1
|
Orlandi P, Banchi M, Vaglini F, Carli M, Aringhieri S, Bandini A, Pardini C, Viaggi C, Lai M, Alì G, Ottani A, Vandini E, Guidi P, Bernardeschi M, La Rocca V, Francia G, Fontanini G, Pistello M, Frenzilli G, Giuliani D, Scarselli M, Bocci G. Melanocortin receptor 4 as a new target in melanoma therapy: Anticancer activity of the inhibitor ML00253764 alone and in association with B-raf inhibitor vemurafenib. Biochem Pharmacol 2024; 219:115952. [PMID: 38036189 DOI: 10.1016/j.bcp.2023.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The aim of our study is to investigate in vitro and in vivo MC4R as a novel target in melanoma using the selective antagonist ML00253764 (ML) alone and in combination with vemurafenib, a B-rafV600E inhibitor. The human melanoma B-raf mutated A-2058 and WM 266-4 cell lines were used. An MC4R null A-2058 cell line was generated using a CRISPR/Cas9 system. MC4R protein expression was analysed by western blotting, immunohistochemistry, and immunofluorescence. Proliferation and apoptotic assays were performed with ML00253764, whereas the synergism with vemurafenib was evaluated by the combination index (CI) and Loewe methods. ERK1/2 phosphorylation and BCL-XL expression were quantified by western blot. In vivo experiments were performed in Athymic Nude-Foxn1nu male mice, injecting subcutaneously melanoma cells, and treating animals with ML, vemurafenib and their concomitant combination. Comet and cytome assays were performed. Our results show that human melanoma cell lines A-2058 and WM 266-4, and melanoma human tissue, express functional MC4R receptors on their surface. MC4R receptors on melanoma cells can be inhibited by the selective antagonist ML, causing antiproliferative and proapoptotic activity through the inhibition of phosphorylation of ERK1/2 and a reduction of BCL-XL. The concomitant combination of vemurafenib and ML caused a synergistic effect on melanoma cells in vitro and inhibited in vivo tumor growth in a preclinical model, without causing mouse weight loss or genotoxicity. Our original research contributes to the landscape of pharmacological treatments for melanoma, providing MC4R antagonists as drugs that can be added to established therapies.
Collapse
Affiliation(s)
- Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Marta Banchi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Francesca Vaglini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Marco Carli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Stefano Aringhieri
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Arianna Bandini
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Carla Pardini
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Cristina Viaggi
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Michele Lai
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Greta Alì
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Alessandra Ottani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Eleonora Vandini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Patrizia Guidi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | | | - Veronica La Rocca
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy; Scuola Superiore Sant'Anna, Pisa, Italy
| | - Giulio Francia
- Border Biomedical Research Center, University of Texas at El Paso (UTEP), El Paso, TX, USA
| | - Gabriella Fontanini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell'Area Critica, Università di Pisa, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Giada Frenzilli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Daniela Giuliani
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Sezione di Farmacologia e Medicina Molecolare, Università di Modena e Reggio Emilia, Modena, Italy
| | - Marco Scarselli
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Pisa, Italy
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Yuan XC, Tao YX. Ligands for Melanocortin Receptors: Beyond Melanocyte-Stimulating Hormones and Adrenocorticotropin. Biomolecules 2022; 12:biom12101407. [PMID: 36291616 PMCID: PMC9599618 DOI: 10.3390/biom12101407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The discovery of melanocortins in 1916 has resulted in more than 100 years of research focused on these peptides. Extensive studies have elucidated well-established functions of melanocortins mediated by cell surface receptors, including MSHR (melanocyte-stimulating hormone receptor) and ACTHR (adrenocorticotropin receptor). Subsequently, three additional melanocortin receptors (MCRs) were identified. Among these five MCRs, MC3R and MC4R are expressed primarily in the central nervous system, and are therefore referred to as the neural MCRs. Since the central melanocortin system plays important roles in regulating energy homeostasis, targeting neural MCRs is emerging as a therapeutic approach for treating metabolic conditions such as obesity and cachexia. Early efforts modifying endogenous ligands resulted in the development of many potent and selective ligands. This review focuses on the ligands for neural MCRs, including classical ligands (MSH and agouti-related peptide), nonclassical ligands (lipocalin 2, β-defensin, small molecules, and pharmacoperones), and clinically approved ligands (ACTH, setmelanotide, bremelanotide, and several repurposed drugs).
Collapse
Affiliation(s)
- Xiao-Chen Yuan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230061, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
3
|
Ulloa-Aguirre A, Zariñán T, Jardón-Valadez E. Misfolded G Protein-Coupled Receptors and Endocrine Disease. Molecular Mechanisms and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms222212329. [PMID: 34830210 PMCID: PMC8622668 DOI: 10.3390/ijms222212329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022] Open
Abstract
Misfolding of G protein-coupled receptors (GPCRs) caused by mutations frequently leads to disease due to intracellular trapping of the conformationally abnormal receptor. Several endocrine diseases due to inactivating mutations in GPCRs have been described, including X-linked nephrogenic diabetes insipidus, thyroid disorders, familial hypocalciuric hypercalcemia, obesity, familial glucocorticoid deficiency [melanocortin-2 receptor, MC2R (also known as adrenocorticotropin receptor, ACTHR), and reproductive disorders. In these mutant receptors, misfolding leads to endoplasmic reticulum retention, increased intracellular degradation, and deficient trafficking of the abnormal receptor to the cell surface plasma membrane, causing inability of the receptor to interact with agonists and trigger intracellular signaling. In this review, we discuss the mechanisms whereby mutations in GPCRs involved in endocrine function in humans lead to misfolding, decreased plasma membrane expression of the receptor protein, and loss-of-function diseases, and also describe several experimental approaches employed to rescue trafficking and function of the misfolded receptors. Special attention is given to misfolded GPCRs that regulate reproductive function, given the key role played by these particular membrane receptors in sexual development and fertility, and recent reports on promising therapeutic interventions targeting trafficking of these defective proteins to rescue completely or partially their normal function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
- Correspondence:
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico;
| | - Eduardo Jardón-Valadez
- Departamento de Recursos de la Tierra, Universidad Autónoma Metropolitana-Lerma, Lerma de Villada 52005, Estado de México, Mexico;
| |
Collapse
|
4
|
Bernardo B, Joaquim S, Garren J, Boucher M, Houle C, LaCarubba B, Qiao S, Wu Z, Esquejo RM, Peloquin M, Kim H, Breen DM. Characterization of cachexia in the human fibrosarcoma HT-1080 mouse tumour model. J Cachexia Sarcopenia Muscle 2020; 11:1813-1829. [PMID: 32924335 PMCID: PMC7749621 DOI: 10.1002/jcsm.12618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Cancer cachexia is a complex metabolic disease with unmet medical need. Although many rodent models are available, none are identical to the human disease. Therefore, the development of new preclinical models that simulate some of the physiological, biochemical, and clinical characteristics of the human disease is valuable. The HT-1080 human fibrosarcoma tumour cell line was reported to induce cachexia in mice. Therefore, the purpose of this work was to determine how well the HT-1080 tumour model could recapitulate human cachexia and to examine its technical performance. Furthermore, the efficacy of ghrelin receptor activation via anamorelin treatment was evaluated, because it is one of few clinically validated mechanisms. METHODS Female severe combined immunodeficient mice were implanted subcutaneously or heterotopically (renal capsule) with HT-1080 tumour cells. The cachectic phenotype was evaluated during tumour development, including body weight, body composition, food intake, muscle function (force and fatigue), grip strength, and physical activity measurements. Heterotopic and subcutaneous tumour histology was also compared. Energy balance was evaluated at standard and thermoneutral housing temperatures in the subcutaneous model. The effect of anamorelin (ghrelin analogue) treatment was also examined. RESULTS The HT-1080 tumour model had excellent technical performance and was reproducible across multiple experimental conditions. Heterotopic and subcutaneous tumour cell implantation resulted in similar cachexia phenotypes independent of housing temperature. Tumour weight and histology was comparable between both routes of administration with minimal inflammation. Subcutaneous HT-1080 tumour-bearing mice presented with weight loss (decreased fat mass and skeletal muscle mass/fibre cross-sectional area), reduced food intake, impaired muscle function (reduced force and grip strength), and decreased spontaneous activity and voluntary wheel running. Key circulating inflammatory biomarkers were produced by the tumour, including growth differentiation factor 15, Activin A, interleukin 6, and TNF alpha. Anamorelin prevented but did not reverse anorexia and weight loss in the subcutaneous model. CONCLUSIONS The subcutaneous HT-1080 tumour model displays many of the perturbations of energy balance and physical performance described in human cachexia, consistent with the production of key inflammatory factors. Anamorelin was most effective when administered early in disease progression. The HT-1080 tumour model is valuable for studying potential therapeutic targets for the treatment of cachexia.
Collapse
Affiliation(s)
- Barbara Bernardo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | | | - Jeonifer Garren
- Biostatistics, Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | - Magalie Boucher
- Drug Safety Research and Development, Pfizer Inc., Groton, CT, USA
| | | | | | - Shuxi Qiao
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Zhidan Wu
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Ryan M Esquejo
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Matthew Peloquin
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Hanna Kim
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Danna M Breen
- Internal Medicine Research Unit, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
5
|
Gawliński D, Gawlińska K, Frankowska M, Filip M. Maternal high-sugar diet changes offspring vulnerability to reinstatement of cocaine-seeking behavior: Role of melanocortin-4 receptors. FASEB J 2020; 34:9192-9206. [PMID: 32421249 DOI: 10.1096/fj.202000163r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Maternal diet significantly influences the proper development of offspring in utero. Modifications of diet composition may lead to metabolic and mental disorders that may predispose offspring to a substance use disorder. We assessed the impact of a maternal high-sugar diet (HSD, rich in sucrose) consumed during pregnancy and lactation on the offspring phenotype in the context of the rewarding and motivational effects of cocaine and changes within the central melanocortin (MC) system. Using an intravenous cocaine self-administration model, we showed that maternal HSD leads to increased relapse of cocaine-seeking behavior in male offspring. In addition, we demonstrated that cocaine induces changes in the level of MC-4 receptors in the offspring brain, and these changes depend on maternal diet. These studies also reveal that an MC-4 receptor antagonist reduces the reinstatement of cocaine-seeking behavior, and offspring exposed to maternal HSD are more sensitive to its effects than offspring exposed to the maternal control diet. Taken together, the results suggest that a maternal HSD and MC-4 receptors play an important role in cocaine relapse.
Collapse
Affiliation(s)
- Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
6
|
Wang W, Guo DY, Lin YJ, Tao YX. Melanocortin Regulation of Inflammation. Front Endocrinol (Lausanne) 2019; 10:683. [PMID: 31649620 PMCID: PMC6794349 DOI: 10.3389/fendo.2019.00683] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
Adrenocorticotropic hormone (ACTH), and α-, β-, and γ-melanocyte-stimulating hormones (α-, β-, γ-MSH), collectively known as melanocortins, together with their receptors (melanocortin receptors), are components of an ancient modulatory system. The clinical use of ACTH in the treatment of rheumatoid arthritis started in 1949, originally thought that the anti-inflammatory action was through hypothalamus-pituitary-adrenal axis and glucocorticoid-dependent. Subsequent decades have witnessed extensive attempts in unraveling the physiology and pharmacology of the melanocortin system. It is now known that ACTH, together with α-, β-, and γ-MSHs, also possess glucocorticoid-independent anti-inflammatory and immunomodulatory effects by activating the melanocortin receptors expressed in the brain or peripheral immune cells. This review will briefly introduce the melanocortin system and highlight the action of melanocortins in the regulation of immune functions from in vitro, in vivo, preclinical, and clinical studies. The potential therapeutic use of melanocortins are also summarized.
Collapse
Affiliation(s)
- Wei Wang
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Dong-Yu Guo
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
- *Correspondence: Dong-Yu Guo
| | - Yue-Jun Lin
- Department of Clinical Laboratory, Xiamen Huli Guoyu Clinic, Co., Ltd., Xiamen, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Ya-Xiong Tao
| |
Collapse
|
7
|
Hou ZS, Ulloa-Aguirre A, Tao YX. Pharmacoperone drugs: targeting misfolded proteins causing lysosomal storage-, ion channels-, and G protein-coupled receptors-associated conformational disorders. Expert Rev Clin Pharmacol 2018; 11:611-624. [DOI: 10.1080/17512433.2018.1480367] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM) and Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
8
|
Vaglini F, Pardini C, Di Desidero T, Orlandi P, Pasqualetti F, Ottani A, Pacini S, Giuliani D, Guarini S, Bocci G. Melanocortin Receptor-4 and Glioblastoma Cells: Effects of the Selective Antagonist ML00253764 Alone and in Combination with Temozolomide In Vitro and In Vivo. Mol Neurobiol 2017; 55:4984-4997. [DOI: 10.1007/s12035-017-0702-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
|
9
|
Huang H, Wang W, Tao YX. Pharmacological chaperones for the misfolded melanocortin-4 receptor associated with human obesity. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2496-2507. [PMID: 28284973 DOI: 10.1016/j.bbadis.2017.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 01/01/2023]
Abstract
The melanocortin-4 receptor (MC4R) plays a vital role in regulating energy homeostasis. Mutations in the MC4R cause early-onset severe obesity. The majority of loss of function MC4R mutants are retained intracellularly, many of which are not terminally misfolded and can be stabilized and targeted to the plasma membrane by different chaperones. Some of the mutants might be functional once coaxed to the cell surface. Molecular chaperones and chemical chaperones correct the misfolding of some mutant MC4Rs. However, their therapeutic application is very limited due to their non-specific mechanism of action and, for chemical chaperone, high dosage needed to be effective. Several pharmacological chaperones have been identified for the MC4R and Ipsen 5i and Ipsen 17 are the most potent and efficacious. Here we provide a comprehensive review on how different approaches have been applied to rescue misfolded MC4R mutants. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Hui Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Wei Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
10
|
Ohsawa M, Murakami T, Kume K. Possible Involvement of Insulin Resistance in the Progression of Cancer Cachexia in Mice. YAKUGAKU ZASSHI 2016; 136:687-92. [DOI: 10.1248/yakushi.15-00262-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoyasu Murakami
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Kazuhiko Kume
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
11
|
Tao YX. Constitutive activity in melanocortin-4 receptor: biased signaling of inverse agonists. ADVANCES IN PHARMACOLOGY 2015; 70:135-54. [PMID: 24931195 DOI: 10.1016/b978-0-12-417197-8.00005-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis, including both energy intake and energy expenditure. It mediates the actions of a number of hormones on energy balance. The endogenous ligands for MC4R include peptide agonists derived from processing of proopiomelanocortin and the antagonist Agouti-related peptide (AgRP). Wild-type MC4R has some basal (constitutive) activity. Naturally occurring and laboratory-generated mutations have been identified, which results in either increased or decreased basal activities. Impaired basal signaling has been suggested to be a cause of dysregulated energy homeostasis and early-onset obesity, although several constitutively active mutations have also been identified from obese patients. AgRP and several small-molecule antagonists have been shown to be inverse agonists in the Gs-cAMP pathway. However, in the extracellular signal-regulated kinase (ERK) 1/2 pathway, we showed that these inverse agonists are potent agonists, demonstrating convincingly that they are biased ligands. We also showed that some mutations that do not cause constitutive activation in the Gs-cAMP pathway cause constitutive activation in the ERK1/2 pathway, suggesting that they are biased receptors. The physiological and potential pathophysiological relevance of the biased constitutive signaling in MC4R and therapeutic potential remain to be investigated.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
12
|
Miyazaki T, Ikeda Y, Kubo I, Suganuma S, Fujita N, Itakura M, Hayashi T, Takabayashi S, Katoh H, Ohira Y, Sato M, Noguchi M, Tokumoto T. Identification of genomic locus responsible for experimentally induced testicular teratoma 1 (ett1) on mouse Chr 18. Mamm Genome 2014; 25:317-26. [PMID: 24997020 DOI: 10.1007/s00335-014-9529-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/12/2014] [Indexed: 12/12/2022]
Abstract
Spontaneous testicular teratomas (STTs) composed by various kinds of tissues are derived from primordial germ cells (PGCs) in the fetal testes of the mouse. In contrast, intra-testicular grafts of the mouse strain (129/Sv-Ter (+/+)) fetal testes possessed the ability to develop the experimental testicular teratomas (ETTs), indistinguishable from the STTs at a morphological level. In this study, linkage analysis was performed for exploration of possible candidate genes involving in ETT development using F2 intercross fetuses derived from [LTXBJ × 129/Sv-Ter (+/+)] F1 hybrids. Linkage analysis with selected simple sequence length polymorphisms along chromosomes 18 and 19, which have been expected to contain ETT-susceptibility loci, demonstrated that a novel recessive candidate gene responsible for ETT development is located in 1.1 Mb region between the SSLP markers D18Mit81 and D18Mit184 on chromosome 18 in the 129/Sv-Ter (+/+) genetic background. Since this locus is different from the previously known loci (including Ter, pgct1, and Tgct1) for STT development, we named this novel gene "experimental testicular teratoma 1 (ett1)". To resolve the location of ett1 independently from other susceptibility loci, ett1 loci was introduced in a congenic strain in which the distal segment of chromosome 18 in LTXBJ strain mice had been replaced by a 1.99 Mbp genomic segment of the 129/Sv-Ter (+/+) mice. Congenic males homozygous for the ett1 loci were confirmed to have the ability to form ETTs, indicating that this locus contain the gene responsible for ETTs. We listed candidate genes included in this region, and discussed about their possible involvement in induction of ETTs.
Collapse
Affiliation(s)
- Takehiro Miyazaki
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Choi E, Carruthers K, Zhang L, Thomas N, Battaglino RA, Morse LR, Widrick JJ. Concurrent muscle and bone deterioration in a murine model of cancer cachexia. Physiol Rep 2013; 1:e00144. [PMID: 24400146 PMCID: PMC3871459 DOI: 10.1002/phy2.144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/30/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022] Open
Abstract
Cachexia is defined as an excessive, involuntary loss of fat and lean tissue. We tested the validity of the Lewis lung carcinoma (LLC) as a model of cancer cachexia and examined its effect on the two major lean tissue components, skeletal muscle and bone. LLC cells (0.75 × 106) were injected into the left thigh of C57BL/6 mice. Control mice received an equal volume injection of growth media. Tumors were observed in all LLC-injected animals 21 and 25 days post inoculation. LLC-injected animals showed significant reductions in fat and lean mass despite having the same average daily caloric intake as media-treated mice. Global bone mineral density (BMD) had fallen by 5% and 6% in the LLC animals at 21 and 25 days, respectively, compared to a BMD increase of 5% in the 25-day media-treated animals. Extensor digitorum longus (EDL) muscles (isolated from the noninjected hindlimb) showed earlier and quantitatively greater losses in mass, physiological cross-sectional area (pCSA), and tetanic force compared to soleus muscles from the same hindlimb. By the 25th day post-LLC inoculation, EDL force/pCSA was reduced by 19% versus media treatment. This loss in specific force was not trivial as it accounted for about one-third of the reduction in EDL absolute force at this time point. Muscle strips dissected from the diaphragm of LLC mice also exhibited significant reductions in force/pCSA at day 25. We conclude that LLC is a valid model of cachexia that induces rapid losses in global BMD and in limb and respiratory muscle function.
Collapse
Affiliation(s)
- Eunhi Choi
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts ; Deparment of Physical Medicine and Rehabilitation, Hallym University College of Medicine Gangwon-do, South Korea
| | - Kadir Carruthers
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts
| | - Li Zhang
- Forsyth Institute Cambridge, Massachusetts
| | - Nathan Thomas
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts
| | | | - Leslie R Morse
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts ; Forsyth Institute Cambridge, Massachusetts
| | - Jeffrey J Widrick
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School Boston, Massachusetts
| |
Collapse
|
14
|
Mo XL, Tao YX. Activation of MAPK by inverse agonists in six naturally occurring constitutively active mutant human melanocortin-4 receptors. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1939-48. [PMID: 23791567 DOI: 10.1016/j.bbadis.2013.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 01/14/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor that plays an essential role in regulating energy homeostasis. Defects in MC4R are the most common monogenic form of obesity, with about 170 distinct mutations identified in human. In addition to the conventional Gs-stimulated adenylyl cyclase pathway, it has been recently demonstrated that MC4R also activates mitogen-activated protein kinases, extracellular signal-regulated kinases 1 and 2 (ERK1/2). Herein, we investigated the potential of four MC4R ligands that are inverse agonists at the Gs-cAMP signaling pathway, including agouti-related peptide (AgRP), MCL0020, Ipsen 5i and ML00253764, to regulate ERK1/2 activation (pERK1/2) in wild type and six naturally occurring constitutively active mutant (CAM) MC4Rs. We showed that these four inverse agonists acted as agonists for the ERK1/2 signaling cascade in wild type and CAM MC4Rs. Three mutants (P230L, L250Q and F280L) had significantly increased pERK1/2 level upon stimulation with all four inverse agonists, with maximal induction ranging from 1.6 to 4.2-fold. D146N had significantly increased pERK1/2 level upon stimulation with AgRP, MCL0020 or ML00253764, but not Ipsen 5i. The pERK1/2 levels of H76R and S127L were significantly increased only upon stimulation with AgRP or MCL0020. In summary, our studies demonstrated for the first time that MC4R inverse agonists at the Gs-cAMP pathway could serve as agonists in the MAPK pathway. These results suggested that there were multiple activation states of MC4R with ligand-specific and/or mutant-specific conformations capable of differentially coupling the MC4R to distinct signaling pathways.
Collapse
Affiliation(s)
- Xiu-Lei Mo
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
15
|
Peter JC, Rossez H, Weckering M, Zipfel G, Lecourt AC, Owen JB, Banks WA, Hofbauer KG. Protective effects of an anti-melanocortin-4 receptor scFv derivative in lipopolysaccharide-induced cachexia in rats. J Cachexia Sarcopenia Muscle 2013; 4:79-88. [PMID: 22911214 PMCID: PMC3581610 DOI: 10.1007/s13539-012-0084-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/02/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cachexia is a complex syndrome defined by weight loss due to an ongoing loss of skeletal muscle mass with or without loss of body fat. It is often associated with anorexia. Numerous results from experimental studies suggest that blockade of the melanocortin-4 receptor (MC4R) could be an effective treatment for anorexia and cachexia. In a previous study, we reported the basic pharmacological properties of a blocking anti-MC4R mAb 1E8a and its scFv derivative in vitro and in vivo. METHODS In the present study, we further characterized the mode of action of the 1E8a scFv, evaluated its pharmacokinetic properties in mice, and assessed its therapeutic potential in a lipopolysaccharide (LPS)-induced cachexia model in rats. RESULTS In vitro, scFv enhanced the efficacy of the endogenous inverse agonist Agouti-related protein. After intravenous (i.v.) administration in mice, the scFv penetrated the blood-brain barrier (BBB) and reached its central sites of action: the scFv brain-serum concentration ratios increased up to 15-fold which suggests an active uptake into brain tissue. In telemetry experiments, i.v. administration of the scFv in rats was well tolerated and only induced slight cardiovascular effects consistent with MC4R blockade, i.e., a small decrease in mean arterial pressure and heart rate. In the model of LPS-induced anorexia, i.v. administration of scFv 1E8a prevented anorexia and loss of body weight. Moreover, it stimulated a myogenic response which may contribute to the preservation of muscle mass in cachexia. CONCLUSION The pharmacological profile of scFv 1E8a suggests its potential value in the treatment of cachexia or anorexia.
Collapse
|
16
|
Steinman J, DeBoer MD. Treatment of cachexia: melanocortin and ghrelin interventions. VITAMINS AND HORMONES 2013; 92:197-242. [PMID: 23601426 DOI: 10.1016/b978-0-12-410473-0.00008-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cachexia is a condition typified by wasting of fat and LBM caused by anorexia and further endocrinological modulation of energy stores. Diseases known to cause cachectic symptoms include cancer, chronic kidney disease, and chronic heart failure; these conditions are associated with increased levels of proinflammatory cytokines and increased resting energy expenditure. Early studies have suggested the central melanocortin system as one of the main mediators of the symptoms of cachexia. Pharmacological and genetic antagonism of these pathways attenuates cachectic symptoms in laboratory models; effects have yet to be studied in humans. In addition, ghrelin, an endogenous orexigenic hormone with receptors on melanocortinergic neurons, has been shown to ameliorate symptoms of cachexia, at least in part, by an increase in appetite via melanocortin modulation, in addition to its anticatabolic and anti-inflammatory effects. These effects of ghrelin have been confirmed in multiple types of cachexia in both laboratory and human studies, suggesting a positive future for cachexia treatments.
Collapse
Affiliation(s)
- Jeremy Steinman
- Division of Pediatric Endocrinology, Department of Pediatrics, P.O. Box 800386, University of Virginia, Charlottesville, Virginia, USA
| | | |
Collapse
|
17
|
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis and has emerged as a premier target for obesity treatment. Numerous mutations in transmembrane domain 6 (TM6) of MC4R resulting in functional alterations have been identified in obese patients. Several mutagenesis studies also provided some data suggesting the importance of this domain in receptor function. To gain a better understanding of the structure-function relationship of the receptor, we performed alanine-scanning mutagenesis in TM6 to determine the functions of side chains. Of the 31 residues, two were important for cell surface expression, five were indispensable for α-melanocyte-stimulating hormone (α-MSH) and β-MSH binding, and six were important for signaling in the Gs-cAMP-PKA pathway. H264A, targeted normally to the plasma membrane, was undetectable by competitive binding assay and severely defective in basal and stimulated cAMP production and ERK1/2 phosphorylation. Nine mutants had decreased basal cAMP signaling. Seven mutants were constitutively active in cAMP signaling and their basal activities could be inhibited by two MC4R inverse agonists, Ipsen 5i and ML00253764. Five mutants were also constitutively active in the MAPK pathway with enhanced basal ERK1/2 phosphorylation. In summary, our study provided comprehensive data on the structure-function relationship of the TM6 of MC4R. We identified residues that are important for cell surface expression, ligand binding, cAMP generation, and residues for maintaining the WT receptor in active conformation. We also reported constitutive activation of the MAPK pathway and biased signaling. These data will be useful for rationally designing MC4R agonists and antagonists for treatment of eating disorders.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Cyclic AMP/metabolism
- Humans
- Imidazoles/pharmacology
- Immunohistochemistry
- Microscopy, Confocal
- Mutagenesis, Site-Directed
- Protein Binding/genetics
- Protein Binding/physiology
- Protein Structure, Tertiary/genetics
- Protein Structure, Tertiary/physiology
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/chemistry
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
Collapse
Affiliation(s)
- Hui Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 212 Greene Hall, Auburn, Alabama 36849, USA
| | | |
Collapse
|
18
|
Abstract
This editorial contains views on the importance of animal research in the field of cachexia, a crippling syndrome associated with almost all chronic diseases that dramatically impact on quality of life and survival of the patient. Unfortunately, it is infrequently identified or diagnosed and too rarely treated. Even if treated, the treatment options are extremely limited, as no truly successful therapies have been established so far. Therefore, research in animal models is of outmost importance, but care should be taken in designing these pre-clinical studies. We propose a design as close to clinical trials as possibly and to use primary endpoints that are of clinical relevance.
Collapse
Affiliation(s)
- Jochen Springer
- Applied Cachexia Research, Charité Medical School, Berlin, Germany
| | | |
Collapse
|
19
|
Tan BHL, Fladvad T, Braun TP, Vigano A, Strasser F, Deans DAC, Skipworth RJE, Solheim TS, Damaraju S, Ross JA, Kaasa S, Marks DL, Baracos VE, Skorpen F, Fearon KCH. P-selectin genotype is associated with the development of cancer cachexia. EMBO Mol Med 2012; 4:462-71. [PMID: 22473907 PMCID: PMC3443952 DOI: 10.1002/emmm.201200231] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 01/06/2023] Open
Abstract
The variable predisposition to cachexia may, in part, be due to the interaction of host genotype. We analyzed 129 single nucleotide polymorphisms (SNPs) in 80 genes for association with cachexia based on degree of weight loss (>5, >10, >15%) as well as weight loss in the presence of systemic inflammation (C-reactive protein, >10 mg/l). 775 cancer patients were studied with a validation association study performed on an independently recruited cohort (n = 101) of cancer patients. The C allele (minor allele frequency 10.7%) of the rs6136 (SELP) SNP was found to be associated with weight loss >10% both in the discovery study (odds ratio (OR) 0.52; 95% confidence intervals (CI), 0.29–0.93; p = 0.026) and the validation study (OR 0.09, 95% CI 0.01–0.98, p = 0.035). In separate studies, induction of muscle atrophy gene expression was investigated using qPCR following either tumour-induced cachexia in rats or intra-peritoneal injection of lipopolysaccharide in mice. P-selectin was found to be significantly upregulated in muscle in both models. Identification of P-selectin as relevant in both animal models and in cachectic cancer patients supports this as a risk factor/potential mediator in cachexia.
Collapse
Affiliation(s)
- Benjamin H L Tan
- University of Edinburgh, Clinical and Surgical Sciences (Surgery), Royal Infirmary, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Cachexia is a metabolic syndrome that manifests with excessive weight loss and disproportionate muscle wasting. It is related to many different chronic diseases, such as cancer, infections, liver disease, inflammatory bowel disease, cardiac disease, chronic obstructive pulmonary disease, chronic renal failure and rheumatoid arthritis. Cachexia is linked with poor outcome for the patients. In this article, we explore the role of the hypothalamus, liver, muscle tissue and adipose tissue in the pathogenesis of this syndrome, particularly concentrating on the role of cytokines, hormones and cell energy-controlling pathways (such as AMPK, PI3K/Akt and mTOR). We also look at possible future directions for therapeutic strategies.
Collapse
Affiliation(s)
| | - Sarah Briggs
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Anil Dhawan
- a Paediatric Liver, GI and Nutrition Centre, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|
21
|
Melanocortin system in cancer-related cachexia. Open Med (Wars) 2011. [DOI: 10.2478/s11536-011-0057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AbstractThe melanocortin system plays a pivotal role in the regulation of appetite and energy balance. It was recognized to play an important role in the development of cancer-related cachexia, a debilitating condition characterized by progressive body wasting associated with anorexia, increased resting energy expediture and loss of fat as well as lean body mass that cannot be simply prevented or treated by adequate nutritional support.The recent advances in understanding of mechanisms underlying cancer-related cachexia led to consequent recognition of the melanocortin system as an important potential therapeutic target. Several molecules have been made available for animal experiments, including those with oral bioavailability, that act at various checkpoints of the melanocortin system and that might confer singificant benefits for the patients suffering from cancer-related cachexia. The application of melanocortin 4 receptor antagonists/agouti-related peptide agonists has been however restricted to animal models and more pharmacological data will be necessary to progress to clinical trials on humans. Still, pharmacological targeting of the melanocortin system seem to represent an elegant and promising way of treatment of cancer-related cachexia.
Collapse
|
22
|
Dallmann R, Weyermann P, Anklin C, Boroff M, Bray-French K, Cardel B, Courdier-Fruh I, Deppe H, Dubach-Powell J, Erb M, Haefeli RH, Henneböhle M, Herzner H, Hufschmid M, Marks DL, Nordhoff S, Papp M, Rummey C, Santos G, Schärer F, Siendt H, Soeberdt M, Sumanovski LT, Terinek M, Mondadori C, Güven N, Feurer A. The orally active melanocortin-4 receptor antagonist BL-6020/979: a promising candidate for the treatment of cancer cachexia. J Cachexia Sarcopenia Muscle 2011; 2:163-174. [PMID: 21966642 PMCID: PMC3177041 DOI: 10.1007/s13539-011-0039-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/16/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND: Under physiological conditions, the melanocortin system is a crucial part of the complex network regulating food intake and energy expenditure. In pathological states, like cachexia, these two parameters are deregulated, i.e., food intake is decreased and energy expenditure is increased-a vicious combination leading to catabolism. Agouti-related protein (AgRP), the endogenous antagonist at the melanocortin-4 receptor (MC-4R), was found to increase food intake and to reduce energy expenditure. This qualifies MC-4R blockade as an attractive mode of action for the treatment of cachexia. Based on this rationale, a novel series of small-molecule MC-4R antagonists was designed, from which the orally active compound BL-6020/979 (formerly known as SNT207979) emerged as the first promising development candidate showing encouraging pre-clinical efficacy and safety properties which are presented here. METHODS AND RESULTS: BL-6020/979 is an orally available, selective and potent MC-4R antagonist with a drug-like profile. It increased food intake and decreased energy expenditure in healthy wild-type but not in MC-4R deficient mice. More importantly, it ameliorated cachexia-like symptoms in the murine C26 adenocarcinoma model; with an effect on body mass and body composition and on the expression of catabolic genes. Moreover, BL-6020/979 showed antidepressant-like properties in the chronic mild stress model in rats and exhibits a favorable safety profile. CONCLUSION: The properties of BL-6020/979 demonstrated in animal models and presented here make it a promising candidate suitable for further development towards a first-in-class treatment option for cachexia that potentially opens up the opportunity to treat two hallmarks of the disease, i.e., decreased food intake and increased energy expenditure, with one drug.
Collapse
Affiliation(s)
- R. Dallmann
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstr. 190 8057 Zurich
| | - P. Weyermann
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - C. Anklin
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Boroff
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - K. Bray-French
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - B. Cardel
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - I. Courdier-Fruh
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Deppe
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - J. Dubach-Powell
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Erb
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - R. H. Haefeli
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Henneböhle
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Herzner
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Hufschmid
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - D. L. Marks
- Department of Pediatric Endocrinology, Vollum Institute; Oregon Health Sciences University; Portland
| | - S. Nordhoff
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Papp
- Institute of Pharmacology; Polish Academy of Sciences; Krakow
| | - C. Rummey
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - G. Santos
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - F. Schärer
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - H. Siendt
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Soeberdt
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - L. T. Sumanovski
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - M. Terinek
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - C. Mondadori
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - N. Güven
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| | - A. Feurer
- Santhera Pharmaceuticals (Switzerland) Ltd.; Hammerstr. 49 4410 Liestal
| |
Collapse
|
23
|
Braun TP, Marks DL. Pathophysiology and treatment of inflammatory anorexia in chronic disease. J Cachexia Sarcopenia Muscle 2010; 1:135-145. [PMID: 21475703 PMCID: PMC3060655 DOI: 10.1007/s13539-010-0015-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/03/2010] [Indexed: 12/25/2022] Open
Abstract
Decreased appetite and involuntary weight loss are common occurrences in chronic disease and have a negative impact on both quality of life and eventual mortality. Weight loss in chronic disease comes from both fat and lean mass, and is known as cachexia. Both alterations in appetite and body weight loss occur in a wide variety of diseases, including cancer, heart failure, renal failure, chronic obstructive pulmonary disease and HIV. An increase in circulating inflammatory cytokines has been implicated as a uniting pathogenic mechanism of cachexia and associated anorexia. One of the targets of inflammatory mediators is the central nervous system, and in particular feeding centers in the hypothalamus located in the ventral diencephalon. Current research has begun to elucidate the mechanisms by which inflammation reaches the hypothalamus, and the neural substrates underlying inflammatory anorexia. Research into these neural mechanisms has suggested new therapeutic possibilities, which have produced promising results in preclinical and clinical trials. This review will discuss inflammatory signaling in the hypothalamus that mediates anorexia, and the opportunities for therapeutic intervention that these mechanisms present.
Collapse
Affiliation(s)
- Theodore P Braun
- Department of Pediatrics, Oregon Health and Sciences University, L481, 3181 SW Sam Jackson Park Road, Portland, OR 97239 USA
| | | |
Collapse
|
24
|
Alonso E, Vale C, Sasaki M, Fuwa H, Konno Y, Perez S, Vieytes MR, Botana LM. Calcium oscillations induced by gambierol in cerebellar granule cells. J Cell Biochem 2010; 110:497-508. [PMID: 20336695 DOI: 10.1002/jcb.22566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gambierol is a marine polyether ladder toxin derived from the dinoflagellate Gambierdiscus toxicus. To date, gambierol has been reported to act either as a partial agonist or as an antagonist of sodium channels or as a blocker of voltage-dependent potassium channels. In this work, we examined the cellular effect of gambierol on cytosolic calcium concentration, membrane potential and sodium and potassium membrane currents in primary cultures of cerebellar granule cells. We found that at concentrations ranging from 0.1 to 30 microM, gambierol-evoked [Ca(2+)]c oscillations that were dependent on the presence of extracellular calcium, irreversible and highly synchronous. Gambierol-evoked [Ca(2+)]c oscillations were completely eliminated by the NMDA receptor antagonist APV and by riluzole and delayed by CNQX. In addition, the K(+) channel blocker 4-aminopyridine (4-AP)-evoked cytosolic calcium oscillations in this neuronal system that were blocked by APV and delayed in the presence of CNQX. Electrophysiological recordings indicated that gambierol caused membrane potential oscillations, decreased inward sodium current amplitude and decreased also outward IA and IK current amplitude. The results presented here point to a common mechanism of action for gambierol and 4-AP and indicate that gambierol-induced oscillations in cerebellar neurons are most likely secondary to a blocking action of the toxin on voltage-dependent potassium channels and hyperpolarization of sodium current activation.
Collapse
Affiliation(s)
- E Alonso
- Facultad de Veterinaria, Departamento de Farmacología, Universidad de Santiago de Compostela, Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The melanocortin-4 receptor (MC4R) was cloned in 1993 by degenerate PCR; however, its function was unknown. Subsequent studies suggest that the MC4R might be involved in regulating energy homeostasis. This hypothesis was confirmed in 1997 by a series of seminal studies in mice. In 1998, human genetic studies demonstrated that mutations in the MC4R gene can cause monogenic obesity. We now know that mutations in the MC4R are the most common monogenic form of obesity, with more than 150 distinct mutations reported thus far. This review will summarize the studies on the MC4R, from its cloning and tissue distribution to its physiological roles in regulating energy homeostasis, cachexia, cardiovascular function, glucose and lipid homeostasis, reproduction and sexual function, drug abuse, pain perception, brain inflammation, and anxiety. I will then review the studies on the pharmacology of the receptor, including ligand binding and receptor activation, signaling pathways, as well as its regulation. Finally, the pathophysiology of the MC4R in obesity pathogenesis will be reviewed. Functional studies of the mutant MC4Rs and the therapeutic implications, including small molecules in correcting binding and signaling defect, and their potential as pharmacological chaperones in rescuing intracellularly retained mutants, will be highlighted.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, Alabama 36849-5519, USA.
| |
Collapse
|
26
|
Granell S, Mohammad S, Ramanagoudr-Bhojappa R, Baldini G. Obesity-linked variants of melanocortin-4 receptor are misfolded in the endoplasmic reticulum and can be rescued to the cell surface by a chemical chaperone. Mol Endocrinol 2010; 24:1805-21. [PMID: 20631012 DOI: 10.1210/me.2010-0071] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed in the brain where it controls food intake. Many obesity-linked MC4R variants are poorly expressed at the plasma membrane and are retained intracellularly. We have studied the intracellular localization of four obesity-linked MC4R variants, P78L, R165W, I316S, and I317T, in immortalized neurons. We find that these variants are all retained in the endoplasmic reticulum (ER), are ubiquitinated to a greater extent than the wild-type (wt) receptor, and induce ER stress with increased levels of ER chaperones as compared with wt-MC4R and appearance of CCAAT/enhancer-binding protein homologous protein (CHOP). Expression of the X-box-binding-protein-1 (XBP-1) with selective activation of a protective branch of the unfolded protein response did not have any effect on the cell surface expression of MC4R-I316S. Conversely, the pharmacological chaperone 4-phenyl butyric acid (PBA) increased the cell surface expression of wt-MC4R, MC4R-I316S, and I317T by more than 40%. PBA decreased ubiquitination of MC4R-I316S and prevented ER stress induced by expression of the mutant, suggesting that the drug functions to promote MC4R folding. MC4R-I316S rescued to the cell surface is functional, with a 52% increase in agonist-induced cAMP production, as compared with untreated cells. Also direct inhibition of wt-MC4R and MC4R-I316S ubiquitination by a specific inhibitor of the ubiquitin-activating enzyme 1 increased by approximately 40% the expression of the receptors at the cell surface, and the effects of PBA and ubiquitin-activating enzyme 1 were additive. These data offer a cell-based rationale that drugs that improve MC4R folding or decrease ER-associated degradation of the receptor may function to treat some forms of hereditary obesity.
Collapse
Affiliation(s)
- Susana Granell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Slot 516, 4301 West Markham, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
27
|
D'Agostino G, Diano S. Alpha-melanocyte stimulating hormone: production and degradation. J Mol Med (Berl) 2010; 88:1195-201. [PMID: 20617297 DOI: 10.1007/s00109-010-0651-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 06/21/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Proopiomelanocortin (POMC) is a polypeptide hormone precursor that is expressed in the brain and in peripheral tissues such as in the pituitary gland, immune system, and skin. In the brain, POMC is processed to form several peptides including alpha-melanocyte stimulating hormone (α-MSH). alpha-MSH is expressed in the hypothalamic arcuate nucleus and in the nucleus tractus solitarius of the brainstem where it has a crucial role in the regulation of metabolic functions. Specifically, α-MSH is an anorexigenic peptide. Its production and maturation processes have been shown to be regulated according to the metabolic condition of the organism. This review summarizes our current knowledge on α-MSH processing including its maturation and degradation processes and pharmacological aspects of its manipulation.
Collapse
Affiliation(s)
- Giuseppe D'Agostino
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
28
|
Veiksina S, Kopanchuk S, Rinken A. Fluorescence anisotropy assay for pharmacological characterization of ligand binding dynamics to melanocortin 4 receptors. Anal Biochem 2010; 402:32-9. [DOI: 10.1016/j.ab.2010.03.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/21/2010] [Accepted: 03/13/2010] [Indexed: 11/16/2022]
|
29
|
Peter JC, Lecourt AC, Weckering M, Zipfel G, Niehoff ML, Banks WA, Hofbauer KG. A pharmacologically active monoclonal antibody against the human melanocortin-4 receptor: effectiveness after peripheral and central administration. J Pharmacol Exp Ther 2010; 333:478-90. [PMID: 20118207 DOI: 10.1124/jpet.109.163279] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The hypothalamic melanocortin-4 receptor (MC4R) is a constituent of an important pathway regulating food intake and energy expenditure. We produced a monoclonal antibody (mAb) directed against the N-terminal domain of the MC4R and evaluated its potential as a possible therapeutic agent. This mAb (1E8a) showed specific binding to the MC4R in human embryonic kidney 293 cells expressing the human MC4R and blocked the activity of the MC4R under basal conditions and after stimulation with alpha-melanocyte-stimulating hormone (alpha-MSH). The inverse agonist action of Agouti-related protein was significantly enhanced in the presence of mAb 1E8a. After a single intracerebroventricular injection into the third ventricle, mAb 1E8a (1 microg) increased 24-h food intake in rats. After 7 days of continuous intracerebroventricular administration, mAb 1E8a increased food intake, body weight, and fat pad weight and induced hyperglycemia. Because the complete mAb was ineffective after intravenous injection, we produced single-chain variable fragments (scFvs) derived from mAb 1E8a. In pharmacokinetic studies it was demonstrated that these scFvs crossed the blood-brain barrier and reached the hypothalamus. Consequently, the scFv 1E8a increased significantly food intake and body weight in rats after intravenous administration (300 mug/kg). The pharmacological profile of mAb 1E8a and the fact that its scFv was active after peripheral administration suggest that derivatives of anti-MC4R mAbs may be useful in the treatment of patients with anorexia or cachexia.
Collapse
|
30
|
DeBoer MD. Update on melanocortin interventions for cachexia: progress toward clinical application. Nutrition 2009; 26:146-51. [PMID: 20004082 DOI: 10.1016/j.nut.2009.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 11/24/2022]
Abstract
Cachexia is a devastating syndrome of body wasting that is associated with multiple common chronic diseases including cancer, chronic kidney disease, and chronic heart failure. These underlying diseases are associated with increased levels of inflammatory cytokines and result in anorexia, increased resting energy expenditure, and loss of fat and lean body mass. Prior experiments have implicated the central melanocortin system in the hypothalamus with the propagation of these symptoms of cachexia. Pharmacologic blockade of this system using melanocortin antagonists causes attenuation of the signs of cachexia in laboratory models. Recent advances in our knowledge of this disease process have involved further elucidation of the pathophysiology of melanocortin activation and demonstration of the efficacy of melanocortin antagonists in new models of cachexia, including cardiac cachexia. In addition, small molecule antagonists of the melanocortin-4 receptor continue to be introduced, including ones with oral bioavailability. These developments generate optimism that melanocortin antagonism will be used to treat humans with disease-associated cachexia. However, to date, human application has remained elusive and it is unclear when we will know whether humans with cachexia would benefit from treatment with these compounds.
Collapse
Affiliation(s)
- Mark Daniel DeBoer
- Division of Pediatric Endocrinology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
31
|
|
32
|
Abstract
BACKGROUND: Cachexia is a devastating syndrome of body wasting that worsens quality of life and survival for patients suffering from diseases such as cancer, chronic kidney disease and chronic heart failure. Successful treatments have been elusive in humans, leaving a clear need for the development of new treatment compounds. Animal models of cachexia are able to recapitulate the clinical findings from human disease and have provided a much-needed means of testing the efficacy of prospective therapies. OBJECTIVE: This review focuses on animal models of cachexia caused by cancer, chronic heart failure and chronic kidney disease, including the features of these models, their implementation, and commonly-followed outcome measures. CONCLUSION: Given a dire clinical need for effective treatments of cachexia, animal models will continue a vital role in assessing the efficacy and safety of potential treatments prior to testing in humans. Also important in the future will be the use of animal models to assess the durability of effect from anti-cachexia treatments and their effect on prognosis of the underlying disease states.
Collapse
|
33
|
Fan ZC, Tao YX. Functional characterization and pharmacological rescue of melanocortin-4 receptor mutations identified from obese patients. J Cell Mol Med 2009; 13:3268-82. [PMID: 19298524 PMCID: PMC4516484 DOI: 10.1111/j.1582-4934.2009.00726.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Accepted: 02/05/2009] [Indexed: 11/27/2022] Open
Abstract
As the most common monogenic form of human obesity, about 130 naturally occurring melanocortin-4 receptor (MC4R) gene mutations have been identified. In this study, we reported detailed functional characterization of 10 novel human MC4R (hMC4R) mutants including R7C, C84R, S127L, S136F, W174C, A219V, P230L, F261S, I317V and L325F. Flow cytometry experiments showed that six mutants, including R7C, C84R, S127L, W174C, P230L and F261S, have decreased cell surface expression. The other four mutants are expressed at similar levels as the wild-type hMC4R. Binding assays showed that the mutants have similar binding affinities for the agonist and endogenous antagonist agouti-related protein. Signalling assays showed that S136F is defective in signalling. Multiple mutagenesis showed that S136 of hMC4R is required for the normal function of the receptor. To identify potential therapeutic approaches for patients with intracellularly retained MC4R mutants, we tested the effect of an MC4R inverse agonist, ML00253764, on C84R and W174C. We showed that ML00253764 could function as a pharmacological chaperone rescuing the mutant MC4Rs to the cell surface. The rescued mutants are functional with increased cAMP production in response to agonist stimulation. In conclusion, of 10 mutants we studied, 6 had decreased cell surface expression. Pharmacological chaperone is a potential approach for treating obesity caused by MC4R mutations that result in intracellular retention.
Collapse
Affiliation(s)
- Zhen-Chuan Fan
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn UniversityAuburn, AL, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn UniversityAuburn, AL, USA
| |
Collapse
|
34
|
Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 2009. [PMID: 19295909 DOI: 10.1371/journal.pone.0004774.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cachexia is among the most debilitating and life-threatening aspects of cancer. It represents a metabolic syndrome affecting essential functional circuits involved in the regulation of homeostasis, and includes anorexia, fat and muscle tissue wasting. The anorexigenic peptide alpha-MSH is believed to be crucially involved in the normal and pathologic regulation of food intake. It was speculated that blockade of its central physiological target, the melanocortin (MC)-4 receptor, might provide a promising anti-cachexia treatment strategy. This idea is supported by the fact that in animal studies, agouti-related protein (AgRP), the endogenous inverse agonist at the MC-4 receptor, was found to affect two hallmark features of cachexia, i.e. to increase food intake and to reduce energy expenditure. METHODOLOGY/PRINCIPAL FINDINGS SNT207707 and SNT209858 are two recently discovered, non peptidic, chemically unrelated, orally active MC-4 receptor antagonists penetrating the blood brain barrier. Both compounds were found to distinctly increase food intake in healthy mice. Moreover, in mice subcutaneously implanted with C26 adenocarcinoma cells, repeated oral administration (starting the day after tumor implantation) of each of the two compounds almost completely prevented tumor induced weight loss, and diminished loss of lean body mass and fat mass. CONCLUSIONS/SIGNIFICANCE In contrast to the previously reported peptidic and small molecule MC-4 antagonists, the compounds described here work by the oral administration route. Orally active compounds might offer a considerable advantage for the treatment of cachexia patients.
Collapse
|
35
|
Weyermann P, Dallmann R, Magyar J, Anklin C, Hufschmid M, Dubach-Powell J, Courdier-Fruh I, Henneböhle M, Nordhoff S, Mondadori C. Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 2009; 4:e4774. [PMID: 19295909 PMCID: PMC2654097 DOI: 10.1371/journal.pone.0004774] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 01/23/2009] [Indexed: 12/23/2022] Open
Abstract
Background Cachexia is among the most debilitating and life-threatening aspects of cancer. It represents a metabolic syndrome affecting essential functional circuits involved in the regulation of homeostasis, and includes anorexia, fat and muscle tissue wasting. The anorexigenic peptide α-MSH is believed to be crucially involved in the normal and pathologic regulation of food intake. It was speculated that blockade of its central physiological target, the melanocortin (MC)-4 receptor, might provide a promising anti-cachexia treatment strategy. This idea is supported by the fact that in animal studies, agouti-related protein (AgRP), the endogenous inverse agonist at the MC-4 receptor, was found to affect two hallmark features of cachexia, i.e. to increase food intake and to reduce energy expenditure. Methodology/Principal Findings SNT207707 and SNT209858 are two recently discovered, non peptidic, chemically unrelated, orally active MC-4 receptor antagonists penetrating the blood brain barrier. Both compounds were found to distinctly increase food intake in healthy mice. Moreover, in mice subcutaneously implanted with C26 adenocarcinoma cells, repeated oral administration (starting the day after tumor implantation) of each of the two compounds almost completely prevented tumor induced weight loss, and diminished loss of lean body mass and fat mass. Conclusions/Significance In contrast to the previously reported peptidic and small molecule MC-4 antagonists, the compounds described here work by the oral administration route. Orally active compounds might offer a considerable advantage for the treatment of cachexia patients.
Collapse
Affiliation(s)
- Philipp Weyermann
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
- * E-mail:
| | - Robert Dallmann
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Josef Magyar
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Corinne Anklin
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | | | | | | | - Marco Henneböhle
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Sonja Nordhoff
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| | - Cesare Mondadori
- Santhera Pharmaceuticals (Switzerland) Ltd., Liestal, Switzerland
| |
Collapse
|
36
|
Tao Y. Chapter 6 Mutations in Melanocortin‐4 Receptor and Human Obesity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:173-204. [PMID: 20374728 DOI: 10.1016/s1877-1173(09)88006-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Laviano A, Inui A, Marks DL, Meguid MM, Pichard C, Rossi Fanelli F, Seelaender M. Neural control of the anorexia-cachexia syndrome. Am J Physiol Endocrinol Metab 2008; 295:E1000-8. [PMID: 18713954 DOI: 10.1152/ajpendo.90252.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anorexia-cachexia syndrome is a debilitating clinical condition characterizing the course of chronic diseases, which heavily impacts on patients' morbidity and quality of life, ultimately accelerating death. The pathogenesis is multifactorial and reflects the complexity and redundancy of the mechanisms controlling energy homeostasis under physiological conditions. Accumulating evidence indicates that, during disease, disturbances of the hypothalamic pathways controlling energy homeostasis occur, leading to profound metabolic changes in peripheral tissues. In particular, the hypothalamic melanocortin system does not respond appropriately to peripheral inputs, and its activity is diverted largely toward the promotion of catabolic stimuli (i.e., reduced energy intake, increased energy expenditure, possibly increased muscle proteolysis, and adipose tissue loss). Hypothalamic proinflammatory cytokines and serotonin, among other factors, are key in triggering hypothalamic resistance. These catabolic effects represent the central response to peripheral challenges (i.e., growing tumor, renal, cardiac failure, disrupted hepatic metabolism) that are likely sensed by the brain through the vagus nerve. Also, disease-induced changes in fatty acid oxidation within hypothalamic neurons may contribute to the dysfunction of the hypothalamic melanocortin system. Ultimately, sympathetic outflow mediates, at least in part, the metabolic changes in peripheral tissues. Other factors are likely involved in the pathogenesis of the anorexia-cachexia syndrome, and their role is currently being elucidated. However, available evidence shows that the constellation of symptoms characterizing this syndrome should be considered, at least in part, as different phenotypes of common neurochemical/metabolic alterations in the presence of a chronic inflammatory state.
Collapse
Affiliation(s)
- Alessandro Laviano
- Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Tao YX. Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol Ther 2008; 120:129-48. [PMID: 18768149 DOI: 10.1016/j.pharmthera.2008.07.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023]
Abstract
The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, 212 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
39
|
Bossola M, Pacelli F, Doglietto GB. Cancer cachexia: drugs in the patent literature. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.7.739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Abstract
Advances in the understanding of appetite are leading to a refined concept of disease cachexia and point to novel therapeutic strategies based on the manipulation of appetite. The complex social and psychological short-term influences on appetite obscure the fact that over the longer term appetite is tightly regulated by physiological considerations; the homeostatic control of energy balance. Like obesity, which is now viewed as a disorder of homeostasis, cachexia can be seen as an adaptive response to the disease state that becomes harmful when prolonged. Several lines of evidence implicate a disorder of appetite regulation in the pathogenesis of cachexia. As the only known circulating mediator of increased appetite the peptide hormone ghrelin has attracted attention as a potential therapy. Trials in patients with various chronic illnesses, including cancer and kidney failure, have demonstrated short-term increases in energy intake. Trials in patients with emphysema and heart failure have also shown benefits in clinical outcomes such as lean body mass and exercise capacity, and longer-term trials using oral analogues are being undertaken. As well as improving nutrition, ghrelin has a number of other actions that may be useful, including an anti-inflammatory effect; of interest since many cachexias are associated with inappropriate immune activation. The manipulation of appetite, in particular by ghrelin agonism, is emerging as an exciting potential therapy for disease cachexia. Future research should focus on the ascertainment of clinically-relevant outcomes, and further characterisation of the non-nutritional effects of this pathway.
Collapse
|
41
|
Chen C, Tucci FC, Jiang W, Tran JA, Fleck BA, Hoare SR, Wen J, Chen T, Johns M, Markison S, Foster AC, Marinkovic D, Chen CW, Arellano M, Harman J, Saunders J, Bozigian H, Marks D. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists. Bioorg Med Chem 2008; 16:5606-18. [PMID: 18417348 DOI: 10.1016/j.bmc.2008.03.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 03/25/2008] [Accepted: 03/28/2008] [Indexed: 11/19/2022]
Abstract
A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Chen Chen
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Appraisal of current and experimental approaches to the treatment of cachexia. Curr Opin Support Palliat Care 2007; 1:312-6. [DOI: 10.1097/spc.0b013e3282f3474c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Tran JA, Jiang W, Tucci FC, Fleck BA, Wen J, Sai Y, Madan A, Chen TK, Markison S, Foster AC, Hoare SR, Marks D, Harman J, Chen CW, Arellano M, Marinkovic D, Bozigian H, Saunders J, Chen C. Design, synthesis, in vitro, and in vivo characterization of phenylpiperazines and pyridinylpiperazines as potent and selective antagonists of the melanocortin-4 receptor. J Med Chem 2007; 50:6356-66. [PMID: 17994683 DOI: 10.1021/jm701137s] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzylamine and pyridinemethylamine derivatives were synthesized and characterized as potent and selective antagonists of the melanocortin-4 receptor (MC4R). These compounds were also profiled in rodents for their pharmacokinetic properties. Two compounds with diversified profiles in chemical structure, pharmacological activities, and pharmacokinetics, 10 and 12b, showed efficacy in an established murine cachexia model. For example, 12b had a K(i) value of 3.4 nM at MC4R, was more than 200-fold selective over MC3R, and had a good pharmacokinetic profile in mice, including high brain penetration. Moreover, 12b was able to stimulate food intake in the tumor-bearing mice and reverse their lean body mass loss. Our results provided further evidence that a potent and selective MC4R antagonist with appropriate pharmacokinetic properties might potentially be useful for the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Joe A Tran
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen C, Jiang W, Tucci F, Tran JA, Fleck BA, Hoare SR, Joppa M, Markison S, Wen J, Sai Y, Johns M, Madan A, Chen T, Chen CW, Marinkovic D, Arellano M, Saunders J, Foster AC. Discovery of 1-[2-[(1S)-(3-dimethylaminopropionyl)amino-2-methylpropyl]-4-methylphenyl]-4-[(2R)-methyl-3-(4-chlorophenyl)-propionyl]piperazine as an orally active antagonist of the melanocortin-4 receptor for the potential treatment of cachexia. J Med Chem 2007; 50:5249-52. [PMID: 17918824 DOI: 10.1021/jm070806a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A potent and selective antagonist of the melanocortin-4 receptor, 1-[2-[(1S)-(3-dimethylaminopropionyl)amino-2-methylpropyl]-6-methylphenyl]-4-[(2R)-methyl-3-(4-chlorophenyl)propionyl]piperazine (10d), was identified from a series piperazinebenzylamine attached with a N,N-dimethyl-beta-alanine side chain. This compound possessed high water solubility and exhibited good metabolic profiles. In animals, 10d showed moderate to good oral bioavailability and promoted food intake in tumor-bearing mice after oral administration.
Collapse
Affiliation(s)
- Chen Chen
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, California 92130, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jiang W, Tucci FC, Tran JA, Fleck BA, Wen J, Markison S, Marinkovic D, Chen CW, Arellano M, Hoare SR, Johns M, Foster AC, Saunders J, Chen C. Pyrrolidinones as potent functional antagonists of the human melanocortin-4 receptor. Bioorg Med Chem Lett 2007; 17:5610-3. [PMID: 17822895 DOI: 10.1016/j.bmcl.2007.07.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/26/2007] [Accepted: 07/26/2007] [Indexed: 10/22/2022]
Abstract
A series of pyrrolidinones derived from phenylalaninepiperazines were synthesized and characterized as potent and selective antagonists of the melanocortin-4 receptor. In addition to their high binding affinities, these compounds displayed high functional potencies. 12a had a K(i) of 0.94 nM in binding and IC(50) of 21 nM in functional activity. 12a also demonstrated efficacy in a mouse cachexia model.
Collapse
Affiliation(s)
- Wanlong Jiang
- Department of Medicinal Chemistry, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Cancer cachexia is a debilitating and life-threatening syndrome characterised by anorexia, body weight loss, loss of adipose tissue and skeletal muscle, and accounts for > or = 20% of deaths in neoplastic patients. Cancer cachexia significantly impairs quality of life and response to antineoplastic therapies, increasing the morbidity and mortality of cancer patients. Muscle wasting is the most important phenotypic feature of cancer cachexia and the principle cause of function impairment, fatigue and respiratory complications, and is mainly related to a hyperactivation of muscle proteolytic pathways. Existing therapeutic strategies have proven to be only partially effective. In the last decade, the correction of anorexia, the inhibition of catabolic processes and the stimulation of anabolic pathways in muscle has been attempted pharmacologically, giving encouraging results in animal models and through preliminary clinical trials.
Collapse
Affiliation(s)
- Maurizio Bossola
- Catholic University of the Sacred Heart, Department of Surgery, Largo A. Gemelli, Roma, Italy.
| | | | | |
Collapse
|
47
|
Tran JA, Tucci FC, Jiang W, Marinkovic D, Chen CW, Arellano M, Markison S, Fleck BA, Wen J, White NS, Pontillo J, Saunders J, Marks D, Hoare SR, Madan A, Foster AC, Chen C. Pyrrolidinones as orally bioavailable antagonists of the human melanocortin-4 receptor with anti-cachectic activity. Bioorg Med Chem 2007; 15:5166-76. [PMID: 17544282 DOI: 10.1016/j.bmc.2007.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 05/03/2007] [Accepted: 05/10/2007] [Indexed: 11/24/2022]
Abstract
A series of pyrrolidinones derived from phenylalanines were synthesized as potent antagonists of the human melanocortin-4 receptor. These compounds showed high potencies and selectivities, and several of them had good oral bioavailabilities. In addition, 12e demonstrated in vivo efficacy in a murine cachexia model.
Collapse
Affiliation(s)
- Joe A Tran
- Department of Medicinal Chemistry, Neurocrine Biosciences Inc, San Diego, CA 92130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Cachexia is a condition of anorexia and wasting that accompanies many diseases including cancer, heart failure, and renal failure. One key center that is probably involved in the propagation of symptoms of cachexia is the melanocortin system in the hypothalamus and brainstem. This review focuses on cachexia treatment interventions that act via melanocortin antagonism, by direct or indirect means. RECENT FINDINGS Recent reports include a description of the physiology of the melanocortin system and its responsiveness to inflammatory cytokines. Regarding treatment potential, multiple reports describe the effectiveness of small molecule antagonists of the melanocortin-4 receptor in animal models of cachexia. These melanocortin antagonists, given by peripheral injection, improve food intake and lean body mass retention in the setting of cancer and renal failure. Additional reports provide evidence of melanocortin antagonism following treatment of cachexia using ghrelin and eicosonoic acid. SUMMARY Cachexia is a serious condition that accompanies various disease states and currently does not have effective treatments. The melanocortin system may play a direct role in producing symptoms of cachexia, making antagonism of this system a logical objective for ameliorating these symptoms. Thus far, however, no data on human application have been published.
Collapse
Affiliation(s)
- Mark D DeBoer
- Division of Endocrinology, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
49
|
Joppa MA, Gogas KR, Foster AC, Markison S. Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83-132)) prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. Peptides 2007; 28:636-42. [PMID: 17204351 DOI: 10.1016/j.peptides.2006.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 01/08/2023]
Abstract
Cachexia is a clinical wasting syndrome that occurs in multiple disease states, and is associated with anorexia and a progressive loss of body fat and lean mass. The development of new therapeutics for this disorder is needed due to poor efficacy and multiple side effects of current therapies. The pivotal role played by the central melanocortin system in regulating body weight has made this an attractive target for novel cachexia therapies. The mixed melanocortin receptor antagonist AgRP is an endogenous peptide that induces hyperphagia. Here, we used AgRP(83-132) to investigate the ability of melanocortin antagonism to protect against clinical features of cachexia in two distinct animal models. In an acute model, food intake and body weight gain were reduced in mice exposed to radiation (300 RAD), and delivery of AgRP(83-132) into the lateral cerebral ventricle prevented these effects. In a chronic tumor cachexia model, adult mice were injected subcutaneously with a cell line derived from murine colon-26 adenocarcinoma. Typical of cachexia, tumor-bearing mice progressively reduced body weight and food intake, and gained significantly less muscle mass than controls. Administration of AgRP(83-132) into the lateral ventricles significantly increased body weight and food intake, and changes in muscle mass were similar to the tumor-free control mice. These findings support the idea that antagonism of the central melanocortin system can reduce the negative impact of cachexia and radiation therapy.
Collapse
Affiliation(s)
- M A Joppa
- Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA
| | | | | | | |
Collapse
|
50
|
Meyers KM, Kim N, Méndez-Andino JL, Hu XE, Mumin RN, Klopfenstein SR, Wos JA, Mitchell MC, Paris JL, Ackley DC, Holbert JK, Mittelstadt SW, Reizes O. Aminomethyl tetrahydronaphthalene biphenyl carboxamide MCH-R1 antagonists—Increasing selectivity over hERG. Bioorg Med Chem Lett 2007; 17:814-8. [PMID: 17107791 DOI: 10.1016/j.bmcl.2006.10.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 10/16/2006] [Accepted: 10/23/2006] [Indexed: 11/20/2022]
Abstract
Aminomethyl tetrahydronaphthalene biphenyl carboxamide MCH-R1 antagonists with greater selectivity over hERG were identified. SAR studies addressing two distinct alternatives for structural modifications leading to improve hERG selectivity are described.
Collapse
Affiliation(s)
- Kenneth M Meyers
- Procter & Gamble Pharmaceuticals, 8700 Mason-Montgomery Road, Mason, OH 45039, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|