1
|
Entezari Heravi Y, Sereshti H, Saboury AA, Ghasemi J, Amirmostofian M, Supuran CT. 3D QSAR studies, pharmacophore modeling, and virtual screening of diarylpyrazole-benzenesulfonamide derivatives as a template to obtain new inhibitors, using human carbonic anhydrase II as a model protein. J Enzyme Inhib Med Chem 2017; 32:688-700. [PMID: 28317396 PMCID: PMC6009914 DOI: 10.1080/14756366.2016.1241781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 01/13/2023] Open
Abstract
A 3D-QSAR modeling was performed on a series of diarylpyrazole-benzenesulfonamide derivatives acting as inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The compounds were collected from two datasets with the same scaffold, and utilized as a template for a new pharmacophore model to screen the ZINC database of commercially available derivatives. The datasets were divided into training, test, and validation sets. As the first step, comparative molecular field analysis (CoMFA), CoMFA region focusing and comparative molecular similarity indices analysis (CoMSIA) in parallel with docking studies were applied to a set of 41 human (h) CA II inhibitors. The validity and the prediction capacity of the resulting models were evaluated by leave-one-out (LOO) cross-validation approach. The reliability of the model for the prediction of possibly new CA inhibitors was also tested.
Collapse
Affiliation(s)
| | - Hassan Sereshti
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Jahan Ghasemi
- Department of Chemistry, Faculty of Science, University of Tehran, Tehran, Iran
| | - Marzieh Amirmostofian
- Department of Medicinal Chemistry, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Universita degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Florence, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Efavirenz Is Predicted To Accumulate in Brain Tissue: an In Silico, In Vitro, and In Vivo Investigation. Antimicrob Agents Chemother 2016; 61:AAC.01841-16. [PMID: 27799216 DOI: 10.1128/aac.01841-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/22/2016] [Indexed: 01/15/2023] Open
Abstract
Adequate concentrations of efavirenz in the central nervous system (CNS) are necessary to suppress viral replication, but high concentrations may increase the likelihood of CNS adverse drug reactions. The aim of this investigation was to evaluate the efavirenz distribution in the cerebrospinal fluid (CSF) and the brain by using a physiologically based pharmacokinetic (PBPK) simulation for comparison with rodent and human data. The efavirenz CNS distribution was calculated using a permeability-limited model on a virtual cohort of 100 patients receiving efavirenz (600 mg once daily). Simulation data were then compared with human data from the literature and with rodent data. Wistar rats were administered efavirenz (10 mg kg of body weight-1) once daily over 5 weeks. Plasma and brain tissue were collected for analysis via liquid chromatography-tandem mass spectrometry (LC-MS/MS). The median maximum concentrations of drug (Cmax) were predicted to be 3,184 ng ml-1 (interquartile range [IQR], 2,219 to 4,851 ng ml-1), 49.9 ng ml-1 (IQR, 36.6 to 69.7 ng ml-1), and 50,343 ng ml-1 (IQR, 38,351 to 65,799 ng ml-1) in plasma, CSF, and brain tissue, respectively, giving a tissue-to-plasma ratio of 15.8. Following 5 weeks of oral dosing of efavirenz (10 mg kg-1), the median plasma and brain tissue concentrations in rats were 69.7 ng ml-1 (IQR, 44.9 to 130.6 ng ml-1) and 702.9 ng ml-1 (IQR, 475.5 to 1,018.0 ng ml-1), respectively, and the median tissue-to-plasma ratio was 9.5 (IQR, 7.0 to 10.9). Although it is useful, measurement of CSF concentrations may give an underestimation of the penetration of antiretrovirals into the brain. The limitations associated with obtaining tissue biopsy specimens and paired plasma and CSF samples from patients make PBPK modeling an attractive tool for probing drug distribution.
Collapse
|
3
|
Development and validation of an LC-MS/MS assay for the quantification of efavirenz in different biological matrices. Bioanalysis 2016; 8:2125-34. [PMID: 27611731 DOI: 10.4155/bio-2016-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM The non-nucleoside reverse transcriptase inhibitor efavirenz is one of the most prescribed antiretroviral therapeutics. Efavirenz-containing therapy has become associated with the occurrence of CNS side effects, including sleep disturbances, depression and even psychosis. RESULTS The investigation of efavirenz distribution required the development of a versatile and sensitive method. In addition to plasma, quantification was required in brain tissue and phosphate-buffered saline. The assay presented here was linear from 1.9 to 500 ng/ml. Accuracy and precision ranged between 93.7 and 99.5%, and 1.5 and 5.6%, respectively. DISCUSSION The method developed here represents a versatile, sensitive and easy-to-use assay. The assay has been applied to in vitro and in vivo samples demonstrating reliable efavirenz quantification in multiple matrices.
Collapse
|
4
|
Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, Solomon T. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 2014; 13:1139-1151. [PMID: 25316020 PMCID: PMC4313542 DOI: 10.1016/s1474-4422(14)70137-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cross-sectional studies show that around half of individuals infected with HIV-1 have some degree of cognitive impairment despite the use of antiretroviral drugs. However, prevalence estimates vary depending on the population and methods used to assess cognitive impairment. Whether asymptomatic patients would benefit from routine screening for cognitive difficulties is unclear and the appropriate screening method and subsequent management is the subject of debate. In some patients, HIV-1 RNA can be found at higher concentrations in CSF than in blood, which potentially results from the poor distribution of antiretroviral drugs into the CNS. However, the clinical relevance of so-called CSF viral escape is not well understood. The extent to which antiretroviral drug distribution and toxicity in the CNS affect clinical decision making is also debated.
Collapse
Affiliation(s)
- Sam Nightingale
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Alan Winston
- Division of Medicine, Imperial College London, St Mary's Campus, London, UK
| | - Scott Letendre
- University of California and HIV Neurobehavioral Research Center and Antiviral Research Center, San Diego, CA, USA
| | - Benedict D Michael
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; The Walton Centre Neurology and Neurosurgery NHS Foundation Trust, Liverpool, UK
| | - Justin C McArthur
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saye Khoo
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; The Walton Centre Neurology and Neurosurgery NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
5
|
Efavirenz promotes β-secretase expression and increased Aβ1-40,42 via oxidative stress and reduced microglial phagocytosis: implications for HIV associated neurocognitive disorders (HAND). PLoS One 2014; 9:e95500. [PMID: 24759994 PMCID: PMC3997351 DOI: 10.1371/journal.pone.0095500] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
Efavirenz (EFV) is among the most commonly used antiretroviral drugs globally, causes neurological symptoms that interfere with adherence and reduce tolerability, and may have central nervous system (CNS) effects that contribute in part to HIV associated neurocognitive disorders (HAND) in patients on combination antiretroviral therapy (cART). Thus we evaluated a commonly used EFV containing regimen: EFV/zidovudine (AZT)/lamivudine (3TC) in murine N2a cells transfected with the human “Swedish” mutant form of amyloid precursor protein (SweAPP N2a cells) to assess for promotion of amyloid-beta (Aβ) production. Treatment with EFV or the EFV containing regimen generated significantly increased soluble amyloid beta (Aβ), and promoted increased β-secretase-1 (BACE-1) expression while 3TC, AZT, or, vehicle control did not significantly alter these endpoints. Further, EFV or the EFV containing regimen promoted significantly more mitochondrial stress in SweAPP N2a cells as compared to 3TC, AZT, or vehicle control. We next tested the EFV containing regimen in Aβ - producing Tg2576 mice combined or singly using clinically relevant doses. EFV or the EFV containing regimen promoted significantly more BACE-1 expression and soluble Aβ generation while 3TC, AZT, or vehicle control did not. Finally, microglial Aβ phagocytosis was significantly reduced by EFV or the EFV containing regimen but not by AZT, 3TC, or vehicle control alone. These data suggest the majority of Aβ promoting effects of this cART regimen are dependent upon EFV as it promotes both increased production, and decreased clearance of Aβ peptide.
Collapse
|
6
|
Winston A, Arenas-Pinto A, Stöhr W, Fisher M, Orkin CM, Aderogba K, De Burgh-Thomas A, O'Farrell N, Lacey CJ, Leen C, Dunn D, Paton NI. Neurocognitive function in HIV infected patients on antiretroviral therapy. PLoS One 2013; 8:e61949. [PMID: 23646111 PMCID: PMC3639991 DOI: 10.1371/journal.pone.0061949] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/13/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To describe factors associated with neurocognitive (NC) function in HIV-positive patients on stable combination antiretroviral therapy. DESIGN We undertook a cross-sectional analysis assessing NC data obtained at baseline in patients entering the Protease-Inhibitor-Monotherapy-Versus-Ongoing-Triple therapy (PIVOT) trial. MAIN OUTCOME MEASURE NC testing comprised of 5 domains. Raw results were z-transformed using standard and demographically adjusted normative datasets (ND). Global z-scores (NPZ-5) were derived from averaging the 5 domains and percentage of subjects with test scores >1 standard deviation (SD) below population means in at least two domains (abnormal Frascati score) calculated. Patient characteristics associated with NC results were assessed using multivariable linear regression. RESULTS Of the 587 patients in PIVOT, 557 had full NC results and were included. 77% were male, 68% Caucasian and 28% of Black ethnicity. Mean (SD) baseline and nadir CD4+ lymphocyte counts were 553(217) and 177(117) cells/µL, respectively, and HIV RNA was <50 copies/mL in all. Median (IQR) NPZ-5 score was -0.5 (-1.2/-0) overall, and -0.3 (-0.7/0.1) and -1.4 (-2/-0.8) in subjects of Caucasian and Black ethnicity, respectively. Abnormal Frascati scores using the standard-ND were observed in 51%, 38%, and 81%, respectively, of subjects overall, Caucasian and Black ethnicity (p<0.001), but in 62% and 69% of Caucasian and Black subjects using demographically adjusted-ND (p = 0.20). In the multivariate analysis, only Black ethnicity was associated with poorer NPZ-5 scores (P<0.001). CONCLUSIONS In this large group of HIV-infected subjects with viral load suppression, ethnicity but not HIV-disease factors is closely associated with NC results. The prevalence of abnormal results is highly dependent on control datasets utilised. TRIAL REGISTRY ClinicalTrials.gov, NCT01230580.
Collapse
Affiliation(s)
- Alan Winston
- Section of Infectious Diseases, Division of Medicine, Imperial College London, St Mary's Hospital Campus, Norfolk Place, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Severe HIV-associated neurocognitive disorders (HAND), such as HIV-associated dementia, and opportunistic CNS infections are now rare complications of HIV infection due to comprehensive highly active antiretroviral therapy (HAART). By contrast, mild to moderate neurocognitive disorders remain prevalent, despite good viral control in peripheral compartments. HIV infection seems to provoke chronic CNS injury that may evade systemic HAART. Penetration of antiretroviral drugs across the blood-brain barrier might be crucial for the treatment of HAND. This review identifies and evaluates the available clinical evidence on CSF penetration properties of antiretroviral drugs, addressing methodological issues and discussing the clinical relevance of drug concentration assessment. Although a substantial number of studies examined CSF concentrations of antiretroviral drugs, there is a need for adequate, well designed trials to provide more valid drug distribution profiles. Neuropsychological benefits and neurotoxicity of potentially CNS-active drugs require further investigation before penetration characteristics will regularly influence therapeutic strategies and outcome.
Collapse
Affiliation(s)
- Christine Eisfeld
- Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | | | | | | |
Collapse
|
8
|
Pirhadi S, Ghasemi JB. Pharmacophore Identification, Molecular Docking, Virtual Screening, and In Silico ADME Studies of Non-Nucleoside Reverse Transcriptase Inhibitors. Mol Inform 2012; 31:856-66. [PMID: 27476739 DOI: 10.1002/minf.201200018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 11/19/2012] [Indexed: 01/26/2023]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity and low toxicity in antiretroviral combination therapies used to treat HIV. In this study, chemical feature based pharmacophore models of different classes of NNRT inhibitors of HIV-1 have been developed. The best HypoRefine pharmacophore model, Hypo 1, which has the best correlation coefficient (0.95) and the lowest RMS (0.97), contains two hydrogen bond acceptors, one hydrophobic and one ring aromatic feature, as well as four excluded volumes. Hypo 1 was further validated by test set and Fischer validation method. The best pharmacophore model was then utilized as a 3D search query to perform a virtual screening to retrieve potential inhibitors. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies by Libdock and Gold methods to refine the retrieved hits. Finally, 7 top ranked compounds based on Gold score fitness function were subjected to in silico ADME studies to investigate for compliance with the standard ranges.
Collapse
Affiliation(s)
- Somayeh Pirhadi
- Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran fax: +98-21-22853650; tel: +98-21-22850266
| | - Jahan B Ghasemi
- Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran fax: +98-21-22853650; tel: +98-21-22850266.
| |
Collapse
|
9
|
Roy S, Preston JE, Hider RC, Ma YM. Glucosylated deferiprone and its brain uptake: implications for developing glucosylated hydroxypyridinone analogues intended to cross the blood-brain barrier. J Med Chem 2010; 53:5886-9. [PMID: 20684616 DOI: 10.1021/jm100380k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This report presents that Deferiprone, the only clinically used 3-hydroxypyridin-4-one (HPO), is able to penetrate the blood-brain barrier (BBB) in guinea pigs, whereas its glucosylated analogue is unable to do so. This finding is contrary to published information suggesting that the glucosylation of HPOs is a viable means of enhancing the brain uptake of this group of compounds.
Collapse
Affiliation(s)
- Sourav Roy
- Pharmaceutical Science Division, King's College London, London, UK
| | | | | | | |
Collapse
|
10
|
Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, Moore D, Ellis R, Cherner M, Gelman B, Morgello S, Singer E, Grant I, Masliah E. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol 2010; 15:360-70. [PMID: 20175693 DOI: 10.3109/13550280903131915] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to examine the spectrum of human immunodeficiency virus (HIV) brain pathology and its clinical correlates in the antiretroviral era. We carried out a cross-sectional survey, analyzing prospective clinical and neuropathological data collected by the National NeuroAIDS Tissue Consortium (NNTC), comprising 589 brain samples from individuals with advanced HIV disease collected from 1999 onwards. We assessed gender, ethnicity/race, mode of transmission, age, year of death, nadir CD4, plasma viral load, last antiretroviral regimen, presence of parenchymal HIV brain pathology, HIV-associated neurocognitive disorder, and major depressive disorder. We compared cohort demographic variables with Centers for Disease Control and Prevention US HIV/AIDS statistics and examined associations of parenchymal HIV brain pathology with demographic, clinical, and HIV disease factors. With regard to Centers for Disease Control and Prevention US data, the NNTC was similar in age distribution, but had fewer females and African Americans and more Hispanics and men who have sex with men. Only 22% of the brains examined were neuropathologically normal. Opportunistic infections occurred in 1% to 5% of the cohort. Parenchymal HIV brain pathology was observed in 17.5% of the cohort and was associated with nadir CD4 and plasma viral load. Brains without parenchymal HIV brain pathology often had other noninfectious findings or minimal nondiagnostic abnormalities that were associated with HIV-associated neurocognitive disorder. Clinically, 60% of the cohort reported a lifetime episode of major depressive disorder and 88% had a HIV-associated neurocognitive disorder. No pathological finding correlated with major depressive disorder. Both antiretroviral treatment regimen and elevated plasma HIV viral load were associated with presence of parenchymal HIV brain pathology; however, multivariate analyses suggest a stronger association with plasma viral load. The frequency of HIV brain pathology was lower than previous pre-antiretroviral reports, and was predicted by lower nadir CD4 and higher plasma viral load. Noninfectious pathologies and minimal changes correlated with HIV-associated neurocognitive disorder, suggesting a shift in pathogenesis from florid HIV replication to other, diverse mechanisms.
Collapse
Affiliation(s)
- I Everall
- HIV Neurobehavioral Research Center (HNRC), University of California, San Diego, La Jolla, California 92093-0603, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Anti-HIV drugs nevirapine and efavirenz affect anxiety-related behavior and cognitive performance in mice. Neurotox Res 2009; 19:73-80. [PMID: 20012242 DOI: 10.1007/s12640-009-9141-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 05/14/2009] [Accepted: 05/14/2009] [Indexed: 01/21/2023]
Abstract
Nevirapine (NVP) and efavirenz (EFV) belong to the class of anti-HIV drugs called non-nucleoside reverse transcriptase inhibitors (NNRTIs), commonly used as part of highly active antiretroviral therapy (HAART). Although the HAART is able to bring down viral load to undetectable levels and restore immune function, their prolonged use causes several adverse effects. It has been demonstrated that both NVP and EFV are able to cross the blood-brain barrier, causing important central nervous system-related side effects. Thus, this study investigated the effects of chronic administration of EFV (10 mg/kg) and NVP (3.3 mg/kg) in mice submitted to two distinct series of experiments, which aimed to evaluate: (1) the emotional behavior (elevated plus-maze, forced swimming, and open-field test) and (2) the cognitive performance (object recognition and inhibitory avoidance test) of mice. Our results demonstrated that EFV, but not NVP, reduced the exploration to open arms in the elevated plus-maze test. Neither NVP nor EFV altered mouse behavior in the forced swimming and open-field tests. Both drugs reduced the recognition index in the object recognition test, but only EFV significantly impaired the aversive memory assessed in the inhibitory avoidance test 24 h after training. In conclusion, our findings point to a genuine anxiogenic-like effect to EFV, since it reduced exploration to open arms of elevated plus-maze test without affecting spontaneous locomotion. Additionally, both drugs impaired recognition memory, while only the treatment with EFV impaired significantly aversive memory.
Collapse
|
12
|
Eyal S, Hsiao P, Unadkat JD. Drug interactions at the blood-brain barrier: fact or fantasy? Pharmacol Ther 2009; 123:80-104. [PMID: 19393264 DOI: 10.1016/j.pharmthera.2009.03.017] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/20/2009] [Indexed: 12/24/2022]
Abstract
There is considerable interest in the therapeutic and adverse outcomes of drug interactions at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). These include altered efficacy of drugs used in the treatment of CNS disorders, such as AIDS dementia and malignant tumors, and enhanced neurotoxicity of drugs that normally penetrate poorly into the brain. BBB- and BCSFB-mediated interactions are possible because these interfaces are not only passive anatomical barriers, but are also dynamic in that they express a variety of influx and efflux transporters and drug metabolizing enzymes. Based on studies in rodents, it has been widely postulated that efflux transporters play an important role at the human BBB in terms of drug delivery. Furthermore, it is assumed that chemical inhibition of transporters or their genetic ablation in rodents is predictive of the magnitude of interaction to be expected at the human BBB. However, studies in humans challenge this well-established paradigm and claim that such drug interactions will be lesser in magnitude but yet may be clinically significant. This review focuses on current known mechanisms of drug interactions at the blood-brain and blood-CSF barriers and the potential impact of such interactions in humans. We also explore whether such drug interactions can be predicted from preclinical studies. Defining the mechanisms and the impact of drug-drug interactions at the BBB is important for improving efficacy of drugs used in the treatment of CNS disorders while minimizing their toxicity as well as minimizing neurotoxicity of non-CNS drugs.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
13
|
Streck EL, Scaini G, Rezin GT, Moreira J, Fochesato CM, Romão PRT. Effects of the HIV treatment drugs nevirapine and efavirenz on brain creatine kinase activity. Metab Brain Dis 2008; 23:485-92. [PMID: 18815873 DOI: 10.1007/s11011-008-9109-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 08/15/2008] [Indexed: 01/06/2023]
Abstract
Nevirapine (NVP) and efavirenz (EFV) are antiretroviral drugs belonging to potent class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) widely used for the treatment human immunodeficiency virus (HIV) infection. It has been demonstrated that NVP and EFV are able to cross the blood-brain barrier and arrive at the central nervous system (CNS), causing important adverse effects related to their presence within this tissue. Considering that the exact mechanisms responsible for CNS toxicity associated with NVP and EFV remain unknown and that creatine kinase (CK) plays an important role in cell energy homeostasis, in the present work we evaluated CK activity in brain of mice after chronic administration of these drugs. Our results demonstrated that NVP and EFV significantly inhibited CK activity in cerebellum, hippocampus, striatum and cortex of mice. Although it is difficult to extrapolate our findings to the human condition, the inhibition of brain CK activity by NVP and EFV may be associated with neurological adverse symptoms of these drugs.
Collapse
Affiliation(s)
- Emilio L Streck
- Laboratório de Fisiopatologia Experimental, Unidade Acadêmica de Ciências da Saúde, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Sanderson L, Khan A, Thomas S. Distribution of suramin, an antitrypanosomal drug, across the blood-brain and blood-cerebrospinal fluid interfaces in wild-type and P-glycoprotein transporter-deficient mice. Antimicrob Agents Chemother 2007; 51:3136-46. [PMID: 17576845 PMCID: PMC2043191 DOI: 10.1128/aac.00372-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although 60 million people are exposed to human African trypanosomiasis, drug companies have not been interested in developing new drugs due to the lack of financial reward. No new drugs will be available for several years. A clearer understanding of the distribution of existing drugs into the brains of sleeping sickness patients is needed if we are to use the treatments that are available more safely and effectively. This proposal addresses this issue by using established animal models. Using in situ brain perfusion and isolated incubated choroid plexus techniques, we investigated the distribution of [(3)H]suramin into the central nervous systems (CNSs) of male BALB/c, FVB (wild-type), and P-glycoprotein-deficient (Mdr1a/Mdr1b-targeted mutation) mice. There was no difference in the [(3)H]suramin distributions between the three strains of mice. [(3)H]suramin had a distribution similar to that of the vascular marker, [(14)C]sucrose, into the regions of the brain parenchyma that have a blood-brain barrier. However, the association of [(3)H]suramin with the circumventricular organ samples, including the choroid plexus, was higher than that of [(14)C]sucrose. The association of [(3)H]suramin with the choroid plexus was also sensitive to phenylarsine oxide, an inhibitor of endocytosis. The distribution of [(3)H]suramin to the brain was not affected by the presence of other antitrypanosomal drugs or the P-glycoprotein efflux transporter. Overall, the results confirm that [(3)H]suramin would be unlikely to treat the second or CNS stage of sleeping sickness.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/deficiency
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Animals
- Binding, Competitive/drug effects
- Blood-Brain Barrier
- Butanols/pharmacokinetics
- Chemical Phenomena
- Chemistry, Physical
- Choroid Plexus/metabolism
- Chromatography, High Pressure Liquid
- Data Interpretation, Statistical
- In Vitro Techniques
- Liver Circulation/drug effects
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Perfusion
- Protein Binding
- Suramin/blood
- Suramin/cerebrospinal fluid
- Suramin/pharmacokinetics
- Trypanocidal Agents/blood
- Trypanocidal Agents/cerebrospinal fluid
- Trypanocidal Agents/pharmacokinetics
Collapse
Affiliation(s)
- Lisa Sanderson
- King's College London, Pharmaceutical Sciences Research Division, Guy's Campus, Hodgkin Building, London Bridge, London SE1 1UL, United Kingdom
| | | | | |
Collapse
|