1
|
Rêgo DSB, Calió ML, Filev R, Mello LE, Leslie ATFS. Long-term Effects of Cannabidiol and/or Fentanyl Exposure in Rats Submitted to Neonatal Pain. THE JOURNAL OF PAIN 2024; 25:715-729. [PMID: 37820846 DOI: 10.1016/j.jpain.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The current study aimed to evaluate anxiety behavior, hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) and cannabinoid receptor 1 (CB1) gene expression, and nociceptive response in adulthood after a combination of fentanyl and cannabidiol (CBD) for nociceptive stimuli induced during the first week of life in rats. Complete Freund's adjuvant-induced inflammatory nociceptive insult on postnatal day (PN) 1 and PN3. Both fentanyl and CBD were used alone or in combination from PN1 to PN7. Behavioral and nociceptive tests were performed at PN60 and PN62. The expression of the microglial calcium-binding proteins Iba1 and CB1 was detected in the hippocampus using reverse Quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Our results suggest that the anxiety behavior response and immune activation in adult life depend on the CBD dose combined with fentanyl for the nociceptive stimuli induced during the first week of life. Treatment of neonatal nociceptive insult with CBD and opioids showed significant dose-dependent and male-female differences. The increased gene expression in the hippocampus of the analyzed cannabinoid gene supports this data. In addition, treatment with fentanyl led to an increase in CB1 protein expression. Moreover, the expression of Iba1 varied according to the administered dose of CBD and may or may not be associated with the opioid. A lower dose of CBD during the inflammatory period was associated with enhanced anxiety in adult life. PERSPECTIVE: The treatment of nociceptive stimuli with CBD and opioids during the first week of life demonstrated significant sex differences in adult life on anxiety behavior and supraspinal pain sensitivity.
Collapse
Affiliation(s)
- Débora S B Rêgo
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Michele Longoni Calió
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Renato Filev
- Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Luiz E Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil; Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| | - Ana T F S Leslie
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
Panda AA, Behera JP, Ramani YR, Panda A, Kar PP, Panigrahy SR. Antiarthritic potential of ethanolic extract of Ixora coccinea leaves on complete Freund's adjuvant-induced arthritis in animal model. Indian J Pharmacol 2024; 56:112-119. [PMID: 38687315 PMCID: PMC11161007 DOI: 10.4103/ijp.ijp_210_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/16/2023] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
CONTEXT Ixora coccinea leaves possess antioxidant, anti-inflammatory, antinociceptive, antimutagenic, and gastroprotective properties. On this background, its antiarthritic potential was evaluated. AIMS The objective is to evaluate the effect of Ethanolic extract of Ixora coccinea leaves (EEICL) on complete Freund's adjuvant-induced arthritis in rats. SETTINGS AND STUDY DESIGN PG research laboratory, Pharmacology Department, MKCG Medical College, Berhampur, Odisha. SUBJECTS AND METHODS Thirty-six Wistar albino rats were randomly distributed into sixgroups (n = 6) as follows: Gr 1 (normal control)-DW p.o, Gr-2 (disease control [DC] - Tween 80 p.o), Gr-3 (piroxicam 0.9 mg/kg p.o), Gr-4 (EEICL-1 g/kg, p.o, Gr 4-EEICL-1.5 g/kg p.o, Gr 5-ED50 (0.82 g/kg) + piroxicam (0.45 mg/kg) p.o. After induction of arthritis, drugs, and vehicles were administered daily from 5th to 25th day. On 0, 5th, 10th, 15th, and 25th day, parameters like body weight, rotarod fall time, paw volume displacement, and arthritis index were measured. On the last day, Erythrocyte sedimentation rate (ESR), tissue malondialdehyde (MDA), and histopathological analysis were done. STATISTICAL ANALYSIS USED Analysis of parametric data was done by one-way ANOVA and nonparametric data by Kruskal-Wallis test using graph pad prism 7.0. P < 0.05 was considered statistically significant. RESULTS EEICL (1.5 mg/kg) showed anti-arthritic effect compared with DC. Rotarod fall-off time 137.5 ± 2.5 sec and body weight (139 ± 12.74 g) were increased significantly. The percentage inhibition of paw volume was increased(52%) whereas arthritic score(0.33), ESR(3.51mm/hr), synovial tissue MDA level (0.62±0.13µmol/gm) and Mankin score(2) were reduced significantly as compared to disease control. CONCLUSIONS EEICL has anti-arthritic potential in rat model.
Collapse
|
3
|
Dong W, Tian C, Li ZG, Brand D, Cao Y, Liu X, Ma J, Chai A, Myers LK, Yan J, Hasty K, Stuart J, Jiao Y, Gu W, Cai X. Variation of sexual dimorphism and asymmetry in disease expression of inflammatory arthritis among laboratory mouse models with different genomic backgrounds. Lab Anim Res 2023; 39:35. [PMID: 38115139 PMCID: PMC10731690 DOI: 10.1186/s42826-023-00185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
Sex difference has shown in the arthritis diseases in human population and animal models. We investigate how the sex and symmetry vary among mouse models with different genomic backgrounds. Disease data of sex and limbs accumulated in the past more than two decades from four unique populations of murine arthritis models were analyzed. They are (1) interleukin-1 receptor antagonist (IL-1ra) deficient mice under Balb/c background (Balb/c KO); (2) Mice with collagen II induced arthritis under DBA/1 background; (3) Mice with collagen II induced arthritis under C57BL/6 (B6) background and (4) A F2 generation population created by Balb/c KO X DBA/1 KO. Our data shows that there is a great variation in sexual dimorphism for arthritis incidence and severity of arthritis in mice harboring specific genetic modifications. For a F2 population, the incidence of arthritis was 57.1% in female mice and 75.6% in male mice. There was a difference in severity related to sex in two populations: B6.DR1/ B6.DR4 (P < 0.001) and F2 (P = 0.023) There was no difference Balb/c parental strain or in collagen-induced arthritis (CIA) in DBA/1 mice. Among these populations, the right hindlimbs are significantly higher than the scores for the left hindlimbs in males (P < 0.05). However, when examining disease expression using the collagen induced arthritis model with DBA/1 mice, sex-dimorphism did not reach statistical significance, while left hindlimbs showed a tendency toward greater disease expression over the right. Sexual dimorphism in disease expression in mouse models is strain and genomic background dependent. It sets an alarm that potential variation in sexual dimorphism among different racial and ethnic groups in human populations may exist. It is important to not only include both sexes and but also pay attention to possible variations caused by disease expression and response to treatment in all the studies of arthritis in animal models and human populations.
Collapse
Affiliation(s)
- Wei Dong
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150001, Heilongjiang, China
| | - Cheng Tian
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Z Galvin Li
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - David Brand
- Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yanhong Cao
- Institute of Kaschin-Beck Disease, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Key Laboratory of Etiologic Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618104), Harbin Medical University, Harbin, 150081, China
| | - Xiaoyun Liu
- Center for Clinical Precision Medication, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Clinical Pharmacy (School of Integrative Pharmacy, Institute of Integrative Pharmaceutical Research), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiamin Ma
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Andy Chai
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Linda K Myers
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jian Yan
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Karen Hasty
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - John Stuart
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yan Jiao
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Weikuan Gu
- Department of Orthopaedic Surgery and Biomedical Engineering, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Research Service, Veterans Affairs Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| | - Xiaojun Cai
- Heilongjiang Academy of Sciences of Traditional Chinese Medicine, No. 72 Xiangan Street, Xiangfang District, Harbin, 150036, China.
| |
Collapse
|
4
|
Klima ML, Kruger KA, Goldstein N, Pulido S, Low AYT, Assenmacher CA, Alhadeff AL, Betley JN. Anti-inflammatory effects of hunger are transmitted to the periphery via projection-specific AgRP circuits. Cell Rep 2023; 42:113338. [PMID: 37910501 DOI: 10.1016/j.celrep.2023.113338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/31/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Caloric restriction has anti-inflammatory effects. However, the coordinated physiological actions that lead to reduced inflammation in a state of caloric deficit (hunger) are largely unknown. Using a mouse model of injury-induced peripheral inflammation, we find that food deprivation reduces edema, temperature, and cytokine responses that occur after injury. The magnitude of the anti-inflammatory effect that occurs during hunger is more robust than that of non-steroidal anti-inflammatory drugs. The effects of hunger are recapitulated centrally by activity in nutrient-sensing hypothalamic agouti-related protein (AgRP)-expressing neurons. We find that AgRP neurons projecting to the paraventricular nucleus of the hypothalamus rapidly and robustly reduce inflammation and mediate the majority of hunger's anti-inflammatory effects. Intact vagal efferent signaling is required for the anti-inflammatory action of hunger, revealing a brain-to-periphery pathway for this reduction in inflammation. Taken together, these data begin to unravel a potent anti-inflammatory pathway engaged by hypothalamic AgRP neurons to reduce inflammation.
Collapse
Affiliation(s)
- Michelle L Klima
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kayla A Kruger
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nitsan Goldstein
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Pulido
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aloysius Y T Low
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Amber L Alhadeff
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA; Monell Chemical Senses Center, Philadelphia, PA 19104, USA.
| | - J Nicholas Betley
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Sim J, O'Guin E, Monahan K, Sugimoto C, McLean SA, Albertorio-Sáez L, Zhao Y, Laumet S, Dagenais A, Bernard MP, Folger JK, Robison AJ, Linnstaedt SD, Laumet G. Interleukin-10-producing monocytes contribute to sex differences in pain resolution in mice and humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565129. [PMID: 37961295 PMCID: PMC10635095 DOI: 10.1101/2023.11.03.565129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Pain is closely associated with the immune system, which exhibits sexual dimorphism. For these reasons, neuro-immune interactions are suggested to drive sex differences in pain pathophysiology. However, our understanding of peripheral neuro-immune interactions on sex differences in pain resolution remains limited. Here, we have shown, in both a mouse model of inflammatory pain and in humans following traumatic pain, that males had higher levels of interleukin (IL)-10 than females, which were correlated with faster pain resolution. Following injury, we identified monocytes (CD11b+ Ly6C+ Ly6G-F4/80 mid ) as the primary source of IL-10, with IL-10-producing monocytes being more abundant in males than females. In a mouse model, neutralizing IL-10 signaling through antibodies, genetically ablating IL-10R1 in sensory neurons, or depleting monocytes with clodronate all impaired the resolution of pain hypersensitivity in both sexes. Furthermore, manipulating androgen levels in mice reversed the sexual dimorphism of pain resolution and the levels of IL-10-producing monocytes. These results highlight a novel role for androgen-driven peripheral IL-10-producing monocytes in the sexual dimorphism of pain resolution. These findings add to the growing concept that immune cells play a critical role in resolving pain and preventing the transition into chronic pain. Graphical abstract
Collapse
|
6
|
Barrett JE, Shekarabi A, Inan S. Oxycodone: A Current Perspective on Its Pharmacology, Abuse, and Pharmacotherapeutic Developments. Pharmacol Rev 2023; 75:1062-1118. [PMID: 37321860 PMCID: PMC10595024 DOI: 10.1124/pharmrev.121.000506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/30/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Oxycodone, a semisynthetic derivative of naturally occurring thebaine, an opioid alkaloid, has been available for more than 100 years. Although thebaine cannot be used therapeutically due to the occurrence of convulsions at higher doses, it has been converted to a number of other widely used compounds that include naloxone, naltrexone, buprenorphine, and oxycodone. Despite the early identification of oxycodone, it was not until the 1990s that clinical studies began to explore its analgesic efficacy. These studies were followed by the pursuit of several preclinical studies to examine the analgesic effects and abuse liability of oxycodone in laboratory animals and the subjective effects in human volunteers. For a number of years oxycodone was at the forefront of the opioid crisis, playing a significant role in contributing to opioid misuse and abuse, with suggestions that it led to transitioning to other opioids. Several concerns were expressed as early as the 1940s that oxycodone had significant abuse potential similar to heroin and morphine. Both animal and human abuse liability studies have confirmed, and in some cases amplified, these early warnings. Despite sharing a similar structure with morphine and pharmacological actions also mediated by the μ-opioid receptor, there are several differences in the pharmacology and neurobiology of oxycodone. The data that have emerged from the many efforts to analyze the pharmacological and molecular mechanism of oxycodone have generated considerable insight into its many actions, reviewed here, which, in turn, have provided new information on opioid receptor pharmacology. SIGNIFICANCE STATEMENT: Oxycodone, a μ-opioid receptor agonist, was synthesized in 1916 and introduced into clinical use in Germany in 1917. It has been studied extensively as a therapeutic analgesic for acute and chronic neuropathic pain as an alternative to morphine. Oxycodone emerged as a drug with widespread abuse. This article brings together an integrated, detailed review of the pharmacology of oxycodone, preclinical and clinical studies of pain and abuse, and recent advances to identify potential opioid analgesics without abuse liability.
Collapse
Affiliation(s)
- James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University. Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Chen I, Murdaugh LB, Miliano C, Dong Y, Gregus AM, Buczynski MW. NAPE-PLD regulates specific baseline affective behaviors but is dispensable for inflammatory hyperalgesia. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 14:100135. [PMID: 38099275 PMCID: PMC10719515 DOI: 10.1016/j.ynpai.2023.100135] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 12/17/2023]
Abstract
N-acyl-ethanolamine (NAEs) serve as key endogenous lipid mediators as revealed by manipulation of fatty acid amide hydrolase (FAAH), the primary enzyme responsible for metabolizing NAEs. Preclinical studies focused on FAAH or NAE receptors indicate an important role for NAE signaling in nociception and affective behaviors. However, there is limited information on the role of NAE biosynthesis in these same behavioral paradigms. Biosynthesis of NAEs has been attributed largely to the enzyme N-acylphosphatidylethanolamine Phospholipase D (NAPE-PLD), one of three pathways capable of producing these bioactive lipids in the brain. In this report, we demonstrate that Nape-pld knockout (KO) mice displayed reduced sucrose preference and consumption, but other baseline anxiety-like or depression-like behaviors were unaltered. Additionally, we observed sex-dependent responses in thermal nociception and other baseline measures in wildtype (WT) mice that were absent in Nape-pld KO mice. In the Complete Freund's Adjuvant (CFA) model of inflammatory arthritis, WT mice exhibited sex-dependent changes in paw edema that were lost in Nape-pld KO mice. However, there was no effect of Nape-pld deletion on arthritic pain-like behaviors (grip force deficit and tactile allodynia) in either sex, indicating that while NAPE-PLD may alter local inflammation, it does not contribute to pain-like behaviors associated with inflammatory arthritis. Collectively, these findings indicate that chronic and systemic NAPE-PLD inactivation will likely be well-tolerated, warranting further pharmacological evaluation of this target in other disease indications.
Collapse
Affiliation(s)
- Irene Chen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Laura B. Murdaugh
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Miliano
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Yuyang Dong
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
8
|
Craft RM. Burrowing as an index of inflammatory pain in male vs. female rats. Behav Pharmacol 2023; 34:55-67. [PMID: 36473021 DOI: 10.1097/fbp.0000000000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study objective was to determine whether burrowing behavior is useful as a functional index of pain in both male and female rats, and whether a 'no-training' protocol can be used to increase testing efficiency. Adult Sprague-Dawley rats were injected in one or both hindpaws with oil vehicle or complete Freund's adjuvant (CFA); starting the next day, the amount of gravel each rat burrowed out of a tube in 1 h was measured daily for ≤7 days. Without preliminary training on the burrowing procedure, CFA reliably suppressed burrowing for 2-3 days compared to controls, in both sexes. However, whereas unilateral CFA completely suppressed burrowing 1-day post-CFA in nearly all males, bilateral CFA was required to do so in females. When administered 30 min before testing, once daily for 5 days post-CFA, the nonsteroidal anti-inflammatory drug ketoprofen (0.01-3.2 mg/kg) and the opioid morphine (0.1-3.2 mg/kg) significantly increased CFA-suppressed burrowing, whereas the purported cannabinoid analgesic Δ 9 -tetrahydrocannabinol (0.01-2.0 mg/kg) did not. The benzodiazepine chlordiazepoxide (1.25-10 mg/kg), included as a 'true negative' control, also did not restore CFA-suppressed burrowing in either sex. However, in CFA-treated males only, chlordiazepoxide decreased burrowing, suggesting that anxiety may contribute to burrowing in males but not females that are in pain. Overall these results suggest that burrowing is a valid, functional index of inflammatory pain in both sexes, and training on the burrowing procedure is not necessary. However, females are more avid burrowers than males, which should be considered when both sexes are used in inflammatory pain testing.
Collapse
Affiliation(s)
- Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
9
|
Jiang Z, Wang Q, Zhao J, Wang J, Li Y, Dai W, Zhang X, Fang Z, Hou W, Xiong L. Sex-specific cannabinoid 1 receptors on GABAergic neurons in the ventrolateral periaqueductal gray mediate analgesia in mice. J Comp Neurol 2022; 530:2315-2334. [PMID: 35716006 DOI: 10.1002/cne.25334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Sex differences in analgesic effects have gradually attracted public attention in preclinical and clinical studies. Both human and animal females are more sensitive to cannabinoid antinociception than males. Expression of the cannabinoid 1 receptor (CB1 R) and the function of the endocannabinoid system have been explored in both male and female mice and CB1 Rs in the ventrolateral periaqueductal gray (vlPAG) participate in antinociception. However, whether there are cell-type- and sex-specific patterns of vlPAG CB1 R expression that affect analgesia is unknown. In the current study, we either activated or inhibited CB1 Rs in the vlPAG and found that female mice produced stronger analgesia or developed more robust mechanical allodynia than males did. Specific deletion of GABAergic CB1 Rs in the vlPAG promoted stronger mechanical allodynia in female mice than that in male mice. However, no sex differences in cannabinoid antinociception were found following chemogenetic inhibition of GABAergic neurons. Using fluorescence in situ hybridization, we found that the sex difference in cannabinoid antinociception was due to females having higher expression of GABAergic CB1 Rs in the vlPAG than males. Furthermore, activation of CB1 Rs in the vlPAG significantly reduced the frequency of GABA-mediated spontaneous inhibitory postsynaptic currents recorded in vGlut2-tdTomato positive neurons in both sexes. This effect was greater in females than males and this reduction was closely related to CB1 R expression difference between sexes. Our work indicates that vlPAG GABAergic CB1 Rs modulate cannabinoid-mediated analgesia in a sex-specific manner, which may provide a potential explanation of sex difference found in the analgesic effect of cannabinoids.
Collapse
Affiliation(s)
- Zhenhua Jiang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Qun Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - You Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Wei Dai
- Hangzhou Sanatorium Health Management Center, Hangzhou, People's Republic of China
| | - Xiao Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Zongping Fang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
| | - Lize Xiong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xian, Shaanxi Province, China
- Department of Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
11
|
Lorente JD, Cuitavi J, Campos-Jurado Y, Montón-Molina R, González-Romero JL, Hipólito L. Kappa opioid receptor blockade in the nucleus accumbens shell prevents sex-dependent alcohol deprivation effect induced by inflammatory pain. Pain 2022; 163:e137-e147. [PMID: 34393203 DOI: 10.1097/j.pain.0000000000002332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain-induced negative affect reduces life quality of patients by increasing psychiatric comorbidities, including alcohol use disorders (AUDs). Indeed, clinical data suggest pain as a risk factor to suffer AUDs, predicting relapse drinking in abstinent patients. Here, we analyse the impact of pain on alcohol relapse and the role of kappa opioid receptor (KOR) activation in mediating these pain-induced effects because KORs play an important role in pain-driven negative affect and AUD. Female and male Sprague-Dawley rats underwent 2 alcohol intermittent access periods separated by a forced abstinence period. The complete Freund adjuvant model of inflammatory pain was introduced during abstinence, and alcohol intake before and after alcohol reintroduction was assessed. In addition, we used behavioural approaches to measure stress and memory impairment and biochemical assays to measure KOR expression in abstinence and reintroduction periods. Only female CFA-treated rats increased alcohol intake during the reintroduction period. Concomitantly, this group showed enhanced anxiety-like behaviour and increased KOR expression in the nucleus accumbens shell that was developed during abstinence and remained during the reintroduction period. Finally, KOR antagonist norbinaltorphimine was administered in the nucleus accumbens shell during abstinence to prevent a pain-induced alcohol deprivation effect, a phenomenon observed in CFA-female rats. The administration of norbinaltorphimine effectively blocked a pain-induced alcohol deprivation effect in female rats. Our data evidenced that inflammatory pain constitutes a risk factor to increase alcohol consumption during a reintroduction phase only in female rats by the rise and maintenance of stress probably mediated by KOR signalling in the nucleus accumbens.
Collapse
Affiliation(s)
- Jesús D Lorente
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Britch SC, Craft RM. No antinociceptive synergy between morphine and delta-9-tetrahydrocannabinol in male and female rats with persistent inflammatory pain. Behav Pharmacol 2021; 32:630-639. [PMID: 34561365 PMCID: PMC8578411 DOI: 10.1097/fbp.0000000000000657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies have demonstrated antinociceptive synergy between morphine and delta-9-tetrahydrocannabinol (THC) in animals, but whether such synergy occurs against all types of pain and in humans is unclear. Because a majority of chronic pain patients are women, and sex differences in morphine and THC potencies have been observed in rodents, the present study examined sex-specific effects of morphine and THC given alone and in combination, in rats with persistent inflammatory pain. On day 1, baseline mechanical and thermal response thresholds, hindpaw weight-bearing, locomotor activity, and hindpaw thickness were determined. Inflammation was then induced via hindpaw injection of complete Freund's adjuvant (CFA). Three days later, morphine (s.c.), THC (i.p) or a morphine-THC combination (1:1, 3:1 and 1:3 dose ratios) was administered, and behavioral testing was conducted at 30-240 min postinjection. Morphine alone was antiallodynic and antihyperalgesic, with no sex differences, but at some doses increased weight-bearing on the CFA-treated paw more in males than females. THC alone reduced mechanical allodynia with similar potency in both sexes, but reduced thermal hyperalgesia and locomotor activity with greater potency in females than males. All morphine-THC combinations reduced allodynia and hyperalgesia, but isobolographic analysis of mechanical allodynia data showed no significant morphine-THC synergy in either sex. Additionally, whereas morphine alone was antinociceptive at doses that did not suppress locomotion, morphine-THC combinations suppressed locomotion and did not increase weight-bearing on the inflamed paw. These results suggest that THC is unlikely to be a beneficial adjuvant when given in combination with morphine for reducing established inflammatory pain.
Collapse
Affiliation(s)
- Stevie C Britch
- Center on Drug and Alcohol Research, University of Kentucky
- Department of Behavioral Science, University of Kentucky, Lexington, Kentucky
| | - Rebecca M Craft
- Department of Psychology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
13
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
14
|
Mogali S, Askalsky P, Madera G, Jones JD, Comer SD. Minocycline attenuates oxycodone-induced positive subjective responses in non-dependent, recreational opioid users. Pharmacol Biochem Behav 2021; 209:173241. [PMID: 34298029 DOI: 10.1016/j.pbb.2021.173241] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Recent data suggest that glial cells may be involved in the analgesic effects and abuse liability of opioids. Preclinical studies have demonstrated that mu-opioid-receptor-selective agonists, such as oxycodone, activate glia and increase the release of cytokines, causing a suppression of opioid-induced analgesic effects. Preclinical studies also show that certain medications, such as the broad-spectrum tetracycline antibiotic minocycline, inhibit opioid-induced glial activation and thereby enhance the analgesic effects of opioids. Importantly, minocycline reduces the rewarding effects of opioids at the same doses that it enhances opioid-induced analgesia. AIMS The purpose of the present study was to assess the effects of acute administration of minocycline on the subjective, physiological, and analgesic effects of oxycodone in human research volunteers. DESIGN This study was a within-subject, randomized, double-blind outpatient study. Participants completed five separate sessions in which they received 0, 100, or 200 mg minocycline (MINO) simultaneously with either 0 or 40 mg oxycodone (OXY). The subjective, physiological, and analgesic effects of OXY were measured before and repeatedly after drug administration. SETTINGS AND PARTICIPANTS Participants were between 21 and 45 years of age, non-treatment seeking, non-dependent recreational opioid users (N = 12). This study was conducted between 2013 and 2014 at the New York State Psychiatric Institute in New York, NY. FINDINGS MINO 100 and 200 mg were safe and well-tolerated in combination with OXY 40 mg. MINO 200 mg administered with OXY 40 mg attenuated OXY-induced positive subjective effects such as "Good Effect" and "Liking" compared to OXY alone. MINO did not alter the physiological or analgesic effects of OXY. CONCLUSIONS MINO may attenuate the abuse liability of mu-opioid-receptor-selective agonists.
Collapse
Affiliation(s)
- S Mogali
- Division on Substance Use Disorders, New York State Psychiatric Institute, Department of Psychiatry, Vagelos College of Physicians and Surgeons of Columbia University, 1051 Riverside Dr., Unit 66, New York, NY 10032, United States of America.
| | - P Askalsky
- NYU Langone School of Medicine, Department of Psychiatry, New York, NY 10016, United States of America
| | - G Madera
- Weill Cornell Medical College, 515 East 71st Street, New York, NY 10021, United States of America
| | - J D Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute, Department of Psychiatry, Vagelos College of Physicians and Surgeons of Columbia University, 1051 Riverside Dr., Unit 66, New York, NY 10032, United States of America
| | - S D Comer
- Division on Substance Use Disorders, New York State Psychiatric Institute, Department of Psychiatry, Vagelos College of Physicians and Surgeons of Columbia University, 1051 Riverside Dr., Unit 66, New York, NY 10032, United States of America
| |
Collapse
|
15
|
Abstract
Chronic widespread pain conditions are more prevalent in women than men, suggesting a role for gonadal hormones in the observed differences. Previously, we showed that female mice, compared to male, develop widespread, more severe, and longer-duration hyperalgesia in a model of activity-induced muscle pain. We hypothesized testosterone protects males from developing the female pain phenotype. We tested whether orchiectomy of males before induction of an activity-induced pain model produced a female phenotype and whether testosterone administration produced a male phenotype in females. Orchiectomy produced longer-lasting, more widespread hyperalgesia, similar to females. Administration of testosterone to females or orchiectomized males produced unilateral, shorter-lasting hyperalgesia. Prior studies show that the serotonin transporter (SERT) is increased in the nucleus raphe magnus (NRM) in models of chronic pain, and that blockade of SERT in the NRM reduces hyperalgesia. We examined potential sex differences in the distribution of SERT across brain sites involved in nociceptive processing using immunohistochemistry. A sex difference in SERT was found in the NRM in the activity-induced pain model; females had greater SERT immunoreactivity than males. This suggests that testosterone protects against development of widespread, long-lasting muscle pain and that alterations in SERT may underlie the sex differences.
Collapse
|
16
|
Vacca V, Marinelli S, De Angelis F, Angelini DF, Piras E, Battistini L, Pavone F, Coccurello R. Sexually Dimorphic Immune and Neuroimmune Changes Following Peripheral Nerve Injury in Mice: Novel Insights for Gender Medicine. Int J Mol Sci 2021; 22:ijms22094397. [PMID: 33922372 PMCID: PMC8122838 DOI: 10.3390/ijms22094397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/14/2023] Open
Abstract
Neuropathic pain (NeP) in humans is often a life-long condition with no effective therapy available. The higher incidence of female gender in NeP onset is worldwide reported, and although the cause is generally attributed to sex hormones, the actual mechanisms and the players involved are still unclear. Glial and immune cells take part in NeP development, and orchestrate the neuroimmune and inflammatory response, releasing pro-inflammatory factors with chemoattractant properties that activate resident immune cells and recruit immune cells from circulation. The neuro-immune crosstalk is a key contributor to pain hypersensitivity following peripheral nervous system injury. Our previous works showed that in spite of the fact that female mice had an earlier analgesic response than males following nerve lesion, the recovery from NeP was never complete, suggesting that this difference could occur in the very early stages after injury. To further investigate gender differences in immune and neuroimmune responses to NeP, we studied the main immune cells and mediators elicited both in plasma and sciatic nerves by peripheral nerve lesion. After injury, we found a different pattern of distribution of immune cell populations showing either a higher infiltration of T cells in nerves from females or a higher infiltration of macrophages in nerves from males. Moreover, in comparison to male mice, the levels of cytokines and chemokines were differently up- and down-regulated in blood and nerve lysates from female mice. Our study provides some novel insights for the understanding of gender-associated differences in the generation and perseveration of NeP as well as for the isolation of specific neurodegenerative mechanisms underlying NeP. The identification of gender-associated inflammatory profiles in neuropathy is of key importance for the development of differential biomarkers and gender-specific personalized medicine.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Sara Marinelli
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Federica De Angelis
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | | | - Eleonora Piras
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Luca Battistini
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
| | - Flaminia Pavone
- CNR-National Research Council, CNR, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, 00015 Rome, Italy; (V.V.); (S.M.); (F.D.A.)
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- Correspondence: (F.P.); (R.C.)
| | - Roberto Coccurello
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy; (D.F.A.); (E.P.); (L.B.)
- CNR-National Research Council, CNR, Institute for Complex System (ISC), via dei Taurini 19, 00185 Rome, Italy
- Correspondence: (F.P.); (R.C.)
| |
Collapse
|
17
|
Delay L, Gonçalves Dos Santos G, Dias EV, Yaksh TL, Corr M. Sexual Dimorphism in the Expression of Pain Phenotype in Preclinical Models of Rheumatoid Arthritis. Rheum Dis Clin North Am 2021; 47:245-264. [PMID: 33781493 DOI: 10.1016/j.rdc.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rheumatoid arthritis is one of most frequent rheumatic diseases, affecting around 1% of the population worldwide. Pain impacting the quality of life for the patient with rheumatoid arthritis, is often the primary factor leading them to seek medical care. Although sex-related differences in humans and animal models of rheumatoid arthritis are described, the correlation between pain and sex in rheumatoid arthritis has only recently been directly examined. Here we review the literature and explore the mechanisms underlying the expression of the pain phenotype in females and males in preclinical models of rheumatoid arthritis.
Collapse
Affiliation(s)
- Lauriane Delay
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| | | | - Elayne Vieira Dias
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Tony L Yaksh
- Department of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Maripat Corr
- Division of Rheumatology, Allergy and Immunology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
19
|
Uhelski ML, Bruce D, Speltz R, Wilcox GL, Simone DA. Topical Application of Loperamide/Oxymorphindole, Mu and Delta Opioid Receptor Agonists, Reduces Sensitization of C-fiber Nociceptors that Possess Na V1.8. Neuroscience 2020; 446:102-112. [PMID: 32858141 DOI: 10.1016/j.neuroscience.2020.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/27/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
It was recently shown that local injection, systemic administration or topical application of the peripherally-restricted mu-opioid receptor (MOR) agonist loperamide (Lo) and the delta-opioid receptor (DOR) agonist oxymorphindole (OMI) synergized to produce highly potent anti-hyperalgesia that was dependent on both MOR and DOR located in the periphery. We assessed peripheral mechanisms by which this Lo/OMI combination produces analgesia in mice expressing the light-sensitive protein channelrhodopsin2 (ChR2) in neurons that express NaV1.8 voltage-gated sodium channels. These mice (NaV1.8-ChR2+) enabled us to selectively target and record electrophysiological activity from these neurons (the majority of which are nociceptive) using blue light stimulation of the hind paw. We assessed the effect of Lo/OMI on nociceptor activity in both naïve mice and mice treated with complete Freund's adjuvant (CFA) to induce chronic inflammation of the hind paw. Teased fiber recording of tibial nerve fibers innervating the plantar hind paw revealed that the Lo/OMI combination reduced responses to light stimulation in naïve mice and attenuated spontaneous activity (SA) as well as responses to light and mechanical stimuli in CFA-treated mice. These results show that Lo/OMI reduces activity of C-fiber nociceptors that express NaV1.8 and corroborate recent behavioral studies demonstrating the potent analgesic effects of this drug combination. Because of its peripheral site of action, Lo/OMI might produce effective analgesia without the side effects associated with activation of opioid receptors in the central nervous system.
Collapse
Affiliation(s)
- Megan L Uhelski
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Bruce
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca Speltz
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Yu W, Hwa LS, Makhijani VH, Besheer J, Kash TL. Chronic inflammatory pain drives alcohol drinking in a sex-dependent manner for C57BL/6J mice. Alcohol 2019; 77:135-145. [PMID: 30300665 DOI: 10.1016/j.alcohol.2018.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022]
Abstract
Sex differences in chronic pain and alcohol abuse are not well understood. The development of rodent models is imperative for investigating the underlying changes behind these pathological states. In the present study, we investigated whether hind paw treatment with the inflammatory agent Complete Freund's Adjuvant (CFA) could generate hyperalgesia and alter alcohol consumption in male and female C57BL/6J mice. CFA treatment led to greater nociceptive sensitivity for both sexes in the Hargreaves test, and increased alcohol drinking for males in a continuous-access two-bottle choice (CA2BC) paradigm. Regardless of treatment, female mice exhibited greater alcohol drinking than males. Following a 2-h terminal drinking session, CFA treatment failed to produce changes in alcohol drinking, blood ethanol concentration (BEC), and plasma corticosterone (CORT) for both sexes. Two-hour alcohol consumption and CORT was higher in females than males, regardless of CFA treatment. Taken together, these findings have established that male mice are more susceptible to escalations in alcohol drinking when undergoing pain, despite higher levels of total alcohol drinking and CORT in females. Furthermore, the exposure of CFA-treated C57BL/6J mice to the CA2BC drinking paradigm has proven to be a useful model for studying the relationship between chronic pain and alcohol abuse. Future applications of the CFA/CA2BC model should incorporate manipulations of stress signaling and other related biological systems to improve our mechanistic understanding of pain and alcohol interactions.
Collapse
|
21
|
Averitt DL, Eidson LN, Doyle HH, Murphy AZ. Neuronal and glial factors contributing to sex differences in opioid modulation of pain. Neuropsychopharmacology 2019; 44:155-165. [PMID: 29973654 PMCID: PMC6235988 DOI: 10.1038/s41386-018-0127-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 12/12/2022]
Abstract
Morphine remains one of the most widely prescribed opioids for alleviation of persistent and/or severe pain; however, multiple preclinical and clinical studies report that morphine is less efficacious in females compared to males. Morphine primarily binds to the mu opioid receptor, a prototypical G-protein coupled receptor densely localized in the midbrain periaqueductal gray. Anatomical and physiological studies conducted in the 1960s identified the periaqueductal gray, and its descending projections to the rostral ventromedial medulla and spinal cord, as an essential descending inhibitory circuit mediating opioid-based analgesia. Remarkably, the majority of studies published over the following 30 years were conducted in males with the implicit assumption that the anatomical and physiological characteristics of this descending inhibitory circuit were comparable in females; not surprisingly, this is not the case. Several factors have since been identified as contributing to the dimorphic effects of opioids, including sex differences in the neuroanatomical and neurophysiological characteristics of the descending inhibitory circuit and its modulation by gonadal steroids. Recent data also implicate sex differences in opioid metabolism and neuroimmune signaling as additional contributing factors. Here we cohesively present these lines of evidence demonstrating a neural basis for sex differences in opioid modulation of pain, with a focus on the PAG as a sexually dimorphic core of descending opioid-induced inhibition and argue for the development of sex-specific pain therapeutics.
Collapse
Affiliation(s)
- Dayna L Averitt
- Department of Biology, Texas Woman's University, Denton, TX, 76204, USA
| | - Lori N Eidson
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
22
|
Shafiey SI, Mohamed WR, Abo-Saif AA. Paroxetine and rivastigmine mitigates adjuvant-induced rheumatoid arthritis in rats: Impact on oxidative stress, apoptosis and RANKL/OPG signals. Life Sci 2018; 212:109-118. [DOI: 10.1016/j.lfs.2018.09.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
|
23
|
Armendariz A, Nazarian A. Morphine antinociception on thermal sensitivity and place conditioning in male and female rats treated with intraplantar complete freund's adjuvant. Behav Brain Res 2018; 343:21-27. [PMID: 29378294 DOI: 10.1016/j.bbr.2018.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The experience of pain is characterized by the presence of a noxious sensory stimulus combined with negative affect, which is often treated clinically through administration of drugs such as morphine or other opioids. This study investigated the effects of morphine one and seven days after intraplantar administration of complete freund's adjuvant (CFA) in male and female rats. Hargreaves test for thermal nociception and conditioned place preference (CPP) were performed following subcutaneous administration of saline or morphine (1.0, 4.0, 8.0, 12.0 mg/kg). Hargreaves test results revealed that male rats were more sensitive to morphine antinociceptive actions as compared to female rats one day after CFA treatment; however, this sex difference was not detected seven days after CFA treatment. One day after CFA treatment, morphine doses of 8.0 and 12.0 mg/kg produced a CPP in male rats, while female rats exhibited CPP with only the 12.0 mg/kg dose. Seven days after CFA treatment, both male and female rats exhibited a CPP with morphine doses of 4.0 mg/kg and higher. These results reveal sexually dimorphic properties of morphine in the paw withdrawal latencies and conditioned place preference models, representing reflexive and non-reflexive behavioral assays employed to examine inflammatory nociception. Our findings also suggest that antinociceptive effects of morphine are dynamic across early and later periods of CFA-induced inflammatory pain.
Collapse
Affiliation(s)
- Alexander Armendariz
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA
| | - Arbi Nazarian
- Department of Pharmaceutical Sciences, Western University of Health Sciences, 309 E. Second Street, Pomona, CA 91766, USA.
| |
Collapse
|
24
|
Yang H, Sun Q, Liang Y, Jiang Y, Li R, Ye J. Antinociception of the spirocyclopiperazinium salt compound LXM-15 via activating α7 nAChR and M4 mAChR and inhibiting CaMKIIα/cAMP/CREB/CGRP signalling pathway in mice. Regul Toxicol Pharmacol 2018; 94:108-114. [PMID: 29353067 DOI: 10.1016/j.yrtph.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 01/22/2023]
Abstract
The aim of this study was to investigate the analgesic effect of the spirocyclopiperazinium salt compound LXM-15 by intragastric administration in thermal and chemical pain models and further to elucidate the possible molecular mechanisms. The results showed that LXM-15 exerted significant antinociception in hot-plate test, formalin test and acetic acid writhing test. Western blot analysis showed that LXM-15 significantly reduced the upregulation of phosphorylation of calcium/calmodulin -dependent protein kinase IIα (CaMKIIα) and cAMP response element-binding protein (CREB), and further decreased the elevation of calcitonin gene related peptide (CGRP) in the dorsal root ganglion (DRG) and spinal cord in mice. ELISA analysis showed the level of cAMP in the spinal cord was decreased by LXM-15. All effects of LXM-15 could be blocked by methyllycaconitine citrate (MLA, a selective α7 nicotinic receptor antagonist) or tropicamide (TRO, a selective M4 muscarinic receptor antagonist). This study first reported that intragastric administration of LXM-15 produced significant analgesic effect, which may be related to the activation of α7 nicotinic acetylcholine receptor and M4 muscarine acetylcholine receptor, and thereby inhibiting CaMKIIα/cAMP/CREB/CGRP signalling pathway.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qi Sun
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yingying Liang
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yimin Jiang
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - Runtao Li
- Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jia Ye
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
25
|
Doyle HH, Murphy AZ. Sex differences in innate immunity and its impact on opioid pharmacology. J Neurosci Res 2017; 95:487-499. [PMID: 27870418 DOI: 10.1002/jnr.23852] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/22/2016] [Accepted: 07/06/2016] [Indexed: 12/30/2022]
Abstract
Morphine has been and continues to be one of the most potent and widely used drugs for the treatment of pain. Clinical and animal models investigating sex differences in pain and analgesia demonstrate that morphine is a more potent analgesic in males than in females. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4), located on glial cells. Activation of glial TLR4 initiates a neuroinflammatory response that directly opposes morphine analgesia. Females of many species have a more active immune system than males; however, few studies have investigated glial cells as a potential mechanism driving sexually dimorphic responses to morphine. This Mini-Review illustrates the involvement of glial cells in key processes underlying observed sex differences in morphine analgesia and suggests that targeting glia may improve current treatment strategies for pain. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hillary H Doyle
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
26
|
Sex Differences in Microglia Activity within the Periaqueductal Gray of the Rat: A Potential Mechanism Driving the Dimorphic Effects of Morphine. J Neurosci 2017; 37:3202-3214. [PMID: 28219988 DOI: 10.1523/jneurosci.2906-16.2017] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/30/2017] [Accepted: 02/06/2017] [Indexed: 11/21/2022] Open
Abstract
Although morphine remains the primary drug prescribed for alleviation of severe or persistent pain, both preclinical and clinical studies have shown that females require two to three times more morphine than males to produce comparable levels of analgesia. In addition to binding to the neuronal μ-opioid receptor, morphine binds to the innate immune receptor toll-like receptor 4 (TLR4) localized primarily on microglia. Morphine action at TLR4 initiates a neuroinflammatory response that directly opposes the analgesic effects of morphine. Here, we test the hypothesis that the attenuated response to morphine observed in females is the result of increased microglia activation in the periaqueductal gray (PAG), a central locus mediating the antinociceptive effects of morphine. We report that, whereas no overall sex differences in the density of microglia were noted within the PAG of male or female rats, microglia exhibited a more "activated" phenotype in females at baseline, with the degree of activation a significant predictor of morphine half-maximal antinociceptive dose (ED50) values. Priming microglia with LPS induced greater microglia activation in the PAG of females compared with males and was accompanied by increased transcription levels of IL-1β and a significant rightward shift in the morphine dose-response curve. Blockade of morphine binding to PAG TLR4 with (+)-naloxone potentiated morphine antinociception significantly in females such that no sex differences in ED50 were observed. These results demonstrate that PAG microglia are sexually dimorphic in both basal and LPS-induced activation and contribute to the sexually dimorphic effects of morphine in the rat.SIGNIFICANCE STATEMENT We demonstrate that periaqueductal gray (PAG) microglia contribute to the sexually dimorphic effects of morphine. Specifically, we report that increased activation of microglia in the PAG contributes to the attenuated response to morphine observed in females. Our data further implicate the innate immune receptor toll-like receptor 4 (TLR4) as an underlying mechanism mediating these effects and establish that TLR4 inhibition in the PAG of females reverses the sex differences in morphine responsiveness. These data suggest novel methods to improve current opioid-based pain management via inhibition of glial TLR4 and illustrate the necessity for sex-specific research and individualized treatment strategies for the management of pain in men and women.
Collapse
|
27
|
Melchior M, Poisbeau P, Gaumond I, Marchand S. Insights into the mechanisms and the emergence of sex-differences in pain. Neuroscience 2016; 338:63-80. [DOI: 10.1016/j.neuroscience.2016.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 12/19/2022]
|
28
|
Yamagata K, Sugimura M, Yoshida M, Sekine S, Kawano A, Oyamaguchi A, Maegawa H, Niwa H. Estrogens Exacerbate Nociceptive Pain via Up-Regulation of TRPV1 and ANO1 in Trigeminal Primary Neurons of Female Rats. Endocrinology 2016; 157:4309-4317. [PMID: 27689413 DOI: 10.1210/en.2016-1218] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Several trigeminal pain disorders show sex differences, and high levels of estrogens may underlie these differences. The interaction between transient receptor potential vanilloid 1 (TRPV1) and anoctamin 1 (ANO1) plays an important role in peripheral nociception. However, whether TRPV1 and ANO1 are involved in estrogen-modulated trigeminal pain sensitivity is unclear. In this study, we examined estradiol (E2) modulation of nociception through behavioral and immunohistological experiments after application of capsaicin (Cap), a selective TRPV1 agonist, onto the ocular surface in ovariectomized rats treated with high-dose E2 (HE) or low-dose E2 (LE) for 2 days. In addition, we used real-time PCR to study the effects of E2 on the expression levels of TRPV1 and ANO1 mRNA in trigeminal ganglia. In the behavioral experiment, the HE group showed significant potentiation of Cap-evoked nocifensive behavior compared with the LE group. Immunohistochemistry showed that Cap evoked a significantly greater number of cells that were immunoreactive for c-Fos, a marker of nociceptive activation, in the trigeminal subnucleus caudalis/upper cervical cord in the HE group than in the LE group. The number of c-Fos-immunoreactive cells in the ventral trigeminal interpolaris/caudalis were similar in the 2 groups. Real-time PCR showed that the levels of TRPV1 and ANO1 mRNA in the HE group were significantly higher than levels in the LE group. Thus, high levels of estrogens may be a risk factor for Cap-evoked nociceptive pain, and estrogen-dependent increases in TRPV1 and ANO1 are likely involved in modulating the nociceptive response in the trigeminal area.
Collapse
Affiliation(s)
- Kazuaki Yamagata
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Mitsutaka Sugimura
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Miki Yoshida
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Shinichi Sekine
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Akiyo Kawano
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Aiko Oyamaguchi
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Hiroharu Maegawa
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| | - Hitoshi Niwa
- Department of Dental Anesthesiology (K.Y., M.Y., A.K., A.O., H.M., H.N.), Osaka University Graduate School of Dentistry, Suita City, Osaka, 565-0871 Japan; Department of Dental Anesthesiology (M.S.), Field of Oral Maxillofacial Rehabilitation, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima City, Kagoshima, Japan; and Division of Special Care Dentistry (S.S.), Osaka University Graduate School of Dentistry, Suita City, Osaka, Japan
| |
Collapse
|
29
|
Tian Z, Wang DS, Wang XS, Tian J, Han J, Guo YY, Feng B, Zhang N, Zhao MG, Liu SB. Analgesic effects of NB001 on mouse models of arthralgia. Mol Brain 2015; 8:60. [PMID: 26452469 PMCID: PMC4599030 DOI: 10.1186/s13041-015-0151-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
Our previous studies have demonstrated the critical roles of calcium-stimulated adenylyl cyclase 1 (AC1) in the central nervous system in chronic pain. In the present study, we examined the analgesic effects of NB001, a selective inhibitor of AC1, on animal models of ankle joint arthritis and knee joint arthritis induced by complete Freund’s adjuvant injection. NB001 treatment had no effect on joint edema, stiffness, and joint destruction. Furthermore, the treatment failed to attenuate the disease progression of arthritis. However, NB001 treatment (3 mg/kg) significantly weakened joint pain-related behavior in the mouse models of ankle joint arthritis and knee joint arthritis. Results indicated that NB001 exhibited an analgesic effect on the animal models of arthritis but was not caused by anti-inflammatory activities.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-sheng Wang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China
| | - Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Tian
- Department of Pediatrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Jing Han
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan-yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Bin Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.,Department of Pharmacy, School of Stomatology, Fourth Military Medical University, Xi'an, 710032, China
| | - Nan Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Shui-bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
30
|
Djouhri L, Al Otaibi M, Kahlat K, Smith T, Sathish J, Weng X. Persistent hindlimb inflammation induces changes in activation properties of hyperpolarization-activated current (Ih) in rat C-fiber nociceptors in vivo. Neuroscience 2015; 301:121-33. [PMID: 26047727 DOI: 10.1016/j.neuroscience.2015.05.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022]
Abstract
A hallmark of chronic inflammation is hypersensitivity to noxious and innocuous stimuli. This inflammatory pain hypersensitivity results partly from hyperexcitability of nociceptive dorsal root ganglion (DRG) neurons innervating inflamed tissue, although the underlying ionic mechanisms are not fully understood. However, we have previously shown that the nociceptor hyperexcitability is associated with increased expression of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) protein and hyperpolarization-activated current (Ih) in C-nociceptors. Here we used in vivo voltage-clamp and current-clamp recordings, in deeply anesthetized rats, to determine whether activation properties of Ih in these C-nociceptors also change following persistent (not acute) hindlimb inflammation induced by complete Freund's adjuvant (CFA). Recordings were made from lumbar (L4/L5) C-nociceptive DRG neurons. Behavioral sensory testing was performed 5-7days after CFA treatment, and all the CFA-treated group showed significant behavioral signs of mechanical and heat hypersensitivity, but not spontaneous pain. Compared with control, C-nociceptors recorded 5-7days after CFA showed: (a) a significant increase in the incidence of spontaneous activity (from ∼5% to 26%) albeit at low rate (0.14±0.08Hz (Mean±SEM); range, 0.01-0.29Hz), (b) a significant increase in the percentage of neurons expressing Ih (from 35%, n=43-84%, n=50) based on the presence of voltage "sag" of >10%, and (c) a significant increase in the conductance (Gh) of the somatic channels conducting Ih along with the corresponding Ih,Ih, activation rate, but not voltage dependence, in C-nociceptors. Given that activation of Ih depolarizes the neuronal membrane toward the threshold of action potential generation, these changes in Ih kinetics in CFA C-nociceptors may contribute to their hyperexcitability and thus to pain hypersensitivity associated with persistent inflammation.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - M Al Otaibi
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - K Kahlat
- Department of Physiology, College of Medicine, King Saud University, P.O. Box 7805, Riyadh 11472, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - J Sathish
- Department of Molecular and Clinical Pharmacology;Sherrington Buildings, University of Liverpool, L69 3GE, UK
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of B Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
31
|
Qi Y, Pi Z, Liu S, Song F, Lin N, Liu Z. A metabonomic study of adjuvant-induced arthritis in rats using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. MOLECULAR BIOSYSTEMS 2015; 10:2617-25. [PMID: 25041942 DOI: 10.1039/c4mb00131a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory and autoimmune disease accompanied by the destruction and deformities of joints. Adjuvant-induced arthritis (AIA) is one of the excellent animal models of RA used to understand disease pathogenesis and screen potential drugs. In this paper, a urinary metabonomics method based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) has been established to investigate the disease progression of AIA and find potential biomarkers of secondary inflammation in AIA rats. 24 potential biomarkers were identified, including xanthurenic acid, kynurenic acid, 4-pyridoxic acid, and phenylalanine, which revealed that tryptophan metabolism, phenylalanine metabolism, gut microbiota metabolism and energy metabolism were disturbed in AIA rats. These potential biomarkers and their corresponding pathways are helpful to further understand the mechanisms of AIA and pathogenesis of RA. This study demonstrates that metabonomics based on UPLC-Q-TOF-MS is a powerful methodology to analyze the underlying disease pathogenesis.
Collapse
Affiliation(s)
- Yao Qi
- Changchun Center of Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | | | | | | | | | | |
Collapse
|
32
|
Chen Y, Quan P, Liu X, Guo W, Song W, Cun D, Wang Z, Fang L. Enhancement of skin permeation of flurbiprofen via its transdermal patches using isopulegol decanoate (ISO-C10) as an absorption enhancer: pharmacokinetic and pharmacodynamic evaluation. J Pharm Pharmacol 2015; 67:1232-9. [DOI: 10.1111/jphp.12428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/01/2015] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
The study aimed to prepare a transdermal patch for flurbiprofen using isopulegol decanoate (ISO-C10) as a permeation enhancer, and to evaluate the in-vitro and in-vivo percutaneous permeation of the drug, as well as the pharmacodynamic efficacy of the formulation.
Methods
The permeation experiments were conducted on rabbit skin, and the pharmacokinetic profiles and synovial fluid drug concentration were measured after in-vivo transdermal administration. A deconvolution approach was employed to analyse the correlation between the in-vitro and in-vivo drug permeation. The anti-inflammatory and analgesic effects were, respectively, assessed using the adjuvant arthritis model and the acetic acid induced pain model.
Key findings
ISO-C10 could increase the in-vitro permeation of flurbiprofen from 46.22 ± 5.65 μg/cm2 to 101.07 ± 10.85 μg/cm2. The in-vivo absorption of the drug was also improved by the enhancer, and a good linear correlation was observed between the in-vitro and in-vivo drug permeation. Meanwhile, the ISO-C10 contained patches increased the drug disposition in synovial fluid and enhanced the pharmacodynamic efficacy of the formulation.
Conclusions
ISO-C10 would be a promising permeation enhancer for improving the in-vitro and in-vivo delivery of flurbiprofen from its transdermal patches.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Peng Quan
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xiaochang Liu
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wenjia Guo
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Wenting Song
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Dongmei Cun
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhongyan Wang
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Liang Fang
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Iacovides S, Avidon I, Baker F. Does pain vary across the menstrual cycle? A review. Eur J Pain 2015; 19:1389-405. [DOI: 10.1002/ejp.714] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Affiliation(s)
- S. Iacovides
- Wits Dial-a-bed Sleep Laboratory; Brain Function Research Group; School of Physiology; Faculty of Health Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - I. Avidon
- Exercise Physiology Laboratory; School of Physiology; Faculty of Health Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - F.C. Baker
- Wits Dial-a-bed Sleep Laboratory; Brain Function Research Group; School of Physiology; Faculty of Health Sciences; University of the Witwatersrand; Johannesburg South Africa
- Human Sleep Research Program; SRI International; San Francisco USA
| |
Collapse
|
34
|
Holden JE, Wang E, Moes JR, Wagner M, Maduko A, Jeong Y. Differences in carbachol dose, pain condition, and sex following lateral hypothalamic stimulation. Neuroscience 2014; 270:226-35. [PMID: 24759771 PMCID: PMC6025747 DOI: 10.1016/j.neuroscience.2014.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 01/21/2023]
Abstract
Lateral hypothalamic (LH) stimulation produces antinociception in female rats in acute, nociceptive pain. Whether this effect occurs in neuropathic pain or whether male-female sex differences exist is unknown. We examined the effect of LH stimulation in male and female rats using conditions of nociceptive and neuropathic pain. Neuropathic groups received chronic constriction injury (CCI) to induce thermal hyperalgesia, a sign of neuropathic pain. Nociceptive rats were naive for CCI, but received the same thermal stimulus following LH stimulation. To demonstrate that CCI ligation produced thermal hyperalgesia, males and females received either ligation or sham surgery for control. Both males and females demonstrated significant thermal hyperalgesia following CCI ligation (p<0.05), but male sham surgery rats also showed a significant left-right difference not present in female sham rats. In the second experiment, rats randomly assigned to CCI or nociceptive groups were given one of three doses of the cholinergic agonist carbachol (125, 250, or 500 nmol) or normal saline for control, microinjected into the left LH. Paw withdrawal from a thermal stimulus (paw withdrawal latency; PWL) was measured every 5 min for 45 min. Linear mixed models analysis showed that males and females in both pain conditions demonstrated significant antinociception, with the 500-nmol dose producing the greatest effect across groups compared with controls for the left paw (p<0.05). Female CCI rats showed equivalent responses to the three doses, while male CCI rats showed more variability for dose. However, nociceptive females responded only to the 500-nmol dose, while nociceptive males responded to all doses (p<0.05). For right PWL, only nociceptive males showed a significant carbachol dose response. These findings are suggestive that LH stimulation produces antinociception in male and female rats in both nociceptive and neuropathic pain, but dose response differences exist based on sex and pain condition.
Collapse
Affiliation(s)
- J E Holden
- The University of Michigan School of Nursing, 400 N. Ingalls Building, Ann Arbor, MI 48109-5482, United States; College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| | - E Wang
- University of Illinois at Chicago, College of Applied Health Sciences, 1919 W. Taylor Street, Chicago, IL 60612, United States.
| | - J R Moes
- Calvin College Nursing Department, Science Building Room 245, 1734 Knollcrest Circle SE, Grand Rapids, MI, United States.
| | - M Wagner
- The University of Michigan School of Nursing, 400 N. Ingalls Building, Ann Arbor, MI 48109-5482, United States.
| | - A Maduko
- The University of Michigan School of Nursing, 400 N. Ingalls Building, Ann Arbor, MI 48109-5482, United States.
| | - Y Jeong
- College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
35
|
Rahn EJ, Iannitti T, Donahue RR, Taylor BK. Sex differences in a mouse model of multiple sclerosis: neuropathic pain behavior in females but not males and protection from neurological deficits during proestrus. Biol Sex Differ 2014; 5:4. [PMID: 24581045 PMCID: PMC3974112 DOI: 10.1186/2042-6410-5-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/31/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS), a demyelinating disease of the central nervous system, is one of the most prevalent neurological disorders in the industrialized world. This disease afflicts more than two million people worldwide, over two thirds of which are women. MS is typically diagnosed between the ages of 20-40 and can produce debilitating neurological impairments including muscle spasticity, muscle paralysis, and chronic pain. Despite the large sex disparity in MS prevalence, clinical and basic research investigations of how sex and estrous cycle impact development, duration, and severity of neurological impairments and pain symptoms are limited. To help address these questions, we evaluated behavioral signs of sensory and motor functions in one of the most widely characterized animal models of MS, the experimental autoimmune encephalomyelitis (EAE) model. METHODS C57BL/6 male and female mice received flank injection of complete Freund's adjuvant (CFA) or CFA plus myelin oligodendrocyte glycoprotein 35-55 (MOG35-55) to induce EAE. Experiment 1 evaluated sex differences of EAE-induced neurological motor deficits and neuropathic pain-like behavior over 3 weeks, while experiment 2 evaluated the effect of estrous phase in female mice on the same behavioral measures for 3 months. EAE-induced neurological motor deficits including gait analysis and forelimb grip strength were assessed. Neuropathic pain-like behaviors evaluated included sensitivity to mechanical, cold, and heat stimulations. Estrous cycle was determined daily via vaginal lavage. RESULTS MOG35-55-induced EAE produced neurological impairments (i.e., motor dysfunction) including mild paralysis and decreases in grip strength in both females and males. MOG35-55 produced behavioral signs of neuropathic pain-mechanical and cold hypersensitivity-in females, but not males. MOG35-55 did not change cutaneous heat sensitivity in either sex. Administration of CFA or CFA + MOG35-55 prolonged the time spent in diestrus for 2 weeks, after which normal cycling returned. MOG35-55 produced fewer neurological motor deficits when mice were in proestrus relative to non-proestrus phases. CONCLUSIONS We conclude that female mice are superior to males for the study of neuropathic pain-like behaviors associated with MOG35-55-induced EAE. Further, proestrus may be protective against EAE-induced neurological deficits, thus necessitating further investigation into the impact that estrous cycle exerts on MS symptoms.
Collapse
Affiliation(s)
| | | | | | - Bradley K Taylor
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
36
|
Zhang X, Zhang Y, Asgar J, Niu KY, Lee J, Lee KS, Schneider M, Ro JY. Sex differences in μ-opioid receptor expression in trigeminal ganglia under a myositis condition in rats. Eur J Pain 2014; 18:151-61. [PMID: 23801566 PMCID: PMC3916151 DOI: 10.1002/j.1532-2149.2013.00352.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Peripheral opioid receptor expression is up-regulated under inflammatory conditions, which leads to the increased efficacy of peripherally administered opioids. Sex differences in the effects of inflammation, cytokines and gonadal hormones on μ-opioid receptor (MOR) expression in trigeminal ganglia (TG) are not well understood. METHODS MOR mRNA and protein levels in TG from male and female Sprague Dawley rats following complete Freund's adjuvant (CFA)-induced muscle inflammation were assessed. Cytokine-induced changes in MOR mRNA expression from TG cultures prepared from intact and gonadectomized male and female, and gonadectomized male rats with testosterone replacement were examined. Behavioural experiments were then performed to examine the efficacy of a peripherally administered MOR agonist in male, female and gonadectomized male rats under a myositis condition. RESULTS CFA and cytokine treatments induced significant up-regulation of MOR expression in TG from male, but not from female, rats. The cytokine-induced up-regulation of MOR mRNA expression was prevented in TG from orchidectomized (GDX) male rats, which was restored with testosterone replacement. Peripherally administered DAMGO, a specific MOR agonist, significantly attenuated CFA-induced masseter mechanical hypersensitivity only in intact male rats. CONCLUSIONS Collectively, these data indicate that testosterone plays a key role in the regulation of MOR in TG under inflammatory conditions, and that sex differences in the anti-hyperalgesic effects of peripherally administered opioids are, in part, mediated by peripheral opioid receptor expression levels.
Collapse
Affiliation(s)
- X Zhang
- China Medical University, Hospital of Stomatology, The First Affiliated Hospital, Department of Anesthesiology, Shenyang, 110002, China
| | - Y Zhang
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St, Baltimore, MD 21201
| | - J Asgar
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St, Baltimore, MD 21201
| | - KY Niu
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St, Baltimore, MD 21201
| | - J Lee
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St, Baltimore, MD 21201
| | - KS Lee
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St, Baltimore, MD 21201
| | - M Schneider
- University of Maryland School of Dentistry, Department of Orthodontics, 650 W. Baltimore St, Baltimore, MD 21201
| | - JY Ro
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore St, Baltimore, MD 21201
| |
Collapse
|
37
|
Grider JS, Ackerman WE. Opioid-induced hyperalgesia and tolerance: understanding opioid side effects. Expert Rev Clin Pharmacol 2014; 1:291-7. [PMID: 24422653 DOI: 10.1586/17512433.1.2.291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Opioid-induced pain or opioid tolerance should be considered when opioid therapy fails to provide expected analgesic effects or when there is unexplainable pain exacerbation following opioid treatment. As a result, an increase in the opioid dosage may not be the solution to ineffective opioid therapy for chronic pain management. A decrease in the opioid mass may actually provide pain relief in many instances. At one time, it was anticipated that opioid-induced pain was related to upregulation of NMDA receptors with a downregulation of mu receptors. However, there is growing evidence to suggest the opioid receptor-based hyperalgesic mechanism may be directly modulated by the NMDA receptor. Furthermore, the mechanism that causes opioid tolerance may be the same mechanism that causes opioid-induced pain. Current evidence suggests that opioid-induced pain sensitivity could be prevented by interrupting the cellular and molecular changes associated with the development of opioid tolerance. Continued research may lead the way to a new period in which patients prone to opioid-induced pain could be identified, allowing one to tailor pharmacologic pain therapy to each patient.
Collapse
Affiliation(s)
- Jay S Grider
- Assistant Professor, University of Kentucky, College of Medicine, Department of Anesthesiology, 800 Rose Street Suite, N 201, Lexington, KY 40536, USA. ; www.mc.uky.edu/anesthesiology
| | | |
Collapse
|
38
|
Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. Higher pain perception and lack of recovery from neuropathic pain in females: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Pain 2013; 155:388-402. [PMID: 24231652 DOI: 10.1016/j.pain.2013.10.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/30/2013] [Accepted: 10/30/2013] [Indexed: 01/23/2023]
Abstract
In experimental and clinical pain studies, the sex of subjects was rarely taken into account, even if nociceptive inputs appear to be processed and modulated by partially distinct neural mechanisms in each sex. In this study we analysed, in male and female mice, behavioural and neuronal responses in developing, maintaining, and recovering from neuropathic pain. Experiments were carried out in adult CD1 mice by using Chronic Constriction Injury (CCI) as neuropathic pain model. We investigated the temporal trend of mechanical nociceptive threshold together with functional recovery of the injured paw, and the immunofluorescence staining of proteins associated with nerve injury and repair and with spinal gliosis, 7 and 121days after CCI. A proteomic analysis on proteins extracted from sciatic nerves was also performed. Male mice showed a gradual decrease of CCI-induced allodynia, the complete recovery occurring 81days after the sciatic nerve ligation. On the contrary, in female mice, allodynia was still present 121days after CCI. Sex-dependent differences also resulted from immunofluorescence experiments: in sciatic nerve, the expression of P0 and Neu200 is greater in neuropathic males than in neuropathic females, suggesting faster nerve regeneration. Proteomic analysis confirmed sex-related differences of proteins associated with nerve regenerative processes. In addition, the reactive gliosis induced by CCI at day 7, as revealed by colocalization of glial fibrillary acidic protein (astrocytes) and CD11b (microglia) with phosphorylated p38, disappeared 121 days after CCI in male but not in female mice. These results may have important therapeutic implications for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Valentina Vacca
- CNR - National Research Council, Cell Biology and Neurobiology Institute, Roma, Italy IRCCS Santa Lucia Foundation, Roma, Italy Department of Experimental Medicine and Surgery, Division of Biochemistry, University of "Tor Vergata", Roma, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Patil MJ, Ruparel SB, Henry MA, Akopian AN. Prolactin regulates TRPV1, TRPA1, and TRPM8 in sensory neurons in a sex-dependent manner: Contribution of prolactin receptor to inflammatory pain. Am J Physiol Endocrinol Metab 2013; 305:E1154-64. [PMID: 24022869 PMCID: PMC3840203 DOI: 10.1152/ajpendo.00187.2013] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prolactin (PRL) is a hormone produced in the anterior pituitary but also synthesized extrapituitary where it can influence diverse cellular processes, including inflammatory responses. Females experience greater pain in certain inflammatory conditions, but the contribution of the PRL system to sex-dependent inflammatory pain is unknown. We found that PRL regulates transient receptor potential (TRP) channels in a sex-dependent manner in sensory neurons. At >20 ng/ml, PRL sensitizes TRPV1 in female, but not male, neurons. This effect is mediated by PRL receptor (PRL-R). Likewise, TRPA1 and TRPM8 were sensitized by 100 ng/ml PRL only in female neurons. We showed that complete Freund adjuvant (CFA) upregulated PRL levels in the inflamed paw of both male and female rats, but levels were higher in females. In contrast, CFA did not change mRNA levels of long and short PRL-R in the dorsal root ganglion or spinal cord. Analysis of PRL and PRL-R knockout (KO) mice demonstrated that basal responses to cold stimuli were only altered in females, and with no significant effects on heat and mechanical responses in both sexes. CFA-induced heat and cold hyperalgesia were not changed in PRL and PRL-R KO compared with wild-type (WT) males, whereas significant reduction of heat and cold post-CFA hyperalgesia was detected in PRL and PRL-R KO females. Attenuation of CFA-induced mechanical allodynia was observed in both PRL and PRL-R KO females and males. Thermal hyperalgesia in PRL KO females was restored by administration of PRL into hindpaws. Overall, we demonstrate a sex-dependent regulation of peripheral inflammatory hyperalgesia by the PRL system.
Collapse
Affiliation(s)
- Mayur J Patil
- Department of Pharmacology University of Texas Health Science Center at San Antonio, San Antonio, Texas; and
| | | | | | | |
Collapse
|
40
|
Sex differences in anti-allodynic, anti-hyperalgesic and anti-edema effects of Δ9-tetrahydrocannabinol in the rat. Pain 2013; 154:1709-1717. [DOI: 10.1016/j.pain.2013.05.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/20/2013] [Accepted: 05/09/2013] [Indexed: 12/11/2022]
|
41
|
Lilius TO, Jokinen V, Neuvonen MS, Väänänen AJ, Niemi M, Rauhala PV, Kalso EA. The mineralocorticoid receptor antagonist spironolactone enhances morphine antinociception. Eur J Pain 2013; 18:386-95. [PMID: 23900882 DOI: 10.1002/j.1532-2149.2013.00371.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2013] [Indexed: 11/12/2022]
Abstract
BACKGROUND Spironolactone, a commonly used mineralocorticoid receptor antagonist, has been reported to potentiate the effect of morphine in the rat. The aim of this study was to investigate the effects of spironolactone on morphine antinociception and tissue distribution. METHODS The effects of spironolactone on acute morphine-induced antinociception, induction of morphine tolerance and established morphine tolerance were studied with tail-flick and hot plate tests in male Sprague-Dawley rats. Serum, brain, and liver morphine and its metabolite concentrations were quantified using high-pressure liquid chromatography-tandem mass spectrometry. Spironolactone was also administered with the peripherally acting, P-glycoprotein (P-gp) substrate loperamide to test whether spironolactone allows loperamide to pass the blood-brain barrier. RESULTS Spironolactone (50 mg/kg, i.p.) had no antinociceptive effects of its own, but it enhanced the antinociceptive effect of morphine in both thermal tests. Two doses of spironolactone enhanced the maximum possible effect (MPE) from 19.5% to 100% in the hot plate test 90 min after administration of 4 mg/kg morphine. Morphine concentrations in the brain were increased fourfold at 90 min by spironolactone. Spironolactone did not inhibit the formation of morphine-3-glucuronide. Acute spironolactone restored morphine antinociception in morphine-tolerant rats but did not inhibit the development of tolerance. The peripherally restricted opioid, loperamide (10 mg/kg), had no antinociceptive effects when administered alone, but co-administration with spironolactone produced a 40% MPE in the hot plate test. CONCLUSIONS Spironolactone has no antinociceptive effects in thermal models of pain, but it enhances the antinociceptive effects of morphine mainly by increasing morphine central nervous system concentrations, probably by inhibiting P-gp.
Collapse
Affiliation(s)
- T O Lilius
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
42
|
Nazarian A, Tenayuca J, Almasarweh F, Armendariz A, Are D. Sex differences in formalin-evoked primary afferent release of substance P. Eur J Pain 2013; 18:39-46. [DOI: 10.1002/j.1532-2149.2013.00346.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2013] [Indexed: 02/01/2023]
Affiliation(s)
- A. Nazarian
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| | - J.M. Tenayuca
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| | - F. Almasarweh
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| | - A. Armendariz
- Department of Psychology; California State Polytechnic University; Pomona USA
| | - D. Are
- Department of Pharmaceutical Sciences; Western University of Health Sciences; Pomona USA
| |
Collapse
|
43
|
Olkkola KT, Kontinen VK, Saari TI, Kalso EA. Does the pharmacology of oxycodone justify its increasing use as an analgesic? Trends Pharmacol Sci 2013; 34:206-14. [PMID: 23465410 DOI: 10.1016/j.tips.2013.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/28/2013] [Accepted: 02/04/2013] [Indexed: 12/17/2022]
Abstract
Oxycodone is a semisynthetic opioid analgesic that is increasingly used for the treatment of acute, cancer, and chronic non-malignant pain. Oxycodone was synthesized in 1917 but its pharmacological properties were not thoroughly studied until recently. Oxycodone is a fairly selective μ-opioid receptor agonist, but there is a striking discrepancy between the relatively low binding potential and G protein activation by oxycodone and its analgesic efficacy. It has been claimed that this is because of active metabolites and enhanced passage to the central nervous system by active transport. We critically review studies on the basic pharmacology of oxycodone and on its pharmacokinetics and pharmacodynamics in humans. In particular, the role of pharmacogenomics and population pharmacokinetics in understanding the properties of oxycodone is discussed in detail. We compare oxycodone with morphine, the standard opioid in clinical use.
Collapse
Affiliation(s)
- Klaus T Olkkola
- Department of Anaesthesiology, Intensive Care, Emergency Care, and Pain Medicine, University of Turku and Turku University Hospital, P.O. Box 52 (Kiinamyllynkatu 4-8), FI-20520 Turku, Finland.
| | | | | | | |
Collapse
|
44
|
Sluka KA, Berkley KJ, O'Connor MI, Nicolella DP, Enoka RM, Boyan BD, Hart DA, Resnick E, Kwoh CK, Tosi LL, Coutts RD, Kohrt WM. Neural and psychosocial contributions to sex differences in knee osteoarthritic pain. Biol Sex Differ 2012; 3:26. [PMID: 23244577 PMCID: PMC3583673 DOI: 10.1186/2042-6410-3-26] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022] Open
Abstract
People with osteoarthritis (OA) can have significant pain that interferes with function and quality of life. Women with knee OA have greater pain and greater reductions in function and quality of life than men. In many cases, OA pain is directly related to sensitization and activation of nociceptors in the injured joint and correlates with the degree of joint effusion and synovial thickening. In some patients, however, the pain does not match the degree of injury and continues after removal of the nociceptors with a total joint replacement. Growth of new nociceptors, activation of nociceptors in the subchondral bone exposed after cartilage degradation, and nociceptors innervating synovium sensitized by inflammatory mediators could all augment the peripheral input to the central nervous system and result in pain. Enhanced central excitability and reduced central inhibition could lead to prolonged and enhanced pain that does not directly match the degree of injury. Psychosocial variables can influence pain and contribute to pain variability. This review explores the neural and psychosocial factors that contribute to knee OA pain with an emphasis on differences between the sexes and gaps in knowledge.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Isis Research Network on Musculoskeletal Health, Iowa City, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hendrich J, Alvarez P, Joseph EK, Ferrari LF, Chen X, Levine JD. In vivo and in vitro comparison of female and male nociceptors. THE JOURNAL OF PAIN 2012; 13:1224-31. [PMID: 23146406 DOI: 10.1016/j.jpain.2012.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022]
Abstract
UNLABELLED While it is generally accepted that women have lower pain thresholds for diverse forms of noxious stimuli, the mechanistic basis for this sexual dimorphism in nociceptive pain remains to be elucidated. We confirmed, in the rat, that females have lower cutaneous mechanical nociceptive thresholds and established a similar sexual dimorphism in muscle. To determine if a peripheral mechanism underlies this sexual dimorphism in pain threshold, we compared biophysical properties of cultured dorsal root ganglion (DRG) neurons that innervated the gastrocnemius muscle in female and male rats. DRG neurons from female rats, which innervated the gastrocnemius muscle, had a more hyperpolarized resting membrane potential. To determine if this was associated with a higher mechanical nociceptive threshold, in contradiction to our working hypothesis, we compared the function, in vivo, of nociceptive afferents innervating the gastrocnemius muscle in male and female rats. C-fiber nociceptors innervating muscle in female rats had higher mechanical thresholds than those in males. Other response characteristics of these nociceptors were not significantly different. Thus, both in vitro and in vivo electrophysiology experiments support the idea that lower mechanical nociceptive threshold in females may be due to sexual dimorphism in central nervous system mechanisms, a difference large enough to overcome an opposing difference in peripheral pain mechanisms. PERSPECTIVE This article unifies in vivo and in vitro electrophysiology with behavioral data examining the differences in mechanical nociceptive threshold between male and female rats. The data provide a novel perspective on the peripheral and behavioral outcomes of noxious mechanical stimulation.
Collapse
Affiliation(s)
- Jan Hendrich
- Department of Oral and Maxillofacial Surgery, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Zhang Y, Donica CL, Standifer KM. Sex differences in the Nociceptin/Orphanin FQ system in rat spinal cord following chronic morphine treatment. Neuropharmacology 2012; 63:427-33. [PMID: 22575074 PMCID: PMC5009626 DOI: 10.1016/j.neuropharm.2012.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 12/24/2022]
Abstract
Nociceptin/Orphanin FQ (N/OFQ) appears to contribute to the development of morphine tolerance, as blockade of its actions will block or reverse the process. To better understand the contribution of N/OFQ to the development of morphine tolerance, this study examined the effect of chronic morphine treatment on levels of N/OFQ and levels and activity of the N/OFQ peptide (NOP) receptor in spinal cord (SC) from male and female rats. Both male and female Wistar rats showed less responsiveness to morphine after subcutaneous injection of escalating doses of morphine (10, 20, 40, 60 and 80 mg/kg, respectively) twice daily for five consecutive days. Male rats were more tolerant to the antinociceptive actions of morphine than females. The N/OFQ content of SC extracts was higher in females than in males, regardless of treatment; following chronic morphine treatment the difference in N/OFQ levels between males and females was more pronounced. N/OFQ content in cerebrospinal fluid (CSF) was reduced 40% in male and 16% in female rats with chronic morphine exposure, but increased in periaqueductal grey of both sexes. Chronic morphine treatment increased NOP receptor levels 173% in males and 137% in females, while decreasing affinity in both. Chronic morphine increased the efficacy of N/OFQ-stimulated [³⁵S]GTPγS binding to SC membranes from male rats, consistent with increased receptor levels. Taken together, these findings demonstrate sex differences in N/OFQ-NOP receptor expression and NOP receptor activity following chronic morphine treatment. They also suggest interplay between endogenous N/OFQ and chronic morphine treatment that results in nociceptive modulation.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | - Courtney L. Donica
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| | - Kelly M. Standifer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA
| |
Collapse
|
47
|
Ji Y, Tang B, Cao DY, Wang G, Traub RJ. Sex differences in spinal processing of transient and inflammatory colorectal stimuli in the rat. Pain 2012; 153:1965-1973. [PMID: 22819535 DOI: 10.1016/j.pain.2012.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 02/06/2023]
Abstract
Sex differences in the spinal processing of somatic and visceral stimuli contribute to greater female sensitivity in many pain disorders. The present study examined spinal mechanisms that contribute to sex differences in visceral sensitivity. The visceromotor response to colorectal distention (CRD) was more robust in normal female rats and after intracolonic mustard oil compared with that in male rats. No sex difference was observed in the CRD-evoked response of lumbosacral (LS) and thoracolumbar (TL) colonic afferents in normal and mustard oil-treated rats, but there was a sex difference in spontaneous activity that was exacerbated by intracolonic mustard oil. The response of visceroceptive dorsal horn neurons to CRD was greater in normal female rats in the LS and TL spinal segments. The effect of intracolonic mustard oil on the CRD-evoked response of different phenotypes of visceroceptive dorsal horn neurons was dependent on sex and segment. The NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) dose-dependently attenuated the visceromotor response in normal rats with greater effect in male rats. Correspondingly, there was greater cell membrane expression of the GluN1 subunit in dorsal horn extracts in female rats. After intracolonic mustard oil, there was no longer a sex difference in the effect of APV nor GluN1 expression in LS segments, but greater female expression in TL segments. These data document a sex difference in spinal processing of nociceptive visceral stimuli from the normal and inflamed colon. Differences in dorsal horn neuronal activity and NMDA receptor expression contribute to the sex differences in the visceral sensitivity observed in awake rats.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA Center for Pain Studies, University of Maryland, Baltimore, MD, USA Program in Neuroscience, University of Maryland, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
48
|
Anabolic-androgenic steroid effects on nociception and morphine antinociception in male rats. Pharmacol Biochem Behav 2011; 99:500-8. [PMID: 21586302 DOI: 10.1016/j.pbb.2011.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the effects of acute and chronic administration of anabolic-androgenic steroids (AAS) on nociception and morphine antinociception in acute pain models, as well as on chronic inflammatory nociception. In Experiment 1, adult, gonadally intact male rats were injected s.c. for 28 days with either 5 mg/kg testosterone (T), dihydrotestosterone (DHT), stanozolol (STAN), or safflower oil vehicle (N=12-25/group). On day 28, rats in each group were tested on acute thermal and mechanical nociceptive assays, before and after morphine treatment. In Experiment 2, rats in each group (N=8-10/group) were injected with mineral oil or complete Freund's adjuvant (CFA) into one hindpaw after 28 days of AAS treatment, and then tested for thermal hyperalgesia, mechanical allodynia, inflammation and locomotor suppression intermittently for 28 days. Experiment 3 replicated nociceptive measurements in Experiments 1 and 2, but with a single AAS or vehicle injection occurring 3h prior to testing (N=10-12/group). While chronic AAS administration tended to decrease body weight gain and alter reproductive organ weights in the expected manner, it did not significantly alter acute nociception nor attenuate the development of various chronic pain indices after CFA administration. Morphine antinociceptive potency was significantly decreased by chronic DHT on the hot plate test only. Acute AAS administration also did not significantly alter acute or chronic nociception, or morphine antinociceptive potency. Comparisons between acute and chronic AAS administration suggest that steroid tolerance did not occur in rats treated with AAS chronically. Taken together, these data do not support the hypothesis that AAS exposure alters nociception or morphine antinociception in gonadally intact males.
Collapse
|
49
|
Sachs D, Coelho FM, Costa VV, Lopes F, Pinho V, Amaral FA, Silva TA, Teixeira AL, Souza DG, Teixeira MM. Cooperative role of tumour necrosis factor-α, interleukin-1β and neutrophils in a novel behavioural model that concomitantly demonstrates articular inflammation and hypernociception in mice. Br J Pharmacol 2011; 162:72-83. [PMID: 20942867 DOI: 10.1111/j.1476-5381.2010.00895.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
UNLABELLED BACKGROUND AND PURPOSE; Chronic joint inflammation and pain are the hallmarks of disease in patients with inflammatory arthritis, notably rheumatoid arthritis. The aim of the present study was to investigate the relative contribution of tumour necrosis factor (TNF)-α, interleukin (IL)-1β and neutrophil influx for joint inflammation and nociception in a novel murine model of antigen-induced arthritis (AIA). EXPERIMENTAL APPROACH AIA was induced by administration of antigen into knee joint of previously immunized mice. Neutrophil accumulation was determined by counting neutrophils in the joints and assessing myeloperoxidase activity in tissues surrounding the joints. TNF-α, IL-1β and CXCL-1 were measured by elisa. Mechanical hypernociception was assessed in parallel, using an electronic pressure meter. KEY RESULTS Hypernociception was dependent on antigen dose and the time after its administration; it was prevented by treatment with morphine and associated with neutrophil infiltration and local production of TNF-α, IL-1β and CXCL-1. Administration of a chimeric monoclonal antibody to TNF-α (infliximab) or IL-1receptor antagonist prevented neutrophil influx and hypernociception, and this was comparable to the effects of dexamethasone. Treatment with fucoidin (a leucocyte adhesion inhibitor) greatly suppressed neutrophil influx and local production of TNF-α and IL-1β, and hypernociception. CONCLUSIONS AND IMPLICATIONS In conclusion, the present study describes a new model that allows for the concomitant evaluation of articular hypernociception and inflammation. Using this system, we demonstrated that a positive feedback loop involving neutrophil influx and the pro-inflammatory cytokines TNF-α and IL-1β is necessary for articular hypernociception after antigen challenge of immunized mice.
Collapse
Affiliation(s)
- Daniela Sachs
- Imunofarmacologia, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sex-differential modulation of visceral pain by brain derived neurotrophic factor (BDNF) in rats. Neurosci Lett 2010; 478:184-7. [DOI: 10.1016/j.neulet.2010.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 12/23/2022]
|