1
|
von Kügelgen I. Pharmacological characterization of P2Y receptor subtypes - an update. Purinergic Signal 2024; 20:99-108. [PMID: 37697211 PMCID: PMC10997570 DOI: 10.1007/s11302-023-09963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). The widely expressed P2Y receptors play important roles in physiology and pathophysiology. This review summarizes the use of pharmacological tools to characterize the P2Y receptor subtypes involved in these responses. MRS2500 is a potent and selective antagonist acting at the P2Y1 receptor. AR-C118925 is useful for the selective antagonism of the P2Y2 receptor. PSB16133 blocks the P2Y4 receptor, MRS2578 is an antagonist at the P2Y6 receptor and NF157 as well as NF340 block the P2Y11 receptor. ADP-induced platelet aggregation is mediated by P2Y1 and P2Y12 receptors. A number of compounds or their active metabolites reduce ADP-induced platelet aggregation by blocking the P2Y12 receptor. These include the active metabolites of the thienopyridine compounds clopidogrel and prasugrel, the nucleoside analogue ticagrelor and the nucleotide analogue cangrelor. PSB0739 is also a potent antagonist at the P2Y12 receptor useful for both in vitro and in vivo studies. MRS2211 and MRS2603 inhibit P2Y13 mediated responses. PPTN is a very potent antagonist at the P2Y14 receptor.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
2
|
Zhao X, Cooper M, Michael JV, Yarman Y, Baltz A, Chuprun JK, Koch WJ, McKenzie SE, Tomaiuolo M, Stalker TJ, Zhu L, Ma P. GRK2 regulates ADP signaling in platelets via P2Y1 and P2Y12. Blood Adv 2022; 6:4524-4536. [PMID: 35793439 PMCID: PMC9636328 DOI: 10.1182/bloodadvances.2022007007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/10/2022] [Indexed: 11/20/2022] Open
Abstract
The critical role of G protein-coupled receptor kinase 2 (GRK2) in regulating cardiac function has been well documented for >3 decades. Targeting GRK2 has therefore been extensively studied as a novel approach to treating cardiovascular disease. However, little is known about its role in hemostasis and thrombosis. We provide here the first evidence that GRK2 limits platelet activation and regulates the hemostatic response to injury. Deletion of GRK2 in mouse platelets causes increased platelet accumulation after laser-induced injury in the cremaster muscle arterioles, shortens tail bleeding time, and enhances thrombosis in adenosine 5'-diphosphate (ADP)-induced pulmonary thromboembolism and in FeCl3-induced carotid injury. GRK2-/- platelets have increased integrin activation, P-selectin exposure, and platelet aggregation in response to ADP stimulation. Furthermore, GRK2-/- platelets retain the ability to aggregate in response to ADP restimulation, indicating that GRK2 contributes to ADP receptor desensitization. Underlying these changes in GRK2-/- platelets is an increase in Ca2+ mobilization, RAS-related protein 1 activation, and Akt phosphorylation stimulated by ADP, as well as an attenuated rise of cyclic adenosine monophosphate levels in response to ADP in the presence of prostaglandin I2. P2Y12 antagonist treatment eliminates the phenotypic difference in platelet accumulation between wild-type and GRK2-/- mice at the site of injury. Pharmacologic inhibition of GRK2 activity in human platelets increases platelet activation in response to ADP. Finally, we show that GRK2 binds to endogenous Gβγ subunits during platelet activation. Collectively, these results show that GRK2 regulates ADP signaling via P2Y1 and P2Y12, interacts with Gβγ, and functions as a signaling hub in platelets for modulating the hemostatic response to injury.
Collapse
Affiliation(s)
- Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - James V. Michael
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Yanki Yarman
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Aiden Baltz
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - J. Kurt Chuprun
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J. Koch
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Steven E. McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Maurizio Tomaiuolo
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA
| | - Timothy J. Stalker
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Li Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
3
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
4
|
Oscillatory calcium release and sustained store-operated oscillatory calcium signaling prevents differentiation of human oligodendrocyte progenitor cells. Sci Rep 2022; 12:6160. [PMID: 35418597 PMCID: PMC9007940 DOI: 10.1038/s41598-022-10095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.
Collapse
|
5
|
P2Y purinergic signaling in prostate cancer: Emerging insights into pathophysiology and therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188732. [DOI: 10.1016/j.bbcan.2022.188732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
6
|
Dsouza C, Komarova SV. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. Int J Mol Sci 2021; 22:ijms22073468. [PMID: 33801677 PMCID: PMC8036966 DOI: 10.3390/ijms22073468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/13/2023] Open
Abstract
P2Y13 is an ADP-stimulated G-protein coupled receptor implicated in many physiological processes, including neurotransmission, metabolism, pain, and bone homeostasis. Quantitative understanding of P2Y13 activation dynamics is important for translational studies. We systematically identified PubMed annotated studies that characterized concentration-dependence of P2Y13 responses to natural and synthetic agonists. Since the comparison of the efficacy (maximum response) is difficult for studies performed in different systems, we normalized the data and conducted a meta-analysis of EC50 (concentration at half-maximum response) and Hill coefficient (slope) of P2Y13-mediated responses to different agonists. For signaling events induced by heterologously expressed P2Y13, EC50 of ADP-like agonists was 17.2 nM (95% CI: 7.7–38.5), with Hills coefficient of 4.4 (95% CI: 3.3–5.4), while ATP-like agonists had EC50 of 0.45 μM (95% CI: 0.06–3.15). For functional responses of endogenously expressed P2Y13, EC50 of ADP-like agonists was 1.76 μM (95% CI: 0.3–10.06). The EC50 of ADP-like agonists was lower for the brain P2Y13 than the blood P2Y13. ADP-like agonists were also more potent for human P2Y13 compared to rodent P2Y13. Thus, P2Y13 appears to be the most ADP-sensitive receptor characterized to date. The detailed understanding of tissue- and species-related differences in the P2Y13 response to ADP will improve the selectivity and specificity of future pharmacological compounds.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
| | - Svetlana V Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Shriners Hospital for Children, Montreal, QC H4A 0A9, Canada
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Correspondence:
| |
Collapse
|
7
|
Ferrari D, la Sala A, Milani D, Celeghini C, Casciano F. Purinergic Signaling in Controlling Macrophage and T Cell Functions During Atherosclerosis Development. Front Immunol 2021; 11:617804. [PMID: 33664731 PMCID: PMC7921745 DOI: 10.3389/fimmu.2020.617804] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a hardening and narrowing of arteries causing a reduction of blood flow. It is a leading cause of death in industrialized countries as it causes heart attacks, strokes, and peripheral vascular disease. Pathogenesis of the atherosclerotic lesion (atheroma) relies on the accumulation of cholesterol-containing low-density lipoproteins (LDL) and on changes of artery endothelium that becomes adhesive for monocytes and lymphocytes. Immunomediated inflammatory response stimulated by lipoprotein oxidation, cytokine secretion and release of pro-inflammatory mediators, worsens the pathological context by amplifying tissue damage to the arterial lining and increasing flow-limiting stenosis. Formation of thrombi upon rupture of the endothelium and the fibrous cup may also occur, triggering thrombosis often threatening the patient’s life. Purinergic signaling, i.e., cell responses induced by stimulation of P2 and P1 membrane receptors for the extracellular nucleotides (ATP, ADP, UTP, and UDP) and nucleosides (adenosine), has been implicated in modulating the immunological response in atherosclerotic cardiovascular disease. In this review we will describe advancements in the understanding of purinergic modulation of the two main immune cells involved in atherogenesis, i.e., monocytes/macrophages and T lymphocytes, highlighting modulation of pro- and anti-atherosclerotic mediated responses of purinergic signaling in these cells and providing new insights to point out their potential clinical significance.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, Section of Microbiology and Applied Pathology, University of Ferrara, Ferrara, Italy
| | - Andrea la Sala
- Certification Unit, Health Directorate, Bambino Gesù Pediatric Hospital, IRCCS, Rome, Italy
| | - Daniela Milani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| |
Collapse
|
8
|
Woo SH, Trinh TN. P2 Receptors in Cardiac Myocyte Pathophysiology and Mechanotransduction. Int J Mol Sci 2020; 22:ijms22010251. [PMID: 33383710 PMCID: PMC7794727 DOI: 10.3390/ijms22010251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
ATP is a major energy source in the mammalian cells, but it is an extracellular chemical messenger acting on P2 purinergic receptors. A line of evidence has shown that ATP is released from many different types of cells including neurons, endothelial cells, and muscle cells. In this review, we described the distribution of P2 receptor subtypes in the cardiac cells and their physiological and pathological roles in the heart. So far, the effects of external application of ATP or its analogues, and those of UTP on cardiac contractility and rhythm have been reported. In addition, specific genetic alterations and pharmacological agonists and antagonists have been adopted to discover specific roles of P2 receptor subtypes including P2X4-, P2X7-, P2Y2- and P2Y6-receptors in cardiac cells under physiological and pathological conditions. Accumulated data suggest that P2X4 receptors may play a beneficial role in cardiac muscle function, and that P2Y2- and P2Y6-receptors can induce cardiac fibrosis. Recent evidence further demonstrates P2Y1 receptor and P2X4 receptor as important mechanical signaling molecules to alter membrane potential and Ca2+ signaling in atrial myocytes and their uneven expression profile between right and left atrium.
Collapse
|
9
|
Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2020; 187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.
Collapse
|
10
|
Ferrari D, Vuerich M, Casciano F, Longhi MS, Melloni E, Secchiero P, Zech A, Robson SC, Müller T, Idzko M. Eosinophils and Purinergic Signaling in Health and Disease. Front Immunol 2020; 11:1339. [PMID: 32733449 PMCID: PMC7360723 DOI: 10.3389/fimmu.2020.01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Eosinophils are major effector cells against parasites, fungi, bacteria, and viruses. However, these cells also take part in local and systemic inflammation, which are central to eczema, atopy, rhinitis, asthma, and autoimmune diseases. A role for eosinophils has been also shown in vascular thrombotic disorders and in cancer. Many, if not all, above-mentioned conditions involve the release of intracellular nucleotides (ATP, ADP, UTP, etc.) and nucleosides (adenosine) in the extracellular environment. Simultaneously, eosinophils further release ATP, which in autocrine and paracrine manners, stimulates P2 receptors. Purinergic signaling in eosinophils mediates a variety of responses including CD11b induction, ROI production, release of granule contents and enzymes, as well as cytokines. Exposure to extracellular ATP also modulates the expression of endothelial adhesion molecules, thereby favoring eosinophil extravasation and accumulation. In addition, eosinophils express the immunosuppressive adenosine P1 receptors, which regulate degranulation and migration. However, pro-inflammatory responses induced by extracellular ATP predominate. Due to their important role in innate immunity and tissue damage, pharmacological targeting of nucleotide- and nucleoside-mediated signaling in eosinophils could represent a novel approach to alleviate eosinophilic acute and chronic inflammatory diseases. These innovative approaches might also have salutary effects, particularly in host defense against parasites and in cancer.
Collapse
Affiliation(s)
- Davide Ferrari
- Section of Microbiology and Applied Pathology, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Fabio Casciano
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Elisabetta Melloni
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Tobias Müller
- Division of Pneumology, University Hospital RWTH Aachen, Aachen, Germany
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kügelgen I, Li B, Miras-Portugal MT, Novak I, Schöneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Müller CE. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol 2020; 177:2413-2433. [PMID: 32037507 DOI: 10.1111/bph.15005] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Massachusetts
| | - Esmerilda G Delicado
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Christian Gachet
- Université de Strasbourg INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ivar von Kügelgen
- Biomedical Research Center, Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Raquel Perez-Sen
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.,IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Kurahashi M, Kito Y, Baker SA, Jennings LK, Dowers JGR, Koh SD, Sanders KM. A novel postsynaptic signal pathway of sympathetic neural regulation of murine colonic motility. FASEB J 2020; 34:5563-5577. [PMID: 32086857 DOI: 10.1096/fj.201903134r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/14/2023]
Abstract
Transcriptome data revealed α1 adrenoceptors (ARs) expression in platelet-derived growth factor receptor α+ cells (PDGFRα+ cells) in murine colonic musculature. The role of PDGFRα+ cells in sympathetic neural regulation of murine colonic motility was investigated. Norepinephrine (NE), via α1A ARs, activated a small conductance Ca2+ -activated K+ (SK) conductance, evoked outward currents and hyperpolarized PDGFRα+ cells (the α1A AR-SK channel signal pathway). α1 AR agonists increased intracellular Ca2+ transients in PDGFRα+ cells and inhibited spontaneous phasic contractions (SPCs) of colonic muscle through activation of a SK conductance. Sympathetic nerve stimulation inhibited both contractions of distal colon and propulsive contractions represented by the colonic migrating motor complexes (CMMCs) via the α1A AR-SK channel signal pathway. Postsynaptic signaling through α1A ARs in PDGFRα+ cells is a novel mechanism that conveys part of stress responses in the colon. PDGFRα+ cells appear to be a primary effector of sympathetic neural regulation of murine colonic motility.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Yoshihiko Kito
- Department of Pharmacology, Saga University, Saga, Japan
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Libby K Jennings
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - James G R Dowers
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
13
|
Hayashi T, Hashitani H, Takeya M, Uemura KI, Nakamura KI, Igawa T. Properties of SK3 channel-expressing PDGFRα (+) cells in the rodent urinary bladder. Eur J Pharmacol 2019; 860:172552. [DOI: 10.1016/j.ejphar.2019.172552] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 11/27/2022]
|
14
|
Salmaso V, Jacobson KA. Survey of ribose ring pucker of signaling nucleosides and nucleotides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:322-341. [PMID: 31460850 PMCID: PMC7047539 DOI: 10.1080/15257770.2019.1658115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 02/08/2023]
Abstract
The ribose of protein-bound nucleosides and nucleotides displays preferred conformations (usually either North or South), which can be exploited to design enhanced analogs having chemically fixed conformations. We introduce a computational protocol for assembling data from the protein database (PDB) on the ribose and ribose-like conformation of small molecule ligands when complexed with purinergic signaling proteins (including receptors, enzymes and transporters, and related intracellular pathways). Some targets prefer exclusively North (adenosine and P2Y1 receptors, CD73, adenosine kinase ATP/ADP-binding site, adenosine deaminase), others prefer South (P2Y12 receptor, E-NTPDase2) or East (adenosine kinase substrates), while others (P2XRs) allow various conformations.
Collapse
Affiliation(s)
- Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019; 151:12-24. [PMID: 30922852 DOI: 10.1016/j.brainresbull.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/17/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
16
|
|
17
|
von Kügelgen I. Structure, Pharmacology and Roles in Physiology of the P2Y 12 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1051:123-138. [PMID: 28921447 DOI: 10.1007/5584_2017_98] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. The platelet ADP-receptor which has been denominated P2Y12 receptor is an important target in pharmacotherapy. The receptor couples to Gαi2 mediating an inhibition of cyclic AMP accumulation and additional downstream events including the activation of phosphatidylinositol-3-kinase and Rap1b proteins. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel block P2Y12 receptors and, thereby, inhibit ADP-induced platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events such as acute coronary syndromes or stroke. The recently published three-dimensional crystal structures of the human P2Y12 receptor in complex with agonists and antagonists will facilitate the development of novel therapeutic agents with reduced adverse effects. P2Y12 receptors are also expressed on vascular smooth muscle cells and may be involved in the pathophysiology of atherogenesis. P2Y12 receptors on microglial cells operate as sensors for adenine nucleotides released during brain injury. A recent study indicated the involvement of microglial P2Y12 receptors in the activity-dependent neuronal plasticity. Interestingly, there is evidence for changes in P2Y12 receptor expression in CNS pathologies including Alzheimer's diseases and multiple sclerosis. P2Y12 receptors may also be involved in systemic immune modulating responses and the susceptibility to develop bronchial asthma.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
18
|
Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, Peter J, Plescher M, Hansen JN, Blank N, Keller A, Fuhrmann M, Henneberger C, Halle A, Petzold GC. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med 2018; 215:1649-1663. [PMID: 29724785 PMCID: PMC5987918 DOI: 10.1084/jem.20171487] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 02/12/2018] [Accepted: 04/12/2018] [Indexed: 11/04/2022] Open
Abstract
Astrocytic hyperactivity is an important contributor to neuronal-glial network dysfunction in Alzheimer's disease (AD). We have previously shown that astrocyte hyperactivity is mediated by signaling through the P2Y1 purinoreceptor (P2Y1R) pathway. Using the APPPS1 mouse model of AD, we here find that chronic intracerebroventricular infusion of P2Y1R inhibitors normalizes astroglial and neuronal network dysfunction, as measured by in vivo two-photon microscopy, augments structural synaptic integrity, and preserves hippocampal long-term potentiation. These effects occur independently from β-amyloid metabolism or plaque burden but are associated with a higher morphological complexity of periplaque reactive astrocytes, as well as reduced dystrophic neurite burden and greater plaque compaction. Importantly, APPPS1 mice chronically treated with P2Y1R antagonists, as well as APPPS1 mice carrying an astrocyte-specific genetic deletion (Ip3r2-/-) of signaling pathways downstream of P2Y1R activation, are protected from the decline of spatial learning and memory. In summary, our study establishes the restoration of network homoeostasis by P2Y1R inhibition as a novel treatment target in AD.
Collapse
Affiliation(s)
| | | | - Björn Breithausen
- Institute of Cellular Neurosciences, University Hospital Bonn, Bonn, Germany
| | - Kevin Keppler
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Stefanie Poll
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Jan Peter
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Jan N Hansen
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Nelli Blank
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Armin Keller
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | | | - Christian Henneberger
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Institute of Cellular Neurosciences, University Hospital Bonn, Bonn, Germany.,Institute of Neurology, University College London, London, England, UK
| | - Annett Halle
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases, Bonn, Germany .,Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
19
|
Kotova PD, Bystrova MF, Rogachevskaja OA, Khokhlov AA, Sysoeva VY, Tkachuk VA, Kolesnikov SS. Coupling of P2Y receptors to Ca 2+ mobilization in mesenchymal stromal cells from the human adipose tissue. Cell Calcium 2017; 71:1-14. [PMID: 29604959 DOI: 10.1016/j.ceca.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
The purinergic transduction was examined in mesenchymal stromal cells (MSCs) from the human adipose tissue, and several nucleotides, including ATP, UTP, and ADP, were found to mobilize cytosolic Ca2+. Transcripts for multiple purinoreceptors were detected in MSC preparations, including A1, A2A, A2B, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y13, P2Y14, P2X2, P2X4, and P2X7. Cellular responses to nucleotides were insignificantly sensitive to bath Ca2+, pointing at a minor contribution of Ca2+ entry, and were suppressed by U73122 and 2-APB, implicating the phosphoinositide cascade in coupling P2Y receptors to Ca2+ release. While individual cells were sensitive to several P2Y agonists, responsiveness to a given nucleotide varied from cell to cell, suggesting that particular MSCs could employ different sets of purinoreceptors. Caged Ca2+ stimulated Ca2+-induced Ca2+ release (CICR) that was mediated largely by IP3 receptors, and resultant Ca2+ transients were similar to nucleotide responses by magnitude and kinetics. A variety of findings hinted at CICR to be a universal mechanism that finalizes Ca2+ signaling initiated by agonists in MSCs. Individual MSCs responded to nucleotides in an all-or-nothing manner. Presumably just CICR provided invariant Ca2+ responses observed in MSCs at different nucleotide concentrations. The effects of isoform specific agonists and antagonists suggested that both P2Y1 and P2Y13 were obligatory for ADP responses, while P2Y4 and P2Y11 served as primary UTP and ATP receptors, respectively. Extracellular NAD+ stimulated Ca2+ signaling in each ATP-responsive MSC by involving P2Y11. The overall data indicate that extracellular nucleotides and NAD+ can serve as autocrine/paracrine factors regulating MSC functions.
Collapse
Affiliation(s)
- Polina D Kotova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Alexander A Khokhlov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia
| | - Veronika Yu Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, Russia
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutional Street 3, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
20
|
Qin C, Zhou J, Gao Y, Lai W, Yang C, Cai Y, Chen S, Du C. Critical Role of P2Y12 Receptor in Regulation of Th17 Differentiation and Experimental Autoimmune Encephalomyelitis Pathogenesis. THE JOURNAL OF IMMUNOLOGY 2017; 199:72-81. [DOI: 10.4049/jimmunol.1601549] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/24/2017] [Indexed: 11/19/2022]
|
21
|
Barańska J, Czajkowski R, Pomorski P. P2Y 1 Receptors - Properties and Functional Activities. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 28639247 DOI: 10.1007/5584_2017_57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter we try to show a comprehensive image of current knowledge of structure, activity and physiological role of the P2Y1 purinergic receptor. The structure, distribution and changes in the expression of this receptor are summarized, as well as the mechanism of its signaling activity by the intracellular calcium mobilization. We try to show the connection between the components of its G protein activation and cellular or physiological effects, starting from changes in protein phosphorylation patterns and ending with such remote effects as receptor-mediated apoptosis. The special emphasis is put on the role of the P2Y1 receptor in cancer cells and neuronal plasticity. We concentrate on the P2Y1 receptor, it is though impossible to completely abstract from other aspects of nucleotide signaling and cross-talk with other nucleotide receptors is here discussed. Especially, the balance between P2Y1 and P2Y12 receptors, sharing the same ligand but signaling through different pathways, is presented.
Collapse
Affiliation(s)
- Jolanta Barańska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Rafał Czajkowski
- Laboratory of Spatial Memory, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland
| | - Paweł Pomorski
- Laboratory of Molecular Basis of Cell Motility, Department of Cell Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., PL 02-093, Warsaw, Poland.
| |
Collapse
|
22
|
Certal M, Vinhas A, Barros-Barbosa A, Ferreirinha F, Costa MA, Correia-de-Sá P. ADP-Induced Ca 2+ Signaling and Proliferation of Rat Ventricular Myofibroblasts Depend on Phospholipase C-Linked TRP Channels Activation Within Lipid Rafts. J Cell Physiol 2016; 232:1511-1526. [PMID: 27755650 DOI: 10.1002/jcp.25656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/17/2016] [Indexed: 01/23/2023]
Abstract
Nucleotides released during heart injury affect myocardium electrophysiology and remodeling through P2 purinoceptors activation in cardiac myofibroblasts. ATP and UTP endorse [Ca2+ ]i accumulation and growth of DDR-2/α-SMA-expressing myofibroblasts from adult rat ventricles via P2Y4 and P2Y2 receptors activation, respectively. Ventricular myofibroblasts also express ADP-sensitive P2Y1 , P2Y12 , and P2Y13 receptors as demonstrated by immunofluorescence confocal microscopy and western blot analysis, but little information exists on ADP effects in these cells. ADP (0.003-3 mM) and its stable analogue, ADPßS (100 μM), caused fast [Ca2+ ]i transients originated from thapsigargin-sensitive internal stores, which partially declined to a plateau sustained by capacitative Ca2+ entry through transient receptor potential (TRP) channels inhibited by 2-APB (50 μM) and flufenamic acid (100 μM). Hydrophobic interactions between Gq/11 -coupled P2Y purinoceptors and TRP channels were suggested by prevention of the ADP-induced [Ca2+ ]i plateau following PIP2 depletion with LiCl (10 mM) and cholesterol removal from lipid rafts with methyl-ß-cyclodextrin (2 mM). ADP [Ca2+ ]i transients were insensitive to P2Y1 , P2Y12 , and P2Y13 receptor antagonists, MRS2179 (10μM), AR-C66096 (0.1 μM), and MRS2211 (10μM), respectively, but were attenuated by suramin and reactive blue-2 (100 μM) which also blocked P2Y4 receptors activation by UTP. Cardiac myofibroblasts growth and type I collagen production were favored upon activation of MRS2179-sensitive P2Y1 receptors with ADP or ADPßS (30 μM). In conclusion, ADP exerts a dual role on ventricular myofibroblasts: [Ca2+ ]i transients are mediated by fast-desensitizing P2Y4 receptors, whereas the pro-fibrotic effect of ADP involves the P2Y1 receptor activation. Data also show that ADP-induced capacitative Ca2+ influx depends on phospholipase C-linked TRP channels opening in lipid raft microdomains. J. Cell. Physiol. 232: 1511-1526, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mariana Certal
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Adriana Vinhas
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Aurora Barros-Barbosa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal.,Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
23
|
On the selectivity of the Gαq inhibitor UBO-QIC: A comparison with the Gαi inhibitor pertussis toxin. Biochem Pharmacol 2016; 107:59-66. [PMID: 26954502 DOI: 10.1016/j.bcp.2016.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/03/2016] [Indexed: 01/14/2023]
Abstract
Gαq inhibitor UBO-QIC (FR900359) is becoming an important pharmacological tool, but its selectivity against other G proteins and their subunits, especially βγ, has not been well characterized. We examined UBO-QIC's effect on diverse signaling pathways mediated via various G protein-coupled receptors (GPCRs) and G protein subunits by comparison with known Gαi inhibitor pertussis toxin. As expected, UBO-QIC inhibited Gαq signaling in all assay systems examined. However, other non-Gαq-events, e.g. Gβγ-mediated intracellular calcium release and inositol phosphate production, following activation of Gi-coupled A1 adenosine and M2 muscarinic acetylcholine receptors, were also blocked by low concentrations of UBO-QIC, indicating that its effect is not limited to Gαq. Thus, UBO-QIC also inhibits Gβγ-mediated signaling similarly to pertussis toxin, although UBO-QIC does not affect Gαi-mediated inhibition or Gαs-mediated stimulation of adenylyl cyclase activity. However, the blockade by UBO-QIC of GPCR signaling, such as carbachol- or adenosine-mediated calcium or inositol phosphate increases, does not always indicate inhibition of Gαq-mediated events, as the βγ subunits released from Gi proteins following the activation of Gi-coupled receptors, e.g. M2 and A1Rs, may produce similar signaling events. Furthermore, UBO-QIC completely inhibited Akt signaling, but only partially blocked ERK1/2 activity stimulated by the Gq-coupled P2Y1R. Thus, we have revealed new aspects of the pharmacological interactions of UBO-QIC.
Collapse
|
24
|
Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 2015; 104:31-49. [PMID: 26686393 DOI: 10.1016/j.neuropharm.2015.12.001] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain, diabetes, ischemic protection and many other conditions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2-MeSADP, (PubChem CID: 121990)
- A-740003, (PubChem CID: 23232014)
- ATP
- Agonists
- Antagonists
- DPCPX, (PubChem CID: 1329)
- GPCR
- IB-MECA, (PubChem CID: 123683)
- Ion channel
- LUF6000, (PubChem CID: 11711282)
- MRS2500, (PubChem CID: 44448831)
- Nucleosides
- Nucleotides
- PPTN, (PubChem CID: 42611190)
- PSB-1114, (PubChem CID: 52952605)
- PSB-603, (PubChem CID: 44185871)
- SCH442416, (PubChem CID: 10668061)
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892, Bethesda, USA.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
25
|
Dupuis A, Heim V, Ohlmann P, Gachet C. In Vitro Binding of [³H]PSB-0413 to P2Y₁₂ Receptors. ACTA ACUST UNITED AC 2015; 71:1.35.1-1.35.19. [PMID: 26646192 DOI: 10.1002/0471141755.ph0135s71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The P2Y₁₂/ADP receptor plays a central role in platelet activation. Characterization of this receptor is mandatory for studying disorders associated with a P2Y₁₂ receptor defect and for evaluating P2Y₁₂ receptor agonists and antagonists. In the absence of suitable anti-P2Y₁₂ antibodies, radioligand binding assays are the only way to conduct such studies. While various radioligands were employed in the past for this purpose, none were found to be suitable for routine use. Described in this unit are protocols for quantitatively and qualitatively assessing P2Y₁₂ receptors with [³H]PSB-0413, a selective antagonist for this site. The saturation and competition assays described herein make possible the determination of P2Y₁₂ receptor density on cells, as well as the potencies and affinities of test agents at this site.
Collapse
Affiliation(s)
- Arnaud Dupuis
- UMRS949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Véronique Heim
- UMRS949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Philippe Ohlmann
- UMRS949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| | - Christian Gachet
- UMRS949, INSERM, Université de Strasbourg, Etablissement Français du Sang-Alsace, F-67065 Strasbourg, France
| |
Collapse
|
26
|
von Kügelgen I, Hoffmann K. Pharmacology and structure of P2Y receptors. Neuropharmacology 2015; 104:50-61. [PMID: 26519900 DOI: 10.1016/j.neuropharm.2015.10.030] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 01/30/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y receptors are widely expressed and play important roles in physiology and pathophysiology. One important example is the ADP-induced platelet aggregation mediated by P2Y1 and P2Y12 receptors. Active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel as well as the nucleoside analogue ticagrelor block P2Y12 receptors and thereby platelet aggregation. These drugs are used for the prevention and therapy of cardiovascular events. Moreover, P2Y receptors play important roles in the nervous system. Adenine nucleotides modulate neuronal activity and neuronal fibre outgrowth by activation of P2Y1 receptors and control migration of microglia by P2Y12 receptors. UDP stimulates microglial phagocytosis through activation of P2Y6 receptors. There is evidence for a role for P2Y2 receptors in Alzheimer's disease pathology. The P2Y receptor subtypes are highly diverse in both their amino acid sequences and their pharmacological profiles. Selective receptor ligands have been developed for the pharmacological characterization of the receptor subtypes. The recently published three-dimensional crystal structures of the human P2Y1 and P2Y12 receptors will facilitate the development of therapeutic agents that selectively target P2Y receptors. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany.
| | - Kristina Hoffmann
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127 Bonn, Germany
| |
Collapse
|
27
|
Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J Comput Aided Mol Des 2015. [PMID: 26194851 DOI: 10.1007/s10822-015-9858-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure-activity relationships within each ligand class, giving useful information for designing improved ligands.
Collapse
|
28
|
Wang GD, Wang XY, Liu S, Xia Y, Zou F, Qu M, Needleman BJ, Mikami DJ, Wood JD. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum. Am J Physiol Gastrointest Liver Physiol 2015; 308:G955-63. [PMID: 25813057 PMCID: PMC4451321 DOI: 10.1152/ajpgi.00430.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/18/2015] [Indexed: 01/31/2023]
Abstract
Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions.
Collapse
Affiliation(s)
- Guo-Du Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Xi-Yu Wang
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Sumei Liu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Yun Xia
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio; ,2Department of Anesthesiology, College of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Fei Zou
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Meihua Qu
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| | - Bradley J. Needleman
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Dean J. Mikami
- 3Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
29
|
Stefanini L, Paul DS, Robledo RF, Chan ER, Getz TM, Campbell RA, Kechele DO, Casari C, Piatt R, Caron KM, Mackman N, Weyrich AS, Parrott MC, Boulaftali Y, Adams MD, Peters LL, Bergmeier W. RASA3 is a critical inhibitor of RAP1-dependent platelet activation. J Clin Invest 2015; 125:1419-32. [PMID: 25705885 DOI: 10.1172/jci77993] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/13/2015] [Indexed: 01/15/2023] Open
Abstract
The small GTPase RAP1 is critical for platelet activation and thrombus formation. RAP1 activity in platelets is controlled by the GEF CalDAG-GEFI and an unknown regulator that operates downstream of the adenosine diphosphate (ADP) receptor, P2Y12, a target of antithrombotic therapy. Here, we provide evidence that the GAP, RASA3, inhibits platelet activation and provides a link between P2Y12 and activation of the RAP1 signaling pathway. In mice, reduced expression of RASA3 led to premature platelet activation and markedly reduced the life span of circulating platelets. The increased platelet turnover and the resulting thrombocytopenia were reversed by concomitant deletion of the gene encoding CalDAG-GEFI. Rasa3 mutant platelets were hyperresponsive to agonist stimulation, both in vitro and in vivo. Moreover, activation of Rasa3 mutant platelets occurred independently of ADP feedback signaling and was insensitive to inhibitors of P2Y12 or PI3 kinase. Together, our results indicate that RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI/RAP1 signaling and suggest that P2Y12 signaling is required to inhibit RASA3 and enable sustained RAP1-dependent platelet activation and thrombus formation at sites of vascular injury. These findings provide insight into the antithrombotic effect of P2Y12 inhibitors and may lead to improved diagnosis and treatment of platelet-related disorders.
Collapse
|
30
|
Koch H, Bespalov A, Drescher K, Franke H, Krügel U. Impaired cognition after stimulation of P2Y1 receptors in the rat medial prefrontal cortex. Neuropsychopharmacology 2015; 40:305-14. [PMID: 25027332 PMCID: PMC4443943 DOI: 10.1038/npp.2014.173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/02/2014] [Accepted: 07/10/2014] [Indexed: 11/09/2022]
Abstract
We hypothesize that cortical ATP and ADP accumulating in the extracellular space, eg during prolonged network activity, contribute to a decline in cognitive performance in particular via stimulation of the G protein-coupled P2Y1 receptor (P2Y1R) subtype. Here, we report first evidence on P2Y1R-mediated control of cognitive functioning in rats using bilateral microinfusions of the selective agonist MRS2365 into medial prefrontal cortex (mPFC). MRS2365 attenuated prepulse inhibition of the acoustic startle reflex while having no impact on startle amplitude. Stimulation of P2Y1Rs deteriorated performance accuracy in the delayed non-matching to position task in a delay dependent manner and increased the rate of magazine entries consistent with both working memory disturbances and impaired impulse control. Further, MRS2365 significantly impaired performance in the reversal learning task. These effects might be related to MRS2365-evoked increase of dopamine observed by microdialysis to be short-lasting in mPFC and long-lasting in the nucleus accumbens. P2Y1Rs were identified on pyramidal cells and parvalbumin-positive interneurons, but not on tyrosine hydroxylase-positive fibers, which argues for an indirect activation of dopaminergic afferents in the cortex by MRS2365. Collectively, these results suggest that activation of P2Y1Rs in the mPFC impairs inhibitory control and behavioral flexibility mediated by increased mesocorticolimbic activity and local disinhibition.
Collapse
Affiliation(s)
- Holger Koch
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, Leipzig, Germany,Translational Centre for Regenerative Medicine (TRM) Leipzig, University of Leipzig, Philipp-Rosenthal-Strasse 55, Leipzig, Germany
| | - Anton Bespalov
- AbbVie, Neuroscience Research, Knollstrasse 50, Ludwigshafen, Germany,AbbVie Deutschland GmbH & Co KG, Neuroscience Research, Knollstrasse 50, Ludwigshafen 67008, Germany, E-mail:
| | - Karla Drescher
- AbbVie, Neuroscience Research, Knollstrasse 50, Ludwigshafen, Germany
| | - Heike Franke
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, Leipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstrasse 16-18, Leipzig, Germany,Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Haertelstrasse 16-18, Leipzig 67061, Germany, Tel: +49 341 97 24600, Fax: +49 341 97 24609, E-mail:
| |
Collapse
|
31
|
Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia 2014; 63:652-63. [PMID: 25471906 DOI: 10.1002/glia.22775] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/14/2014] [Indexed: 11/09/2022]
Abstract
Activation of microglia is the first and main immune response to brain injury. Release of the nucleotides ATP, ADP, and UDP from damaged cells regulate microglial migration and phagocytosis via purinergic P2Y receptors. We hypothesized that store-operated Ca(2+) entry (SOCE), the prevalent Ca(2+) influx mechanism in non-excitable cells, is a potent mediator of microglial responses to extracellular nucleotides. Expression analyses of STIM Ca(2+) sensors and Orai Ca(2+) channel subunits, that comprise the molecular machinery of SOCE, showed relevant levels of STIM1, STIM2, and Orai1 in cultured mouse microglia. STIM1 expression and SOCE were down-regulated by treatment of microglia with lipopolysaccharide, suggesting that inflammation limits SOCE by lower STIM1 abundance. Ca(2+) entry induced by cyclopiazonic acid, ATP, the P2Y6 receptor agonist UDP, or the P2Y12 receptor agonist 2-methylthio-ADP (2-MeSADP) was clearly affected in microglia from Stim1(-/-) , Stim2(-/-) , and Orai1(-/-) mice. SOCE blockers or ablation of STIM1, STIM2, or Orai1 severely impaired nucleotide-induced migration and phagocytosis in microglia. Thus, this study assigns SOCE, regulated by STIM1, STIM2, and Orai1 an essential role in purinergic signaling and activation of microglia.
Collapse
Affiliation(s)
- Marlen Michaelis
- Carl-Ludwig-Institute for Physiology, University of Leipzig, 04103, Leipzig, Germany
| | | | | | | | | |
Collapse
|
32
|
Barragán-Iglesias P, Mendoza-Garcés L, Pineda-Farias JB, Solano-Olivares V, Rodríguez-Silverio J, Flores-Murrieta FJ, Granados-Soto V, Rocha-González HI. Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol Biochem Behav 2014; 128:23-32. [PMID: 25449358 DOI: 10.1016/j.pbb.2014.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/21/2014] [Accepted: 11/01/2014] [Indexed: 12/19/2022]
Abstract
Metabotropic P2Y receptors subfamily consists of eight functional mammalian receptors. Specifically, P2Y1, P2Y6 and P2Y11 receptors have been described in the sensory nervous system, but their participation, at peripheral level, in behavioral pain models is scarcely understood. This study assessed the role of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain. Ipsilateral, but not contralateral peripheral pre-treatment with the endogenous P2Y1 (ADP, 100-1000nmol/paw), P2Y6 (UDP, 180-300nmol/paw) and P2Y11 (ATP, 100-1000nmol/paw), or selective P2Y1 (MRS2365, 0.1-10nmol/paw), P2Y6 (PSB0474, 0.1-0.10pmol/paw) and P2Y11 (NF546, 0.3-3nmol/paw) receptor agonists increased 0.5% formalin-induced flinching behavior. Concordantly, peripheral pre-treatment with the selective P2Y1 (MRS2500, 0.01-10pmol/paw), P2Y6 (MRS2578, 3-30nmol/paw) and P2Y11 (NF340, 1-10nmol/paw) receptor antagonists significantly decreased 1% formalin-induced flinching behavior. Furthermore, the pronociceptive effect of ADP (100nmol/paw) or MRS2365 (10nmol/paw), UDP (300nmol/paw) or PSB0474 (10pmol/paw) and ATP (1000nmol/paw) or NF546 (3nmol/paw) was blocked by the selective P2Y1 (MRS2500, 0.01nmol/paw), P2Y6 (MRS2578, 3nmol/paw), and P2Y11 (NF340, 1nmol/paw) receptor antagonists, respectively. Western blot analysis confirmed the presence of P2Y1 (66kDa), P2Y6 (36kDa) and P2Y11 (75kDa) receptors in dorsal root ganglia (DRG) and sciatic nerve. Results suggest that peripheral activation of P2Y1, P2Y6 and P2Y11 receptors plays a pronociceptive role in formalin-induced pain.
Collapse
Affiliation(s)
- Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico.
| | - Luis Mendoza-Garcés
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 México, D.F., Mexico.
| | - Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico.
| | - Verónica Solano-Olivares
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, Secretaría de Salud, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, 14080 México, D.F., Mexico.
| | - Juan Rodríguez-Silverio
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 México, D.F., Mexico.
| | - Francisco Javier Flores-Murrieta
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 México, D.F., Mexico; Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, Secretaría de Salud, Calzada de Tlalpan 4502, Col. Sección XVI, Tlalpan, 14080 México, D.F., Mexico.
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 México, D.F., Mexico.
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Miguel Hidalgo, 11340 México, D.F., Mexico.
| |
Collapse
|
33
|
Kurahashi M, Mutafova-Yambolieva V, Koh SD, Sanders KM. Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles. Am J Physiol Cell Physiol 2014; 307:C561-70. [PMID: 25055825 DOI: 10.1152/ajpcell.00080.2014] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enteric inhibitory neurotransmission is an important feature of the neural regulation of gastrointestinal motility. Purinergic neurotransmission, via P2Y1 receptors, mediates one phase of inhibitory neural control. For decades, ATP has been assumed to be the purinergic neurotransmitter and smooth muscle cells (SMCs) have been considered the primary targets for inhibitory neurotransmission. Recent experiments have cast doubt on both of these assumptions and suggested that another cell type, platelet-derived growth factor receptor-α-positive (PDGFRα(+)) cells, is the target for purinergic neurotransmission. We compared responses of PDGFRα(+) cells and SMCs to several purine compounds to determine if these cells responded in a manner consistent with enteric inhibitory neurotransmission. ATP hyperpolarized PDGFRα(+) cells but depolarized SMCs. Only part of the ATP response in PDGFRα(+) cells was blocked by MRS 2500, a P2Y1 antagonist. ADP, MRS 2365, β-NAD, and adenosine 5-diphosphate-ribose, P2Y1 agonists, hyperpolarized PDGFRα(+) cells, and these responses were blocked by MRS 2500. Adenosine 5-diphosphate-ribose was more potent in eliciting hyperpolarization responses than β-NAD. P2Y1 agonists failed to elicit responses in SMCs. Small hyperpolarization responses were elicited in SMCs by a small-conductance Ca(2+)-activated K(+) channel agonist, cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine, consistent with the low expression and current density of small-conductance Ca(2+)-activated K(+) channels in these cells. Large-amplitude hyperpolarization responses, elicited in PDGFRα(+) cells, but not SMCs, by P2Y1 agonists are consistent with the generation of inhibitory junction potentials in intact muscles in response to purinergic neurotransmission. The responses of PDGFRα(+) cells and SMCs to purines suggest that SMCs are unlikely targets for purinergic neurotransmission in colonic muscles.
Collapse
Affiliation(s)
- Masaaki Kurahashi
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | | | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
34
|
Alvares TS, Revill AL, Huxtable AG, Lorenz CD, Funk GD. P2Y1 receptor-mediated potentiation of inspiratory motor output in neonatal rat in vitro. J Physiol 2014; 592:3089-111. [PMID: 24879869 DOI: 10.1113/jphysiol.2013.268136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PreBötzinger complex inspiratory rhythm-generating networks are excited by metabotropic purinergic receptor subtype 1 (P2Y1R) activation. Despite this, and the fact that inspiratory MNs express P2Y1Rs, the role of P2Y1Rs in modulating motor output is not known for any MN pool. We used rhythmically active brainstem-spinal cord and medullary slice preparations from neonatal rats to investigate the effects of P2Y1R signalling on inspiratory output of phrenic and XII MNs that innervate diaphragm and airway muscles, respectively. MRS2365 (P2Y1R agonist, 0.1 mm) potentiated XII inspiratory burst amplitude by 60 ± 9%; 10-fold higher concentrations potentiated C4 burst amplitude by 25 ± 7%. In whole-cell voltage-clamped XII MNs, MRS2365 evoked small inward currents and potentiated spontaneous EPSCs and inspiratory synaptic currents, but these effects were absent in TTX at resting membrane potential. Voltage ramps revealed a persistent inward current (PIC) that was attenuated by: flufenamic acid (FFA), a blocker of the Ca(2+)-dependent non-selective cation current ICAN; high intracellular concentrations of BAPTA, which buffers Ca(2+) increases necessary for activation of ICAN; and 9-phenanthrol, a selective blocker of TRPM4 channels (candidate for ICAN). Real-time PCR analysis of mRNA extracted from XII punches and laser-microdissected XII MNs revealed the transcript for TRPM4. MRS2365 potentiated the PIC and this potentiation was blocked by FFA, which also blocked the MRS2365 potentiation of glutamate currents. These data suggest that XII MNs are more sensitive to P2Y1R modulation than phrenic MNs and that the P2Y1R potentiation of inspiratory output occurs in part via potentiation of TRPM4-mediated ICAN, which amplifies inspiratory inputs.
Collapse
Affiliation(s)
- T S Alvares
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A L Revill
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - A G Huxtable
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - C D Lorenz
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - G D Funk
- Department of Physiology, Centre for Neuroscience, Women and Children's Health Research Institute (WCHRI), Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
36
|
Ilatovskaya DV, Palygin O, Levchenko V, Staruschenko A. Pharmacological characterization of the P2 receptors profile in the podocytes of the freshly isolated rat glomeruli. Am J Physiol Cell Physiol 2013; 305:C1050-9. [PMID: 24048730 DOI: 10.1152/ajpcell.00138.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Calcium flux in the podocytes is critical for normal and pathophysiological regulation of these types of cells, and excessive calcium signaling results in podocytes damage and improper glomeruli function. Purinergic activation of P2 receptors is a powerful and rapid signaling process; however, the exact physiological identity of P2 receptors subtypes in podocytes remains essentially unknown. The goal of this study was to determine the P2 receptor profile in podocytes of the intact Sprague-Dawley rat glomeruli using available pharmacological tools. Glomeruli were isolated by differential sieving and loaded with Fluo-4/Fura Red cell permeable calcium indicators, and the purinergic response in the podocytes was analyzed with ratiometric confocal fluorescence measurements. Various P2 receptors activators were tested and compared with the effect of ATP, specifically, UDP, MRS 2365, bzATP, αβ-methylene, 2-meSADP, MRS 4062, and MRS 2768, were analyzed. Antagonists (MRS 2500, 5-BDBD, A438079, and NF 449) were tested when 10 μM ATP was applied as the EC50 for ATP activation of the calcium influx in the podocytes was determined to be 10.7 ± 1.5 μM. Several agonists including MRS 2365 and 2-meSADP caused calcium flux. Importantly, only the P2Y1-specific antagonist MRS 2500 (1 nM) precluded the effects of ATP concentrations of the physiological range. Immunohistochemical analysis confirmed that P2Y1 receptors are highly expressed in the podocytes. We conclude that P2Y1 receptor signaling is the predominant P2Y purinergic pathway in the glomeruli podocytes and P2Y1 might be involved in the pathogenesis of glomerular injury and could be a target for treatment of kidney diseases.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | |
Collapse
|
37
|
Wenker IC, Sobrinho CR, Takakura AC, Mulkey DK, Moreira TS. P2Y1 receptors expressed by C1 neurons determine peripheral chemoreceptor modulation of breathing, sympathetic activity, and blood pressure. Hypertension 2013; 62:263-73. [PMID: 23753413 DOI: 10.1161/hypertensionaha.113.01487] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Catecholaminergic C1 cells of the rostral ventrolateral medulla (RVLM) are key determinants of the sympathoexcitatory response to peripheral chemoreceptor activation. Overactivation of this reflex is thought to contribute to increased sympathetic activity and hypertension; however, molecular mechanisms linking peripheral chemoreceptor drive to hypertension remain poorly understood. We have recently determined that activation of P2Y1 receptors in the RVLM mimicked effects of peripheral chemoreceptor activation. Therefore, we hypothesize that P2Y1 receptors regulate peripheral chemoreceptor drive in this region. Here, we determine whether P2Y1 receptors are expressed by C1 neurons in the RVLM and contribute to peripheral chemoreceptor control of breathing, sympathetic activity, and blood pressure. We found that injection of a specific P2Y1 receptor agonist (MRS2365) into the RVLM of anesthetized adult rats increased phrenic nerve activity (≈55%), sympathetic nerve activity (38 ± 6%), and blood pressure (23 ± 1 mm Hg), whereas application of a specific P2Y1 receptor antagonist (MRS2179) decreased peripheral chemoreceptor-mediated activation of phrenic nerve activity, sympathetic nerve activity, and blood pressure. To establish that P2Y1 receptors are expressed by C1 cells, we determine in the brain slice preparation using cell-attached recording techniques that cells responsive to MRS2365 are immunoreactive for tyrosine hydroxylase (a marker of C1 cells), and we determine in vivo that C1-lesioned animals do not respond to RVLM injection of MRS2365. These data identify P2Y1 receptors as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity, and blood pressure.
Collapse
Affiliation(s)
- Ian C Wenker
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-3156, USA
| | | | | | | | | |
Collapse
|
38
|
Ruel R, L'Heureux A, Thibeault C, Daris JP, Martel A, Price LA, Wu Q, Hua J, Wexler RR, Rehfuss R, Lam PYS. New azole antagonists with high affinity for the P2Y(1) receptor. Bioorg Med Chem Lett 2013; 23:3519-22. [PMID: 23668989 DOI: 10.1016/j.bmcl.2013.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 01/17/2023]
Abstract
Five-membered-ring heterocyclic urea mimics have been found to be potent and selective antagonists of the P2Y1 receptor. SAR of the various heterocyclic replacements is presented, as well as side-chain SAR of the more potent thiadiazole ring system which leads to thiadiazole 4c as a new antiplatelet agent.
Collapse
Affiliation(s)
- Réjean Ruel
- Research and Development, Bristol-Myers Squibb Company, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stroke neuroprotection: targeting mitochondria. Brain Sci 2013; 3:540-60. [PMID: 24961414 PMCID: PMC4061853 DOI: 10.3390/brainsci3020540] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/17/2022] Open
Abstract
Stroke is the fourth leading cause of death and the leading cause of long-term disability in the United States. Blood flow deficit results in an expanding infarct core with a time-sensitive peri-infarct penumbra that is considered salvageable and is the primary target for treatment strategies. The only current FDA-approved drug for treating ischemic stroke is recombinant tissue plasminogen activator (rt-PA). However, this treatment is limited to within 4.5 h of stroke onset in a small subset of patients. The goal of this review is to focus on mitochondrial-dependent therapeutic agents that could provide neuroprotection following stroke. Dysfunctional mitochondria are linked to neurodegeneration in many disease processes including stroke. The mechanisms reviewed include: (1) increasing ATP production by purinergic receptor stimulation, (2) decreasing the production of ROS by superoxide dismutase, or (3) increasing antioxidant defenses by methylene blue, and their benefits in providing neuroprotection following a stroke.
Collapse
|
40
|
Govindan S, Taylor CW. P2Y receptor subtypes evoke different Ca2+ signals in cultured aortic smooth muscle cells. Purinergic Signal 2012; 8:763-77. [PMID: 22767215 PMCID: PMC3486169 DOI: 10.1007/s11302-012-9323-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 06/12/2012] [Indexed: 12/14/2022] Open
Abstract
Adenine and uridine nucleotides evoke Ca(2+) signals via four subtypes of P2Y receptor in cultured aortic smooth muscle cells, but the mechanisms underlying the different patterns of these Ca(2+) signals are unresolved. Cytosolic Ca(2+) signals were recorded from single cells and populations of cultured rat aortic smooth muscle cells, loaded with a fluorescent Ca(2+) indicator and stimulated with agonists that allow subtype-selective activation of P2Y1, P2Y2, P2Y4, or P2Y6 receptors. Activation of P2Y1, P2Y2, and P2Y6 receptors caused homologous desensitisation, while activation of P2Y2 receptors also caused heterologous desensitisation of the other subtypes. The Ca(2+) signals evoked by each P2Y receptor subtype required activation of phospholipase C and release of Ca(2+) from intracellular stores via inositol 1,4,5-trisphosphate (IP(3)) receptors, but they were unaffected by inhibition of ryanodine or nicotinic acid adenine dinucleotide phosphate (NAADP) receptors. Sustained Ca(2+) signals were independent of the Na(+)/Ca(2+) exchanger and were probably mediated by store-operated Ca(2+) entry. Analyses of single cells established that most cells express P2Y2 receptors and at least two other P2Y receptor subtypes. We conclude that four P2Y receptor subtypes evoke Ca(2+) signals in cultured aortic smooth muscle cells using the same intracellular (IP(3) receptors) and Ca(2+) entry pathways (store-operated Ca(2+) entry). Different rates of homologous desensitisation and different levels of receptor expression account for the different patterns of Ca(2+) signal evoked by each P2Y receptor subtype.
Collapse
Affiliation(s)
- Sriram Govindan
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
- Novartis Institutes of Biomedical Research, Wimblehurst Road, Horsham, West Sussex RH12 5AB UK
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| |
Collapse
|
41
|
Mitchell C, Syed NIH, Tengah A, Gurney AM, Kennedy C. Identification of Contractile P2Y1, P2Y6, and P2Y12Receptors in Rat Intrapulmonary Artery Using Selective Ligands. J Pharmacol Exp Ther 2012; 343:755-62. [DOI: 10.1124/jpet.112.198051] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
42
|
Jacobson KA, Jayasekara MS, Costanzi S. Molecular Structure of P2Y Receptors: Mutagenesis, Modeling, and Chemical Probes. WILEY INTERDISCIPLINARY REVIEWS. MEMBRANE TRANSPORT AND SIGNALING 2012; 1:WMTS68. [PMID: 23336097 PMCID: PMC3547624 DOI: 10.1002/wmts.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There are eight subtypes of P2Y receptors (P2YRs) that are activated, and in some cases inhibited, by a range of extracellular nucleotides. These nucleotides are ubiquitous, but their extracellular concentration can rise dramatically in response to hypoxia, ischemia, or mechanical stress, injury, and release through channels and from vesicles. Two subclasses of P2YRs were defined based on clustering of sequences, second messengers, and receptor sequence analysis. The numbering system for P2YR subtypes is discontinuous; i.e., P2Y(1-14)Rs have been defined, but six of the intermediate-numbered cloned receptor sequences (e.g., P2y(3), P2y(5), P2y(7-10)) are not functional mammalian nucleotide receptors. Of these two clusters, the P2Y(12-14) subtypes couple via Gα(i) to inhibit adenylate cyclase, while the remaining subtypes couple through Gα(q) to activate phospholipase C. Collectively, the P2YRs respond to both purine and pyrimidine nucleotides, in the form of 5'-mono- and dinucleotides and nucleoside-5'-diphosphosugars. In recent years, the medicinal chemistry of P2Y receptors has advanced significantly, to provide selective agonists and antagonists for many but not all of the subtypes. Ligand design has been aided by insights from structural probing using molecular modelling and mutagenesis. Currently, the molecular modelling of the receptors is effectively based on the X-ray structure of the CXCR4 receptor, which is the closest to the P2Y receptors among all the currently crystallized receptors in terms of sequence similarity. It is now a challenge to develop novel and selective P2YR ligands for disease treatment (although antagonists of the P2Y(12)R are already widely used as antithrombotics).
Collapse
Affiliation(s)
- Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892-0810, USA
| | - M.P. Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. 1A-20, Bethesda, Maryland 20892-0810, USA
| | - Stefano Costanzi
- Department of Chemistry, American University, Washington, DC 20016, USA
| |
Collapse
|
43
|
Jacobson KA, Balasubramanian R, Deflorian F, Gao ZG. G protein-coupled adenosine (P1) and P2Y receptors: ligand design and receptor interactions. Purinergic Signal 2012; 8:419-36. [PMID: 22371149 PMCID: PMC3360101 DOI: 10.1007/s11302-012-9294-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/30/2012] [Indexed: 12/17/2022] Open
Abstract
The medicinal chemistry and pharmacology of the four subtypes of adenosine receptors (ARs) and the eight subtypes of P2Y receptors (P2YRs, activated by a range of purine and pyrimidine mono- and dinucleotides) has recently advanced significantly leading to selective ligands. X-ray crystallographic structures of both agonist- and antagonist-bound forms of the A(2A)AR have provided unprecedented three-dimensional detail concerning molecular recognition in the binding site and the conformational changes in receptor activation. It is apparent that this ubiquitous cell signaling system has implications for understanding and treating many diseases. ATP and other nucleotides are readily released from intracellular sources under conditions of injury and organ stress, such as hypoxia, ischemia, or mechanical stress, and through channels and vesicular release. Adenosine may be generated extracellularly or by cellular release. Therefore, depending on pathophysiological factors, in a given tissue, there is often a tonic activation of one or more of the ARs or P2YRs that can be modulated by exogenous agents for a beneficial effect. Thus, this field has provided fertile ground for pharmaceutical development, leading to clinical trials of selective receptor ligands as imaging agents or for conditions including cardiac arrhythmias, ischemia/reperfusion injury, diabetes, pain, thrombosis, Parkinson's disease, rheumatoid arthritis, psoriasis, dry eye disease, pulmonary diseases such as cystic fibrosis, glaucoma, cancer, chronic hepatitis C, and other diseases.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
44
|
The role of P2Y(14) and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signal 2012; 9:31-40. [PMID: 22825617 DOI: 10.1007/s11302-012-9325-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022] Open
Abstract
Mast cell degranulation affects many conditions, e.g., asthma and urticaria. We explored the potential role of the P2Y(14) receptor (P2Y(14)R) and other P2Y subtypes in degranulation of human LAD2 mast cells. All eight P2YRs were expressed at variable levels in LAD2 cells (quantitative real-time RT-PCR). Gene expression levels of ADP receptors, P2Y(1)R, P2Y(12)R, and P2Y(13)R, were similar, and P2Y(11)R and P2Y(4)R were highly expressed at 5.8- and 3.8-fold of P2Y(1)R, respectively. Least expressed P2Y(2)R was 40-fold lower than P2Y(1)R, and P2Y(6)R and P2Y(14)R were ≤50 % of P2Y(1)R. None of the native P2YR agonists alone induced β-hexosaminidase (β-Hex) release, but some nucleotides significantly enhanced β-Hex release induced by C3a or antigen, with a rank efficacy order of ATP > UDPG ≥ ADP >> UDP, UTP. Although P2Y(11)R and P2Y(4)R are highly expressed, they did not seem to play a major role in degranulation as neither P2Y(4)R agonist UTP nor P2Y(11)R agonists ATPγS and NF546 had a substantial effect. P2Y(1)R-selective agonist MRS2365 enhanced degranulation, but ~1,000-fold weaker compared to its P2Y(1)R potency, and the effect of P2Y(6)R agonist 3-phenacyl-UDP was negligible. The enhancement by ADP and ATP appears mediated via multiple receptors. Both UDPG and a synthetic agonist of the P2Y(14)R, MRS2690, enhanced C3a-induced β-Hex release, which was inhibited by a P2Y(14)R antagonist, specific P2Y(14)R siRNA and pertussis toxin, suggesting a role of P2Y(14)R activation in promoting human mast cell degranulation.
Collapse
|
45
|
Chandaka GK, Salzer I, Drobny H, Boehm S, Schicker KW. Facilitation of transmitter release from rat sympathetic neurons via presynaptic P2Y(1) receptors. Br J Pharmacol 2012; 164:1522-33. [PMID: 21557728 PMCID: PMC3221105 DOI: 10.1111/j.1476-5381.2011.01466.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE P2Y(1) , P2Y(2) , P2Y(4) , P2Y(12) and P2Y(13) receptors for nucleotides have been reported to mediate presynaptic inhibition, but unequivocal evidence for facilitatory presynaptic P2Y receptors is not available. The search for such receptors was the purpose of this study. EXPERIMENTAL APPROACH In primary cultures of rat superior cervical ganglion neurons and in PC12 cell cultures, currents were recorded via the perforated patch clamp technique, and the release of [(3) H]-noradrenaline was determined. KEY RESULTS ADP, 2-methylthio-ATP and ATP enhanced stimulation-evoked (3) H overflow from superior cervical ganglion neurons, treated with pertussis toxin to prevent the signalling of inhibitory G proteins. This effect was abolished by P2Y(1) antagonists and by inhibition of phospholipase C, but not by inhibition of protein kinase C or depletion of intracellular Ca(2+) stores. ADP and a specific P2Y(1) agonist caused inhibition of Kv7 channels, and this was prevented by a respective antagonist. In neurons not treated with pertussis toxin, (3) H overflow was also enhanced by a specific P2Y(1) agonist and by ADP, but only when the P2Y(12) receptors were blocked. ADP also enhanced K(+) -evoked (3) H overflow from PC12 cells treated with pertussis toxin, but only in a clone expressing recombinant P2Y(1) receptors. CONCLUSIONS AND IMPLICATIONS These results demonstrate that presynaptic P2Y(1) receptors mediate facilitation of transmitter release from sympathetic neurons most likely through inhibition of Kv7 channels.
Collapse
Affiliation(s)
- Giri K Chandaka
- Department of Neurophysiology and Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
46
|
Liu XY, Xiao YP, Siu FM, Ni LC, Chen Y, Wang L, Che CM. Highly regio-, diastereo- and enantioselective one-pot gold/chiral Brønsted acid-catalysed cascade synthesis of bioactive diversely substituted tetrahydroquinolines. Org Biomol Chem 2012; 10:7208-19. [DOI: 10.1039/c2ob25753j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 2011; 109:E197-205. [PMID: 22167804 DOI: 10.1073/pnas.1111098109] [Citation(s) in RCA: 496] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fine control of neuronal activity is crucial to rapidly adjust to subtle changes of the environment. This fine tuning was thought to be purely neuronal until the discovery that astrocytes are active players of synaptic transmission. In the adult hippocampus, microglia are the other major glial cell type. Microglia are highly dynamic and closely associated with neurons and astrocytes. They react rapidly to modifications of their environment and are able to release molecules known to control neuronal function and synaptic transmission. Therefore, microglia display functional features of synaptic partners, but their involvement in the regulation of synaptic transmission has not yet been addressed. We have used a combination of pharmacological approaches with electrophysiological analysis on acute hippocampal slices and ATP assays in purified cell cultures to show that activation of microglia induces a rapid increase of spontaneous excitatory postsynaptic currents. We found that this modulation is mediated by binding of ATP to P2Y1R located on astrocytes and is independent of TNFα or NOS2. Our data indicate that, on activation, microglia cells rapidly release small amounts of ATP, and astrocytes, in turn, amplified this release. Finally, P2Y1 stimulation of astrocytes increased excitatory postsynaptic current frequency through a metabotropic glutamate receptor 5-dependent mechanism. These results indicate that microglia are genuine regulators of neurotransmission and place microglia as upstream partners of astrocytes. Because pathological activation of microglia and alteration of neurotransmission are two early symptoms of most brain diseases, our work also provides a basis for understanding synaptic dysfunction in neuronal diseases.
Collapse
|
48
|
Wei Q, Costanzi S, Liu QZ, Gao ZG, Jacobson KA. Activation of the P2Y1 receptor induces apoptosis and inhibits proliferation of prostate cancer cells. Biochem Pharmacol 2011; 82:418-25. [PMID: 21632028 PMCID: PMC3140712 DOI: 10.1016/j.bcp.2011.05.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 12/31/2022]
Abstract
G protein-coupled receptors, the largest cell surface receptor family, have emerged as critical players in cell death and survival. High gene expression level of the G(q)-coupled P2Y(1) nucleotide receptor in PC-3 prostate cancer cells was demonstrated using real-time quantitative PCR and confirmed by Western blotting and confocal laser scanning microscopy. A selective P2Y(1) receptor agonist, the ADP analogue MRS2365, concentration-dependently induced intracellular calcium mobilization (EC(50) 5.28nM), which was diminished by P2Y(1) receptor-selective antagonist MRS2500. P2Y(1) receptor activation by MRS2365 induced apoptosis in assays of Caspase-3, LDH release, and annexin-V staining. The pro-apoptotic effect of MRS2365 was blocked by MRS2500, P2Y(1) siRNA, and an inhibitor of the MAP kinase pathway PD98059. MRS2365 significantly inhibited the proliferation of PC-3 cells, examined using a MTT assay. Thus, activation of the P2Y(1) receptor induced cell death and inhibited growth of human prostatic carcinoma PC-3 cells. Activation of the P2Y(1) receptor should be a novel and promising therapeutic strategy for prostate cancer.
Collapse
Affiliation(s)
- Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
- Guangdong Institute of Kidney Diseases, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Stefano Costanzi
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Qiu-Zhen Liu
- Infectious Disease and Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| |
Collapse
|
49
|
Yousuf A, Klinger F, Schicker K, Boehm S. Nucleotides control the excitability of sensory neurons via two P2Y receptors and a bifurcated signaling cascade. Pain 2011; 152:1899-1908. [PMID: 21600693 PMCID: PMC3144389 DOI: 10.1016/j.pain.2011.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 03/03/2011] [Accepted: 04/11/2011] [Indexed: 01/04/2023]
Abstract
Nucleotides contribute to the sensation of acute and chronic pain, but it remained enigmatic which G protein-coupled nucleotide (P2Y) receptors and associated signaling cascades are involved. To resolve this issue, nucleotides were applied to dorsal root ganglion neurons under current- and voltage-clamp. Adenosine triphosphate (ATP), adenosine diphosphate (ADP), and uridine triphosphate (UTP), but not uridine diphosphate (UDP), depolarized the neurons and enhanced action potential firing in response to current injections. The P2Y2 receptor preferring agonist 2-thio-UTP was equipotent to UTP in eliciting these effects. The selective P2Y1 receptor antagonist MRS2179 largely attenuated the excitatory effects of ADP, but left those of 2-thio-UTP unaltered. Thus, the excitatory effects of the nucleotides were mediated by 2 different P2Y receptors, P2Y1 and P2Y2. Activation of each of these 2 receptors by either ADP or 2-thio-UTP inhibited currents through KV7 channels, on one hand, and facilitated currents through TRPV1 channels, on the other hand. Both effects were abolished by inhibitors of phospholipase C or Ca2+-ATPase and by chelation of intracellular Ca2+. The facilitation of TRPV1, but not the inhibition KV7 channels, was prevented by a protein kinase C inhibitor. Simultaneous blockage of KV7 channels and of TRPV1 channels prevented nucleotide-induced membrane depolarization and action potential firing. Thus, P2Y1 and P2Y2 receptors mediate an excitation of dorsal root ganglion neurons by nucleotides through the inhibition of KV7 channels and the facilitation of TRPV1 channels via a common bifurcated signaling pathway relying on an increase in intracellular Ca2+ and an activation of protein kinase C, respectively.
Collapse
Affiliation(s)
- Arsalan Yousuf
- Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
50
|
Jantaratnotai N, McLarnon JG. Calcium dependence of purinergic subtype P2Y₁ receptor modulation of C6 glioma cell migration. Neurosci Lett 2011; 497:80-4. [PMID: 21540076 DOI: 10.1016/j.neulet.2011.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
We have examined activation of purinergic P2Y₁ receptor-dependent Ca²⁺-signaling pathways in mediating C6 glioma cell migration. The administration of 2-methylthioadenosine 5'-diphosphate (2MeSADP), a selective agonist for P2Y₁R, induced marked increases in patterns of glioma migration in both scratch wound and Boyden chamber assays. Antagonism of P2Y₁R with either the broad spectrum purinergic blocker, pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS) or the specific P2Y₁R antagonist, 2'-deoxy-N⁶-methyladenosine-3',5'-bisphosphate (MRS2179), significantly inhibited C6 cell migration. Calcium-sensitive spectrofluorometry showed 2MeSADP stimulation of glioma cells caused a biphasic change in intracellular Ca²⁺ ([Ca²⁺]i). The rapid transient phase was unchanged in Ca²⁺-free solution reflecting a [Ca²⁺]i component due to intracellular stores release subsequent to activation of a metabotropic P2Y subtype receptor. The secondary prolonged phase of [Ca²⁺]i was abolished in Ca²⁺-free solution or in glioma cells treated with the store-operated channel (SOC) blocker, SKF96365. Treatment of glioma with either MRS2179 or PPADS significantly attenuated both the rapid and prolonged phases of [Ca²⁺]i. These results suggest critical roles for activation of P2Y₁R in mediating glioma cell mobility and migration with changes in [Ca²⁺]i contributing as a mechanistic link between activated receptor and functional response. Our findings suggest that pharmacological modulation of metabotropic P2Y₁R-dependent signaling pathways may serve as a novel therapeutic procedure to slow glioma progression.
Collapse
Affiliation(s)
- Nattinee Jantaratnotai
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T1Z3 Canada
| | | |
Collapse
|