1
|
Interaction of Opioids with TLR4-Mechanisms and Ramifications. Cancers (Basel) 2021; 13:cancers13215274. [PMID: 34771442 PMCID: PMC8582379 DOI: 10.3390/cancers13215274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent evidence indicates that opioids can be active at a receptor that is abundantly expressed on innate immune cells as well as cancer cells: the receptor is termed toll-like receptor 4 (TLR4). TLR4 is increasingly recognised as playing key roles in tumour biology and anticancer defences. However, the issue of whether TLR4 mediates some of the effects of opioids on tumour growth and metastasis is entirely unknown. We review existing evidence, mechanisms, and functional consequences of the action of opioids at TLR4. This opens new avenues of research on the role of opioids in cancer. Abstract The innate immune receptor toll-like receptor 4 (TLR4) is known as a sensor for the gram-negative bacterial cell wall component lipopolysaccharide (LPS). TLR4 activation leads to a strong pro-inflammatory response in macrophages; however, it is also recognised to play a key role in cancer. Recent studies of the opioid receptor (OR)-independent actions of opioids have identified that TLR4 can respond to opioids. Opioids are reported to weakly activate TLR4, but to significantly inhibit LPS-induced TLR4 activation. The action of opioids at TLR4 is suggested to be non-stereoselective, this is because OR-inactive (+)-isomers of opioids have been shown to activate or to inhibit TLR4 signalling, although there is some controversy in the literature. While some opioids can bind to the lipopolysaccharide (LPS)-binding cleft of the Myeloid Differentiation factor 2 (MD-2) co-receptor, pharmacological characterisation of the inhibition of opioids on LPS activation of TLR4 indicates a noncompetitive mechanism. In addition to a direct interaction at the receptor, opioids affect NF-κB activation downstream of both TLR4 and opioid receptors and modulate TLR4 expression, leading to a range of in vivo outcomes. Here, we review the literature reporting the activity of opioids at TLR4, its proposed mechanism(s), and the complex functional consequences of this interaction.
Collapse
|
2
|
Civciristov S, Halls ML. Signalling in response to sub-picomolar concentrations of active compounds: Pushing the boundaries of GPCR sensitivity. Br J Pharmacol 2019; 176:2382-2401. [PMID: 30801691 DOI: 10.1111/bph.14636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
There is evidence for ultra-sensitive responses to active compounds at concentrations below picomolar levels by proteins and receptors found in species ranging from bacteria to mammals. We have recently shown that such ultra-sensitivity is also demonstrated by a wide range of prototypical GPCRs, and we have determined the molecular mechanisms behind these responses for three family A GPCRs: the relaxin receptor, RXFP1; the β2 -adrenoceptor; and the M3 muscarinic ACh receptor. Interestingly, there are reports of similar ultra-sensitivity by more than 15 human GPCR families, in addition to other human receptors and channels. These occur through a diverse range of signalling pathways and produce modulation of important physiological processes, including neuronal transmission, chemotaxis, gene transcription, protein/ion uptake and secretion, muscle contraction and relaxation, and phagocytosis. Here, we summarise the accumulating evidence of ultra-sensitive receptor signalling to show that this is a common, though currently underappreciated, property of GPCRs. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Thomas J, Mustafa S, Johnson J, Nicotra L, Hutchinson M. The relationship between opioids and immune signalling in the spinal cord. Handb Exp Pharmacol 2015; 227:207-238. [PMID: 25846621 DOI: 10.1007/978-3-662-46450-2_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Opioids are considered the gold standard for the treatment of moderate to severe pain. However, heterogeneity in analgesic efficacy, poor potency and side effects are associated with opioid use, resulting in dose limitations and suboptimal pain management. Traditionally thought to exhibit their analgesic actions via the activation of the neuronal G-protein-coupled opioid receptors, it is now widely accepted that neuronal activity of opioids cannot fully explain the initiation and maintenance of opioid tolerance, hyperalgesia and allodynia. In this review we will highlight the evidence supporting the role of non-neuronal mechanisms in opioid signalling, paying particular attention to the relationship of opioids and immune signalling.
Collapse
Affiliation(s)
- Jacob Thomas
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia,
| | | | | | | | | |
Collapse
|
4
|
Thomas J, Hutchinson MR. Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids. Expert Rev Neurother 2014; 12:1311-24. [DOI: 10.1586/ern.12.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Tseng LF, Hogan QH, Wu HE. (+)-Morphine attenuates the (-)-morphine-produced tail-flick inhibition via the sigma-1 receptor in the mouse spinal cord. Life Sci 2011; 89:875-7. [PMID: 21989208 PMCID: PMC3220751 DOI: 10.1016/j.lfs.2011.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/16/2011] [Accepted: 09/10/2011] [Indexed: 11/29/2022]
Abstract
AIMS We have previously demonstrated that pretreatment with (+)-morphine given intrathecally attenuates the intrathecal (-)-morphine-produced tail-flick inhibition. The phenomenon has been defined as antianalgesia against (-)-morphine-produced analgesia. Present experiments were then undertaken to determine if the antianalgesic effect induced by (+)-morphine given spinally is mediated by the stimulation of the sigma-1 receptor in the mouse spinal cord. MAIN METHODS Sigma-1 receptor ligands, N-[2-(3,4-Dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide (BD1047) and (+)-pentazocine were used to determine if (+)-morphine-induced antianalgesia is mediated by the stimulation of sigma-1 receptors in the mouse spinal cord. Tail-flick test was employed to measure the nociceptive response. All compounds were given intrathecally. KEY FINDINGS Pretreatment with BD1047 (1-10 μg) or (+)-pentazocine (0.1-10 μg) dose-dependently reversed the attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine (10 pg). BD1047 and (+)-pentazocine injected alone did not affect (-)-morphine-produced tail-flick inhibition. SIGNIFICANCE The finding indicates that (+)-morphine attenuates the (-)-morphine-produced tail-flick inhibition via the activation of the sigma-1 receptors in the mouse spinal cord. Sigma-1 receptors may play an important role in opioid analgesia in the mouse spinal cord.
Collapse
Affiliation(s)
- Leon F. Tseng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, USA
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
6
|
Nicotra L, Loram LC, Watkins LR, Hutchinson MR. Toll-like receptors in chronic pain. Exp Neurol 2011; 234:316-29. [PMID: 22001158 DOI: 10.1016/j.expneurol.2011.09.038] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 12/16/2022]
Abstract
Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed.
Collapse
Affiliation(s)
- Lauren Nicotra
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, South Australia, 5005, Australia
| | | | | | | |
Collapse
|
7
|
Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR. Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 2011; 63:772-810. [PMID: 21752874 DOI: 10.1124/pr.110.004135] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vastly stimulated by the discovery of opioid receptors in the early 1970s, preclinical and clinical research was directed at the study of stereoselective neuronal actions of opioids, especially those played in their crucial analgesic role. However, during the past decade, a new appreciation of the non-neuronal actions of opioids has emerged from preclinical research, with specific appreciation for the nonclassic and nonstereoselective sites of action. Opioid activity at Toll-like receptors, newly recognized innate immune pattern recognition receptors, adds substantially to this unfolding story. It is now apparent from molecular and rodent data that these newly identified signaling events significantly modify the pharmacodynamics of opioids by eliciting proinflammatory reactivity from glia, the immunocompetent cells of the central nervous system. These central immune signaling events, including the release of cytokines and chemokines and the associated disruption of glutamate homeostasis, cause elevated neuronal excitability, which subsequently decreases opioid analgesic efficacy and leads to heightened pain states. This review will examine the current preclinical literature of opioid-induced central immune signaling mediated by classic and nonclassic opioid receptors. A unification of the preclinical pharmacology, neuroscience, and immunology of opioids now provides new insights into common mechanisms of chronic pain, naive tolerance, analgesic tolerance, opioid-induced hyperalgesia, and allodynia. Novel pharmacological targets for future drug development are discussed in the hope that disease-modifying chronic pain treatments arising from the appreciation of opioid-induced central immune signaling may become practical.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Pharmacology, School of Medical Science, University of Adelaide, South Australia, Australia, 5005.
| | | | | | | | | | | |
Collapse
|
8
|
Sun J, Liu S, Mata M, Fink DJ, Hao S. Transgene-mediated expression of tumor necrosis factor soluble receptor attenuates morphine tolerance in rats. Gene Ther 2011; 19:101-8. [PMID: 21614028 PMCID: PMC3175012 DOI: 10.1038/gt.2011.76] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Opiate/narcotic analgesics are the most effective treatments for chronic severe pain, but their clinical utility is often hampered by the development of analgesic tolerance. Recent evidence suggests chronic morphine may activate glial cells to release proinflammatory cytokines. In this study, we used herpes simplex virus (HSV) vectors-based gene transfer to dorsal root ganglion to produce a local release of p55 TNF soluble receptor in the spinal cord in rats with morphine tolerance. Subcutaneous inoculation of HSV vectors expressing p55 TNF soluble receptor into the plantar surface of the hindpaws, enhanced the antinociceptive effect of acute morphine in rats. Subcutaneous inoculation of those vectors into hindpaws also delayed the development of chronic morphine tolerance in rats. TNF soluble receptor expressed by HSV vector reduced gene transcription of mRNA of spinal TNFα and IL-1β induced by repeated morphine. Furthermore, we found that TNF soluble receptor mediated by HSV, reversed the upregulation of TNFα, IL-1β and phosphorylation of p38 mitogen-activated protein kinase (MAPK) induced by repeated morphine. These results support the concept that proinflammatory cytokines may play an important role in the pathogenesis induced by morphine. This study provides a novel approach to treating morphine tolerance.
Collapse
Affiliation(s)
- J Sun
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | |
Collapse
|
9
|
Sweitzer S, De Leo J. Propentofylline: glial modulation, neuroprotection, and alleviation of chronic pain. Handb Exp Pharmacol 2011:235-50. [PMID: 20859798 DOI: 10.1007/978-3-642-13443-2_8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Propentofylline is a unique methylxanthine with clear cyclic AMP, phosphodiesterase, and adenosine actions, including enhanced synaptic adenosine signaling. Both in vitro and in vivo studies have demonstrated profound neuroprotective, antiproliferative, and anti-inflammatory effects of propentofylline. Propentofylline has shown efficacy in preclinical models of stroke, opioid tolerance, and acute and chronic pain. Clinically, propentofylline has shown efficacy in degenerative and vascular dementia, and as a potential adjuvant treatment for schizophrenia and multiple sclerosis. Possible mechanisms of action include a direct glial modulation to decrease a reactive phenotype, decrease glial production and release of damaging proinflammatory factors, and enhancement of astrocyte-mediated glutamate clearance. This chapter reviews the literature that supports a myriad of protective actions of this small molecule and implicates propentofylline as a potential therapeutic for the treatment of chronic pain. From these studies, we propose a CNS multipartite synaptic action of propentofylline that includes modulation of pre- and postsynaptic neurons, astrocytes, and microglia in the treatment of chronic pain syndromes, including, but not limited to, neuropathic pain.
Collapse
Affiliation(s)
- Sarah Sweitzer
- Department of Pharmacology, University of South Carolina, USC School of Medicine, Columbia, SC 29208, USA
| | | |
Collapse
|
10
|
Hutchinson MR, Lewis SS, Coats BD, Rezvani N, Zhang Y, Wieseler JL, Somogyi AA, Yin H, Maier SF, Rice KC, Watkins LR. Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience 2010; 167:880-93. [PMID: 20178837 DOI: 10.1016/j.neuroscience.2010.02.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/18/2010] [Accepted: 02/06/2010] [Indexed: 01/22/2023]
Abstract
Opioid-induced glial activation and its proinflammatory consequences have been associated with both reduced acute opioid analgesia and the enhanced development of tolerance, hyperalgesia and allodynia following chronic opioid administration. Intriguingly, recent evidence demonstrates that these effects can result independently from the activation of classical, stereoselective opioid receptors. Here, a structurally disparate range of opioids cause activation of signaling by the innate immune receptor toll like receptor 4 (TLR4), resulting in proinflammatory glial activation. In the present series of studies, we demonstrate that the (+)-isomers of methadone and morphine, which bind with negligible affinity to classical opioid receptors, induced upregulation of proinflammatory cytokine and chemokine production in rat isolated dorsal spinal cord. Chronic intrathecal (+)-methadone produced hyperalgesia and allodynia, which were associated with significantly increased spinal glial activation (TLR4 mRNA and protein) and the expression of multiple chemokines and cytokines. Statistical analysis suggests that a cluster of cytokines and chemokines may contribute to these nociceptive behavioral changes. Acute intrathecal (+)-methadone and (+)-morphine were also found to induce microglial, interleukin-1 and TLR4/myeloid differentiation factor-2 (MD-2) dependent enhancement of pain responsivity. In silico docking analysis demonstrated (+)-naloxone sensitive docking of (+)-methadone and (+)-morphine to human MD-2. Collectively, these data provide the first evidence of the pro-nociceptive consequences of small molecule xenobiotic activation of spinal TLR4 signaling independent of classical opioid receptor involvement.
Collapse
Affiliation(s)
- M R Hutchinson
- Department of Psychology, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hutchinson MR, Zhang Y, Shridhar M, Evans JH, Buchanan MM, Zhao TX, Slivka PF, Coats BD, Rezvani N, Wieseler J, Hughes TS, Landgraf KE, Chan S, Fong S, Phipps S, Falke JJ, Leinwand LA, Maier SF, Yin H, Rice KC, Watkins LR. Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 2010; 24:83-95. [PMID: 19679181 PMCID: PMC2788078 DOI: 10.1016/j.bbi.2009.08.004] [Citation(s) in RCA: 398] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 08/07/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022] Open
Abstract
Opioid-induced proinflammatory glial activation modulates wide-ranging aspects of opioid pharmacology including: opposition of acute and chronic opioid analgesia, opioid analgesic tolerance, opioid-induced hyperalgesia, development of opioid dependence, opioid reward, and opioid respiratory depression. However, the mechanism(s) contributing to opioid-induced proinflammatory actions remains unresolved. The potential involvement of toll-like receptor 4 (TLR4) was examined using in vitro, in vivo, and in silico techniques. Morphine non-stereoselectively induced TLR4 signaling in vitro, blocked by a classical TLR4 antagonist and non-stereoselectively by naloxone. Pharmacological blockade of TLR4 signaling in vivo potentiated acute intrathecal morphine analgesia, attenuated development of analgesic tolerance, hyperalgesia, and opioid withdrawal behaviors. TLR4 opposition to opioid actions was supported by morphine treatment of TLR4 knockout mice, which revealed a significant threefold leftward shift in the analgesia dose response function, versus wildtype mice. A range of structurally diverse clinically-employed opioid analgesics was found to be capable of activating TLR4 signaling in vitro. Selectivity in the response was identified since morphine-3-glucuronide, a morphine metabolite with no opioid receptor activity, displayed significant TLR4 activity, whilst the opioid receptor active metabolite, morphine-6-glucuronide, was devoid of such properties. In silico docking simulations revealed ligands bound preferentially to the LPS binding pocket of MD-2 rather than TLR4. An in silico to in vitro prediction model was built and tested with substantial accuracy. These data provide evidence that select opioids may non-stereoselectively influence TLR4 signaling and have behavioral consequences resulting, in part, via TLR4 signaling.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Yingning Zhang
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mitesh Shridhar
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - John H. Evans
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Madison M. Buchanan
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Tina X. Zhao
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Peter F. Slivka
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Benjamen D. Coats
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Niloofar Rezvani
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Julie Wieseler
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Travis S. Hughes
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kyle E. Landgraf
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Stefanie Chan
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Stephanie Fong
- Discipline of Pharmacology, University of Adelaide, Adelaide, South Australia, Australia
| | - Simon Phipps
- Centre for Asthma and Respiratory Diseases (CARD), Division of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Joseph J. Falke
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Leslie A. Leinwand
- Centre for Asthma and Respiratory Diseases (CARD), Division of Biomedical Sciences, University of Newcastle, New South Wales, Australia
| | - Steven F. Maier
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Hang Yin
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| |
Collapse
|
12
|
Watkins LR, Hutchinson MR, Rice KC, Maier SF. The "toll" of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 2009; 30:581-91. [PMID: 19762094 DOI: 10.1016/j.tips.2009.08.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 07/27/2009] [Accepted: 08/03/2009] [Indexed: 12/24/2022]
Abstract
Glial activation participates in the mediation of pain including neuropathic pain, due to release of neuroexcitatory, proinflammatory products. Glial activation is now known to occur in response to opioids as well. Opioid-induced glial activation opposes opioid analgesia and enhances opioid tolerance, dependence, reward and respiratory depression. Such effects can occur, not via classical opioid receptors, but rather via non-stereoselective activation of toll-like receptor 4 (TLR4), a recently recognized key glial receptor participating in neuropathic pain as well. This discovery identifies a means for separating the beneficial actions of opioids (opioid receptor mediated) from the unwanted side-effects (TLR4/glial mediated) by pharmacologically targeting TLR4. Such a drug should be a stand-alone therapeutic for treating neuropathic pain as well. Excitingly, with newly-established clinical trials of two glial modulators for treating neuropathic pain and improving the utility of opioids, translation from rats-to-humans now begins with the promise of improved clinical pain control.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology & Neuroscience and The Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado USA.
| | | | | | | |
Collapse
|
13
|
Mika J, Wawrzczak-Bargiela A, Osikowicz M, Makuch W, Przewlocka B. Attenuation of morphine tolerance by minocycline and pentoxifylline in naive and neuropathic mice. Brain Behav Immun 2009; 23:75-84. [PMID: 18684397 DOI: 10.1016/j.bbi.2008.07.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 12/29/2022] Open
Abstract
We have previously demonstrated that glial inhibitors reduce the development of allodynia and hyperalgesia, potentiating the effect of a single morphine dose in a neuropathic pain model. This study explores the effects of two glial activation inhibitors, minocycline and pentoxifylline, on the development of tolerance to morphine in naive and chronic constriction injury (CCI)-exposed mice. Administration of morphine to naive (20 mg/kg; i.p.) and CCI-exposed mice (40 mg/kg; i.p.) twice daily resulted in tolerance to its anti-nociceptive effect after 6 days. Injections of morphine were combined with minocycline (30 mg/kg, i.p.) or pentoxifylline (20 mg/kg, i.p.) administered as two preemptive doses before first morphine administration in naive or pre-injury in CCI-exposed mice, and repeated twice daily 30 min before each morphine administration. With treatment, development of morphine tolerance was delayed by 5 days (from 6 to 11 days), as measured by the tail-flick test in naive and by tail-flick, von Frey, and cold plate tests in CCI-exposed mice. Western blot analysis of CD11b/c and GFAP protein demonstrated that minocycline and pentoxifylline, at doses delaying development of tolerance to morphine analgesia, significantly diminished the morphine-induced increase in CD11b/c protein level. We found that repeated systemic administration of glial inhibitors significantly delays development of morphine tolerance by attenuating the level of this microglial marker under normal and neuropathic pain conditions. Our results support the idea that targeting microglial activation during morphine therapy/treatment is a novel and clinically promising method for enhancing morphine's analgesic effects, especially in neuropathic pain.
Collapse
Affiliation(s)
- Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | | | | | | | | |
Collapse
|
14
|
Hutchinson MR, Coats BD, Lewis SS, Zhang Y, Sprunger DB, Rezvani N, Baker EM, Jekich BM, Wieseler JL, Somogyi AA, Martin D, Poole S, Judd CM, Maier SF, Watkins LR. Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 2008; 22:1178-89. [PMID: 18599265 PMCID: PMC2783238 DOI: 10.1016/j.bbi.2008.05.004] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/18/2008] [Accepted: 05/19/2008] [Indexed: 01/21/2023] Open
Abstract
Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring < or =5 min after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345,Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - Benjamen D. Coats
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Susannah S. Lewis
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Yingning Zhang
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - David B. Sprunger
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Niloofar Rezvani
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Eric M. Baker
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Brian M. Jekich
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Julie L. Wieseler
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Andrew A. Somogyi
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia, 5005
| | - David Martin
- Department of Pharmacology, Amgen, Thousand Oaks, California, USA, 91320
| | - Stephen Poole
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3QG, UK
| | - Charles M. Judd
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Steven F. Maier
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345
| | - Linda R. Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA, 80309-0345,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: 303-492-2967, Ph: 303-492-7034
| |
Collapse
|
15
|
Terashvili M, Wu HE, Schwasinger ET, Hung KC, Hong JS, Tseng LF. (+)-Morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated dopamine increase in the posterior nucleus accumbens of the rat. Eur J Pharmacol 2008; 587:147-54. [PMID: 18448094 PMCID: PMC2566855 DOI: 10.1016/j.ejphar.2008.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/08/2008] [Accepted: 03/10/2008] [Indexed: 11/18/2022]
Abstract
An unbiased conditioned place preference paradigm and the microdialysis technique was used to evaluate the effect of (+)-morphine pretreatment on the conditioned place preference produced by (-)-morphine and the increased release of the dopamine produced by mu-opioid ligand endomorphin-1, respectively, in the posterior nucleus accumbens shell of the male CD rat. (-)-Morphine (2.5-10 microg) microinjected into the posterior nucleus accumbens shell dose-dependently produced the conditioned place preference. Pretreatment with (+)-morphine (0.1-10 pg) given into the posterior accumbens shell for 45 min dose-dependently attenuated the conditioned place preference produced by (-)-morphine (5 microg) given into the same posterior accumbens shell. However, higher doses of (+)-morphine (0.1 and 1 ng) were less effective in attenuating the (-)-morphine-produced conditioned place preference. Thus, like given systemically, (+)-morphine given into the posterior nucleus accumbens shell also induces a U-shaped dose-response curve for attenuating the (-)-morphine-produced conditioned place preference. Microinjection of mu-opioid agonist endomorphin-1 (1-10 microg) given into the ventral tegmental area dose-dependently increased the release of the extracellular dopamine in the posterior nucleus accumbens shell in the urethane-anesthetized rats. The increased dopamine caused by endomorphin-1 (10 microg) was completed blocked by the (+)-morphine (10 pg) pretreatment given into ventral tegmental area. It is concluded that (+)-morphine attenuates the (-)-morphine-produced conditioned place preference and the mu-opioid receptor-mediated increase of extracellular dopamine in the posterior nucleus accumbens shell of the rat.
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Emma T. Schwasinger
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Kuei-Chun Hung
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Leon F. Tseng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
16
|
Watkins LR, Hutchinson MR, Milligan ED, Maier SF. "Listening" and "talking" to neurons: implications of immune activation for pain control and increasing the efficacy of opioids. BRAIN RESEARCH REVIEWS 2007; 56:148-69. [PMID: 17706291 PMCID: PMC2245863 DOI: 10.1016/j.brainresrev.2007.06.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 06/21/2007] [Accepted: 06/26/2007] [Indexed: 01/08/2023]
Abstract
It is recently become clear that activated immune cells and immune-like glial cells can dramatically alter neuronal function. By increasing neuronal excitability, these non-neuronal cells are now implicated in the creation and maintenance of pathological pain, such as occurs in response to peripheral nerve injury. Such effects are exerted at multiple sites along the pain pathway, including at peripheral nerves, dorsal root ganglia, and spinal cord. In addition, activated glial cells are now recognized as disrupting the pain suppressive effects of opioid drugs and contributing to opioid tolerance and opioid dependence/withdrawal. While this review focuses on regulation of pain and opioid actions, such immune-neuronal interactions are broad in their implications. Such changes in neuronal function would be expected to occur wherever immune-derived substances come in close contact with neurons.
Collapse
Affiliation(s)
- Linda R Watkins
- Department of Psychology and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | |
Collapse
|
17
|
Terashvili M, Wu HE, Moore RM, Harder DR, Tseng LF. (+)-Morphine and (-)-morphine stereoselectively attenuate the (-)-morphine-produced tail-flick inhibition via the naloxone-sensitive sigma receptor in the ventral periaqueductal gray of the rat. Eur J Pharmacol 2007; 571:1-7. [PMID: 17597599 PMCID: PMC3718891 DOI: 10.1016/j.ejphar.2007.05.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/17/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
We have previously demonstrated that (+)-morphine and (-)-morphine pretreated spinally for 45 min stereoselectively attenuates the tail-flick inhibition produced by (-)-morphine given spinally in the mouse. The present study is then undertaken to determine if the same phenomenon observed in the mouse spinal cord can also take place in the ventral periaqueductal gray of the rat. Pretreatment with (+)-morphine for 45 min at 0.3 to 3.3 fmol dose-dependently attenuated the tail-flick inhibition produced by (-)-morphine (9 nmol) given into the ventral periaqueductal gray. Likewise, pretreatment with (-)-morphine for 45 min at a higher dose (3-900 pmol), which given alone did not affect the baseline tail-flick latency, also dose-dependently attenuated the tail-flick inhibition produced by (-)-morphine. Thus, (+)-morphine is approximately 270,000-fold more potent than (-)-morphine in attenuating the (-)-morphine-produced tail-flick inhibition. The attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine or (-)-morphine was dose-dependently reversed by (+)-naloxone (27.5 to 110 pmol) pretreatment for 50 min given into the ventral periaqueductal gray. Pretreatment with the sigma receptor antagonist BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide) (11-45 nmol) for 45 min given into the ventral periaqueductal gray also reversed dose-dependently the attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine or (-)-morphine, indicating that the effects are mediated by the activation of the sigma receptors. Since (+)-morphine, (-)-morphine and (+)-naloxone do not have any affinity for the naloxone-inaccessible sigma receptors, we therefore propose that (+)-morphine and (-)-morphine attenuate the (-)-morphine-produced tail-flick inhibition via the activation of the naloxone-sensitive sigma receptor originally proposed by Tsao and Su [Tsao, L.T., Su, T.P., 1997. Naloxone-sensitive, haloperidol-sensitive, [(3)H](+)-SKF-1047-binding protein partially purified from rat liver and rat brain membranes: an opioid/sigma receptor. Synapse 25, 117-124].
Collapse
Affiliation(s)
- Maia Terashvili
- Department of Anesthesiology, Cardiovascular Research Center Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Cardiovascular Research Center Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hsiang-en Wu
- Department of Anesthesiology, Cardiovascular Research Center Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rachel M. Moore
- Department of Anesthesiology, Cardiovascular Research Center Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - David R. Harder
- Department of Physiology, Cardiovascular Research Center Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Leon F. Tseng
- Department of Anesthesiology, Cardiovascular Research Center Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
18
|
Qian L, Tan KS, Wei SJ, Wu HM, Xu Z, Wilson B, Lu RB, Hong JS, Flood PM. Microglia-Mediated Neurotoxicity Is Inhibited by Morphine through an Opioid Receptor-Independent Reduction of NADPH Oxidase Activity. THE JOURNAL OF IMMUNOLOGY 2007; 179:1198-209. [PMID: 17617613 DOI: 10.4049/jimmunol.179.2.1198] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies have shown that morphine modulates the function of glia cells through both opioid receptor dependent and independent mechanisms. However, the mechanism by which morphine regulates neuronal disorders through the alteration of microglia activity remains unclear. In this study, using rat primary mesencephalic neuron-glia cultures, we report that both l-morphine and its synthetic stereoenantiomer, d-morphine, an ineffective opioid receptor agonist, significantly reduced LPS- or 1-methyl-4-phenylpyridinium-induced dopaminergic neurotoxicity with similar efficacy, indicating a nonopioid receptor-mediated effect. In addition, using reconstituted neuron and glia cultures, subpicomolar concentrations of morphine were found to be neuroprotective only in the presence of microglia, and significantly inhibited the production of inflammatory mediators from LPS-stimulated microglia cells. Mechanistic studies showed that both l- and d- morphine failed to protect dopaminergic neurons in cultures from NADPH oxidase (PHOX) knockout mice and significantly reduced LPS-induced PHOX cytosolic subunit p47(phox) translocation to the cell membrane by inhibiting ERK phosphorylation. Taken together, our results demonstrate that morphine, even at subpicomolar concentrations, exerts potent anti-inflammatory and neuroprotective effects either through the inhibition of direct microglial activation by LPS or through the inhibition of reactive microgliosis elicited by 1-methyl-4-phenylpyridinium. Furthermore, our study reveals that inhibition of PHOX is a novel site of action for the mu-opioid receptor-independent effect of morphine.
Collapse
Affiliation(s)
- Li Qian
- Comprehensive Center for Inflammatory Disorders, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wu HE, Hong JS, Tseng LF. Stereoselective action of (+)-morphine over (-)-morphine in attenuating the (-)-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse. Eur J Pharmacol 2007; 571:145-51. [PMID: 17617400 PMCID: PMC2080825 DOI: 10.1016/j.ejphar.2007.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 05/14/2007] [Accepted: 06/04/2007] [Indexed: 10/23/2022]
Abstract
We have previously demonstrated that (+)-morphine and (-)-morphine given spinally stereoselectively attenuate the spinally-administered (-)-morphine-produced tail-flick inhibition in the mouse. The phenomenon has been defined as antianalgesia. Present studies were then undertaken to determine if the systemic administration of (+)-morphine and (-)-morphine also stereoselectively attenuates the systemic (-)-morphine-produced tail-flick inhibition and the effects of (+)-morphine and (-)-morphine are mediated by the naloxone-sensitive sigma receptor activation in male CD-1 mice. Pretreatment with (+)-morphine at a dose of 0.01-10 ng/kg given subcutaneously dose-dependently attenuated the tail-flick inhibition produced by subcutaneously-administered (-)-morphine (5 mg/kg). Pretreatment with (-)-morphine (0.01-1.0 mg/kg) given subcutaneously also attenuates the (-)-morphine-produced tail-flick inhibition. The ED50 values for (+)-morphine and (-)-morphine for inhibiting the (-)-morphine-produced tail-flick inhibition were estimated to be 30.6 pg/kg and 97.5 microg/kg, respectively. The attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine or (-)-morphine pretreatment was reversed by the pretreatment with (+)-naloxone or by the sigma receptor antagonist BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide) given subcutaneously. Pretreatment with (+)-pentazocine, a selective sigma receptor agonist, (1-10 mg/kg) given subcutaneously also attenuates (-)-morphine-produced tail-flick inhibition, which was restored by (+)-naloxone (4 mg/kg) or BD1047 (10 mg/kg) pretreated subcutaneously. It is concluded that (+)-morphine exhibits extremely high stereoselective action over (-)-morphine given systemically in attenuating the systemic (-)-morphine-produced antinociception and the antianalgesic effect of (+)-morphine and (-)-morphine is mediated by activation of the naloxone-sensitive sigma receptor.
Collapse
Affiliation(s)
- Hsiang-en Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jau-Shyong Hong
- Neuropharmacology Section, Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709
| | - Leon F. Tseng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226
- Corresponding author: Leon F. Tseng, Ph.D., Department of Anesthesiology, Medical College of Wisconsin, Medical Education Building, Room M4308, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA, Tel: (414) 456-5686, Fax: (414) 456-6507, E-mail:
| |
Collapse
|
20
|
Wu HE, Schwasinger ET, Terashvili M, Tseng LF. dextro-Morphine attenuates the morphine-produced conditioned place preference via the sigma(1) receptor activation in the rat. Eur J Pharmacol 2007; 562:221-6. [PMID: 17335800 PMCID: PMC1936970 DOI: 10.1016/j.ejphar.2007.01.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/11/2007] [Accepted: 01/30/2007] [Indexed: 11/18/2022]
Abstract
An unbiased conditioned place preference paradigm was used to evaluate the effect of dextro-morphine on the morphine-produced reward in male CD rats. Morphine sulfate (1-10 mg/kg) given intraperitoneally dose-dependently produced the conditioned place preference. Pretreatment with dextro-morphine at a dose from 0.1 to 3 microg/kg given subcutaneously dose-dependently attenuated the morphine-produced conditioned place preference. However, dextro-morphine at a higher dose 100 microg/kg did not affect the morphine-produced conditioned place preference. Thus, dextro-morphine pretreatment induces a U-shaped dose-response curve for attenuating the morphine-produced conditioned place preference. The attenuation of the morphine-produced conditioned place preference was reversed by the pretreatment with the sigma(1) receptor antagonist BD1047 (N-[2-(3,4-Dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide. dextro-Morphine or BD1047 given alone did not affect the baseline place conditioning. It is concluded that dextro-morphine attenuated the morphine-produced conditioned place preference via the sigma(1) receptor activation.
Collapse
Affiliation(s)
- Hsiang-en Wu
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| | - Emma T. Schwasinger
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| | - Maia Terashvili
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| | - Leon F. Tseng
- Dept. of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
53226
| |
Collapse
|
21
|
Abstract
This paper is the 28th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over a quarter-century of research. It summarizes papers published during 2005 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity, neurophysiology and transmitter release (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
22
|
Wu HE, Sun HS, Cheng CW, Tseng LF. p38 mitogen-activated protein kinase inhibitor SB203580 reverses the antianalgesia induced by dextro-morphine or morphine in the mouse spinal cord. Eur J Pharmacol 2006; 550:91-4. [PMID: 17026985 PMCID: PMC1850335 DOI: 10.1016/j.ejphar.2006.08.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 08/11/2006] [Accepted: 08/23/2006] [Indexed: 01/23/2023]
Abstract
We have previously demonstrated that intrathecal pretreatment with dextro-morphine or morphine attenuates the morphine-produced antinociception. The phenomenon has been defined as antianalgesia, which is mediated by a non-opioid receptor [Wu, H., Thompson, J., Sun, H., Terashvili, M., Tseng, L.F., 2005. Antianalgesia: stereo-selective action of dextro-morphine over levo-morphine on glia in the mouse spinal cord. J. Pharmacol. Exp. Ther. 314, 1101-1108]. To determine if p38 mitogen-activated protein kinase (MAPK) is involved in the antianalgesia, the effects of p38 MAPK inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole (SB203580) on the attenuation of the morphine-produced tail-flick inhibition induced by dextro-morphine or morphine were studied in male CD-1 mice. Intrathecal pretreatment with SB203580 (24.2 nmol) reversed the attenuation of the morphine-produced tail-flick inhibition induced by dextro-morphine (33 fmol) or morphine (0.3 nmol) pretreatment. The finding indicates that the antianalgesia induced by dextro-morphine or morphine is mediated by the activation of p38 MAPK in the mouse spinal cord.
Collapse
Affiliation(s)
- Hsiang-En Wu
- Department of Anesthesiology, Medical College of Wisconsin, Medical Education Building, Room M4308, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
23
|
Wu HE, Sun HS, Terashivili M, Schwasinger E, Sora I, Hall FS, Uhl GR, Tseng LF. dextro- and levo-morphine attenuate opioid delta and kappa receptor agonist produced analgesia in mu-opioid receptor knockout mice. Eur J Pharmacol 2006; 531:103-7. [PMID: 16445907 DOI: 10.1016/j.ejphar.2005.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 12/08/2005] [Accepted: 12/12/2005] [Indexed: 11/27/2022]
Abstract
We have demonstrated that the antianalgesia induced by dextro-morphine and levo-morphine is not mediated by the stimulation of mu-opioid receptors in male CD-1 mice. We now report that the dextro-morphine and levo-morphine attenuated antinociception produced by delta-opioid receptor agonist deltorphin II and kappa-opioid receptor agonist U50,488H given spinally in the male mu-opioid receptor knockout mice. The tail-flick response was used for the antinociceptive test. Intrathecal injection of levo-morphine (3 nmol) markedly inhibited the tail-flick response in wild type, partially in heterozygous, but not in homozygous mu-opioid receptor knockout mice. Intrathecal pretreatment with dextro-morphine (33 fmol) or levo-morphine (0.3 nmol) for 45 min also attenuated levo-morphine-produced antinociception in wide type mice. Intrathecal pretreatment with dextro-morphine (33 fmol) or levo-morphine (0.3 nmol) for 45 min attenuated the tail-flick inhibition produced by deltorphin II (12.8 nmol) and U50,488H (123.3 nmol) in wide type, heterozygous and homozygous mu-opioid receptor knockout mice. The findings provide additional evidence that mu-opioid receptors are not involved in the antianalgesia induced by dextro-morphine and levo-morphine.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/chemistry
- Analgesics, Opioid/pharmacology
- Animals
- Female
- Genotype
- Injections, Spinal
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Morphine/chemistry
- Morphine/pharmacology
- Nociceptors/drug effects
- Nociceptors/physiopathology
- Oligopeptides/administration & dosage
- Oligopeptides/pharmacology
- Pain/physiopathology
- Pain/prevention & control
- Pain Measurement/methods
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Stereoisomerism
Collapse
Affiliation(s)
- Hsiang-en Wu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|