1
|
Ebrahimi MN, Banazadeh M, Alitaneh Z, Jaafari Suha A, Esmaeili A, Hasannejad-Asl B, Siahposht-Khachaki A, Hassanshahi A, Bagheri-Mohammadi S. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav 2024; 284:114639. [PMID: 39004195 DOI: 10.1016/j.physbeh.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Ali Jaafari Suha
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Hauser SR, Waeiss RA, Deehan GA, Engleman EA, Bell RL, Rodd ZA. Adolescent alcohol and nicotine exposure alters the adult response to alcohol use. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11880. [PMID: 38389816 PMCID: PMC10880795 DOI: 10.3389/adar.2023.11880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 02/24/2024]
Abstract
Adolescence through young adulthood is a unique period of neuronal development and maturation. Numerous agents can alter this process, resulting in long-term neurological and biological consequences. In the clinical literature, it is frequently reported that adolescent alcohol consumption increases the propensity to develop addictions, including alcohol use disorder (AUD), during adulthood. A general limitation of both clinical and human pre-clinical adolescent alcohol research is the high rate of co-using/abusing more than one drug during adolescence, such as co-using/abusing alcohol with nicotine. A primary goal of basic research is elucidating neuroadaptations produced by adolescent alcohol exposure/consumption that promote alcohol and other drug self-administration in adulthood. The long-term goal is to develop pharmacotherapeutics for the prevention or amelioration of these neuroadaptations. This review will focus on studies that have examined the effects of adolescent alcohol and nicotine exposure on adult alcohol consumption, the hypersensitivity of the mesolimbic dopaminergic system, and enhanced responses not only to alcohol but also to nicotine during adulthood. Again, the long-term goal is to identify potential cholinergic agents to prevent or ameliorate the consequences of, peri-adolescent alcohol abuse.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
McReynolds JR, Wolf CP, Starck DM, Mathy JC, Schaps R, Krause LA, Hillard CJ, Mantsch JR. Role of mesolimbic cannabinoid receptor 1 in stress-driven increases in cocaine self-administration in male rats. Neuropsychopharmacology 2023; 48:1121-1132. [PMID: 37188846 PMCID: PMC10267161 DOI: 10.1038/s41386-023-01589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Stress is prevalent in the lives of those with substance use disorders (SUDs) and influences SUD outcomes. Understanding the neurobiological mechanisms through which stress promotes drug use is important for the development of effective SUD interventions. We have developed a model wherein exposure to a stressor, uncontrollable electric footshock, daily at the time of cocaine self-administration escalates intake in male rats. Here we test the hypothesis that stress-induced escalation of cocaine self-administration requires the CB1 cannabinoid receptor. Male Sprague-Dawley rats self-administered cocaine (0.5 mg/kg/inf, i.v.) during 2-h sessions comprised of four 30-min self-administration components separated by 5-min shock sequences or 5-min shock-free periods for 14 days. Footshock produced an escalation of cocaine self-administration that persisted following shock removal. Systemic administration of the cannabinoid receptor type 1 (CB1R) antagonist/inverse agonist, AM251, attenuated cocaine intake only in rats with a history of stress. This effect was localized to the mesolimbic system, as intra-nucleus accumbens (NAc) shell and intra-ventral tegmental area (VTA) micro-infusions of AM251 attenuated cocaine intake only in stress-escalated rats. Cocaine self-administration, regardless of stress history, increased CB1R binding site density in the VTA, but not NAc shell. Following extinction, cocaine-primed reinstatement (10 mg/kg, ip) was increased in rats with prior footshock during self-administration. AM251 attenuated reinstatement only in rats with a stress history. Altogether, these data demonstrate that mesolimbic CB1Rs are required to escalate intake and heighten relapse susceptibility and suggest that repeated stress at the time of cocaine use regulates mesolimbic CB1R activity through a currently unknown mechanism.
Collapse
Affiliation(s)
- Jayme R McReynolds
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
- Department of Pharmacology & Systems Physiology and Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Colten P Wolf
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Dylan M Starck
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Jacob C Mathy
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Rebecca Schaps
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Leslie A Krause
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cecilia J Hillard
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - John R Mantsch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
- Department of Pharmacology & Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
4
|
Zhang J, Song C, Dai J, Li L, Yang X, Chen Z. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. MedComm (Beijing) 2022; 3:e148. [PMID: 35774845 PMCID: PMC9218544 DOI: 10.1002/mco2.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid abuse and addiction have become a global pandemic, posing tremendous health and social burdens. The rewarding effects and the occurrence of withdrawal symptoms are the two mainstays of opioid addiction. Mu-opioid receptors (MORs), a member of opioid receptors, play important roles in opioid addiction, mediating both the rewarding effects of opioids and opioid withdrawal syndrome (OWS). The underlying mechanism of MOR-mediated opioid rewarding effects and withdrawal syndrome is of vital importance to understand the nature of opioid addiction and also provides theoretical basis for targeting MORs to treat drug addiction. In this review, we first briefly introduce the basic concepts of MORs, including their structure, distribution in the nervous system, endogenous ligands, and functional characteristics. We focused on the brain circuitry and molecular mechanism of MORs-mediated opioid reward and withdrawal. The neuroanatomical and functional elements of the neural circuitry of the reward system underlying opioid addiction were thoroughly discussed, and the roles of MOR within the reward circuitry were also elaborated. Furthermore, we interrogated the roles of MORs in OWS, along with the structural basis and molecular adaptions of MORs-mediated withdrawal syndrome. Finally, current treatment strategies for opioid addiction targeting MORs were also presented.
Collapse
Affiliation(s)
- Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Chang‐Geng Song
- Department of NeurologyXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ji‐Min Dai
- Department of Hepatobiliary SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
5
|
Bhimani RV, Yates R, Bass CE, Park J. Distinct limbic dopamine regulation across olfactory-tubercle subregions through integration of in vivo fast-scan cyclic voltammetry and optogenetics. J Neurochem 2022; 161:53-68. [PMID: 35061915 PMCID: PMC8930533 DOI: 10.1111/jnc.15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
The olfactory tubercle (OT), an important component of the ventral striatum and limbic system, is involved in multi-sensory integration of reward-related information in the brain. However, its functional roles are often overshadowed by the neighboring nucleus accumbens. Increasing evidence has highlighted that dense dopamine (DA) innervation of the OT from the ventral tegmental area (VTA) is implicated in encoding reward, natural reinforcers, and motivated behaviors. Recent studies have further suggested that OT subregions may have distinct roles in these processes due to their heterogeneous DA transmission. Currently, very little is known about regulation (release and clearance) of extracellular DA across OT subregions due to its limited anatomical accessibility and proximity to other DA-rich brain regions, making it difficult to isolate VTA-DA signaling in the OT with conventional methods. Herein, we characterized heterogeneous VTA-DA regulation in the medial (m) and lateral (l) OT in "wild-type," urethane-anesthetized rats by integrating in vivo fast-scan cyclic voltammetry with cell-type specific optogenetics to stimulate VTA-DA neurons. Channelrhodopsin-2 was selectively expressed in the VTA-DA neurons of wild-type rats and optical stimulating parameters were optimized to determine VTA-DA transmission across the OT. Our anatomical, neurochemical, and pharmacological results show that VTA-DA regulation in the mOT is less dependent on DA transporters and has greater DA transmission than the lOT. These findings establish the OT as a unique, compartmentalized structure and will aid in future behavioral characterization of the roles of VTA-DA signaling in the OT subregions in reward, drug addiction, and encoding behavioral outputs necessary for survival.
Collapse
Affiliation(s)
- Rohan V. Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Ryan Yates
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Caroline E. Bass
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005, USA
| |
Collapse
|
6
|
Wills L, Ables JL, Braunscheidel KM, Caligiuri SPB, Elayouby KS, Fillinger C, Ishikawa M, Moen JK, Kenny PJ. Neurobiological Mechanisms of Nicotine Reward and Aversion. Pharmacol Rev 2022; 74:271-310. [PMID: 35017179 PMCID: PMC11060337 DOI: 10.1124/pharmrev.121.000299] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) regulate the rewarding actions of nicotine contained in tobacco that establish and maintain the smoking habit. nAChRs also regulate the aversive properties of nicotine, sensitivity to which decreases tobacco use and protects against tobacco use disorder. These opposing behavioral actions of nicotine reflect nAChR expression in brain reward and aversion circuits. nAChRs containing α4 and β2 subunits are responsible for the high-affinity nicotine binding sites in the brain and are densely expressed by reward-relevant neurons, most notably dopaminergic, GABAergic, and glutamatergic neurons in the ventral tegmental area. High-affinity nAChRs can incorporate additional subunits, including β3, α6, or α5 subunits, with the resulting nAChR subtypes playing discrete and dissociable roles in the stimulatory actions of nicotine on brain dopamine transmission. nAChRs in brain dopamine circuits also participate in aversive reactions to nicotine and the negative affective state experienced during nicotine withdrawal. nAChRs containing α3 and β4 subunits are responsible for the low-affinity nicotine binding sites in the brain and are enriched in brain sites involved in aversion, including the medial habenula, interpeduncular nucleus, and nucleus of the solitary tract, brain sites in which α5 nAChR subunits are also expressed. These aversion-related brain sites regulate nicotine avoidance behaviors, and genetic variation that modifies the function of nAChRs in these sites increases vulnerability to tobacco dependence and smoking-related diseases. Here, we review the molecular, cellular, and circuit-level mechanisms through which nicotine elicits reward and aversion and the adaptations in these processes that drive the development of nicotine dependence. SIGNIFICANCE STATEMENT: Tobacco use disorder in the form of habitual cigarette smoking or regular use of other tobacco-related products is a major cause of death and disease worldwide. This article reviews the actions of nicotine in the brain that contribute to tobacco use disorder.
Collapse
Affiliation(s)
- Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Kevin M Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Masago Ishikawa
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
7
|
Chen APF, Chen L, Kim TA, Xiong Q. Integrating the Roles of Midbrain Dopamine Circuits in Behavior and Neuropsychiatric Disease. Biomedicines 2021; 9:biomedicines9060647. [PMID: 34200134 PMCID: PMC8228225 DOI: 10.3390/biomedicines9060647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a behaviorally and clinically diverse neuromodulator that controls CNS function. DA plays major roles in many behaviors including locomotion, learning, habit formation, perception, and memory processing. Reflecting this, DA dysregulation produces a wide variety of cognitive symptoms seen in neuropsychiatric diseases such as Parkinson’s, Schizophrenia, addiction, and Alzheimer’s disease. Here, we review recent advances in the DA systems neuroscience field and explore the advancing hypothesis that DA’s behavioral function is linked to disease deficits in a neural circuit-dependent manner. We survey different brain areas including the basal ganglia’s dorsomedial/dorsolateral striatum, the ventral striatum, the auditory striatum, and the hippocampus in rodent models. Each of these regions have different reported functions and, correspondingly, DA’s reflecting role in each of these regions also has support for being different. We then focus on DA dysregulation states in Parkinson’s disease, addiction, and Alzheimer’s Disease, emphasizing how these afflictions are linked to different DA pathways. We draw upon ideas such as selective vulnerability and region-dependent physiology. These bodies of work suggest that different channels of DA may be dysregulated in different sets of disease. While these are great advances, the fine and definitive segregation of such pathways in behavior and disease remains to be seen. Future studies will be required to define DA’s necessity and contribution to the functional plasticity of different striatal regions.
Collapse
Affiliation(s)
- Allen PF Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Lu Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
| | - Thomas A. Kim
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Qiaojie Xiong
- Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; (A.P.C.); (L.C.); (T.A.K.)
- Correspondence:
| |
Collapse
|
8
|
Abstract
Drug addiction is a chronic relapsing disorder, and a significant amount of research has been devoted to understand the factors that contribute to the development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide an overview of various theories of addiction to drugs of abuse and the neurobiology involved in elements of the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the role of the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the contribution of these pathways and associated circuits to conditioned responses, drug craving, and loss of behavioral control that may underlie drug relapse. By enhancing the understanding of the neurobiological factors that mediate drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Ronald E See
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Department of Psychology, Westmont College, Santa Barbara, California 93108, USA
| | - Rita A Fuchs
- Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-7620, USA
| |
Collapse
|
9
|
Zhou YQ, Zhang LY, Yu ZP, Zhang XQ, Shi J, Shen HW. Tropisetron Facilitates Footshock Suppression of Compulsive Cocaine Seeking. Int J Neuropsychopharmacol 2019; 22:574-584. [PMID: 31125405 PMCID: PMC6754734 DOI: 10.1093/ijnp/pyz023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/25/2019] [Accepted: 05/23/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The hallmark characteristics of the murine model of drug addiction include the escalation of cocaine consumption and compulsive punishment-resistant drug seeking. In this study, we evaluated the motivation for drug seeking in cocaine self-administering rats exposed to an escalated dosing regimen that endeavored to mimic the characteristic of escalating drug intake in human addicts. Tropisetron is a 5-HT3 receptor antagonist and α7-nicotinic receptor partial agonist. Utilizing rats trained on the escalated-dosing regimen, we examined the effects of tropisetron on control over compulsive drug-seeking behavior that was defined as footshock-resistant lever pressing. METHODS Rats were trained to self-administer cocaine with incremental-infusion doses (from 0.6 to 2.4 mg/kg/infusion) across training sessions (3 h/session) or with a long-access paradigm (i.e., 0.6 mg/kg/infusion, 6 h/d training session). The drug-seeking motivations of 2 groups were estimated by the patterns of drug intake and progressive-ratio schedule. The compulsivity for drug seeking of the group with an escalated dose was further evaluated using the footshock-associated seeking-taking chain task. RESULTS The rats trained on the dose-escalated protocol achieved the same levels of motivated drug seeking as those subjected to a long-access paradigm, as indicated by cocaine intake per training session and breakpoints on a progressive ratio schedule. Tropisetron attenuated compulsive behavior of rats when pressing of the seeking lever potentially led to footshock. Intriguingly, tropisetron did not change the motivation to seek cocaine when footshock was absent. Tropisetron had no effect on locomotor activities or saccharin self-administration. CONCLUSIONS These results demonstrate that tropisetron restored control over compulsive cocaine seeking, and they indicate that 5-HT3/α7-nicotinic receptors may be potential therapeutic targets for relieving compulsive drug seeking.
Collapse
Affiliation(s)
- Yue-Qing Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lan-Yuan Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhi-Peng Yu
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China
| | - Xiao-Qin Zhang
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, Beijing, China,Correspondence: H. W. Shen, PhD, Department of Pharmacology, 818 Fenghua Rd., WangChanglai A403, Ningbo, Zhejiang 315211, China (); and J. Shi, PhD, National Institute on Drug Dependence, Peking University, Beijing, China ()
| | - Hao-Wei Shen
- Department of Pharmacology, Medical School of Ningbo University, WangChanglai, Ningbo, Zhejiang, China,Correspondence: H. W. Shen, PhD, Department of Pharmacology, 818 Fenghua Rd., WangChanglai A403, Ningbo, Zhejiang 315211, China (); and J. Shi, PhD, National Institute on Drug Dependence, Peking University, Beijing, China ()
| |
Collapse
|
10
|
Petzel A, Bernard R, Poller WC, Veh RW. Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex. J Comp Neurol 2017; 525:2310-2327. [DOI: 10.1002/cne.24200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Anja Petzel
- Charité - Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie; Berlin Germany
| | - René Bernard
- Charité - Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie; Berlin Germany
| | - Wolfram C. Poller
- Charité - Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie; Berlin Germany
| | - Rüdiger W. Veh
- Charité - Universitätsmedizin Berlin, Institut für Zell- und Neurobiologie; Berlin Germany
| |
Collapse
|
11
|
Shelkar GP, Kumar S, Singru PS, Subhedar NK, Kokare DM. Noradrenergic inputs from locus coeruleus to posterior ventral tegmental area are essential to support ethanol reinforcement. Addict Biol 2017; 22:291-302. [PMID: 26549324 DOI: 10.1111/adb.12321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/17/2022]
Abstract
Although dysregulation of the dopaminergic mesolimbic system is generally considered central to addiction, the involvement of other circuits is increasingly being appreciated. An interaction between locus coeruleus (LC) noradrenergic neurons and the posterior ventral tegmental area (pVTA) dopaminergic system, in the processing of drug-triggered reward, has been suggested, but not demonstrated in behaving animals. Herein, we try to tease out the precise role of noradrenergic neurons in the LC-VTA circuit in mediating reward and reinforcement behavior associated with ethanol. In the standard two-lever (active/inactive) operant paradigm, the rats were trained to self-administer ethanol in pVTA and subjected to pharmacological intervention. Intra-pVTA administration of phenylephrine (alpha-1 adrenoceptor agonist) increased ethanol self-administration, while prazosin and disulfiram (agents that reduce noradrenergic tone) produced opposite effects. While degeneration [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride, DSP-4, intraperitoneal route] or silencing (lidocaine or muscimol, both via intra-LC route) of the LC noradrenergic neurons decreased, phenylephrine via the intra-LC route reinstated ethanol self-administration. Furthermore, lidocaine reduced ethanol self-administration, but the effect was fully attenuated by noradrenaline given directly in the pVTA. This suggests that the feedback signals from LC to pVTA are necessary to sustain the ethanol self-infusion activity. Ethanol self-administration significantly increased tyrosine hydroxylase immunoreactivity in pVTA and LC; the response was blocked by DSP-4 pre-treatment. While dopamine D1 , but not D2 , receptors were localized on noradrenergic LC neurons, pre-treatment with SCH-23390 (intra-LC) dampened the lever press activity. We suggest that two-way communications between VTA and LC regions is essential for ethanol-triggered reinforcement behavior.
Collapse
Affiliation(s)
- Gajanan P. Shelkar
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; India
| | - Santosh Kumar
- School of Biological Sciences; National Institute of Science Education and Research (NISER); Institute of Physics Campus; Sachivalaya Marg, PO Sainik School, Bhubaneswar; India
| | - Praful S. Singru
- School of Biological Sciences; National Institute of Science Education and Research (NISER); Institute of Physics Campus; Sachivalaya Marg, PO Sainik School, Bhubaneswar; India
| | | | - Dadasaheb M. Kokare
- Department of Pharmaceutical Sciences; Rashtrasant Tukadoji Maharaj Nagpur University; India
| |
Collapse
|
12
|
Sánchez-Catalán MJ, Orrico A, Hipólito L, Zornoza T, Polache A, Lanuza E, Martínez-García F, Granero L, Agustín-Pavón C. Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats. Front Neuroanat 2017; 11:8. [PMID: 28280461 PMCID: PMC5322247 DOI: 10.3389/fnana.2017.00008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/09/2017] [Indexed: 12/04/2022] Open
Abstract
Sexual chemosignals detected by vomeronasal and olfactory systems mediate intersexual attraction in rodents, and act as a natural reinforcer to them. The mesolimbic pathway processes natural rewards, and the nucleus accumbens receives olfactory information via glutamatergic projections from the amygdala. Thus, the aim of this study was to investigate the involvement of the mesolimbic pathway in the attraction toward sexual chemosignals. Our data show that female rats with no previous experience with males or their chemosignals display an innate preference for male-soiled bedding. Focal administration of the opioid antagonist β-funaltrexamine into the posterior ventral tegmental area does not affect preference for male chemosignals. Nevertheless, exposure to male-soiled bedding elicits an increase in dopamine efflux in the nucleus accumbens shell and core, measured by microdialysis. Infusion of the opioid antagonist naltrexone in the accumbens core does not significantly affect dopamine efflux during exposure to male chemosignals, although it enhances dopamine levels 40 min after withdrawal of the stimuli. By contrast, infusion of the glutamate antagonist kynurenic acid in the accumbens shell inhibits the release of dopamine and reduces the time that females spend investigating male-soiled bedding. These data are in agreement with previous reports in male rats showing that exposure to opposite-sex odors elicits dopamine release in the accumbens, and with data in female mice showing that the behavioral preference for male chemosignals is not affected by opioidergic antagonists. We hypothesize that glutamatergic projections from the amygdala into the accumbens might be important to modulate the neurochemical and behavioral responses elicited by sexual chemosignals in rats.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Alejandro Orrico
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Lucía Hipólito
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Teodoro Zornoza
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Ana Polache
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Enrique Lanuza
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| | | | - Luis Granero
- Departament de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Universitat de València València, Spain
| | - Carmen Agustín-Pavón
- Departament de Biologia Cel⋅lular, Biologia Funcional i Antropologia Física, Universitat de València València, Spain
| |
Collapse
|
13
|
Abstract
Alcohol consumption with psychostimulants is very common among drug addicts. There is little known about the possible pharmacological interactions between alcohol and psychostimulants. Among most commonly co-abused psychostimulants with alcohol are methamphetamine, cocaine, 3,4-methylenedioxymethamphetaminen, and nicotine. Co-abuse of alcohol with psychostimulants can lead to several neurophysiological dysfunctions such as decrease in brain antioxidant enzymes, disruption of learning and memory processes, cerebral hypo-perfusion, neurotransmitters depletion as well as potentiation of drug seeking behaviour. Moreover, co-abuse of alcohol and psychostimulants can lead to increase in heart rate, blood pressure, myocardial oxygen consumption and cellular stress, and the risk of developing different types of cancer. Co-abuse of alcohol with psychostimulants during pregnancy can lead to fetal brain abnormalities. Further studies are needed to investigate the pharmacokinetics, pharmacodynamics, and neurochemical changes on co-abuse of alcohol and psychostimulants.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, USA
| |
Collapse
|
14
|
Marcinkiewcz CA, Lowery-Gionta EG, Kash TL. Serotonin's Complex Role in Alcoholism: Implications for Treatment and Future Research. Alcohol Clin Exp Res 2016; 40:1192-201. [PMID: 27161942 DOI: 10.1111/acer.13076] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/11/2016] [Indexed: 11/28/2022]
Abstract
Current pharmacological treatments for alcohol dependence have focused on reducing alcohol consumption, but to date there are few treatments that also address the negative affective symptoms during acute and protracted alcohol withdrawal which are often exacerbated in people with comorbid anxiety and depression. Selective serotonin reuptake inhibitors (SSRIs) are sometimes prescribed to ameliorate these symptoms but can exacerbate anxiety and cravings in a select group of patients. In this critical review, we discuss recent literature describing an association between alcohol dependence, the SERT linked polymorphic region (5-HTTLPR), and pharmacological response to SSRIs. Given the heterogeneity in responsiveness to serotonergic drugs across the spectrum of alcoholic subtypes, we assess the contribution of specific 5-HT circuits to discrete endophenotypes of alcohol dependence. 5-HT circuits play a distinctive role in reward, stress, and executive function which may account for the variation in response to serotonergic drugs. New optogenetic and chemogenetic methods for dissecting 5-HT circuits in alcohol dependence may provide clues leading to more effective pharmacotherapies. Although our current understanding of the role of 5-HT systems in alcohol dependence is incomplete, there is some evidence to suggest that 5-HT3 receptor antagonists are effective in people with the L/L genotype of the 5-HTTLPR polymorphism while SSRIs may be more beneficial to people with the S/L or S/S genotype. Studies that assess the impact of serotonin transporter polymorphisms on 5-HT circuit function and the subsequent development of alcohol use disorders will be an important step forward in treating alcohol dependence.
Collapse
Affiliation(s)
- Catherine A Marcinkiewcz
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emily G Lowery-Gionta
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
15
|
Holly EN, Miczek KA. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology (Berl) 2016; 233:163-86. [PMID: 26676983 PMCID: PMC4703498 DOI: 10.1007/s00213-015-4151-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/06/2015] [Indexed: 10/22/2022]
Abstract
Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression.
Collapse
Affiliation(s)
- Elizabeth N Holly
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA.
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Avenue, Medford, MA, 02155, USA
- Department of Neuroscience, Tufts University, 145 Harrison Avenue, Boston, MA, 02111, USA
| |
Collapse
|
16
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
17
|
Hauser SR, Wilden JA, Deehan GA, McBride WJ, Rodd ZA. Cocaine influences alcohol-seeking behavior and relapse drinking in alcohol-preferring (P) rats. Alcohol Clin Exp Res 2015; 38:2678-86. [PMID: 25346508 DOI: 10.1111/acer.12540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/01/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND The results of several studies suggest that there may be common neurocircuits regulating drug-seeking behaviors. Common biological pathways regulating drug-seeking would explain the phenomenon that seeking for 1 drug can be enhanced by exposure to another drug of abuse. The objective of this study was to assess the time course effects of acute cocaine administration on ethanol (EtOH) seeking and relapse. METHODS Alcohol-preferring (P) rats were allowed to self-administer 15% EtOH and water. EtOH-seeking was assessed through the use of the Pavlovian spontaneous recovery (PSR) model, while EtOH-relapse drinking was assessed through the use of the alcohol-deprivation effect. RESULTS Cocaine (0, 1, or 10 mg/kg), injected immediately, 30 minutes, or 4 hours prior to the first PSR testing session, dose-dependently increased responding on the EtOH lever compared to extinction responses and responding by saline controls. Under relapse conditions, cocaine given immediately prior to the relapse session had no effect (1 mg/kg) or reduced responding (10 mg/kg). In contrast, cocaine given 4 hours prior to the relapse session markedly enhanced EtOH responding compared to saline. CONCLUSIONS The enhanced expression of EtOH-seeking and EtOH-relapse behaviors may be a result of a priming effect of cocaine on neuronal circuits mediating these behaviors. The effect of cocaine on EtOH-relapse drinking is indicative of the complex interactions that can occur between drugs of abuse; production of conflicting behaviors (immediate), and priming of relapse/seeking (4-hour delay).
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
18
|
Sanchez-Catalan MJ, Kaufling J, Georges F, Veinante P, Barrot M. The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience 2014; 282:198-216. [PMID: 25241061 DOI: 10.1016/j.neuroscience.2014.09.025] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/09/2014] [Accepted: 09/10/2014] [Indexed: 11/16/2022]
Abstract
The ventral tegmental area (VTA) is a brain region processing salient sensory and emotional information, controlling motivated behaviors, natural or drug-related reward, reward-related learning, mood, and participating in their associated psychopathologies. Mostly studied for its dopamine neurons, the VTA also includes functionally important GABA and glutamate cell populations. Behavioral evidence supports the presence of functional differences between the anterior VTA (aVTA) and the posterior VTA (pVTA), which is the topic of this review. This antero-posterior heterogeneity concerns locomotor activity, conditioned place preference and intracranial self-administration, and can be seen in response to ethanol, acetaldehyde, salsolinol, opioids including morphine, cholinergic agonists including nicotine, cocaine, cannabinoids and after local manipulation of GABA and serotonin receptors. It has also been observed after viral-mediated manipulation of GluR1, phospholipase Cγ (PLCγ) and cAMP response element binding protein (CREB) expression, with impact on reward and aversion-related responses, on anxiety and depression-related behaviors and on pain sensitivity. In this review, the substrates potentially underlying these aVTA/pVTA differences are discussed, including the VTA sub-nuclei and the heterogeneity in connectivity, cell types and molecular characteristics. We also review the role of the tail of the VTA (tVTA), or rostromedial tegmental nucleus (RMTg), which may also participate to the observed antero-posterior heterogeneity of the VTA. This region, partly located within the pVTA, is an inhibitory control center for dopamine activity. It controls VTA and substantia nigra dopamine cells, thus exerting a major influence on basal ganglia functions. This review highlights the need for a more comprehensive analysis of VTA heterogeneity.
Collapse
Affiliation(s)
- M J Sanchez-Catalan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - J Kaufling
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - F Georges
- Centre National de la Recherche Scientifique, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France; Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - P Veinante
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Université de Strasbourg, Strasbourg, France
| | - M Barrot
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France; Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
19
|
Hauser SR, Bracken AL, Deehan GA, Toalston JE, Ding ZM, Truitt WA, Bell RL, McBride WJ, Rodd ZA. Selective breeding for high alcohol preference increases the sensitivity of the posterior VTA to the reinforcing effects of nicotine. Addict Biol 2014; 19:800-11. [PMID: 23496648 PMCID: PMC3715585 DOI: 10.1111/adb.12048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rate of codependency for alcohol and nicotine is extremely high. Numerous studies have indicated that there is a common genetic association for alcoholism and nicotine dependency. The current experiments examined whether selective breeding for high alcohol preference in rats may be associated with increased sensitivity of the posterior ventral tegmental area (pVTA) to the reinforcing properties of nicotine. In addition, nicotine can directly bind to the serotonin-3 (5-HT3 ) receptor, which has been shown to mediate the reinforcing properties of other drugs of abuse within the pVTA Wistar rats were assigned to groups that were allowed to self-infuse 0, 10, 50, 100, 200, 400 or 800 μM nicotine in two-lever (active and inactive) operant chambers. P rats were allowed to self-infuse 0, 1, 10, 50 or 100 μM nicotine. Co-infusion of 5-HT3 receptor antagonists with nicotine into the pVTA was also determined. P rats self-infused nicotine at lower concentrations than required to support self-administration in Wistar rats. In addition, P rats received more self-infusions of 50 and 100 μM nicotine than Wistar rats; including a 5HT3 receptor antagonist (LY-278,584 or zacopride) with nicotine reduced responding on the active lever. Overall, the data support an association between selective breeding for high alcohol preference and increased sensitivity of the pVTA to the reinforcing properties of nicotine. In addition, the data suggest that activation of 5HT3 receptors may be required to maintain the local reinforcing actions of nicotine within the pVTA.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Institute of Psychiatric Research, Departments of Psychiatry & Anatomy, Indiana School of Medicine, and Department of Psychology, Purdue School of Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The role of serotonin in drug use and addiction. Behav Brain Res 2014; 277:146-92. [PMID: 24769172 DOI: 10.1016/j.bbr.2014.04.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/26/2022]
Abstract
The use of psychoactive drugs is a wide spread behaviour in human societies. The systematic use of a drug requires the establishment of different drug use-associated behaviours which need to be learned and controlled. However, controlled drug use may develop into compulsive drug use and addiction, a major psychiatric disorder with severe consequences for the individual and society. Here we review the role of the serotonergic (5-HT) system in the establishment of drug use-associated behaviours on the one hand and the transition and maintenance of addiction on the other hand for the drugs: cocaine, amphetamine, methamphetamine, MDMA (ecstasy), morphine/heroin, cannabis, alcohol, and nicotine. Results show a crucial, but distinct involvement of the 5-HT system in both processes with considerable overlap between psychostimulant and opioidergic drugs and alcohol. A new functional model suggests specific adaptations in the 5-HT system, which coincide with the establishment of controlled drug use-associated behaviours. These serotonergic adaptations render the nervous system susceptible to the transition to compulsive drug use behaviours and often overlap with genetic risk factors for addiction. Altogether we suggest a new trajectory by which serotonergic neuroadaptations induced by first drug exposure pave the way for the establishment of addiction.
Collapse
|
21
|
Ouachikh O, Dieb W, Durif F, Hafidi A. Anterior ventral tegmental area dopaminergic neurons are not involved in the motivational effects of bromocriptine, pramipexole and cocaine in drug-free rats. Behav Brain Res 2014; 262:1-7. [DOI: 10.1016/j.bbr.2013.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
|
22
|
Neurocircuitry of drug reward. Neuropharmacology 2013; 76 Pt B:329-41. [PMID: 23664810 DOI: 10.1016/j.neuropharm.2013.04.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/06/2013] [Accepted: 04/16/2013] [Indexed: 11/23/2022]
Abstract
In recent years, neuroscientists have produced profound conceptual and mechanistic advances on the neurocircuitry of reward and substance use disorders. Here, we will provide a brief review of intracranial drug self-administration and optogenetic self-stimulation studies that identified brain regions and neurotransmitter systems involved in drug- and reward-related behaviors. Also discussed is a theoretical framework that helps to understand the functional properties of the circuitry involved in these behaviors. The circuitry appears to be homeostatically regulated and mediate anticipatory processes that regulate behavioral interaction with the environment in response to salient stimuli. That is, abused drugs or, at least, some may act on basic motivation and mood processes, regulating behavior-environment interaction. Optogenetics and related technologies have begun to uncover detailed circuit mechanisms linking key brain regions in which abused drugs act for rewarding effects. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
23
|
Abstract
Drug addiction is a chronic relapsing disorder for which research has been dedicated to understand the various factors that contribute to development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide a broad overview of various theories of addiction, drugs of abuse, and the neurobiology involved across the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the involvement of these pathways and associated circuits in mediating conditioned responses, drug craving, and loss of behavioral control thought to underlie withdrawal and relapse. With a better understanding of the neurobiological factors that underlie drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
24
|
Askari N, Moin M, Sanati M, Tajdini M, Hosseini SMR, Modabbernia A, Najand B, Salimi S, Tabrizi M, Ashrafi M, Hajiaghaee R, Akhondzadeh S. Granisetron adjunct to fluvoxamine for moderate to severe obsessive-compulsive disorder: a randomized, double-blind, placebo-controlled trial. CNS Drugs 2012; 26:883-92. [PMID: 22873680 DOI: 10.2165/11635850-000000000-00000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Several small studies have shown beneficial effects of ondansetron, a serotonin 5-HT(3) receptor antagonist, in the treatment of obsessive-compulsive disorder (OCD). The efficacy of other 5-HT(3) receptor antagonists in patients with OCD is still unclear. Granisetron does not alter cytochrome P450 activity and might have a lower risk of drug interactions, a longer duration of action and a better tolerability profile than other 5-HT(3) receptor antagonists. OBJECTIVE The objective of this study was to assess the efficacy and tolerability of granisetron augmentation of fluvoxamine in patients with OCD. STUDY DESIGN This was a two-centre, randomized, double-blind, placebo-controlled, parallel-group study conducted from November 2011 to March 2012. STUDY SETTING The study setting was outpatient clinics of two large referral centres. PATIENTS Study participants were men and women, aged 18-60 years, who met the diagnostic criteria of OCD based on the DSM-IV-TR and who had a Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score of at least 21. INTERVENTIONS Participants were randomly assigned to granisetron (Kytril(®); SmithKline Beecham, Philadelphia, PA, USA) 1 mg every 12 hours or placebo every 12 hours in addition to fluvoxamine for 8 weeks. MAIN OUTCOME MEASURE Patients were assessed using the Y-BOCS at baseline, second, fourth, sixth and eighth weeks. The primary outcome measure was the difference in the score change of Y-BOCS total score from baseline to week 8 between the two groups. We also compared changes in the obsession and compulsion subscales of the Y-BOCS, and frequencies of partial response (≥25% reduction in Y-BOCS score), complete response (≥35% reduction in Y-BOCS score) and remission (Y-BOCS score ≤16) between the two groups. RESULTS Of the 42 included patients, 39 (20 in the placebo group, 19 in the granisetron group) completed the study. Significant time X treatment interaction was observed for total Y-BOCS (F [2.097, 79.678] = 4.941, p = 0.009), obsession (F [2.337, 88.799] = 4.938, p = 0.006) and compulsion (F [2.050, 77.899] = 4.674, p = 0.012) subscales. By week 8, complete response and remission were achieved by 20 (100%) and 18 (90%) patients in the granisetron group and by 7 (35%) patients in the placebo group (p-value of Fisher's exact test <0.001, risk ratio (RR) [95% CI] = 3.857 [2.039, 7.297]). There was no significant difference in the tolerability between the two regimens. CONCLUSION Granisetron is an efficacious adjunct for the short-term treatment of patients with moderate to severe OCD and is well tolerated. CLINICAL TRIAL REGISTRATION NUMBER IRCT201202041556N32.
Collapse
Affiliation(s)
- Neda Askari
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bai Y, Peng Y, Liang J, Zheng X. Differential patterns of neuronal activation in rostral versus caudal ventral tegmental area involved in behavioral sensitization induced by an escalating-dose morphine administration paradigm. Eur J Pharmacol 2012; 689:118-24. [DOI: 10.1016/j.ejphar.2012.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/02/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022]
|
26
|
Czachowski CL, Delory MJ, Pope JD. Behavioral and neurotransmitter specific roles for the ventral tegmental area in reinforcer-seeking and intake. Alcohol Clin Exp Res 2012; 36:1659-68. [PMID: 22432593 DOI: 10.1111/j.1530-0277.2012.01774.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/17/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND The ventral tegmental area (VTA) is a pivotal relay site within the reinforcement circuit that has been shown to play a role in ethanol (EtOH)-motivated behaviors. The primary dopamine projections within this system originate in the VTA and innervate several areas including the nucleus accumbens (NAc) and prefrontal cortex (PFC), and the PFC has afferent glutamate projections to the VTA and the NAc. The following studies utilized 2 different operant paradigms, one focusing on reinforcer-seeking and the other on reinforcer drinking (both with an EtOH and a sucrose reinforcer solution), to elucidate regulation of these behaviors by the posterior VTA, and the specific roles of dopamine and glutamate in this region. METHODS The present experiments assessed the effects of microinjections of the glutamate (AMPA/kainate) antagonist CNQX and the dopamine D1-like antagonist SCH23390 in the posterior VTA, as well as transient chemical inactivation of this region using tetrodotoxin (TTX). In 4 separate experiments (2 dopamine, 2 glutamate, both with TTX), male Long Evans rats were trained to complete a single response requirement that resulted in access to 10% EtOH or 2% sucrose for a 20-minute drinking period. RESULTS Prior to microinjections, EtOH-reinforced subjects were consuming approximately 0.45 to 0.65 g/kg EtOH and making approximately 50 responses during intermittent nonreinforced artificial cerebrospinal fluid sessions (Sucrose groups had similar baseline response levels). Overall, TTX inactivation of the VTA consistently decreased reinforcer-seeking but not intake in all experiments. CNQX also dose-dependently decreased EtOH-seeking, with no significant effect on sucrose-seeking or reinforcer intake. SCH23390 had no significant effects on reinforcer-seeking, and very moderately decreased intake of both EtOH and sucrose. CONCLUSIONS Inactivation of the posterior VTA implicated this region in reinforcer-seeking as opposed to reinforcer intake. Overall, the present findings provide support for the importance of posterior VTA glutamate activity specifically in EtOH-seeking behavior in animals consuming pharmacologically relevant amounts of EtOH.
Collapse
Affiliation(s)
- Cristine L Czachowski
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
27
|
Guan Y, Xiao C, Krnjevic K, Xie G, Zuo W, Ye JH. GABAergic actions mediate opposite ethanol effects on dopaminergic neurons in the anterior and posterior ventral tegmental area. J Pharmacol Exp Ther 2011; 341:33-42. [PMID: 22209891 DOI: 10.1124/jpet.111.187963] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is known that the posterior ventral tegmental area (p-VTA) differs from the anterior VTA (a-VTA) in that rats learn to self-administer ethanol into the p-VTA, but not into the a-VTA. Because activation of VTA dopaminergic neurons by ethanol is a cellular mechanism underlying the reinforcement of ethanol consumption, we hypothesized that ethanol may exert different effects on dopaminergic neurons in the p-VTA and a-VTA. In patch-clamp recordings in midbrain slices from young rats (postnatal days 22-32), we detected no significant difference in electrophysiological properties between p-VTA and a-VTA dopaminergic neurons. However, acute exposure to ethanol (21-86 mM) stimulated p-VTA dopaminergic neurons but suppressed a-VTA dopaminergic neurons. Conversely, ethanol (>21 mM) dose-dependently reduced the frequency of the GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) generated by inhibitory neuronal firing but not miniature inhibitory postsynaptic currents (mIPSCs) in p-VTA dopaminergic neurons. By contrast, ethanol increased the frequency and amplitude of both sIPSCs and mIPSCs in a-VTA dopaminergic neurons. All of these effects of ethanol were abolished by a GABA(A) receptor antagonist. There was a strong negative correlation between ethanol-evoked modulation of sIPSCs and neuronal firing in VTA dopaminergic neurons. These results indicate that GABAergic inputs play an important role in ethanol's actions in the VTA. The differential effects of ethanol on sIPSCs and neuronal firing in the p-VTA and a-VTA could be the basis for ethanol reinforcement via the p-VTA.
Collapse
Affiliation(s)
- Yanzhong Guan
- Department of Anesthesiology, Pharmacology, and Physiology, UMDNJ, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
28
|
Ding ZM, Oster SM, Hauser SR, Toalston JE, Bell RL, McBride WJ, Rodd ZA. Synergistic self-administration of ethanol and cocaine directly into the posterior ventral tegmental area: involvement of serotonin-3 receptors. J Pharmacol Exp Ther 2011; 340:202-9. [PMID: 22011435 DOI: 10.1124/jpet.111.187245] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ethanol (EtOH) and cocaine are both self-administered into the posterior ventral tegmental area (VTA). Self-administration of either drug is prevented by coadministration of a serotonin (5-HT₃) receptor antagonist. Electrophysiological studies indicated that cocaine and EtOH can act synergistically to stimulate VTA dopamine neurons. The current experiment assessed whether cocaine and EtOH would synergistically interact to produce a reinforcing action within the posterior VTA. Adult female Wistar rats were randomly assigned to one of 13 groups. There were three control groups: artificial cerebrospinal fluid (aCSF), a subthreshold EtOH (100 mg%) group, and a subthreshold cocaine (25 pmol/100 nl) group. The other groups self-administered 50 or 75 mg% EtOH containing 6.25, 12.5, or 25 pmol/100 nl cocaine or 100 mg% EtOH containing 3.12, 6.25, 12.5, or 25 pmol/100 nl cocaine. All rats received the assigned infusate for sessions 1 through 4, aCSF alone in sessions 5 and 6, and the original infusate during session 7. The effects of adding a 5-HT₃ receptor antagonist [tropisetron, C₁₇H₂₀N₂O₂ (ICS 205,930) and C₁₇H₂₂N₄O.C₄H₄O₄ (LY278-584)] on coadministration of EtOH and cocaine (75 mg% + 12.5 pmol/100 nl) were determined. Rats failed to self-administer aCSF or the subthreshold concentration of EtOH or cocaine. All three concentrations of EtOH (50, 75, and 100 mg%) combined with cocaine (12.5 and 25 pmol/100 nl) supported self-administration. Adding a 5HT₃ receptor antagonist attenuated coadministration of EtOH + cocaine. Overall, the data indicate that the reinforcing properties of EtOH and cocaine interacted synergistically within the posterior VTA, and these synergistic effects were mediated, at least in part, by activation of local 5-HT₃ receptors.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Institute of Psychiatric Research, Department of Psychiatry, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Katner SN, Oster SM, Ding ZM, Deehan GA, Toalston JE, Hauser SR, McBride WJ, Rodd ZA. Alcohol-preferring (P) rats are more sensitive than Wistar rats to the reinforcing effects of cocaine self-administered directly into the nucleus accumbens shell. Pharmacol Biochem Behav 2011; 99:688-95. [PMID: 21723879 DOI: 10.1016/j.pbb.2011.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 11/29/2022]
Abstract
Wistar rats will self-administer cocaine directly into the nucleus accumbens shell (AcbSh), but not into the nucleus accumbens core. In human and animal literature, there is a genetic association between alcoholism and cocaine dependency. The current experiment examined whether selective breeding for high alcohol preference is also associated with greater sensitivity of the AcbSh to the reinforcing properties of cocaine. P and Wistar rats were given cocaine (0, 100, 200, 400, or 800 pmol/100 nl) to self-infuse into the AcbSh. Rats were given cocaine for the first 4 sessions (acquisition), artificial CSF for sessions 5 and 6 (extinction), and cocaine again in session 7 (reinstatement). During acquisition, P rats self-infused 200-800 pmol cocaine (59 infusions/session), whereas Wistar rats only reliably self-infused 800 pmol cocaine (38 infusions/session). Furthermore, P rats received a greater number of cocaine infusions in the 200, 400 and 800 pmol cocaine groups compared to respective Wistar groups during acquisition. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for cocaine, and reinstated responding in session 7 when cocaine was restored. However, P rats had significantly greater infusions during session 7 compared to session 4 at all concentrations of cocaine tested, whereas Wistar rats only displayed greater infusions during session 7 compared to session 4 at the 400 and 800 pmol cocaine concentrations. The present results suggest that, compared to Wistar rats, the AcbSh of P rats was more sensitive to the reinforcing effects of cocaine. The reinstatement data suggest that the AcbSh of P rats may have become sensitized to the reinforcing effects of cocaine. Overall, the findings from this study support a genetic association between high alcohol preference and greater sensitivity to the reinforcing effects of cocaine.
Collapse
Affiliation(s)
- Simon N Katner
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kurokawa K, Shibasaki M, Kiyokage E, Mizuno K, Toida K, Ohkuma S. Involvement of NMDA receptors in ryanodine receptor expression in dopaminergic neurons in the ventral tegmental area of mice with intermittent methamphetamine treatment. Synapse 2011; 65:1156-65. [DOI: 10.1002/syn.20953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/06/2011] [Indexed: 11/11/2022]
|
31
|
Dao JM, McQuown SC, Loughlin SE, Belluzzi JD, Leslie FM. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism. Neuropsychopharmacology 2011; 36:1319-31. [PMID: 21412223 PMCID: PMC3096821 DOI: 10.1038/npp.2011.8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Epidemiological studies have shown that adolescent smoking is associated with health risk behaviors, including high-risk sexual activity and illicit drug use. Using rat as an animal model, we evaluated the behavioral and biochemical effects of a 4-day, low-dose nicotine pretreatment (60 μg/kg; intravenous) during adolescence and adulthood. Nicotine pretreatment significantly increased initial acquisition of cocaine self-administration, quinpirole-induced locomotor activity, and penile erection in adolescent rats, aged postnatal day (P)32. These effects were long lasting, remaining evident 10 days after the last nicotine treatment, and were observed when nicotine pretreatment was administered during early adolescence (P28-31), but not late adolescence (P38-41) or adulthood (P86-89). Neurochemical analyses of c-fos mRNA expression, and of monoamine transmitter and transporter levels, showed that forebrain limbic systems are continuing to develop during early adolescence, and that this maturation is critically altered by brief nicotine exposure. Nicotine selectively increased c-fos mRNA expression in the nucleus accumbens shell and basolateral amygdala in adolescent, but not adult animals, and altered serotonin markers in these regions as well as the prefrontal cortex. Nicotine enhancement of cocaine self-administration and quinpirole-induced locomotor activity was blocked by co-administration of WAY 100 635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide), a selective serotonin 1A (5-HT1A) receptor antagonist. Early adolescent pretreatment with the mixed autoreceptor/heteroceptor 5-HT1A receptor agonist, 8-OH-DPAT, but not the autoreceptor-selective agonist, S-15535, also enhanced quinpirole-induced locomotor activation. Nicotine enhancement of quinpirole-induced penile erection was not blocked by WAY 100 635 nor mimicked by 8-OH-DPAT. These findings indicate that early adolescent nicotine exposure uniquely alters limbic function by both 5-HT1A and non-5-HT1A receptor mechanisms.
Collapse
Affiliation(s)
- Jasmin M Dao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-3800, USA.
| | - Susan C McQuown
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA
| | - Sandra E Loughlin
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA
| | - James D Belluzzi
- Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA
| | - Frances M Leslie
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA,Department of Pharmacology, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
32
|
|
33
|
Hayes DJ, Greenshaw AJ. 5-HT receptors and reward-related behaviour: a review. Neurosci Biobehav Rev 2011; 35:1419-49. [PMID: 21402098 DOI: 10.1016/j.neubiorev.2011.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 03/03/2011] [Accepted: 03/04/2011] [Indexed: 01/07/2023]
Abstract
The brain's serotonin (5-HT) system is key in the regulation of reward-related behaviours, from eating and drinking to sexual activity. The complexity of studying this system is due, in part, to the fact that 5-HT acts at many receptor subtypes throughout the brain. The recent development of drugs with greater selectivity for individual receptor subtypes has allowed for rapid advancements in our understanding of this system. Use of these drugs in combination with animal models entailing selective reward measures (i.e. intracranial self-stimulation, drug self-administration, conditioned place preference) have resulted in a greater understanding of the pharmacology of reward-related processing and behaviour (particularly regarding drugs of abuse). The putative roles of each 5-HT receptor subtype in the pharmacology of reward are outlined and discussed here. It is concluded that the actions of 5-HT in reward are receptor subtype-dependent (and thus should not be generalized) and that all studied subtypes appear to have a unique profile which is determined by content (e.g. receptor function, localization - both throughout the brain and within the synapse) and context (e.g. type of behavioural paradigm, type of drug). Given evidence of altered reward-related processing and serotonergic function in numerous neuropsychiatric disorders, such as depression, schizophrenia, and addiction, a clearer understanding of the role of 5-HT receptor subtypes in this context may lead to improved drug development and therapeutic approaches.
Collapse
Affiliation(s)
- Dave J Hayes
- Centre for Neuroscience, 513 HMRC, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| | | |
Collapse
|
34
|
Kaufling J, Waltisperger E, Bourdy R, Valera A, Veinante P, Freund-Mercier MJ, Barrot M. Pharmacological recruitment of the GABAergic tail of the ventral tegmental area by acute drug exposure. Br J Pharmacol 2011; 161:1677-91. [PMID: 21087442 DOI: 10.1111/j.1476-5381.2010.00984.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE The tail of the ventral tegmental area (tVTA), also called the rostromedial tegmental nucleus, is a newly defined brain structure and a potential control centre for dopaminergic activity. It was identified by the induction of DeltaFosB following chronic cocaine exposure. In this work, we screened 20 drugs for their ability to induce FosB/DeltaFosB in the tVTA. EXPERIMENTAL APPROACH Immunohistochemistry following systemic drug administration was used to study FosB/DeltaFosB induction in the tVTA of adult rats. Double-staining was used to determine whether dopamine or GABA neurones are involved in this induction. KEY RESULTS The acute injection of the psychostimulant drugs cocaine, D-amphetamine, (+/-)-3,4-methylenedioxymethamphetamine (MDMA), methylphenidate or caffeine, induced the expression of FosB/DeltaFosB in the tVTA GABAergic cells. No induction was observed following exposure to ethanol, diazepam, γ-hydroxybutyric acid (GHB), morphine, ketamine, phencyclidine (PCP), Δ(9)-tetrahydrocannabinol (THC), sodium valproic acid or gabapentin. To evaluate the role of monoamine transporters in the psychostimulant-induced expression of FosB/DeltaFosB, we tested the antidepressant drugs reboxetine, nortriptyline, fluoxetine and venlafaxine (which target the noradrenaline and/or the 5-hydroxytryptamine transporters), the 5-hydroxytryptamine releasing agent dexfenfluramine, and the dopamine transporter inhibitor GBR12909. Only GBR12909 was able to induce FosB/DeltaFosB expression in the tVTA, showing that this induction is mediated by dopamine. CONCLUSIONS AND IMPLICATIONS Newly described brain structures may help to increase our knowledge of brain function, pathology and targets for treatments. FosB/DeltaFosB induction in the tVTA is a common feature of drugs sharing psychostimulant properties but not of drugs sharing risk of abuse.
Collapse
Affiliation(s)
- Jennifer Kaufling
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Graves SM, Napier TC. Mirtazapine alters cue-associated methamphetamine seeking in rats. Biol Psychiatry 2011; 69:275-81. [PMID: 21093851 PMCID: PMC3015001 DOI: 10.1016/j.biopsych.2010.09.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 09/20/2010] [Accepted: 09/26/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Methamphetamine (METH) is a potent psychostimulant, repeated use of which can result in a substance abuse disorder. Withdrawn individuals are highly prone to relapse, which may be driven, at least in part, by a hyperresponsivity to METH-associated cues that can prompt METH-seeking. Clinically efficacious pharmacotherapies for METH abuse are critically needed. Mirtazapine (Remeron) is an atypical antidepressant that antagonizes activated norepinephrine(α)₂, histamine₁ serotonin (5-HT)₂(A/C), and 5-HT₃ receptors. This pharmacologic profile prompted our interest in its potential for preventing relapse to METH-taking. This study tested the hypothesis that mirtazapine would attenuate METH-seeking in rats trained to self-administer METH. METHODS Rats were trained to self-administer METH in a lever-pressing operant task. The effect of mirtazapine on METH-seeking was determined by evaluating lever pressing in the presence of cues previously associated with METH, but in the absence of METH reinforcement. Two paradigms were used: cue reactivity, wherein rats do not undergo extinction training, and a cue-induced reinstatement paradigm after extinction. RESULTS Mirtazapine (5.0 mg/kg) pretreatment reduced METH-seeking by ∼ 50% in the first 15 min of cue reactivity and cue-induced reinstatement testing. This mirtazapine dose did not significantly affect motor performance. CONCLUSIONS This study revealed the overlapping nature of cue reactivity and cue-induced reinstatement procedures and provided preclinical evidence that mirtazapine can attenuate METH-seeking behavior.
Collapse
Affiliation(s)
- Steven M Graves
- Department of Pharmacology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
36
|
Ikemoto S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 2010; 35:129-50. [PMID: 20149820 PMCID: PMC2894302 DOI: 10.1016/j.neubiorev.2010.02.001] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/31/2010] [Accepted: 02/03/2010] [Indexed: 12/22/2022]
Abstract
Reductionist attempts to dissect complex mechanisms into simpler elements are necessary, but not sufficient for understanding how biological properties like reward emerge out of neuronal activity. Recent studies on intracranial self-administration of neurochemicals (drugs) found that rats learn to self-administer various drugs into the mesolimbic dopamine structures-the posterior ventral tegmental area, medial shell nucleus accumbens and medial olfactory tubercle. In addition, studies found roles of non-dopaminergic mechanisms of the supramammillary, rostromedial tegmental and midbrain raphe nuclei in reward. To explain intracranial self-administration and related effects of various drug manipulations, I outlined a neurobiological theory claiming that there is an intrinsic central process that coordinates various selective functions (including perceptual, visceral, and reinforcement processes) into a global function of approach. Further, this coordinating process for approach arises from interactions between brain structures including those structures mentioned above and their closely linked regions: the medial prefrontal cortex, septal area, ventral pallidum, bed nucleus of stria terminalis, preoptic area, lateral hypothalamic areas, lateral habenula, periaqueductal gray, laterodorsal tegmental nucleus and parabrachical area.
Collapse
Affiliation(s)
- Satoshi Ikemoto
- Behavioral Neuroscience Research Branch, National Institute on Drug Abuse, National Institutes of Health, US Department of Health and Human Services, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
37
|
Filip M, Alenina N, Bader M, Przegaliński E. Behavioral evidence for the significance of serotoninergic (5-HT) receptors in cocaine addiction. Addict Biol 2010; 15:227-49. [PMID: 20456287 DOI: 10.1111/j.1369-1600.2010.00214.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cocaine addiction has somatic, psychological, psychiatric, socio-economic and legal implications in the developed world. Presently, there is no medication approved for the treatment of cocaine addiction. In recent years, data from the literature (pre-clinical studies and clinical trials) have provided several lines of evidence that serotonin (5-HT) and 5-HT receptors play a modulatory role in the mechanisms of action of cocaine. Here we review the contribution of 5-HT receptor subtypes to cocaine sensitization, discrimination, conditioned place preference, self-administration, reinstatement of seeking behavior and withdrawal symptoms in laboratory animals. Additionally, the consequences of chronic cocaine exposure on particular 5-HT receptor-assigned functions in pre-clinical studies are presented.
Collapse
Affiliation(s)
- Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Department of Pharmacology, Institute of Pharmacology Polish Academy of Sciences, 31-343 Kraków, 12 Smetna, Poland.
| | | | | | | |
Collapse
|
38
|
Sun W, Xue Y, Huang Z, Steketee JD. Regulation of cocaine-reinstated drug-seeking behavior by kappa-opioid receptors in the ventral tegmental area of rats. Psychopharmacology (Berl) 2010; 210:179-88. [PMID: 20232055 PMCID: PMC2866003 DOI: 10.1007/s00213-010-1812-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 02/21/2010] [Indexed: 11/29/2022]
Abstract
RATIONALE Relapse is one of the main challenges facing the current treatment of cocaine addiction. Understanding its neurobiological mechanism is a critical step toward developing effective anti-relapse therapies. OBJECTIVES Emerging evidence indicates that glutamate-mediated activation of dopamine (DA) neurons in the ventral tegmental area (VTA) may be critically involved in cocaine-induced relapse to drug-seeking behavior. Activity of VTA DA neurons is modulated by multiple neurotransmitter systems including opioids, serotonin, dopamine, and acetylcholine. Recent studies demonstrated that activation of kappa-opioid receptors (kappaORs) in the rat VTA directly inhibits the activity of a subpopulation of DA neurons projecting to the prefrontal cortex (PFC) and amygdala. Because we previously showed that blockade of DA receptors in the dorsal PFC inhibits cocaine-induced reinstatement of extinguished cocaine-seeking behavior suggesting a critical role of the VTA-PFC DA circuit in this process, we tested the hypothesis that activation of kappaORs in the VTA will block cocaine-induced reinstatement in rats. METHODS Rats were trained to self-administer intravenous cocaine (0.125 mg/infusion) under a modified fixed-ratio five schedule. After extinction of the learned behavior, the effects of activation of VTA kappaORs on cocaine-induced reinstatement were studied. RESULTS The kappaOR agonist U50 488 (0-5.6 microg/side) microinjected into the VTA dose-dependently decreased cocaine-induced reinstatement. The effects could not be explained by either a disruption of operant behavior or diffusion of the drug to the areas surrounding the VTA. Moreover, the effect was reversed by norbinaltorphimine. CONCLUSIONS The VTA DA neurons expressing functional kappaORs are critically involved in cocaine-induced reinstatement in rats.
Collapse
Affiliation(s)
- Wenlin Sun
- Department of Pharmacology, University of Tennessee Health Science Center, 874 Union Avenue, Crowe 115, Memphis, TN 38163, USA.
| | | | | | | |
Collapse
|
39
|
Rodd ZA, Bell RL, Oster SM, Toalston JE, Pommer TJ, McBride WJ, Murphy JM. Serotonin-3 receptors in the posterior ventral tegmental area regulate ethanol self-administration of alcohol-preferring (P) rats. Alcohol 2010; 44:245-55. [PMID: 20682192 PMCID: PMC4516283 DOI: 10.1016/j.alcohol.2010.01.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 12/10/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
Abstract
Several studies indicated the involvement of serotonin-3 ([5-hydroxy tryptamine] 5-HT(3)) receptors in regulating alcohol-drinking behavior. The objective of this study was to determine the involvement of 5-HT(3) receptors within the ventral tegmental area (VTA) in regulating ethanol self-administration by alcohol-preferring (P) rats. Standard two-lever operant chambers (Coulbourn Instruments, Allentown, PA) were used to examine the effects of seven consecutive bilateral microinfusions of ICS 205-930 (ICS), a 5-HT(3) receptor antagonist, directly into the posterior VTA on the acquisition and maintenance of 15% (vol/vol) ethanol self-administration. P rats readily acquired ethanol self-administration by the fourth session. The three highest doses (0.125, 0.25, and 1.25 microg) of ICS prevented acquisition of ethanol self-administration. During the acquisition postinjection period, all rats treated with ICS demonstrated higher responding on the ethanol lever, with the highest dose producing the greatest effect. In contrast, during the maintenance phase, the three highest doses (0.75, 1.0, and 1.25 microg) of ICS significantly increased responding on the ethanol lever; after the 7-day dosing regimen, responding on the ethanol lever returned to control levels. Microinfusion of ICS into the posterior VTA did not alter the low responding on the water lever and did not alter saccharin (0.0125% wt/v) self-administration. Microinfusion of ICS into the anterior VTA did not alter ethanol self-administration. Overall, the results of this study suggest that 5-HT(3) receptors in the posterior VTA of the P rat may be involved in regulating ethanol self-administration. In addition, chronic operant ethanol self-administration and/or repeated treatments with a 5-HT(3) receptor antagonist may alter neuronal circuitry within the posterior VTA.
Collapse
Affiliation(s)
- Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana School of Medicine, Indianapolis, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Morzorati SL, Marunde RL, Downey D. Limited access to ethanol increases the number of spontaneously active dopamine neurons in the posterior ventral tegmental area of nondependent P rats. Alcohol 2010; 44:257-64. [PMID: 20682193 DOI: 10.1016/j.alcohol.2010.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 01/28/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
Microdialysis experiments in alcohol-preferring (P) rats have shown that chronic ethanol exposure increases extracellular levels of dopamine (DA) in the nucleus accumbens. Because DA neuronal activity contributes to the regulation of DA overflow in terminal regions, we hypothesized that posterior ventral tegmental area (VTA) DA neuronal activity (firing frequency, burst activity, and/or the number of spontaneously active DA neurons) would be increased in P rats consuming ethanol compared with P rats consuming only water. In vivo electrophysiological techniques were used to evaluate the activity of single DA neurons in the posterior VTA. Our findings show that voluntary ethanol intake by nondependent P rats significantly increased the number of spontaneously active DA neurons in the posterior VTA compared with P rats that consumed only water. Firing frequency and burst activity did not differ between the two groups. These results suggest that adaptive changes occur in the mesolimbic DA system of nondependent P rats to increase the excitability of posterior VTA DA neurons and enhance DA release from nerve terminals in the nucleus accumbens.
Collapse
|
41
|
Müller CP, Pum ME, Schumann G, Huston JP. The Role of Serotonin in Drug Addiction. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70099-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
Engleman EA, Ding ZM, Oster SM, Toalston JE, Bell RL, Murphy JM, McBride WJ, Rodd ZA. Ethanol is self-administered into the nucleus accumbens shell, but not the core: evidence of genetic sensitivity. Alcohol Clin Exp Res 2009; 33:2162-71. [PMID: 19764930 DOI: 10.1111/j.1530-0277.2009.01055.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND A previous study indicated that selectively bred alcohol-preferring (P) rats self-administered ethanol (EtOH) directly into the posterior ventral tegmental area at lower concentrations than Wistar rats. The present study was undertaken to determine involvement of the nucleus accumbens (Acb) with EtOH reinforcement, and a relationship between genetic selection for high alcohol preference and sensitivity of the Acb to the reinforcing effects of EtOH. METHODS Adult P and Wistar rats were assigned to groups that self-infused 0 to 300 mg% EtOH into the Acb shell (AcbSh) or Acb Core (AcbC). Rats were placed into 2-lever (active and inactive) operant chambers and given EtOH for the first 4 sessions (acquisition), artificial cerebrospinal fluid (aCSF) for sessions 5 and 6 (extinction), and EtOH again in session 7 (reinstatement). Responding on the active lever produced a 100-nl injection of the infusate. RESULTS Alcohol-preferring rats self-infused 75 to 300 mg% EtOH, whereas Wistar rats reliably self-infused 100 and 300 mg% EtOH into the AcbSh. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for EtOH, and reinstated responding in session 7 when EtOH was restored. EtOH was not self-infused into the AcbC by P or Wistar rats. CONCLUSIONS The present results indicate that the AcbSh, but not AcbC, is a neuroanatomical structure that mediates the reinforcing actions of EtOH. The data also suggest that, compared to Wistar rats, the AcbSh of P rats is more sensitive to the reinforcing effects of EtOH.
Collapse
Affiliation(s)
- Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indiana University-Purdue University at Indianapolis, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sánchez-Catalán MJ, Hipólito L, Zornoza T, Polache A, Granero L. Motor stimulant effects of ethanol and acetaldehyde injected into the posterior ventral tegmental area of rats: role of opioid receptors. Psychopharmacology (Berl) 2009; 204:641-53. [PMID: 19238363 DOI: 10.1007/s00213-009-1495-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/09/2009] [Indexed: 10/21/2022]
Abstract
RATIONALE A recently published study has shown that microinjections of ethanol, or its metabolite, acetaldehyde into the substantia nigra pars reticulata, are able to produce behavioral activation in rats. Another brain site that could participate in such effects is the ventral tegmental area (VTA). OBJECTIVES We have investigated the locomotor-activating effects of local microinjections of ethanol and acetaldehyde into the posterior VTA of rats and the role of opioid receptors in such effects. MATERIALS Cannulae were placed into the posterior VTA to perform microinjections of ethanol (75 or 150 nmol) or acetaldehyde (25 or 250 nmol) in animals not previously microinjected or microinjected with either the nonselective opioid antagonist naltrexone (13.2 nmol) or the irreversible antagonist of the micro-opioid receptors beta-funaltrexamine (beta-FNA; 2.5 nmol). After injections, spontaneous activity was monitored for 60 min. RESULTS Injections of ethanol or acetaldehyde into the VTA increased the locomotor activity of rats with maximal effects at doses of 150 nmol for ethanol and 250 nmol for acetaldehyde. These locomotor-activating effects were reduced by previously administering naltrexone (13.2 nmol) or beta-FNA (2.5 nmol) into the VTA. CONCLUSIONS The posterior VTA is another brain region involved in the locomotor activation after the intracerebroventricular administration of ethanol or acetaldehyde. Our data indicate that opioid receptors, particularly the micro-opioid receptors, could be the target of the actions of these compounds in the VTA. These results are consistent with the hypothesis that acetaldehyde could be a mediator of some ethanol effects.
Collapse
Affiliation(s)
- María José Sánchez-Catalán
- Departament de Farmàcia i Tecnología Farmacèutica, Universitat de València, Avda Vicente Andrés Estellés s/n, 46100, Burjassot, Spain
| | | | | | | | | |
Collapse
|
44
|
Ding ZM, Toalston JE, Oster SM, McBride WJ, Rodd ZA. Involvement of local serotonin-2A but not serotonin-1B receptors in the reinforcing effects of ethanol within the posterior ventral tegmental area of female Wistar rats. Psychopharmacology (Berl) 2009; 204:381-90. [PMID: 19165471 PMCID: PMC2856072 DOI: 10.1007/s00213-009-1468-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/09/2009] [Indexed: 11/24/2022]
Abstract
RATIONALE Previous studies indicated that ethanol could be self-infused into the posterior ventral tegmental area (p-VTA) and that activation of local serotonin-3 (5-HT(3)) receptors was involved. 5-HT(1B) and 5-HT(2A) receptors are involved in the effects of 5-HT and ethanol on VTA dopamine neurons. OBJECTIVE The current study used the intracranial self-administration (ICSA) procedure to determine the involvement of local 5-HT(1B) and 5-HT(2A) receptors in the self-infusion of ethanol into the p-VTA. MATERIALS AND METHODS Female Wistar rats were implanted unilaterally with a guide cannula aimed at the p-VTA. Seven days after surgery, rats were placed into the two-lever operant conditioning chambers for ICSA tests. The tests consisted of four acquisition sessions with self-infusion of 200 mg% ethanol alone, two or three sessions with co-infusion of the 5-HT(1B) antagonist GR 55562 (10, 100, or 200 microM) or the 5-HT(2A) antagonist R-96544 (10, 100, or 200 microM) with 200 mg% ethanol, and one final session with 200 mg% ethanol alone. RESULTS During the acquisition sessions, all rats readily self-infused ethanol and discriminated the active from inactive lever. Co-infusion of GR 55562, at all three doses, had no effect on the self-infusion of ethanol. In contrast, co-infusion of R-96544, at the two higher doses, attenuated responding on the active lever for ethanol infusion (p < 0.05). CONCLUSION The results suggest that the reinforcing effects of ethanol within the p-VTA are modulated, at least in part, by activation of local 5-HT(2A), but not 5-HT(1B), receptors.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Graduate Program in Medical Neuroscience, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | |
Collapse
|
45
|
Ding ZM, Liu W, Engleman EA, Rodd ZA, McBride WJ. Differential effects of dopamine D2 and GABA(A) receptor antagonists on dopamine neurons between the anterior and posterior ventral tegmental area of female Wistar rats. Pharmacol Biochem Behav 2009; 92:404-12. [PMID: 19480073 PMCID: PMC2859430 DOI: 10.1016/j.pbb.2009.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Previous findings indicated differences in neuronal circuitries mediating drug reinforcement between the anterior and posterior ventral tegmental area (VTA). The objective of the present study was to examine the effects of the dopamine D2 antagonist sulpiride and the GABA(A) antagonist picrotoxin administered in the anterior and posterior VTA on the activity of mesoaccumbal dopamine neurons in female Wistar rats. Sulpiride and picrotoxin were administered in the anterior and posterior VTA. Extracellular dopamine levels were measured in sub-regions of the VTA and nucleus accumbens (ACB). Reverse-microdialysis of sulpiride (100 microM) into the posterior VTA increased extracellular dopamine levels locally (80% above baseline) and in the ACB shell and core (70% above baseline), whereas reverse-microdialysis into the anterior VTA produced a much smaller effect locally (30% above baseline) and in the ACB shell and core. In contrast, microinjection of picrotoxin (80 and 160 microM) into the anterior, but not posterior VTA, increased dopamine release in the ACB shell. The results suggest that dopamine neurons in the posterior VTA, compared to the anterior VTA, may be under greater D2 receptor-mediated tonic inhibition, whereas dopamine neurons in the anterior VTA, compared to the posterior VTA, may be under greater GABA(A) receptor-mediated tonic inhibition.
Collapse
Affiliation(s)
- Zheng-Ming Ding
- Indiana University School of Medicine, Institute of PsychiatricResearch, 791 Union Drive, Indianapolis, IN 46202-4887, USA.
| | | | | | | | | |
Collapse
|
46
|
Kaufling J, Veinante P, Pawlowski SA, Freund-Mercier MJ, Barrot M. Afferents to the GABAergic tail of the ventral tegmental area in the rat. J Comp Neurol 2009; 513:597-621. [PMID: 19235223 DOI: 10.1002/cne.21983] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously showed that chronic psychostimulant exposure induces the transcription factor DeltaFosB in gamma-aminobutyric acid (GABA)ergic neurons of the caudal tier of the ventral tegmental area (VTA). This subregion was defined as the tail of the VTA (tVTA). In the present study, we showed that tVTA can also be visualized by analyzing FosB/DeltaFosB response following acute cocaine injection. This induction occurs in GABAergic neurons, as identified by glutamic acid decarboxylase (GAD) expression. To characterize tVTA further, we mapped its inputs by using the retrograde tracers Fluoro-Gold or cholera toxin B subunit. Retrogradely labeled neurons were observed in the medial prefrontal cortex, the lateral septum, the ventral pallidum, the bed nucleus of the stria terminalis, the substantia innominata, the medial and lateral preoptic areas, the lateral and dorsal hypothalamic areas, the lateral habenula, the intermediate layers of the superior colliculus, the dorsal raphe, the periaqueductal gray, and the mesencephalic and pontine reticular formation. Projections from the prefrontal cortex, the hypothalamus, and the lateral habenula to the tVTA were also shown by using the anterograde tracer biotinylated dextran amine (BDA). We showed that the central nucleus of the amygdala innervates the anterior extent of the VTA but not the tVTA. Moreover, the tVTA mainly receives non-aminergic inputs from the dorsal raphe and the locus coeruleus. Although the tVTA has a low density of dopaminergic neurons, its afferents are mostly similar to those targeting the rest of the VTA. This suggests that the tVTA can be considered as a VTA subregion despite its caudal location.
Collapse
Affiliation(s)
- Jennifer Kaufling
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and Université de Strasbourg, France
| | | | | | | | | |
Collapse
|
47
|
Ponce LF, Pautassi RM, Spear NE, Molina JC. Ethanol-mediated operant learning in the infant rat leads to increased ethanol intake during adolescence. Pharmacol Biochem Behav 2008; 90:640-50. [PMID: 18571224 DOI: 10.1016/j.pbb.2008.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 05/07/2008] [Accepted: 05/15/2008] [Indexed: 11/28/2022]
Abstract
Recent studies indicate that the infant rat has high affinity for ethanol ingestion and marked sensitivity to the drug's reinforcing effects [Spear, N.E., Molina, J.C. Fetal or infantile exposure to ethanol promotes ethanol ingestion in adolescence and adulthood: a theoretical review. Alcohol Clin Exp Res 2005; 29: 909-29.]. A novel operant technique was developed to analyze reinforcing effects of ethanol delivery during the third postnatal week. The impact of this ethanol-reinforcement experience upon subsequent ethanol consumption during adolescence (postnatal weeks 5-6) was also examined. In Experiment 1, pups (postnatal days 14-17) were given an explicit contingency between nose-poking behavior and intraoral delivery of either water or 3.75% v/v ethanol (paired groups). Yoked controls (pups receiving either reinforcer independently of their behavior) were also included. Paired subjects reinforced with ethanol exhibited rapid and robust operant conditioning leading to blood ethanol concentrations in the 25-48 mg% range. In Experiment 2, a higher ethanol concentration (7.5% v/v) provided significant reinforcement. During adolescence, animals originally reinforced with 3.75% v/v ethanol exhibited greater ingestion of ethanol than control animals without prior ethanol reinforcement. These results indicate that, without extensive initiation to ethanol, infant rats rapidly learn to gain access to ethanol and that this experience has a significant impact upon later ethanol intake patterns.
Collapse
Affiliation(s)
- Luciano Federico Ponce
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC - CONICET), Córdoba, CP 5000, Argentina
| | | | | | | |
Collapse
|
48
|
Engleman EA, Rodd ZA, Bell RL, Murphy JM. The role of 5-HT3 receptors in drug abuse and as a target for pharmacotherapy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2008; 7:454-67. [PMID: 19128203 PMCID: PMC2878195 DOI: 10.2174/187152708786927886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alcohol and drug abuse continue to be a major public health problem in the United States and other industrialized nations. Extensive preclinical research indicates the mesolimbic dopamine (DA) pathway and associated regions mediate the rewarding and reinforcing effects of drugs of abuse and natural rewards, such as food and sex. The serotonergic (5-HT) system, in concert with others neurotransmitter systems, plays a key role in modulating neuronal systems within the mesolimbic pathway. A substantial portion of this modulation is mediated by activity at the 5-HT3 receptor. The 5-HT3 receptor is unique among the 5-HT receptors in that it directly gates an ion channel inducing rapid depolarization that, in turn, causes the release of neurotransmitters and/or peptides. Preclinical findings indicate that antagonism of the 5-HT3 receptor in the ventral tegmental area, nucleus accumbens or amygdala reduces alcohol self-administration and/or alcohol-associated effects. Less is known about the effects of 5-HT3 receptor activity on the self-administration of other drugs of abuse or their associated effects. Clinical findings parallel the preclinical findings such that antagonism of the 5-HT3 receptor reduces alcohol consumption and some of its subjective effects. This review provides an overview of the structure, function, and pharmacology of 5-HT3 receptors, the role of these receptors in regulating DA neurotransmission in mesolimbic brain areas, and discusses data from animal and human studies implicating 5-HT3 receptors as targets for the development of new pharmacological agents to treat addictions.
Collapse
Affiliation(s)
- E A Engleman
- Indiana University School of Medicine, Department of Psychiatry, Institute of Psychiatric Research, 791 Union Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
49
|
Marcangione C, Rompré PP. Topographical Fos induction within the ventral midbrain and projection sites following self-stimulation of the posterior mesencephalon. Neuroscience 2008; 154:1227-41. [PMID: 18556137 DOI: 10.1016/j.neuroscience.2008.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/15/2022]
Abstract
Rats will readily perform an operant response to self-administer electrical stimulation to the posterior mesencephalon (PM). Previous results show that axons that support self-stimulation travel between the PM and the ventral tegmental area (VTA) and that their activation increases firing of VTA neurons. The present work sought to extend these findings by describing the distribution of ventral midbrain neurons affected by PM self-stimulation. In Experiment 1, ventral midbrain Fos-immunoreactivity (IR) was assessed in three groups of rats implanted with a monopolar electrode; two groups were trained to self-administer stimulation, but only one was allowed to self-stimulate on the test day, whereas the third was never trained or tested. Self-stimulation induced prominent Fos-IR that was differentially distributed within the VTA and substantia nigra (SN). Control rats showed only sparse labeling. In Experiment 2, ventral midbrain Fos-IR was assessed with three additional groups trained to self-administer PM stimulation and tested as follows: Group-1 was allowed to self-stimulate, Group-2 received stimulation at parameters that failed to support self-stimulation (deemed non-rewarding) "yoked" to the rate of responding of Group-1, and Group-3 received no stimulation. PM self-stimulation induced Fos-IR throughout the rostral-caudal VTA and within the SN reticulata. Non-rewarding stimulation induced sparse Fos-IR, comparable to no stimulation. Fos-IR specific to PM self-stimulation was also observed within the bed nucleus of the stria terminalis (BNST) and nucleus accumbens (NAS)-shell, but not within NAS-core, caudate putamen, medial prefrontal or orbital cortices. These findings are consistent with evidence that reward or positive reinforcement can be triggered by chemical and electrical stimulation over a large rostral-caudal extent of the VTA. They suggest that among ventral midbrain projection sites, the BNST and NAS-shell constitute important components of the circuitry implicated in reward. They provide additional support for the functional link between neurons that support PM and VTA self-stimulation, and offer topographical guidance to future attempts at their identification.
Collapse
Affiliation(s)
- C Marcangione
- Département de Psychiatrie, Université de Montréal, Centre de Recherche Fernand-Seguin, Hôpital Louis H Lafontaine, Montréal, Québec, Canada.
| | | |
Collapse
|
50
|
Abstract
Drug addiction presents as a chronic relapsing disorder characterized by persistent drug-seeking and drug-taking behaviours. Given the significant detrimental effects of this disease both socially and economically, a considerable amount of research has been dedicated to understanding a number of issues in addiction, including behavioural and neuropharmacological factors that contribute to the development, loss of control and persistence of compulsive addictive behaviours. In this review, we will give a broad overview of various theories of addiction, animal models of addiction and relapse, drugs of abuse, and the neurobiology of drug dependence and relapse. Although drugs of abuse possess diverse neuropharmacological profiles, activation of the mesocorticolimbic system, particularly the ventral tegmental area, nucleus accumbens, amygdala and prefrontal cortex via dopaminergic and glutamatergic pathways, constitutes a common pathway by which various drugs of abuse mediate their acute reinforcing effects. However, long-term neuroadaptations in this circuitry likely underlie the transition to drug dependence and cycles of relapse. As further elucidated in more comprehensive reviews of various subtopics on addiction in later sections of this special issue, it is anticipated that continued basic neuroscience research will aid in the development of effective therapeutic interventions for the long-term treatment of drug-dependent individuals.
Collapse
Affiliation(s)
- M W Feltenstein
- Department of Neurosciences, Medical Universiy of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|