1128/aac.02158-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we explored clofazimine (CFZ) as a potential substrate of uptake and efflux transporters that might be involved in CFZ disposition, using transporter gene overexpressing cell lines in vitro. The intracellular concentrations of CFZ were significantly increased in the presence of selective inhibitors of P-gp and BCRP, which include verapamil, cyclosporine-A, PSC-833, quinidine, Ko143, and daunorubicin. In a bidirectional transport assay using transwell cultures of cell lines overexpressing P-gp and BCRP, the mean efflux ratios of CFZ were found to be 4.17 ± 0.63 and 3.37 ± 1.2, respectively. The Km and maximum rate of uptake (Vmax) were estimated to be 223.3 ± 14.73 μM and 548.8 ± 87.15 pmol/min/mg protein for P-gp and 381.9 ± 25.07 μM and 5.8 ± 1.22 pmol/min/mg protein for BCRP, respectively. Among the uptake transporters screened, the CFZ uptake rate was increased 1.93 and 3.09-fold in HEK293 cell lines overexpressing OAT1 and OAT3, respectively, compared to the control cell lines, but no significant uptake was observed in cell lines overexpressing OCT1, OCT2, OATP1B1, OATP1B3, OATP2B1, or NTCP. Both OAT1- and OAT3-mediated uptake was inhibited by the selective inhibitors diclofenac, probenecid, and butanesulfonic acid. The Km and Vmax values of CFZ were estimated to be 0.63 ± 0.15 μM and 8.23 ± 1.03 pmol/min/mg protein, respectively, for OAT1 and 0.47 ± 0.1 μM and 17.81 ± 2.19 pmol/min/mg protein, respectively, for OAT3. These findings suggest that CFZ is a novel substrate of BCRP, OAT1, and OAT3 and a known substrate of P-gp in vitro.
Collapse
|
24
|
Clinical evaluation of [18F]pitavastatin for quantitative analysis of hepatobiliary transporter activity. Drug Metab Pharmacokinet 2022; 44:100449. [DOI: 10.1016/j.dmpk.2022.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022]
|
25
|
Li Z, Tian S, Wu Z, Xu X, Lei L, Li Y, Wang B, Huang Y. Pharmacokinetic herb-disease-drug interactions: Effect of ginkgo biloba extract on the pharmacokinetics of pitavastatin, a substrate of Oatp1b2, in rats with non-alcoholic fatty liver disease. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114469. [PMID: 34329714 DOI: 10.1016/j.jep.2021.114469] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a traditional Chinese medicine for hyper lipaemia. Ginkgo flavonols and terpene lactones are responsible for the lipid-lowering effect in non-alcoholic fatty liver disease (NAFLD). However, the pharmacokinetics of ginkgo flavonols and terpene lactones in NAFLD was not clarified. AIM OF THE STUDY To investigate the effects of Ginkgo biloba L. leaves extracts (EGB) and NAFLD on hepatocyte organic anion transporting polypeptide (Oatp)1b2, and to assess the pharmacokinetics of EGB active ingredients in NAFLD rats. MATERIALS AND METHODS Male rats were fed with a high-fat diet to induce NAFLD models. The pharmacokinetic characteristics of EGB active ingredients were studied in NAFLD rats after two or four weeks of treatment with 3.6, 10.8, and 32.4 mg/kg EGB. The effects of NAFLD and EGB were investigated on the systemic exposure of pitavastatin, a probe substrate of Oatp1b2. The inhibitory effects of ginkgo flavonols and terpene lactones on OATP1B1-mediated uptake of 3H-ES were tested in hOATP1B1-HEK293 cells. RESULTS The plasma exposure of ginkgolides and flavonols in NAFLD rats increased in a dose-dependent manner following oral administration of EGB at 3.6-32.4 mg/kg. The half-lives of ginkgolides A, B, C, and bilobalide (2-3 h) were shorter than quercetin, kaempferol, and isorhamnetin (approximately 20 h). NAFLD reduced the plasma pitavastatin exposure by about 50 % due to the increased Oatp1b2 expression in rat liver. Increased EGB (from 3.6 to 32.4 mg/kg) substantially increased the Cmax and AUC0-t of pitavastatin by 1.8-3.2 and 1.3-3.0 folds, respectively. In hOATP1B1-HEK293 cells, kaempferol and isorhamnetin contributed to the inhibition of OATP1B1-mediated uptake of 3H-ES with IC50 values of 3.28 ± 1.08 μM and 46.12 ± 5.25 μM, respectively. CONCLUSIONS NAFLD and EGB can alter the activity of hepatic uptake transporter Oatp1b2 individually or in combination. The pharmacokinetic herb-disease-drug interaction found in this research will help inform the clinical administration of EGB or Oatp1b2 substrates.
Collapse
Affiliation(s)
- Ziqiang Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| | - Shuang Tian
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| | - Zengguang Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xueyan Xu
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| | - Lei Lei
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| | - Yanfen Li
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| | - Baohe Wang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, China.
| |
Collapse
|
26
|
Farasyn T, Pahwa S, Xu C, Yue W. Pre-incubation with OATP1B1 and OATP1B3 inhibitors potentiates inhibitory effects in physiologically relevant sandwich-cultured primary human hepatocytes. Eur J Pharm Sci 2021; 165:105951. [PMID: 34311070 PMCID: PMC11005446 DOI: 10.1016/j.ejps.2021.105951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022]
Abstract
Organic anion transporting polypeptides (OATP)1B1 and OATP1B3 are liver-specific transport proteins that express on the basolateral membrane of human hepatocytes and mediate hepatic uptake of many drugs, including statins. They are important determinants of transporter-mediated drug-drug interactions (DDIs). It has been reported that pre-incubation with some OATP1B1 and OATP1B3 inhibitors potentiates the inhibitory effects, yielding reduced IC50 values. The US FDA draft guidance has recently recommended to use the lower IC50 values after inhibitor-preincubation to assess OATP1B1 and OATP1B3-mediated DDIs. However, it remains unknown whether the potentiation effects of inhibitor-preincubation on IC50 values occur in a physiologically relevant cell model. The current study was designed to determine the IC50 values of OATP1B1 and OATP1B3 inhibitors everolimus (EVR), sirolimus (SIR), and dasatinib against OATP1B substrates in physiologically relevant primary human hepatocytes with or without inhibitor-preincubation and to compare the OATP-mediated DDI prediction using data from primary human hepatocytes and that reported previously in transporter-expressing cell lines. Primary human hepatocytes were cultured in a sandwich configuration. Accumulation of [3H]-CCK-8 (1 µM, 1.5 min), [3H]-rosuvastatin (0.5 µM, 2 min) and [3H]-pitavastatin (1 µM, 0.5 min) was determined in human sandwich-cultured hepatocytes (SCH) in the presence of vehicle control or an inhibitor with or without inhibitor-preincubation at designated concentrations, and was utilized to determine the IC50 values for these inhibitors. R-value models were used to predict OATP-mediated DDIs. Pre-incubation with EVR at a clinically relevant concentration of 0.2 µM significantly reduced accumulation of [3H]-CCK-8 and [3H]-rosuvastatin even after washing. Reduced IC50 values following inhibitor pre-incubation were observed for all three inhibitors using [3H]-CCK-8 and [3H]-rosuvastatin as substrates in human SCH. The IC50 values after inhibitor-preincubation were lower or comparable in transporter-expressing cell lines compared with that in human SCH. For dasatinib, R-values from both cell lines and human SCH were greater than the US FDA cut-off value of 1.1. For EVR, R values from cell lines were 1.23 and were lowered to near 1.1 (1.08-1.09) in human SCH. For SIR, R values from either cell type were less than the cut-off values of 1.1. In conclusion, the current study is the first to report that pre-incubation with OATP1B inhibitors potentiates inhibitory effects in physiologically relevant primary human hepatocytes, supporting the rationale of the current US FDA draft guidance of including an inhibitor-preincubation step when assessing OATP-mediated DDIs in vitro. IC50 values after inhibitor-preincubation in transporter-expressing cell lines may be used for DDI prediction for the purpose of mitigating false-negative OATP-mediated DDI prediction.
Collapse
Affiliation(s)
| | | | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK US
| | - Wei Yue
- Department of Pharmaceutical Sciences, US.
| |
Collapse
|
27
|
Jazaeri F, Sheibani M, Nezamoleslami S, Moezi L, Dehpour AR. Current Models for Predicting Drug-induced Cholestasis: The Role of Hepatobiliary Transport System. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:1-21. [PMID: 34567142 PMCID: PMC8457732 DOI: 10.22037/ijpr.2020.113362.14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Drug-induced cholestasis is the main type of liver disorder accompanied by high morbidity and mortality. Evidence for the role of hepatobiliary pumps in the cholestasis patho-mechanism is constantly increasing. Recognition of the interactions of chemical agents with these transporters at the initial phases of drug discovery can help develop new drug candidates with low cholestasis potential. This review delivers an outline of the role of these transport proteins in bile creation. It addresses the pathophysiological mechanism for drug-induced cholestasis. In-vitro models, including cell-based and membrane-based approaches and In-vivo models such as genetic knockout animals, are considered. The benefits and restrictions of each model are discussed in this review. Current understandings into the cellular and molecular process that control the activity of hepatobiliary pumps have directed to a better understanding of the pathophysiology of drug-induced cholestasis. A combination of in-vitro monitoring for transport interaction, in-silico predicting systems, and consideration of and metabolic and physicochemical properties must cause more effective monitoring of possible liver problems.
Collapse
Affiliation(s)
- Farahnaz Jazaeri
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,F. J. and M. Sh. contributed equally to this work
| | - Sadaf Nezamoleslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Moezi
- Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad-Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
miR-23a-3p is involved in drug resistance by directly targeting the influx drug transporter organic anion-transporting polypeptide 2. Childs Nerv Syst 2021; 37:2545-2555. [PMID: 33779805 DOI: 10.1007/s00381-021-05146-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Drug transporters are involved in the drug resistance of individuals with drug-resistant epilepsy by influencing the intracerebral transport of antiepileptic drugs (AEDs). The expression of drug transporters is associated with microRNAs. We previously revealed that miR-23a-3p levels were elevated in the blood of patients with intractable epilepsy. Additionally, the influx drug transporter organic anion-transporting polypeptide 2 (Oatp2) is involved in the intracerebral transport of valproic acid (VPA), the most commonly used AED; repeated seizures lead to decreased expression of Oatp2. However, the role of miR-23a-3p in the expression of Oatp2 and in the development of drug resistance has not been established. Herein, we aimed to determine the potential role of miR-23a-3p in VPA-resistant epilepsy through in vivo and in vitro experiments. METHODS Epilepsy was elicited after status epilepticus (SE) was induced by lithium-pilocarpine in adult Sprague-Dawley rats, followed by VPA treatment to select rats with VPA resistance. The expression of miR-23a-3p was detected by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). A miR-23a-3p inhibitor was intracerebrally injected into VPA-resistant rats, and histological staining and Morris water maze tests were performed to evaluate brain damage and learning/memory functions in these rats. Subsequently, a dual-luciferase reporter assay and a VPA uptake assay were performed in brain microvascular endothelial cells (BMECs) to investigate the underlying mechanism of action of miR-23a-3p. RESULTS Our results indicated that compared to that in control rats, miR-23a-3p was elevated in VPA-resistant rats. Intracerebral injection of a miR-23a-3p inhibitor reduced brain damage and the associated deficits in learning and memory functions in rats with VPA resistance. Further investigation indicated that Oatp2 was the direct target of miR-23a-3p, and it was negatively regulated by miR-23a-3p in the brain and BMECs. Furthermore, we demonstrated that miR-23a-3p reduced VPA uptake in BMECs by regulating Oatp2 expression. CONCLUSIONS miR-23a-3p is involved in VPA resistance in epilepsy by directly targeting the influx drug transporter Oatp2, indicating that miR-23a-3p could be a potential therapeutic target for intractable epilepsy.
Collapse
|
29
|
Evaluation for Potential Drug-Drug Interaction of MT921 Using In Vitro Studies and Physiologically-Based Pharmacokinetic Models. Pharmaceuticals (Basel) 2021; 14:ph14070654. [PMID: 34358080 PMCID: PMC8308925 DOI: 10.3390/ph14070654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
MT921 is a new injectable drug developed by Medytox Inc. to reduce submental fat. Cholic acid is the active pharmaceutical ingredient, a primary bile acid biosynthesized from cholesterol, endogenously produced by liver in humans and other mammals. Although individuals treated with MT921 could be administered with multiple medications, such as those for hypertension, diabetes, and hyperlipidemia, the pharmacokinetic drug–drug interaction (DDI) has not been investigated yet. Therefore, we studied in vitro against drug-metabolizing enzymes and transporters. Moreover, we predicted the potential DDI between MT921 and drugs for chronic diseases using physiologically-based pharmacokinetic (PBPK) modeling and simulation. The magnitude of DDI was found to be negligible in in vitro inhibition and induction of cytochrome P450s and UDP-glucuronosyltransferases. Organic anion transporting polypeptide (OATP)1B3, organic anion transporter (OAT)3, Na+-taurocholate cotransporting polypeptide (NTCP), and apical sodium-dependent bile acid transporter (ASBT) are mainly involved in MT921 transport. Based on the result of in vitro experiments, the PBPK model of MT921 was developed and evaluated by clinical data. Furthermore, the PBPK model of amlodipine was developed and evaluated. PBPK DDI simulation results indicated that the pharmacokinetics of MT921 was not affected by the perpetrator drugs. In conclusion, MT921 could be administered without a DDI risk based on in vitro study and related in silico simulation. Further clinical studies are needed to validate this finding.
Collapse
|
30
|
Orlowski S, Mourad JJ, Gallo A, Bruckert E. Coronaviruses, cholesterol and statins: Involvement and application for Covid-19. Biochimie 2021; 189:51-64. [PMID: 34153377 PMCID: PMC8213520 DOI: 10.1016/j.biochi.2021.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022]
Abstract
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
Collapse
Affiliation(s)
- Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR 9198, and CEA / DRF / Institut des Sciences du Vivant Frédéric-Joliot / SB2SM, and Université Paris-Saclay, 91191, Gif-sur-Yvette, Cedex, France.
| | - Jean-Jacques Mourad
- Department of Internal Medicine and ESH Excellence Centre, Groupe Hospitalier Paris Saint-Joseph, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| | - Eric Bruckert
- Department of Endocrinology and Prevention of Cardiovascular Diseases, Institute of Cardiometabolism and Nutrition (ICAN), La Pitié-Salpêtrière Hospital, AP-HP, Paris, France.
| |
Collapse
|
31
|
Rizki-Safitri A, Tokito F, Nishikawa M, Tanaka M, Maeda K, Kusuhara H, Sakai Y. Prospect of in vitro Bile Fluids Collection in Improving Cell-Based Assay of Liver Function. FRONTIERS IN TOXICOLOGY 2021; 3:657432. [PMID: 35295147 PMCID: PMC8915818 DOI: 10.3389/ftox.2021.657432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
The liver plays a pivotal role in the clearance of drugs. Reliable assays for liver function are crucial for various metabolism investigation, including toxicity, disease, and pre-clinical testing for drug development. Bile is an aqueous secretion of a functioning liver. Analyses of bile are used to explain drug clearance and related effects and are thus important for toxicology and pharmacokinetic research. Bile fluids collection is extensively performed in vivo, whereas this process is rarely reproduced as in the in vitro studies. The key to success is the technology involved, which needs to satisfy multiple criteria. To ensure the accuracy of subsequent chemical analyses, certain amounts of bile are needed. Additionally, non-invasive and continuous collections are preferable in view of cell culture. In this review, we summarize recent progress and limitations in the field. We highlight attempts to develop advanced liver cultures for bile fluids collection, including methods to stimulate the secretion of bile in vitro. With these strategies, researchers have used a variety of cell sources, extracellular matrix proteins, and growth factors to investigate different cell-culture environments, including three-dimensional spheroids, cocultures, and microfluidic devices. Effective combinations of expertise and technology have the potential to overcome these obstacles to achieve reliable in vitro bile assay systems.
Collapse
Affiliation(s)
- Astia Rizki-Safitri
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Laboratory of Stem Cell Regulation, Institute for Quantitative Biosciences (IQB), The University of Tokyo, Tokyo, Japan
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine (NCGM), Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Agarwal S, Agarwal SK. Lopinavir-Ritonavir in SARS-CoV-2 Infection and Drug-Drug Interactions with Cardioactive Medications. Cardiovasc Drugs Ther 2021; 35:427-440. [PMID: 32918656 PMCID: PMC7486594 DOI: 10.1007/s10557-020-07070-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/23/2022]
Abstract
Lopinavir-ritonavir combination is being used for the treatment of SARS-CoV-2 infection. A low dose of ritonavir is added to other protease inhibitors to take advantage of potent inhibition of cytochrome (CYP) P450 3A4, thereby significantly increasing the plasma concentration of coadministered lopinavir. Ritonavir also inhibits CYP2D6 and induces CYP2B6, CYP2C19, CYP2C9, and CYP1A2. This potent, time-dependent interference of major hepatic drug-metabolizing enzymes by ritonavir leads to several clinically important drug-drug interactions. A number of patients presenting with acute coronary syndrome and acute heart failure may have SARS-CoV-2 infection simultaneously. Lopinavir-ritonavir is added to their prescription of multiple cardiac medications leading to potential drug-drug interactions. Many cardiology, pulmonology, and intensivist physicians have never been exposed to clinical scenarios requiring co-prescription of cardiac and antiviral therapies. Therefore, it is essential to enumerate these drug-drug interactions, to avoid any serious drug toxicity, to consider alternate and safer drugs, and to ensure better patient care.
Collapse
Affiliation(s)
- Shubham Agarwal
- Department of Internal Medicine, Rosalind Franklin University of Medicine and Science Chicago Medical School, North Chicago, IL USA
| | | |
Collapse
|
33
|
Lalagkas PN, Poulentzas G, Kontogiorgis C, Douros A. Potential drug-drug interaction between sodium-glucose co-transporter 2 inhibitors and statins: pharmacological and clinical evidence. Expert Opin Drug Metab Toxicol 2021; 17:697-705. [PMID: 33888031 DOI: 10.1080/17425255.2021.1921735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Recent case reports suggested that concomitant use of sodium-glucose co-transporter 2 (SGLT2) inhibitors with statins could lead to increased statin toxicity. We provide a comprehensive overview of the available pharmacological and clinical evidence on this potential drug-drug interaction (DDI). AREAS COVERED We searched MEDLINE PubMed until November 2020 for (i) pharmacokinetic studies on SGLT2 inhibitors, statins, and their potential interaction, and (ii) case reports and clinical studies assessing the safety of concomitant use of SGLT2 inhibitors and statins. We also searched regulatory documents submitted to the United States Food and Drug Administration for unpublished data on this potential DDI. EXPERT OPINION SGLT2 inhibitors are increasingly used for type 2 diabetes, chronic heart failure, and chronic kidney disease, and concomitant use with statins is common given the comorbidity of indications. While pharmacokinetic studies in healthy subjects showed no clinically relevant changes in statin levels during SGLT2 inhibitor co-administration, the published case reports and pharmacologic reasoning support the possibility of an interaction. Underlying mechanisms could be pharmacokinetic or pharmacodynamic, and canagliflozin appears to be the SGLT2 inhibitor with the highest interaction potential. Further research including 'real-world' pharmacoepidemiologic studies is needed to better understand the clinical significance of this DDI.
Collapse
Affiliation(s)
- Panagiotis-Nikolaos Lalagkas
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Poulentzas
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece.,Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, Heraklion, Greece
| | - Antonios Douros
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Departments of Medicine and Epidemiology, McGill University, Montreal, QC, Canada.,Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
34
|
Nishihara M, Ramsden D, Balani SK. Evaluation of the drug-drug interaction potential for trazpiroben (TAK-906), a D 2/D 3 receptor antagonist for gastroparesis, towards cytochrome P450s and transporters. Xenobiotica 2021; 51:668-679. [PMID: 33879032 DOI: 10.1080/00498254.2021.1912438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Trazpiroben (TAK-906), a peripherally selective dopamine D2/D3 receptor antagonist, is being developed for the treatment of patients with gastroparesis. The potential of trazpiroben to act as a perpetrator or a victim for cytochrome P450 (CYP)- or transporter- mediated drug-drug interactions (DDIs) was evaluated following the latest regulatory guidelines.In vitro studies revealed that trazpiroben is metabolised mainly through a non-CYP pathway (56.7%) by multiple cytosolic, NADPH-dependent reductase, such as aldo-keto reductase and short-chain dehydrogenase/reductase including carbonyl reductases. Remaining metabolism occurs through CYP3A4 and CYP2C8 (43.3%). Trazpiroben is neither an inhibitor nor an inducer of major CYP enzymes at a clinically relevant dose. It is a substrate of P-glycoprotein (P-gp) and organic anion transporting polypeptide (OATP) 1B1/1B3, but is not an inhibitor of transporters listed in the DDI guidelines at a clinically relevant dose. This is consistent with findings from CYP3A and P-gp-based clinical assessment showing no substantial change (≤2-fold) in trazpiroben exposure when co-administered with itraconazole.Collectively, trazpiroben has low potential of enzyme-mediated DDIs and is unlikely to act as a perpetrator of transporter-mediated DDIs but there may be a potential to act as a victim of OATP1B1/1B3 DDI that will be evaluated clinically.
Collapse
Affiliation(s)
- Mitsuhiro Nishihara
- Drug Metabolism and Pharmacokinetics, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Diane Ramsden
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| | - Suresh K Balani
- Global Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co, Cambridge, MA, USA
| |
Collapse
|
35
|
Kayesh R, Farasyn T, Crowe A, Liu Q, Pahwa S, Alam K, Neuhoff S, Hatley O, Ding K, Yue W. Assessing OATP1B1- and OATP1B3-Mediated Drug-Drug Interaction Potential of Vemurafenib Using R-Value and Physiologically-Based Pharmacokinetic Models. J Pharm Sci 2021; 110:314-324. [PMID: 32590030 PMCID: PMC7750294 DOI: 10.1016/j.xphs.2020.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/19/2022]
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important determinants of transporter-mediated drug-drug interactions (DDIs). Current studies assessed the OATP1B1 and OATP1B3-mediated DDI potential of vemurafenib, a kinase inhibitor drug with high protein binding and low aqueous solubility, using R-value and physiologically-based pharmacokinetic (PBPK) models. The total half-maximal inhibitory concentration (IC50,total) values of vemurafenib against OATP1B1 and OATP1B3 were determined in 100% human plasma in transporter-overexpressing human embryonic kidney 293 stable cell lines. The unbound fraction of vemurafenib in human plasma before (fu,plasma) and after addition into the uptake assay plate (fu,plasma,inc) were determined by rapid equilibrium dialysis. There was no statistically significant difference between fu,plasma and fu,plasma,inc. Vemurafenib IC50,total values against OATP1B1 and OATP1B3 are 175 ± 82 and 231 ± 26 μM, respectively. The R-values [R = 1 + fu,plasma × Iin,max/(fu,plasma,inc × IC50,total)] were then simplified as R = 1+Iin,max/IC50,total, and were 1.76 and 1.57 for OATP1B1 and OATP1B3, respectively. The simulated pravastatin AUC ratio was 1.28 when a single dose of pravastatin (40 mg) was co-administered with vemurafenib (960 mg, twice daily) at steady-state, compared to pravastatin alone. Both R-value and PBPK models predict that vemurafenib has the potential to cause OATP1B1- and OATP1B3-mediated DDIs.
Collapse
Affiliation(s)
- Ruhul Kayesh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Qiang Liu
- ARL Bio Pharma, Oklahoma City, Oklahoma 73104
| | - Sonia Pahwa
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Oliver Hatley
- Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ United Kingdom
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104.
| |
Collapse
|
36
|
Jiang R, Hart A, Burgess L, Kim DS, Lai WG, Dixit V. Prediction of Transporter-Mediated Drug-Drug Interactions and Phenotyping of Hepatobiliary Transporters Involved in the Clearance of E7766, a Novel Macrocycle-Bridged Dinucleotide. Drug Metab Dispos 2020; 49:265-275. [DOI: 10.1124/dmd.120.000125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
|
37
|
The Role of Structure and Biophysical Properties in the Pleiotropic Effects of Statins. Int J Mol Sci 2020; 21:ijms21228745. [PMID: 33228116 PMCID: PMC7699354 DOI: 10.3390/ijms21228745] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Statins are a class of drugs used to lower low-density lipoprotein cholesterol and are amongst the most prescribed medications worldwide. Most statins work as a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), but statin intolerance from pleiotropic effects have been proposed to arise from non-specific binding due to poor enzyme-ligand sensitivity. Yet, research into the physicochemical properties of statins, and their interactions with off-target sites, has not progressed much over the past few decades. Here, we present a concise perspective on the role of statins in lowering serum cholesterol levels, and how their reported interactions with phospholipid membranes offer a crucial insight into the mechanism of some of the more commonly observed pleiotropic effects of statin administration. Lipophilicity, which governs hepatoselectivity, is directly related to the molecular structure of statins, which dictates interaction with and transport through membranes. The structure of statins is therefore a clinically important consideration in the treatment of hypercholesterolaemia. This review integrates the recent biophysical studies of statins with the literature on the physiological effects and provides new insights into the mechanistic cause of statin pleiotropy, and prospective means of understanding the cholesterol-independent effects of statins.
Collapse
|
38
|
Yoshikado T, Lee W, Toshimoto K, Morita K, Kiriake A, Chu X, Lee N, Kimoto E, Varma MVS, Kikuchi R, Scialis RJ, Shen H, Ishiguro N, Lotz R, Li AP, Maeda K, Kusuhara H, Sugiyama Y. Evaluation of Hepatic Uptake of OATP1B Substrates by Short Term-Cultured Plated Human Hepatocytes: Comparison With Isolated Suspended Hepatocytes. J Pharm Sci 2020; 110:376-387. [PMID: 33122051 DOI: 10.1016/j.xphs.2020.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Hepatic uptake clearance has been measured in suspended human hepatocytes (SHH). Plated human hepatocytes (PHH) after short-term culturing are increasingly employed to study hepatic transport driven mainly by its higher throughput. To know pros/cons of both systems, the hepatic uptake clearances of several organic anion transporting polypeptide 1B substrates were compared between PHH and SHH by determining the initial uptake velocities or through dynamic model-based analyses. For cerivastatin, pitavastatin and rosuvastatin, initial uptake clearances (PSinf) obtained using PHH were comparable to those using SHH, while cell-to-medium concentration (C/M) ratios were 2.7- to 5.4-fold higher. For pravastatin and dehydropravastatin, hydrophilic compounds with low uptake/cellular binding, their PSinf and C/M ratio in PHH were 1.8- to 3.2-fold lower than those in SHH. These hydrophilic substrates are more prone to wash-off during the uptake study using PHH, which may explain the apparently lower uptake than SHH. The C/M ratios obtained using PHH were stable over an extended time, making PHH suitable to estimate the C/M ratios and hepatocyte-to-medium unbound concentration ratios (Kp,uu). In conclusion, PHH is useful in evaluating hepatic uptake/efflux clearances and Kp,uu of OATP1B substrates in a high-throughput manner, however, a caution is warranted for hydrophilic drugs with low uptake/cellular binding.
Collapse
Affiliation(s)
- Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan; Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Korea
| | - Kota Toshimoto
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Kiyoe Morita
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | - Aya Kiriake
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan
| | | | - Nora Lee
- Daewoong Pharmaceutical Co., Ltd, Seoul, Korea
| | - Emi Kimoto
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research and Development, Pfizer Inc, Groton, CT, USA
| | | | | | - Hong Shen
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Naoki Ishiguro
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd, Kobe, Hyogo, Japan
| | - Ralf Lotz
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharma GmbH & Co., KG, Biberach an der Riss, Germany
| | - Albert P Li
- In Vitro ADMET Laboratories Inc, Columbia, MA, USA
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Kanagawa, Japan.
| |
Collapse
|
39
|
Wegler C, Prieto Garcia L, Klinting S, Robertsen I, Wiśniewski JR, Hjelmesaeth J, Åsberg A, Jansson-Löfmark R, Andersson TB, Artursson P. Proteomics-Informed Prediction of Rosuvastatin Plasma Profiles in Patients With a Wide Range of Body Weight. Clin Pharmacol Ther 2020; 109:762-771. [PMID: 32970864 PMCID: PMC7984432 DOI: 10.1002/cpt.2056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023]
Abstract
Rosuvastatin is a frequently used probe to study transporter‐mediated hepatic uptake. Pharmacokinetic models have therefore been developed to predict transporter impact on rosuvastatin disposition in vivo. However, the interindividual differences in transporter concentrations were not considered in these models, and the predicted transporter impact was compared with historical in vivo data. In this study, we investigated the influence of interindividual transporter concentrations on the hepatic uptake clearance of rosuvastatin in 54 patients covering a wide range of body weight. The 54 patients were given an oral dose of rosuvastatin the day before undergoing gastric bypass or cholecystectomy, and pharmacokinetic (PK) parameters were established from each patient’s individual time‐concentration profiles. Liver biopsies were sampled from each patient and their individual hepatic transporter concentrations were quantified. We combined the transporter concentrations with in vitro uptake kinetics determined in HEK293‐transfected cells, and developed a semimechanistic model with a bottom‐up approach to predict the plasma concentration profiles of the single dose of rosuvastatin in each patient. The predicted PK parameters were evaluated against the measured in vivo plasma PKs from the same 54 patients. The developed model predicted the rosuvastatin PKs within two‐fold error for rosuvastatin area under the plasma concentration versus time curve (AUC; 78% of the patients; average fold error (AFE): 0.96), peak plasma concentration (Cmax; 76%; AFE: 1.05), and terminal half‐life (t1/2; 98%; AFE: 0.89), and captured differences in the rosuvastatin PKs in patients with the OATP1B1 521T<C polymorphism. This demonstrates that hepatic uptake clearance determined in transfected cell lines, together with proteomics scaling, provides a useful tool for prediction models, without the need for empirical scaling factors.
Collapse
Affiliation(s)
- Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luna Prieto Garcia
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Signe Klinting
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jøran Hjelmesaeth
- Morbid Obesity Centre, Department of Medicine, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- DMPK, Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Ma R, Li G, Wang X, Bi Y, Zhang Y. Inhibitory effect of sixteen pharmaceutical excipients on six major organic cation and anion uptake transporters. Xenobiotica 2020; 51:95-104. [PMID: 32544367 DOI: 10.1080/00498254.2020.1783720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date, relatively little is known about the interactions of pharmaceutical excipients with hepatic and renal drug uptake transporters. The present study was designed to systematically evaluate the effects of 16 commonly consumed excipients on human organic cation transporter 1 and 2 (hOCT1 and hOCT2), human organic anion transporter 1 and 3 (hOAT1 and hOAT3) and human organic anion transporting polypeptide 1B1 and 1B3 (hOATP1B1 and hOATP1B3). The inhibitory effects and mechanisms of excipients on transporters were investigated using in vitro uptake studies, cell viability assays, concentration-dependent studies, and the Lineweaver-Burk plot method. Triton X-100 is a non-competitive inhibitor for all six transporters. Tween 20 inhibits hOCT2, hOAT1, hOAT3, and hOATP1B3 in a mixed way, whereas it competitively inhibits hOATP1B1. The inhibition of Tween 80 is competitive for hOCT2, non-competitive for hOATP1B1 and hOATP1B3, and mixed for hOAT1 and hOAT3. Concentration-dependent studies identify Triton X-100 as a strong inhibitor of hOCT1 and hOCT2 with IC50 values of 20.1 and 4.54 μg/mL, respectively. Additionally, Triton X-100, Tween 20, and Tween 80 strongly inhibit hOAT3 with IC50 values ≤31.0 μg/mL. The present study is significant in understanding the excipient-drug interactions and provides valuable information for excipient selection in drug development.
Collapse
Affiliation(s)
- Ruicong Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xue Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yajuan Bi
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
41
|
Li N, Badrinarayanan A, Li X, Roberts J, Hayashi M, Virk M, Gupta A. Comparison of In Vitro to In Vivo Extrapolation Approaches for Predicting Transporter-Mediated Hepatic Uptake Clearance Using Suspended Rat Hepatocytes. Drug Metab Dispos 2020; 48:861-872. [PMID: 32759366 DOI: 10.1124/dmd.120.000064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Clearance (CL) prediction remains a significant challenge in drug discovery, especially when complex processes such as drug transporters are involved. The present work explores various in vitro to in vivo extrapolation (IVIVE) approaches to predict hepatic CL driven by uptake transporters in rat. Broadly, two different IVIVE methods using suspended rat hepatocytes were compared: initial uptake CL (PSu,inf) and intrinsic metabolic CL (CLint,met) corrected by unbound hepatocytes to medium partition coefficient (Kpuu). Kpuu was determined by temperature method (Temp Kpuu,ss), homogenization method (Hom Kpuu,ss), and initial rate method (Kpuu,V0). In addition, the impact of bovine serum albumin (BSA) on each of these methods was investigated. Twelve compounds, which are known substrates of organic anion-transporting polypeptides representing diverse chemical matter, were selected for these studies. As expected, CLint,met alone significantly underestimated hepatic CL for all the test compounds. Overall, predicted hepatic CL using PSu,inf with BSA, Hom Kpuu,ss with BSA, and Temp Kpuu,ss showed the most robust correlation with in vivo rat hepatic CL. Adding BSA improved hepatic CL prediction for selected compounds when using the PSu,inf and Hom Kpuu,ss methods, with minimal impact on the Temp Kpuu,ss and Kpuu,V0 methods. None of the IVIVE approaches required an empirical scaling factor. These results suggest that supplementing rat hepatocyte suspension with BSA may be essential in drug discovery research for novel chemical matters to improve CL prediction. SIGNIFICANCE STATEMENT: The current investigation demonstrates that hepatocyte uptake assay supplemented with 4% bovine serum albumin is a valuable tool for estimating unbound hepatic uptake clearance (CL) and Kpuu. Based upon the extended clearance concept, direct extrapolation from these in vitro parameters significantly improved the overall hepatic CL prediction for organic anion-transporting polypeptide substrates in rat. This study provides a practical in vitro to in vivo extrapolation strategy for predicting transporter-mediated hepatic CL in early drug discovery.
Collapse
Affiliation(s)
- Na Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., Cambridge, Massachusetts
| | - Akshay Badrinarayanan
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., Cambridge, Massachusetts
| | - Xingwen Li
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., Cambridge, Massachusetts
| | - John Roberts
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., Cambridge, Massachusetts
| | - Mike Hayashi
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., Cambridge, Massachusetts
| | - Manpreet Virk
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., Cambridge, Massachusetts
| | - Anshul Gupta
- Department of Pharmacokinetics and Drug Metabolism, Amgen Research, Amgen Inc., Cambridge, Massachusetts
| |
Collapse
|
42
|
Sanoh S, Naritomi Y, Kitamura S, Shinagawa A, Kakuni M, Tateno C, Ohta S. Predictability of human pharmacokinetics of drugs that undergo hepatic organic anion transporting polypeptide (OATP)-mediated transport using single-species allometric scaling in chimeric mice with humanized liver: integration with hepatic drug metabolism. Xenobiotica 2020; 50:1370-1379. [PMID: 32401667 DOI: 10.1080/00498254.2020.1769229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We previously reported a prediction method for human pharmacokinetics (PK) using single species allometric scaling (SSS) and the complex Dedrick plot in chimeric mice with humanized liver to predict the total clearance (CLt), distribution volumes in steady state (Vdss) and plasma concentration-time profiles of several drugs metabolized by cytochrome P450 (P450) and non-P450 enzymes. In the present study, we examined eight compounds (bosentan, cerivastatin, fluvastatin, pitavastatin, pravastatin, repaglinide, rosuvastatin, valsartan) as typical organic anion transporting polypeptide (OATP) substrates and six compounds metabolized by P450 and non-P450 enzymes to evaluate the predictability of CLt, Vdss and plasma concentration-time profiles after intravenous administration to chimeric mice. The predicted CLt and Vdss of drugs that undergo OATP-mediated uptake and P450/non-P450-mediated metabolism reflected the observed data from humans within a threefold error range. We also examined the possibility of predicting plasma concentration-time profiles of drugs that undergo OATP-mediated uptake using the complex Dedrick plot in chimeric mice. Most profiles could be superimposed with observed profiles from humans within a two- to threefold error range. PK prediction using SSS and the complex Dedrick plot in chimeric mice can be useful for evaluating drugs that undergo both OATP-mediated uptake and P450/non-P450-mediated metabolism.
Collapse
Affiliation(s)
- Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoichi Naritomi
- Analysis and Pharmacokinetics Research Laboratories, Astellas Pharma Inc, Tsukuba, Japan
| | - Satoshi Kitamura
- Analysis and Pharmacokinetics Research Laboratories, Astellas Pharma Inc, Tsukuba, Japan
| | - Akihiko Shinagawa
- School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Chise Tateno
- R&D Dept, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Japan.,Research Center for Hepatology and Gastroenterology, Hiroshima University, Higashi-Hiroshima, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,School of Pharmaceutical Sciences, Hiroshima University, Hiroshima, Japan.,Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
43
|
Nakaoka T, Uetake Y, Kaneko KI, Niwa T, Ochiai H, Irie S, Suezaki Y, Otsuka N, Hayashinaka E, Wada Y, Cui Y, Maeda K, Kusuhara H, Sugiyama Y, Hosoya T, Watanabe Y. Practical Synthesis of [ 18F]Pitavastatin and Evaluation of Hepatobiliary Transport Activity in Rats by Positron Emission Tomography. Mol Pharm 2020; 17:1884-1898. [PMID: 32271581 DOI: 10.1021/acs.molpharmaceut.9b01284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We developed a practical synthetic method for fluorine-18 (18F)-labeled pitavastatin ([18F]PTV) as a positron emission tomography (PET) tracer to assess hepatobiliary transporter activity and conducted a PET scan as a preclinical study for proof-of-concept in rats. This method is a one-pot synthesis involving aromatic 18F-fluorination of an arylboronic acid ester followed by deprotection under acidic conditions, which can be reproduced in general clinical sites equipped with a standard radiolabeling system due to the simplified procedure. PET imaging confirmed that intravenously administered [18F]PTV was rapidly accumulated in the liver and gradually transferred into the intestinal lumen through the bile duct. Radiometabolite analysis showed that [18F]PTV was metabolically stable, and 80% of the injected dose was detected as the unchanged form in both blood and bile. We applied integration plot analysis to assess tissue uptake clearance (CLuptake, liver and CLuptake, kidney) and canalicular efflux clearance (CLint, bile), and examined the effects of inhibitors on membrane transport. Treatment with rifampicin, an organic anion transporting polypeptide inhibitor, significantly reduced CLuptake, liver and CLuptake, kidney to 44% and 64% of control, respectively. In contrast, Ko143, a breast cancer resistance protein inhibitor, did not affect CLuptake, liver but significantly reduced CLint, bile to 39% of control without change in [18F]PTV blood concentration. In addition, we found decreased CLuptake, liver and increased CLint, bile in Eisai hyperbilirubinemic rats in response to altered expression levels of transporters. We expect that [18F]PTV can be translated into clinical application, as our synthetic method does not need special apparatus in the radiolabeling system and PET scan with [18F]PTV can quantitatively evaluate transporter activity in vivo.
Collapse
Affiliation(s)
- Takayoshi Nakaoka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuta Uetake
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ken-Ichi Kaneko
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takashi Niwa
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hidenori Ochiai
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Satsuki Irie
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yoshie Suezaki
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Natsumi Otsuka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Emi Hayashinaka
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yasuhiro Wada
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yilong Cui
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takamitsu Hosoya
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Yasuyoshi Watanabe
- RIKEN Center for Life Science Technologies (CLST), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
44
|
Mori D, Ishida H, Mizuno T, Kusumoto S, Kondo Y, Izumi S, Nakata G, Nozaki Y, Maeda K, Sasaki Y, Fujita KI, Kusuhara H. Alteration in the Plasma Concentrations of Endogenous Organic Anion-Transporting Polypeptide 1B Biomarkers in Patients with Non-Small Cell Lung Cancer Treated with Paclitaxel. Drug Metab Dispos 2020; 48:387-394. [PMID: 32114508 DOI: 10.1124/dmd.119.089474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel has been considered to cause OATP1B-mediated drug-drug interactions at therapeutic doses; however, its clinical relevance has not been demonstrated. This study aimed to elucidate in vivo inhibition potency of paclitaxel against OATP1B1 and OATP1B3 using endogenous OATP1B biomarkers. Paclitaxel is an inhibitor of OATP1B1 and OATP1B3, with Ki of 0.579 ± 0.107 and 5.29 ± 3.87 μM, respectively. Preincubation potentiated its inhibitory effect on both OATP1B1 and OATP1B3, with Ki of 0.154 ± 0.031 and 0.624 ± 0.183 μM, respectively. Ten patients with non-small cell lung cancer who received 200 mg/m2 of paclitaxel by a 3-hour infusion were recruited. Plasma concentrations of 10 endogenous OATP1B biomarkers-namely, coproporphyrin I, coproporphyrin III, glycochenodeoxycholate-3-sulfate, glycochenodeoxycholate-3-glucuronide, glycodeoxycholate-3-sulfate, glycodeoxycholate-3-glucuronide, lithocholate-3-sulfate, glycolithocholate-3-sulfate, taurolithocholate-3-sulfate, and chenodeoxycholate-24-glucuronide-were determined in the patients with non-small cell lung cancer on the day before paclitaxel administration and after the end of paclitaxel infusion for 7 hours. Paclitaxel increased the area under the plasma concentration-time curve (AUC) of the endogenous biomarkers 2- to 4-fold, although a few patients did not show any increment in the AUC ratios of lithocholate-3-sulfate, glycolithocholate-3-sulfate, and taurolithocholate-3-sulfate. Therapeutic doses of paclitaxel for the treatment of non-small cell lung cancer (200 mg/m2) will cause significant OATP1B1 inhibition during and at the end of the infusion. This is the first demonstration that endogenous OATP1B biomarkers could serve as surrogate biomarkers in patients. SIGNIFICANCE STATEMENT: Endogenous biomarkers can address practical and ethical issues in elucidating transporter-mediated drug-drug interaction (DDI) risks of anticancer drugs clinically. We could elucidate a significant increment of the plasma concentrations of endogenous OATP1B biomarkers after a 3-hour infusion (200 mg/m2) of paclitaxel, a time-dependent inhibitor of OATP1B, in patients with non-small cell lung cancer. The endogenous OATP1B biomarkers are useful to assess the possibility of OATP1B-mediated DDIs in patients and help in appropriately designing a dosing schedule to avoid the DDIs.
Collapse
Affiliation(s)
- Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Hiroo Ishida
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Sojiro Kusumoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Yusuke Kondo
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Saki Izumi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Genki Nakata
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Yoshitane Nozaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Yasutsuna Sasaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Ken-Ichi Fujita
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan (D.M., T.M., Y.K., G.N., K.M., H.K.); Division of Medical Oncology, Department of Medicine (H.I., Y.S.), and Division of Respiratory Medicine and Allergology, Department of Medicine (S.K.), Showa University School of Medicine, Tokyo, Japan; Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan (S.I., Y.N.); and Division of Cancer Genome and Pharmacotherapy, Department of Clinical Pharmacy, Showa University School of Pharmacy, Tokyo, Japan (K.-i.F.)
| |
Collapse
|
45
|
Dragović G, Dimitrijević B, Kušić J, Soldatović I, Jevtović D, Olagunju A, Owen A. Influence of SLCO1B1 polymorphisms on lopinavir C trough in Serbian HIV/AIDS patients. Br J Clin Pharmacol 2020; 86:1289-1295. [PMID: 32022294 DOI: 10.1111/bcp.14230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/31/2019] [Accepted: 01/21/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS Lopinavir (LPV) is not a first-line regimen. According to recent WHO data, LPV usage in low- and middle-income countries accounted for approximately 52% of the adult and 23% of the paediatric protease inhibitor market in 2017. Since LPV is a substrate for the SLCO1B1 (OATP1B1) transporter, the aim of this study was to assess the impact of SLCO1B1 polymorphisms (rs11045819, rs4149032 and rs4149056) on LPV trough plasma concentrations (Ctrough ) in Serbian patients. METHODS Plasma samples from 104 HIV/AIDS Caucasians were collected. LPV Ctrough was quantified using liquid-chromatography-mass spectrometry. Genotyping was carried out using real-time-PCR-based allelic discrimination. One-way analysis of variance, t test and linear regression were used for data analysis. RESULTS The overall mean (SD) LPV Ctrough was 5885 ± 2755 ng/mL. Significant differences were between patients with different rs11045819 genotypes: CC (LPV median Ctrough = 6072 ng/mL, interquartile range (IQR) = 4318-7617 ng/mL), CA (LPV median Ctrough = 4987 ng/mL, IQR = 4300-6295 ng/mL) and AA (LPV median Ctrough = 3648 ng/mL, IQR = 1949-4072 ng/mL) (P = .005). Significant differences were also observed according to rs4149032 genotype: CC (LPV median Ctrough = 6027 ng/mL, IQR =4548-8250 ng/mL), CT (LPV median Ctrough = 5553 ng/mL, IQR = 4300-6888 ng/mL) and TT (LPV median Ctrough = 4408 ng/mL, IQR = 3361-5233 ng/mL) (P = .007). For rs4149056 a statistically significant difference between T-homozygotes (LPV median Ctrough = 5434 ng/mL, IQR = 3855-6830 ng/mL), heterozygotes (LPV median Ctrough = 6707 ng/mL, IQR = 5088-8063 ng/mL) and C-homozygotes (LPV median Ctrough = 13906 ng/mL, IQR = 12946-14866 ng/mL) was observed (P = .002). In multivariate regression analysis, only the SLCO1B1 rs4149056 polymorphism was independently associated with higher LPV Ctrough (β = 2834.5 [1442-4226.9] ng/mL [P = .001]). CONCLUSIONS Our results demonstrate a statistically significant influence of the SLCO1B1 rs4149056 polymorphism on higher LPV Ctrough in Caucasian HIV/AIDS patients.
Collapse
Affiliation(s)
- Gordana Dragović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Božana Dimitrijević
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovana Kušić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Soldatović
- Institute for Biomedical Statistics, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djordje Jevtović
- Infectious and Tropical Diseases Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Adeniyi Olagunju
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Nozaki Y, Izumi S. Recent advances in preclinical in vitro approaches towards quantitative prediction of hepatic clearance and drug-drug interactions involving organic anion transporting polypeptide (OATP) 1B transporters. Drug Metab Pharmacokinet 2020; 35:56-70. [DOI: 10.1016/j.dmpk.2019.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/29/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
|
47
|
Recent progress in in vivo phenotyping technologies for better prediction of transporter-mediated drug-drug interactions. Drug Metab Pharmacokinet 2020; 35:76-88. [PMID: 31948854 DOI: 10.1016/j.dmpk.2019.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022]
Abstract
Clinical reports on transporter-mediated drug-drug interactions (TP-DDIs) have rapidly accumulated and regulatory guidance/guidelines recommend that sponsors consider performing quantitative prediction of TP-DDI risks in the process of drug development. In vitro experiments for characterizing the function of drug transporters have been established and various parameters such as the inhibition constant (Ki) of drugs and the intrinsic uptake/efflux clearance for a certain transporter can be obtained. However, many reports have indicated large discrepancies between the parameters estimated from in vitro experiments and those rationally explaining drug pharmacokinetics. Thus, it is essential to evaluate directly the function of each transporter isoform in vivo in humans. At present, several transporter substrate drugs and endogenous compounds have been recognized as probe substrates for a specific transporter and transporter function was evaluated by monitoring the plasma and urine concentration of those probes; however, few compounds specifically transported via a single transporter isoform have been found. For monitoring the intraorgan concentration of drugs, positron emission tomography can be a powerful tool and clinical examples for quantification of in vivo transporter function have been published. In this review, novel methodologies for in vivo phenotyping of transporter function are summarized.
Collapse
|
48
|
Bowman CM, Chen E, Chen L, Chen YC, Liang X, Wright M, Chen Y, Mao J. Changes in Organic Anion Transporting Polypeptide Uptake in HEK293 Overexpressing Cells in the Presence and Absence of Human Plasma. Drug Metab Dispos 2019; 48:18-24. [DOI: 10.1124/dmd.119.088948] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
|
49
|
Kulkarni P, Korzekwa K, Nagar S. A hybrid model to evaluate the impact of active uptake transport on hepatic distribution of atorvastatin in rats. Xenobiotica 2019; 50:536-544. [PMID: 31530243 DOI: 10.1080/00498254.2019.1668982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. Mathematical modeling remains a useful tool to study the impact of transporters on overall and intracellular drug disposition. The impact of organic anion transporter protein mediated uptake on atorvastatin systemic and intracellular pharmacokinetics, specifically distribution volume, was studied in rats with mathematical modeling and conducting in vivo pharmacokinetic studies for atorvastatin in presence and absence of rifampicin. A previously developed 5-compartment explicit membrane model for the liver was combined with a compartmental model to develop a semi-physiological hybrid model for atorvastatin disposition. 2. Rifampicin treatment resulted in a decrease in systemic clearance and steady-state distribution volume, and an increase in half-life of atorvastatin. The hybrid model predicted higher unbound intracellular liver atorvastatin concentrations than unbound plasma concentrations in both rifampicin treated and untreated groups, indicating involvement of uptake transporters. The intracellular unbound concentrations during the distributive phase were unaffected by rifampicin. The dependence of clearance on blood flow as well as hepatic uptake for atorvastatin (a moderate-to-high extraction ratio drug) can explain this lack of change in intracellular concentrations if there is incomplete inhibition of transport at the tested rifampicin dose. 3. The hybrid model successfully allowed the evaluation of effect of active uptake on intracellular and plasma atorvastatin disposition.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
50
|
|