1
|
Pelczyńska M, Moszak M, Bogdański P. The Role of Magnesium in the Pathogenesis of Metabolic Disorders. Nutrients 2022; 14:nu14091714. [PMID: 35565682 PMCID: PMC9103223 DOI: 10.3390/nu14091714] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Magnesium (Mg) is an essential nutrient for maintaining vital physiological functions. It is involved in many fundamental processes, and Mg deficiency is often correlated with negative health outcomes. On the one hand, most western civilizations consume less than the recommended daily allowance of Mg. On the other hand, a growing body of evidence has indicated that chronic hypomagnesemia may be implicated in the pathogenesis of various metabolic disorders such as overweight and obesity, insulin resistance (IR) and type 2 diabetes mellitus (T2DM), hypertension (HTN), changes in lipid metabolism, and low-grade inflammation. High Mg intake with diet and/or supplementation seems to prevent chronic metabolic complications. The protective action of Mg may include limiting the adipose tissue accumulation, improving glucose and insulin metabolism, enhancing endothelium-dependent vasodilation, normalizing lipid profile, and attenuating inflammatory processes. Thus, it currently seems that Mg plays an important role in developing metabolic disorders associated with obesity, although more randomized controlled trials (RCTs) evaluating Mg supplementation strategies are needed. This work represents a review and synthesis of recent data on the role of Mg in the pathogenesis of metabolic disorders.
Collapse
|
2
|
Liu M, Dudley SC. Magnesium, Oxidative Stress, Inflammation, and Cardiovascular Disease. Antioxidants (Basel) 2020; 9:E907. [PMID: 32977544 PMCID: PMC7598282 DOI: 10.3390/antiox9100907] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Hypomagnesemia is commonly observed in heart failure, diabetes mellitus, hypertension, and cardiovascular diseases. Low serum magnesium (Mg) is a predictor for cardiovascular and all-cause mortality and treating Mg deficiency may help prevent cardiovascular disease. In this review, we discuss the possible mechanisms by which Mg deficiency plays detrimental roles in cardiovascular diseases and review the results of clinical trials of Mg supplementation for heart failure, arrhythmias and other cardiovascular diseases.
Collapse
Affiliation(s)
- Man Liu
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| | - Samuel C. Dudley
- Division of Cardiology, Department of Medicine, the Lillehei Heart Institute, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Experimental Hypomagnesemia Induces Neurogenic Inflammation and Cardiac Dysfunction. HEARTS 2020. [DOI: 10.3390/hearts1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hypomagnesemia occurs clinically as a result of restricted dietary intake, Mg-wasting drug therapies, chronic disease status and may be a risk factor in patients with cardiovascular disorders. Dietary restriction of magnesium (Mg deficiency) in animal models produced a pro-inflammatory/pro-oxidant condition, involving hematopoietic, neuronal, cardiovascular, renal and other systems. In Mg-deficient rodents, early elevations in circulating levels of the neuropeptide, substance P (SP) may trigger subsequent deleterious inflammatory/oxidative/nitrosative stress events. Evidence also suggests that activity of neutral endopeptidase (NEP, neprilysin), the major SP-degrading enzyme, may be impaired during later stages of Mg deficiency, and this may sustain the neurogenic inflammatory response. In this article, experimental findings using substance P receptor blockade, NEP inhibition, and N-methyl-D-aspartate (NMDA) receptor blockade demonstrated the connection between hypomagnesemia, neurogenic inflammation, oxidative stress and enhanced cardiac dysfunction. Proof of concept concerning neurogenic inflammation is provided using an isolated perfused rat heart model exposed to acute reductions in perfusate magnesium concentrations.
Collapse
|
4
|
Cardioprotective effects of memantine in myocardial ischemia: Ex vivo and in vivo studies. Eur J Pharmacol 2020; 882:173277. [PMID: 32544502 DOI: 10.1016/j.ejphar.2020.173277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/30/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Myocardial infarction (MI) refers to the loss of cardiomyocytes due to inadequate coronary blood flow and subsequently a reduced oxygen supply. Activation of N-methyl-D-aspartate (NMDA) receptors has been linked to myocardial infarction. The aim of the present study was to determine the cardioprotective effects of memantine, in myocardial infarction both in ex vivo and in vivo models. Effects of memantine on the electrocardiogram (ECG) pattern, cardiodynamic parameters, infarct size and lipid peroxidation were evaluated in the isolated perfused rat heart. Moreover, in in vivo studies in rats, the protective effects of memantine on isoproterenol-induced myocardial infarction model (administration of 100 mg/kg isoproterenol subcutaneously for 2 consecutive days) was evaluated by measuring ECG pattern, mean arterial pressure, malondialdehyde (MDA) levels, myeloperoxidase (MPO) activity, cardiac tumor necrosis factor-alpha (TNF-α) level and cardiac remodeling. The results from the ex vivo isolated perfused heart showed that memantine treatment increased heart rate, left ventricular systolic pressure and left ventricular maximal rate of pressure increase, and decreased cardiac arrhythmia, MDA level and infarct size in comparison to ischemia/reperfusion (IR) group. The isoproterenol-induced MI (Iso) as used in the in vivo model demonstrated that MDA levels and MPO activity were decreased in memantine groups. Memantine treatment reduced the expression of cardiac TNF-α in comparison to Iso group. Cardiac fibrosis and hypertrophy were lower in memantine groups. In conclusion, memantine exerts cardioprotective effects in models of myocardial infarction, which may be attributed to reduction of pro-inflammatory and oxidative stress factors and subsequently a decrease in cardiac remodeling.
Collapse
|
5
|
Cai L, Liow JS, Morse CL, Telu S, Davies R, Frankland MP, Zoghbi SS, Cheng K, Hall MD, Innis RB, Pike VW. Evaluation of 11C-NR2B-SMe and Its Enantiomers as PET Radioligands for Imaging the NR2B Subunit Within the NMDA Receptor Complex in Rats. J Nucl Med 2020; 61:1212-1220. [PMID: 31924728 DOI: 10.2967/jnumed.119.235143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
[S-methyl-11C](±)-7-methoxy-3-(4-(4-(methylthio)phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol (11C-NR2B-SMe) and its enantiomers were synthesized as candidates for imaging the NR2B subunit within the N-methyl-d-aspartate receptor with PET. Methods: Brains were scanned with PET for 90 min after intravenous injection of one of the candidate radioligands into rats. To detect any NR2B-specific binding of radioligand in brain, various preblocking or displacing agents were evaluated for their impact on the PET brain imaging data. Radiometabolites from brain and other tissues were measured ex vivo and in vitro. Results: Each radioligand gave high early whole-brain uptake of radioactivity, followed by a brief fast decline and then a slow final decline. 11C-(S)-NR2B-SMe was studied extensively. Ex vivo measurements showed that radioactivity in rat brain at 30 min after radioligand injection was virtually unchanged radioligand. Only less lipophilic radiometabolites appeared in plasma. High-affinity NR2B ligands, Ro-25-6981, ifenprodil, and CO101244, showed increasing preblocking of whole-brain radioactivity retention with increasing dose (0.01-3.00 mg/kg, intravenously). Five σ1 antagonists (FTC146, BD1407, F3, F4, and NE100) and 4 σ1 agonists ((+)-pentazocine, (±)-PPCC, PRE-084, and (+)-SKF10047) were ineffective preblocking agents, except FTC146 and F4 at a high dose. Two potent σ1 receptor agonists, TC1 and SA4503, showed dose-dependent preblocking effects in the presence or absence of pharmacologic σ1 receptor blockade with FTC146. Conclusion: 11C-(S)-NR2B-SMe has adequate NR2B-specific PET signal in rat brain to warrant further evaluation in higher species. TC1 and SA4503 likely have off-target binding to NR2B in vivo.
Collapse
Affiliation(s)
- Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Sanjay Telu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Riley Davies
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Michael P Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Ken Cheng
- NCATS Chemical Genomics Center, National Institutes of Health, Rockville, Maryland
| | - Matthew D Hall
- NCATS Chemical Genomics Center, National Institutes of Health, Rockville, Maryland
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
6
|
Shahi A, Aslani S, Ataollahi M, Mahmoudi M. The role of magnesium in different inflammatory diseases. Inflammopharmacology 2019; 27:649-661. [PMID: 31172335 DOI: 10.1007/s10787-019-00603-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Magnesium deficiency (MgD) can cause inflammation in human body. The known mechanisms of inflammation caused by MgD include activation of phagocytic cells, opening of calcium channels, activation of the N-methyl-D-aspartate (NMDA) receptor, and activation of nuclear factor (NF)-κB. In addition, MgD causes systemic stress response through neuroendocrinological pathways. The inflammation caused by MgD can result in pro-atherogenic changes in the metabolism of lipoproteins, endothelial dysfunction, and high blood pressure. Studies suggest that magnesium may play an important role in the pathophysiology of some inflammatory diseases. Several clinical trials and laboratory studies have been done on the functional role of magnesium. In this study, we review some inflammatory diseases, in which the magnesium has a role in their pathophysiology. Among these diseases, diabetes, asthma, preeclampsia, atherosclerosis, heart damage, and rheumatoid arthritis have been highlighted.
Collapse
Affiliation(s)
- Abbas Shahi
- Rheumatology Research Center, Tehran University of Medical Sciences, P.O.Box: 14117-13137, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, P.O.Box: 14117-13137, Tehran, Iran
| | - MohammadReza Ataollahi
- Department of Medical Immunology, School of Medicine, Fasa University of Medical Sciences, P.O. Box: 74616-86688, Fasa, Iran.
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, P.O.Box: 14117-13137, Tehran, Iran.
| |
Collapse
|
7
|
Abbaszadeh S, Javidmehr A, Askari B, Janssen PM, Soraya H. Memantine, an NMDA receptor antagonist, attenuates cardiac remodeling, lipid peroxidation and neutrophil recruitment in heart failure: A cardioprotective agent? Biomed Pharmacother 2018; 108:1237-1243. [DOI: 10.1016/j.biopha.2018.09.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/08/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022] Open
|
8
|
Nielsen FH. Dietary Magnesium and Chronic Disease. Adv Chronic Kidney Dis 2018; 25:230-235. [PMID: 29793661 DOI: 10.1053/j.ackd.2017.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
Although official magnesium (Mg) dietary reference intakes are open to question, a significant number of adults likely have intakes that are in the range of 50%-99% of the requirement. This moderate or marginal (subclinical) deficient Mg intake generally is asymptomatic. Animal studies, however, indicate that moderate or subclinical Mg deficiency primes phagocytic cells for the release of proinflammatory cytokines leading to chronic inflammatory and oxidative stress. Human studies have found that dietary Mg is inversely related to serum or plasma C-reactive protein (CRP). Individuals with apparently deficient Mg intakes have an increased likelihood of serum or plasma CRP ≥3.0 mg/L, considered an indicator of chronic inflammatory stress that increases the risk for chronic disease. In addition, elevated serum or plasma CRP in individuals with chronic disease is decreased by Mg supplementation, which suggests that Mg decreases the risk for chronic disease. The importance of dietary Mg intake on the risk for chronic disease through affecting inflammatory and oxidative stress is supported by numerous meta-analyses and systematic reviews that have found dietary Mg is inversely associated with chronic diseases such hypertension, ischemic heart disease, stroke, metabolic syndrome, diabetes, and colorectal cancer.
Collapse
|
9
|
Li Y, Liu Y, Peng X, Liu W, Zhao F, Feng D, Han J, Huang Y, Luo S, Li L, Yue SJ, Cheng Q, Huang X, Luo Z. NMDA Receptor Antagonist Attenuates Bleomycin-Induced Acute Lung Injury. PLoS One 2015; 10:e0125873. [PMID: 25942563 PMCID: PMC4420245 DOI: 10.1371/journal.pone.0125873] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
Background Glutamate is a major neurotransmitter in the central nervous system (CNS). Large amount of glutamate can overstimulate N-methyl-D-aspartate receptor (NMDAR), causing neuronal injury and death. Recently, NMDAR has been reported to be found in the lungs. The aim of this study is to examine the effects of memantine, a NMDAR channel blocker, on bleomycin-induced lung injury mice. Methods C57BL/6 mice were intratracheally injected with bleomycin (BLM) to induce lung injury. Mice were randomized to receive saline, memantine (Me), BLM, BLM plus Me. Lungs and BALF were harvested on day 3 or 7 for further evaluation. Results BLM caused leukocyte infiltration, pulmonary edema and increase in cytokines, and imposed significant oxidative stress (MDA as a marker) in lungs. Memantine significantly mitigated the oxidative stress, lung inflammatory response and acute lung injury caused by BLM. Moreover, activation of NMDAR enhances CD11b expression on neutrophils. Conclusions Memantine mitigates oxidative stress, lung inflammatory response and acute lung injury in BLM challenged mice.
Collapse
Affiliation(s)
- Yang Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - XiangPing Peng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - FeiYan Zhao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - DanDan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - JianZhong Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - YanHong Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - SiWei Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lian Li
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shao Jie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - QingMei Cheng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - XiaoTing Huang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - ZiQiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
de Baaij JHF, Hoenderop JGJ, Bindels RJM. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95:1-46. [PMID: 25540137 DOI: 10.1152/physrev.00012.2014] [Citation(s) in RCA: 961] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium (Mg(2+)) is an essential ion to the human body, playing an instrumental role in supporting and sustaining health and life. As the second most abundant intracellular cation after potassium, it is involved in over 600 enzymatic reactions including energy metabolism and protein synthesis. Although Mg(2+) availability has been proven to be disturbed during several clinical situations, serum Mg(2+) values are not generally determined in patients. This review aims to provide an overview of the function of Mg(2+) in human health and disease. In short, Mg(2+) plays an important physiological role particularly in the brain, heart, and skeletal muscles. Moreover, Mg(2+) supplementation has been shown to be beneficial in treatment of, among others, preeclampsia, migraine, depression, coronary artery disease, and asthma. Over the last decade, several hereditary forms of hypomagnesemia have been deciphered, including mutations in transient receptor potential melastatin type 6 (TRPM6), claudin 16, and cyclin M2 (CNNM2). Recently, mutations in Mg(2+) transporter 1 (MagT1) were linked to T-cell deficiency underlining the important role of Mg(2+) in cell viability. Moreover, hypomagnesemia can be the consequence of the use of certain types of drugs, such as diuretics, epidermal growth factor receptor inhibitors, calcineurin inhibitors, and proton pump inhibitors. This review provides an extensive and comprehensive overview of Mg(2+) research over the last few decades, focusing on the regulation of Mg(2+) homeostasis in the intestine, kidney, and bone and disturbances which may result in hypomagnesemia.
Collapse
Affiliation(s)
- Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Chen X, Mak IT. Mg supplementation protects against ritonavir-mediated endothelial oxidative stress and hepatic eNOS downregulation. Free Radic Biol Med 2014; 69:77-85. [PMID: 24434120 PMCID: PMC3960338 DOI: 10.1016/j.freeradbiomed.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Ritonavir (RTV), a prototypical protease inhibitor currently used as a key component of anti-HIV therapy, is known for its endothelial and hepatic toxicity. The effects of RTV and magnesium supplementation on cultured bovine endothelial cell (EC) and rat hepatic endothelial nitric oxide synthase (eNOS) status were investigated. RTV dose-dependently (5-30 µM) decreased EC viability after 48 h; high Mg (2mM) significantly attenuated the lost viability. ECs incubated with 15 µM RTV for 6 to 24h resulted in two- to fourfold elevation of oxidized glutathione and a 25% loss of total glutathione. At 24h, EC superoxide production due to RTV was detected by dihydroethidium staining and increased 41% when quantified by flow cytometry; altered glutathione status and superoxide levels were both substantially reversed by 2mM Mg. RTV reduced eNOS mRNA (-25% at 24 h) and led to decreased eNOS dimer/monomer ratios; nitric oxide-derived products decreased 40%; both changes were attenuated by Mg supplementation. In male Lewis-Brown Norway rats, RTV administration (75 mg/kg/day, 5 weeks) resulted in an 85% increase in plasma 8-isoprostane and a 23% decrease in hepatic eNOS mRNA; concomitantly, eNOS protein decreased 75%, whereas plasma nitrite level was reduced 48%. Dietary Mg supplementation (sixfold higher than control) prevented the eNOS mRNA decrease along with lowering 8-isoprostane and restored the eNOS protein and plasma nitrite levels comparable to controls. In conclusion, Mg attenuates RTV-mediated EC oxidative eNOS dysfunction and downregulation of hepatic eNOS expression; we suggest that Mg can serve as a beneficial adjunct therapeutic against RTV-mediated eNOS toxicity.
Collapse
Affiliation(s)
- Xi Chen
- Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA
| | - I Tong Mak
- Department of Biochemistry & Molecular Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| |
Collapse
|
12
|
Abstract
In recent years, increasing awareness of hypomagnesemia has resulted in clinical trials that associate this mineral deficiency with diabetes, metabolic syndrome, and drug therapies for cancer and cardiovascular diseases. However, diagnostic testing for tissue deficiency of magnesium still presents a challenge. Investigations of animal and cellular responses to magnesium deficiency have found evidence of complex proinflammatory pathways that may lead to greater understanding of mediators of the pathobiology in neuronal, cardiovascular, intestinal, renal, and hematological tissues. The roles of free radicals, cytokines, neuropeptides, endotoxin, endogenous antioxidants, and vascular permeability, and interventions to limit the inflammatory response associated with these parameters, are outlined in basic studies of magnesium deficiency. It is hoped that this limited review of inflammation associated with some diseases complicated by magnesium deficiency will prompt greater awareness by clinicians and other health providers and in turn increase efforts to prevent and treat this disorder.
Collapse
Affiliation(s)
- William B Weglicki
- Department of Biochemistry and Molecular Biology, Division of Experimental Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
13
|
Cardiovascular and Intestinal Responses to Oxidative and Nitrosative Stress During Prolonged Magnesium Deficiency. Am J Med Sci 2011; 342:125-8. [DOI: 10.1097/maj.0b013e318222e88c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Weglicki WB, Mak IT, Chmielinska JJ, Tejero-Taldo MI, Komarov AM, Kramer JH. The role of magnesium deficiency in cardiovascular and intestinal inflammation. MAGNESIUM RESEARCH 2010; 23:S199-206. [PMID: 20971697 PMCID: PMC3800093 DOI: 10.1684/mrh.2010.0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypomagnesemia continues to cause difficult clinical problems, such as significant cardiac arrhythmias where intravenous magnesium therapy can be lifesaving. Nutritional deficiency of magnesium may present with some subtle symptoms such as leg cramps and occasional palpitation. We have investigated dietary-induced magnesium deficiency in rodent models to assess the pathobiology associated with prolonged hypomagnesemia. We found that neuronal sources of the neuropeptide, substance P (SP), contributed to very early prooxidant/proinflammatory changes during Mg deficiency. This neurogenic inflammation is systemic in nature, affecting blood cells, cardiovascular, intestinal, and other tissues, leading to impaired cardiac contractility similar to that seen in patients with heart failure. We have used drugs that block the release of SP from neurons and SP-receptor blockers to prevent some of these pathobiological changes; whereas, blocking SP catabolism enhances inflammation. Our findings emphasize the essential role of this cation in preventing cardiomyopathic changes and intestinal inflammation in a well-studied animal model, and also implicate the need for more appreciation of the potential clinical relevance of optimal magnesium nutrition and therapy.
Collapse
Affiliation(s)
- William B Weglicki
- Division of Experimental Medicine, Department of Biochemistry and Molecular Biology, George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
About 60% of adults in the United States do not consume the estimated average requirement for magnesium, but widespread pathological conditions attributed to magnesium deficiency have not been reported. Nevertheless, low magnesium status has been associated with numerous pathological conditions characterized as having a chronic inflammatory stress component. In humans, deficient magnesium intakes are mostly marginal to moderate (approximately 50% to <100% of the recommended dietary allowance). Animal experiments indicate that signs of marginal-to-moderate magnesium deficiency can be compensated or exacerbated by other factors influencing inflammatory and oxidative stress; recent studies suggest a similar happening in humans. This suggestion may have significance in obesity, which is characterized as having a chronic low-grade inflammation component and an increased incidence of a low magnesium status. Marginal-to-moderate magnesium deficiency through exacerbating chronic inflammatory stress may be contributing significantly to the occurrence of chronic diseases such as atherosclerosis, hypertension, osteoporosis, diabetes mellitus, and cancer.
Collapse
Affiliation(s)
- Forrest H Nielsen
- US Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota 58202-9034, USA.
| |
Collapse
|
16
|
Kramer JH, Spurney C, Iantorno M, Tziros C, Mak IT, Tejero-Taldo MI, Chmielinska JJ, Komarov AM, Weglicki WB. Neurogenic inflammation and cardiac dysfunction due to hypomagnesemia. Am J Med Sci 2009; 338:22-7. [PMID: 19593099 PMCID: PMC3753099 DOI: 10.1097/maj.0b013e3181aaee4d] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypomagnesemia continues to be a significant clinical disorder that is present in patients with diabetes mellitus, alcoholism, and treatment with magnesuric drugs (diuretics, cancer chemotherapy agents, etc.). To determine the role of magnesium in cardiovascular pathophysiology, we have used dietary restriction of this cation in animal models. This review highlights some key observations that helped formulate the hypothesis that release of substance P (SP) during experimental dietary Mg deficiency (MgD) may initiate a cascade of deleterious inflammatory, oxidative, and nitrosative events, which ultimately promote cardiomyopathy, in situ cardiac dysfunction, and myocardial intolerance to secondary stresses. SP acts primarily through neurokinin-1 receptors of inflammatory and endothelial cells, and may induce production of reactive oxygen and nitrogen species (superoxide anion, NO*, peroxynitrite, hydroxyl radical), leading to enhanced consumption of tissue antioxidants; stimulate release of inflammatory mediators; promote tissue adhesion molecule expression; and enhance inflammatory cell tissue infiltration and cardiovascular lesion formation. These SP-mediated events may predispose the heart to injury if faced with subsequent oxidative stressors (ischemia/reperfusion, certain drugs) or facilitate development of in situ cardiac dysfunction, especially with prolonged dietary Mg restriction. Significant protection against most of these MgD-mediated events has been observed with interventions that modulate neuronal SP release or its bioactivity, and with several antioxidants (vitamin E, probucol, epicaptopril, d-propranolol). In view of the clinical prevalence of hypomagnesemia, new treatments, beyond magnesium repletion, may be needed to diminish deleterious neurogenic and prooxidative components described in this article.
Collapse
Affiliation(s)
- Jay H Kramer
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington DC 20037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Weber KT, Weglicki WB, Simpson RU. Macro- and micronutrient dyshomeostasis in the adverse structural remodelling of myocardium. Cardiovasc Res 2008; 81:500-8. [PMID: 18835843 DOI: 10.1093/cvr/cvn261] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypertension and heart failure are worldwide health problems of ever-increasing proportions. A failure of the heart, during either systolic and/or diastolic phases of the cardiac cycle, has its origins rooted in an adverse structural, biochemical, and molecular remodelling of myocardium that involves its cellular constituents, extracellular matrix, and intramural coronary vasculature. Herein we focus on the pathogenic role of a dyshomeostasis of several macro- (i.e. Ca(2+) and Mg(2+)) and micronutrients (i.e. Zn(2+), Se(2+), and vitamin D) in contributing to adverse remodelling of the myocardium and its failure as a pulsatile muscular pump. An improved understanding of how these macro- and micronutrients account for the causes and consequences of adverse myocardial remodelling carries with it the potential of identifying new biomarkers predictive of risk, onset and progression, and response to intervention(s), which could be monitored non-invasively and serially over time. Moreover, such incremental knowledge will serve as the underpinning to the development of novel strategies aimed at preventing and/or regressing the ongoing adverse remodelling of myocardium. The time is at hand to recognize the importance of macro- and micronutrient dyshomeostasis in the evaluation and management of hypertension and heart failure.
Collapse
Affiliation(s)
- Karl T Weber
- Division of Cardiovascular Diseases, University of Tennessee Health Science Center, 920 Madison Ave., Suite 300, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
18
|
Mak IT, Kramer JH, Chmielinska JJ, Khalid MH, Landgraf KM, Weglicki WB. Inhibition of neutral endopeptidase potentiates neutrophil activation during Mg-deficiency in the rat. Inflamm Res 2008; 57:300-5. [PMID: 18607539 PMCID: PMC3715053 DOI: 10.1007/s00011-007-7186-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Neutral endopeptidase (NEP), which degrades substance P (SP), may regulate neutrophil activation during Mg-deficiency (MgD). Male Sprague-Dawley rats (180g) were fed MgD (approximately 50 mg Mg/kg) or Mg-sufficient (MgS, 608 mg Mg/kg) diets for 7 days +/- NEP inhibitor phosphoramidon (PR, 5 mg/kg/day, s.c.). MgD alone induced a 9-fold (vs. MgS, p <0.01) elevation in plasma SP; MgD+PR enhanced it further to 18-fold (p <0.001). Neutrophils from MgD+PR rats displayed a 3.9-fold higher (p <0.01) basal .O(2-) generation, but those from MgD or PR alone were not activated. Plasma PGE2-metabolite levels rose 2.67- (p <0.01) and 1.56- (p <0.05) fold, respectively, in MgD+PR and MgD groups; the corresponding red blood cell glutathione levels were decreased 21% (p <0.025) and 7% (NS). MgD+PR significantly reduced neutrophil NEP activity by 48% (p <0.02); PR or MgD alone only reduced this activity 26% and 15%, respectively. We conclude that NEP inhibition potentiates SP-mediated neutrophil .O(2-) production and may promote other inflammatory activities during MgD.
Collapse
Affiliation(s)
- I T Mak
- Department of Biochemistry & Molecular Biology, Division of Experimental Medicine, George Washington University Medical Center, 2300 Eye St. NW, Ross Hall, Rm 443, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Luccini E, Musante V, Neri E, Brambilla Bas M, Severi P, Raiteri M, Pittaluga A. Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. Br J Pharmacol 2007; 151:1087-94. [PMID: 17592518 PMCID: PMC2042940 DOI: 10.1038/sj.bjp.0707280] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Electrophysiological studies described potentiation of NMDA receptor function by metabotropic glutamate receptors (mGluRs) of group I occurring postsynaptically. Since release-enhancing NMDA receptors exist on noradrenergic terminals and group I mGluRs have recently been identified on these nerve endings, we have investigated if NMDA receptor-mGluR interactions also can occur at the presynaptic level. EXPERIMENTAL APPROACH Rat hippocampus and human neocortex synaptosomes were labelled with [(3)H]noradrenaline and superfused with mGluR agonists and antagonists. NMDA-evoked [(3)H]noradrenaline release was produced by removal of external Mg(2+) or by simultaneous application of NMDA and AMPA in Mg(2+)-containing solutions. KEY RESULTS The mGluR1/5 agonist 3,5-DHPG, inactive on its own, potentiated both the release of [(3)H]noradrenaline elicited by AMPA/NMDA/glycine and that evoked by NMDA/glycine following Mg(2+) removal. The effect of 3,5-DHPG on the AMPA/NMDA/glycine-induced release was insensitive to the mGluR1 antagonist CPCCOEt, but it was abolished by the mGluR5 antagonist MPEP; moreover, it was potentiated by the mGluR5 positive allosteric modulator DFB. When NMDA receptors were activated by Mg(2+) removal, both mGluR5 and mGluR1 contributed to the evoked release, the mGluR-mediated release being blocked only by CPCCOEt and MPEP in combination. Experiments with human neocortex synaptosomes show NMDA receptor-mGluR interactions qualitatively similar to those observed in rodents. CONCLUSIONS AND IMPLICATIONS Group I mGluRs, both of the mGluR1 and mGluR5 subtypes, co-localize with NMDA receptors on noradrenergic terminals of rat hippocampus and human neocortex. Depending on the mode of activation, NMDA receptors exert differential permissive roles on the activation of presynaptic mGluR1 and mGluR5.
Collapse
MESH Headings
- Animals
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiology
- Chromones/pharmacology
- Female
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hippocampus/physiology
- Humans
- Male
- N-Methylaspartate/pharmacology
- Norepinephrine/metabolism
- Norepinephrine/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/physiology
- Protein Binding/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/physiology
- Receptor, Metabotropic Glutamate 5
- Receptors, AMPA/metabolism
- Receptors, AMPA/physiology
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Presynaptic/metabolism
- Receptors, Presynaptic/physiology
- Resorcinols/pharmacology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Synaptosomes/physiology
- Tritium
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- E Luccini
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa Genoa, Italy
| | - V Musante
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa Genoa, Italy
| | - E Neri
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa Genoa, Italy
| | | | - P Severi
- Division of Neurosurgery, Galliera Hospital Genoa, Italy
| | - M Raiteri
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa Genoa, Italy
| | - A Pittaluga
- Pharmacology and Toxicology Section, Department of Experimental Medicine, University of Genoa Genoa, Italy
- Center of Excellence for Biomedical Research, University of Genoa Genoa, Italy
- Author for correspondence:
| |
Collapse
|
20
|
Debeljuk L, Lasaga M. Tachykinins and the control of prolactin secretion. Peptides 2006; 27:3007-19. [PMID: 16930771 DOI: 10.1016/j.peptides.2006.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 11/28/2022]
Abstract
Tachykinins are present in the pituitary gland and in brain areas involved in the control of the secretion of pituitary hormones. Tachykinins have been demonstrated to stimulate prolactin release acting directly on the anterior pituitary gland. These peptides have also been revealed to be able to act at the hypothalamic level, interacting with neurotransmitters and neuropeptides that have the potential to affect prolactin secretion. Tachykinins seem to act by stimulating or inhibiting the release of the factors that affect prolactin secretion. Among them, tachykinins have been demonstrated to stimulate oxytocin and vasopressin release, which in turn results in prolactin release. Tachykinins also potentiated the response to vasoactive intestinal peptide (VIP) and reinforced the action of glutamate, which in turn result in prolactin release. They have also been shown to interact with serotonin, a neurotransmitter involved in the control of prolactin secretion. In addition, tachykinins have been shown to inhibit GABA release, a neurotransmitter with prolactin-release inhibiting effect. This inhibition may result in an increased prolactin secretion by removal of the GABA inhibition. On the other hand, tachykinins have also been shown to stimulate dopamine release by the hypothalamus, an action that results in an inhibition of prolactin release. Dopamine is a well known inhibitor of prolactin secretion. In conclusion, although tachykinins have been shown to have a predominantly stimulatory effect on prolactin secretion, especially at the pituitary level, under some circumstances they may also exert an inhibitory influence on prolactin release, by stimulating dopamine release at the hypothalamic level.
Collapse
Affiliation(s)
- Luciano Debeljuk
- School of Allied Health (Anatomy and Physiology), College of Applied Sciences and Arts, Southern Illinois University, Carbondale, IL 62901, USA.
| | | |
Collapse
|
21
|
Mazur A, Maier JAM, Rock E, Gueux E, Nowacki W, Rayssiguier Y. Magnesium and the inflammatory response: potential physiopathological implications. Arch Biochem Biophys 2006; 458:48-56. [PMID: 16712775 DOI: 10.1016/j.abb.2006.03.031] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/25/2006] [Accepted: 03/29/2006] [Indexed: 12/20/2022]
Abstract
The purpose of this review is to summarize experimental findings showing that magnesium modulates cellular events involved in inflammation. Experimental magnesium deficiency in the rat induces after a few days a clinical inflammatory syndrome characterized by leukocyte and macrophage activation, release of inflammatory cytokines and acute phase proteins, excessive production of free radicals. Increase in extracellular magnesium concentration, decreases inflammatory response while reduction in the extracellular magnesium results in cell activation. Because magnesium acts as a natural calcium antagonist, the molecular basis for inflammatory response is probably the result of modulation of intracellular calcium concentration. The priming of phagocytic cells, the opening calcium channel and activation of N-methyl-d-aspartate (NMDA) receptors, the activation of nuclear factor-kappa B (NFkappaB) have been considered as potential mechanisms. Moreover, magnesium deficiency induces a systemic stress response by activation of neuro endocrinological pathways. As nervous and immune systems interact bidirectionally, the roles of neuromediators have also been considered. Magnesium deficiency contributes to an exaggerated response to immune stress and oxidative stress is the consequence of the inflammatory response. Inflammation contributes to the pro-atherogenic changes in lipoprotein metabolism, endothelial dysfunction, thrombosis, hypertension and explains the aggravating effect of magnesium deficiency on the development of metabolic syndrome. Further studies are still needed to assess more accurately the role of magnesium in immune response in humans, but these experimental findings in animal models suggest that inflammation is the missing link to explain the role of magnesium in many pathological conditions.
Collapse
Affiliation(s)
- Andrzej Mazur
- Equipe Stress Métabolique et Micronutriments, Unité de Nutrition Humaine UMR 1019, Centre de Recherche en Nutrition Humaine d'Auvergne, INRA, Theix, St. Genès Champanelle, France.
| | | | | | | | | | | |
Collapse
|
22
|
Tejero-Taldo MI, Kramer JH, Mak IT, Komarov AM, Weglicki WB. The nerve-heart connection in the pro-oxidant response to Mg-deficiency. Heart Fail Rev 2006; 11:35-44. [PMID: 16819576 DOI: 10.1007/s10741-006-9191-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Magnesium is a micronutrient essential for the normal functioning of the cardiovascular system, and Mg deficiency (MgD) is frequently associated in the clinical setting with chronic pathologies such as CHF, diabetes, hypertension, and other pathologies. Animal models of MgD have demonstrated a systemic pro-inflammatory/pro-oxidant state, involving multiple tissues/organs including neuronal, hematopoietic, cardiovascular, and gastrointestinal systems; during later stages of MgD, a cardiomyopathy develops which may result from a cascade of inflammatory events. In rodent models of dietary MgD, a significant rise in circulating levels of proinflammatory neuropeptides such as substance P (SP) and calcitonin gene-related peptide among others, was observed within days (1-7) of initiating the Mg-restricted diet, and implicated a neurogenic trigger for the subsequent inflammatory events; this early "neurogenic inflammation" phase may be mediated in part, by the Mg-gated N: -methyl-D-aspartate (NMDA) receptor/channel complex. Deregulation of the NMDA receptor may trigger the abrupt release of neuronal SP from the sensory-motor C-fibers to promote the subsequent pro-inflammatory changes: elevations in circulating inflammatory cells, inflammatory cytokines, histamine, and PGE(2) levels, as well as formation of nitric oxide, reactive oxygen species, lipid peroxidation products, and depletion of key endogenous antioxidants. Concurrent elevations of tissue CD14, a high affinity receptor for lipopolyssacharide, suggest that intestinal permeability may be compromised leading to endotoxemia. If exposure to these early (1-3 weeks MgD) inflammatory/pro-oxidant events becomes prolonged, this might lead to impaired cardiac function, and when co-existing with other pathologies, may enhance the risk of developing chronic heart failure.
Collapse
Affiliation(s)
- Maria Isabel Tejero-Taldo
- Dept. of Biochemistry & Molecular Biology, Div. of Experimental Medicine, The George Washington University Medical Center, Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|
23
|
Caruso C, Durand D, Watanobe H, Lasaga M. NMDA and group I metabotropic glutamate receptors activation modulates substance P release from the arcuate nucleus and median eminence. Neurosci Lett 2005; 393:60-4. [PMID: 16226374 DOI: 10.1016/j.neulet.2005.09.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 09/14/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
Glutamate participates in the regulation of secretion of several neuropeptides, including substance P (SP). Glutamate acts through ionotropic (iGluR) and metabotropic (mGluR) receptors. We have investigated whether glutamate receptor agonists and antagonists could affect SP release from the arcuate nucleus and the median eminence (ARC/ME). An increase in SP-like immunoreactivity (SP-LI) release from ARC/ME was induced by glutamate and N-methyl-D-aspartate (NMDA). This increase was prevented by D-(-)-2-amino-5-phosphono pentanoic acid (DAP5) (0.1mM), a specific NMDA antagonist and by (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) (0.1 mM), a selective antagonist of group I mGluR. The selective non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3(1H-4H)-dione (DNQX) (0.1mM) and (RS)-alpha-methyl-4-tetrazolylphenylglycine (MTPG) (0.1 mM), a group II and III mGluRs antagonist, did not affect the stimulatory effect of glutamate. A group I selective agonist, (S)-3,5-dihydroxyphenylglycine (DHPG) induced a significant increase in SP-LI release. Supporting the participation of nitric oxide (NO) in the effect of glutamate on SP-LI release, NAME (0.5 mM), a NO synthase inhibitor, reduced the glutamate-induced increase in SP-LI release from ARC/ME. Similarly, glutamate did not induce an increase in SP-LI release in the presence of meloxicam (0.1 mM) (a cyclooxygenase-2 (COX-2) specific inhibitor) indicating that prostaglandins production may also be involved in the glutamate effect. These data indicate that glutamate increases SP-LI release from the ARC/ME by acting through NMDA and group I mGluRs in the male rat. This stimulatory effect could be mediated by nitric oxide and prostaglandin production.
Collapse
Affiliation(s)
- Carla Caruso
- Centro de Investigaciones en Reproducción, School of Medicine, University of Buenos Aires, Paraguay 2155, Piso 10, C1121ABG, Argentina
| | | | | | | |
Collapse
|
24
|
Chmielinska JJ, Tejero-Taldo MI, Mak IT, Weglicki WB. Intestinal and cardiac inflammatory response shows enhanced endotoxin receptor (CD14) expression in magnesium deficiency. Mol Cell Biochem 2005; 278:53-7. [PMID: 16180088 DOI: 10.1007/s11010-005-2733-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 02/23/2005] [Indexed: 11/28/2022]
Abstract
Substance P is elevated in plasma and in other tissues during Mg-deficiency, and was found localised to neuronal C-fibres of cardiac and intestinal tissues, where it could promote neurogenic inflammation. Plasma prostaglandin E2 (PGE2), indicative of systemic inflammation, rose significantly (>or=4 fold, p<0.01) after 1 week and remained elevated through week 2 and 3 in rat on the Mg-deficient (MgD) diet. Concomitantly, total blood glutathione decreased by 50%. Immunohistochemical staining for endotoxin (lipopolysaccaride, LPS) receptor, CD14 was prominent in macrophage-type cells in intestinal tissue; more importantly, cardiac tissue revealed both CD11b (monocyte/macrophage surface protein) and CD14 positive cells after 3 weeks in rats on MgD diet. Western blot analysis indicated a significant increase in the endotoxin receptor protein level in the 3 week MgD hearts. Since CD14 is known to be up-regulated in cells exposed to LPS, these observations suggest that prolonged Mg-deficiency results in increased intestinal permeability to bacterial products that induce the endotoxin receptor in cells localized to myocardial and intestinal tissues. These CD14 positive cells may amplify the cardiomyopathic inflammatory process by stimulating TNF-alpha and other pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Joanna J Chmielinska
- Division of Experimental Medicine, Department of Biochemistry and Molecular Biology, USA.
| | | | | | | |
Collapse
|