1
|
Cashman JR. Practical Aspects of Flavin-Containing Monooxygenase-Mediated Metabolism. Chem Res Toxicol 2024. [PMID: 39485380 DOI: 10.1021/acs.chemrestox.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Hepatic flavin-containing monooxygenase 3 (FMO3) is arguably the most important FMO in humans from the standpoint of drug metabolism. Recently, adult hepatic FMO3 has been linked to several conditions including cardiometabolic diseases, aging, obesity, and atherosclerosis in small animals. Despite the importance of FMO3 in drug and chemical metabolism, relative to cytochrome P-450 (CYP), fewer studies have been published describing drug and chemical metabolism. This may be due to the properties of human hepatic FMO3. For example, FMO3 is thermally labile, and often methods reported in the study of human hepatic FMO3 are not optimal. Herein, I describe some practical aspects for studying human hepatic FMO3 and other FMOs.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute. 6351 Nancy Ridge Road, Suite B, San Diego, California 92121, United States
| |
Collapse
|
2
|
Rendic SP, Guengerich FP. Formation of potentially toxic metabolites of drugs in reactions catalyzed by human drug-metabolizing enzymes. Arch Toxicol 2024; 98:1581-1628. [PMID: 38520539 PMCID: PMC11539061 DOI: 10.1007/s00204-024-03710-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
Data are presented on the formation of potentially toxic metabolites of drugs that are substrates of human drug metabolizing enzymes. The tabular data lists the formation of potentially toxic/reactive products. The data were obtained from in vitro experiments and showed that the oxidative reactions predominate (with 96% of the total potential toxication reactions). Reductive reactions (e.g., reduction of nitro to amino group and reductive dehalogenation) participate to the extent of 4%. Of the enzymes, cytochrome P450 (P450, CYP) enzymes catalyzed 72% of the reactions, myeloperoxidase (MPO) 7%, flavin-containing monooxygenase (FMO) 3%, aldehyde oxidase (AOX) 4%, sulfotransferase (SULT) 5%, and a group of minor participating enzymes to the extent of 9%. Within the P450 Superfamily, P450 Subfamily 3A (P450 3A4 and 3A5) participates to the extent of 27% and the Subfamily 2C (P450 2C9 and P450 2C19) to the extent of 16%, together catalyzing 43% of the reactions, followed by P450 Subfamily 1A (P450 1A1 and P450 1A2) with 15%. The P450 2D6 enzyme participated in an extent of 8%, P450 2E1 in 10%, and P450 2B6 in 6% of the reactions. All other enzymes participate to the extent of 14%. The data show that, of the human enzymes analyzed, P450 enzymes were dominant in catalyzing potential toxication reactions of drugs and their metabolites, with the major role assigned to the P450 Subfamily 3A and significant participation of the P450 Subfamilies 2C and 1A, plus the 2D6, 2E1 and 2B6 enzymes contributing. Selected examples of drugs that are activated or proposed to form toxic species are discussed.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
3
|
Iamsumang W, Chanprapaph K, Sukasem C, Satapornpong P, Thadanipon K, Suchonwanit P, Jantararoungtong T, Anuntrangsee T. Genotypic and Phenotypic Characteristics of Co-Trimoxazole-Induced Cutaneous Adverse Reactions. Dermatology 2023; 239:966-975. [PMID: 37793359 DOI: 10.1159/000534342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Co-trimoxazole has been reported as a common culprit drug for various cutaneous adverse drug reactions (CADRs). However, information on genotypic and phenotypic characteristics is still limited. We aimed to study clinical characteristics, genetic suitability, laboratory findings, and treatment outcomes in patients with co-trimoxazole-induced CADR and determine variables associated with severe cutaneous adverse reactions (SCARs). METHODS The medical records of all patients diagnosed with co-trimoxazole-induced CADR during October 2015 and October 2021 were reviewed. Clinical characteristics and laboratory investigation with an emphasis on human leukocyte antigen (HLA) class I and HLA-DRB1 results linked to subtypes of cutaneous adverse reactions were evaluated. RESULTS Seventy-two patients diagnosed with co-trimoxazole-induced CADR were included in the study. Mean age at diagnosis was 38.0 ± 14.6 years old, and 72% were female. Subtypes of reactions included maculopapular eruption (MPE; 56.9%), drug reaction with eosinophilia and systemic symptoms (DRESS; 23.6%), Stevens-Johnson syndrome (SJS; 12.5%), fixed drug eruption (4.2%), and urticaria (2.8%). Characteristics that were significantly associated with SCARs included male gender (OR = 3.01, 95% CI: 1.04-8.75), HIV infection (OR = 3.48, 95% CI: 1.13-10.75), prophylactic use of co-trimoxazole (OR = 4.89, 95% CI: 1.54-15.57), and co-trimoxazole administration longer than 10 days (OR = 7.65, 95% CI: 2.57-22.78). HLA-B*38:02 was associated with co-trimoxazole-induced SJS, while HLA-A*11:01, HLA-B*13:01, and HLA-DRB1*12:01 were associated with co-trimoxazole-induced DRESS. HLA-B*52:01 was associated with co-trimoxazole-induced MPE. CONCLUSIONS Co-trimoxazole could induce various phenotypes of CADRs. Genotypic and phenotypic factors that may potentially predict co-trimoxazole-induced SCARs include male gender, HIV infection, prophylactic and prolonged drug use, as well as the presence of HLA-A*11:01, HLA-B*13:01, HLA-B*38:02, or HLA-DRB1*12:01 alleles.
Collapse
Affiliation(s)
- Wimolsiri Iamsumang
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kumutnart Chanprapaph
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Lak Hok, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Lak Hok, Thailand
| | - Kunlawat Thadanipon
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Poonkiat Suchonwanit
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanaporn Anuntrangsee
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Almutairi M, Lister A, Zhao Q, Line J, Adair K, Tailor A, Waddington J, Clarke E, Gardner J, Thomson P, Harper N, Sun Y, Sun L, Ostrov DA, Liu H, MacEwan DJ, Pirmohamed M, Meng X, Zhang F, Naisbitt DJ. Activation of Human CD8+ T Cells with Nitroso Dapsone-Modified HLA-B*13:01-Binding Peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1031-1042. [PMID: 36881872 PMCID: PMC7614401 DOI: 10.4049/jimmunol.2200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
Previous studies have shown that cysteine-reactive drug metabolites bind covalently with protein to activate patient T cells. However, the nature of the antigenic determinants that interact with HLA and whether T cell stimulatory peptides contain the bound drug metabolite has not been defined. Because susceptibility to dapsone hypersensitivity is associated with the expression of HLA-B*13:01, we have designed and synthesized nitroso dapsone-modified, HLA-B*13:01 binding peptides and explored their immunogenicity using T cells from hypersensitive human patients. Cysteine-containing 9-mer peptides with high binding affinity to HLA-B*13:01 were designed (AQDCEAAAL [Pep1], AQDACEAAL [Pep2], and AQDAEACAL [Pep3]), and the cysteine residue was modified with nitroso dapsone. CD8+ T cell clones were generated and characterized in terms of phenotype, function, and cross-reactivity. Autologous APCs and C1R cells expressing HLA-B*13:01 were used to determine HLA restriction. Mass spectrometry confirmed that nitroso dapsone-peptides were modified at the appropriate site and were free of soluble dapsone and nitroso dapsone. APC HLA-B*13:01-restricted nitroso dapsone-modified Pep1- (n = 124) and Pep3-responsive (n = 48) CD8+ clones were generated. Clones proliferated and secreted effector molecules with graded concentrations of nitroso dapsone-modified Pep1 or Pep3. They also displayed reactivity against soluble nitroso dapsone, which forms adducts in situ, but not with the unmodified peptide or dapsone. Cross-reactivity was observed between nitroso dapsone-modified peptides with cysteine residues in different positions in the peptide sequence. These data characterize a drug metabolite hapten CD8+ T cell response in an HLA risk allele-restricted form of drug hypersensitivity and provide a framework for structural analysis of hapten HLA binding interactions.
Collapse
Affiliation(s)
- Mubarak Almutairi
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Adam Lister
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - James Line
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Kareena Adair
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - James Waddington
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Elsie Clarke
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Joshua Gardner
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Nicolas Harper
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - David J. MacEwan
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Ali SE, Meng X, Kafu L, Hammond S, Zhao Q, Ogese M, Sison-Young R, Jones R, Chan B, Livoti L, Sun Y, Sun L, Liu H, Topping A, Goldring C, Zhang F, Naisbitt DJ. Detection of Hepatic Drug Metabolite-Specific T-Cell Responses Using a Human Hepatocyte, Immune Cell Coculture System. Chem Res Toxicol 2023; 36:390-401. [PMID: 36812109 PMCID: PMC10031640 DOI: 10.1021/acs.chemrestox.2c00343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Drug-responsive T-cells are activated with the parent compound or metabolites, often via different pathways (pharmacological interaction and hapten). An obstacle to the investigation of drug hypersensitivity is the scarcity of reactive metabolites for functional studies and the absence of coculture systems to generate metabolites in situ. Thus, the aim of this study was to utilize dapsone metabolite-responsive T-cells from hypersensitive patients, alongside primary human hepatocytes to drive metabolite formation, and subsequent drug-specific T-cell responses. Nitroso dapsone-responsive T-cell clones were generated from hypersensitive patients and characterized in terms of cross-reactivity and pathways of T-cell activation. Primary human hepatocytes, antigen-presenting cells, and T-cell cocultures were established in various formats with the liver and immune cells separated to avoid cell contact. Cultures were exposed to dapsone, and metabolite formation and T-cell activation were measured by LC-MS and proliferation assessment, respectively. Nitroso dapsone-responsive CD4+ T-cell clones from hypersensitive patients were found to proliferate and secrete cytokines in a dose-dependent manner when exposed to the drug metabolite. Clones were activated with nitroso dapsone-pulsed antigen-presenting cells, while fixation of antigen-presenting cells or omission of antigen-presenting cells from the assay abrogated the nitroso dapsone-specific T-cell response. Importantly, clones displayed no cross-reactivity with the parent drug. Nitroso dapsone glutathione conjugates were detected in the supernatant of hepatocyte immune cell cocultures, indicating that hepatocyte-derived metabolites are formed and transferred to the immune cell compartment. Similarly, nitroso dapsone-responsive clones were stimulated to proliferate with dapsone, when hepatocytes were added to the coculture system. Collectively, our study demonstrates the use of hepatocyte immune cell coculture systems to detect in situ metabolite formation and metabolite-specific T-cell responses. Similar systems should be used in future diagnostic and predictive assays to detect metabolite-specific T-cell responses when synthetic metabolites are not available.
Collapse
Affiliation(s)
- Serat-E Ali
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
- Proteintech Group, 4th Floor, 196 Deansgate, Manchester M3 3WF, U.K
| | - Xiaoli Meng
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Laila Kafu
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Sean Hammond
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
- Apconix Alderley Park, Alderley Edge, Cheshire SK10 4TG, U.K
| | - Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Monday Ogese
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Rowena Sison-Young
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Robert Jones
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
- Department of Hepatobiliary Surgery, Aintree University Hospital, Liverpool University Hospitals, NHS Foundation Trust, Liverpool L9 7AL, U.K
| | - Benjamin Chan
- Department of Hepatobiliary Surgery, Aintree University Hospital, Liverpool University Hospitals, NHS Foundation Trust, Liverpool L9 7AL, U.K
| | - Lucia Livoti
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Anthony Topping
- School of Engineering, The Quadrangle, The University of Liverpool, Brownlow Hill, Liverpool L69 3GH, U.K
| | - Christopher Goldring
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dean John Naisbitt
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, U.K
| |
Collapse
|
6
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
7
|
Zhao Q, Almutairi M, Tailor A, Lister A, Harper N, Line J, Meng X, Pratoomwun J, Jaruthamsophon K, Sukasem C, Sun Y, Sun L, Ogese MO, MacEwan DJ, Pirmohamed M, Liu J, Ostrov DA, Liu H, Zhang F, Naisbitt DJ. HLA Class-II‒Restricted CD8 + T Cells Contribute to the Promiscuous Immune Response in Dapsone-Hypersensitive Patients. J Invest Dermatol 2021; 141:2412-2425.e2. [PMID: 33798536 DOI: 10.1016/j.jid.2021.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
HLA-B∗13:01 is associated with dapsone (DDS)-induced hypersensitivity, and it has been shown that CD4+ and CD8+ T cells are activated by DDS and its nitroso metabolite (nitroso dapsone [DDS-NO]). However, there is a need to define the importance of the HLA association in the disease pathogenesis. Thus, DDS- and DDS-NO‒specific CD8+ T-cell clones (TCCs) were generated from hypersensitive patients expressing HLA-B∗13:01 and were assessed for phenotype and function, HLA allele restriction, and killing of target cells. CD8+ TCCs were stimulated to proliferate and secrete effector molecules when exposed to DDS and/or DDS-NO. DDS-responsive and several DDS-NO‒responsive TCCs expressing a variety of TCR sequences displayed HLA class-I restriction, with the drug (metabolite) interacting with multiple HLA-B alleles. However, activation of certain DDS-NO‒responsive CD8+ TCCs was inhibited with HLA class-II block, with DDS-NO binding to HLA-DQB1∗05:01. These TCCs were of different origin but expressed TCRs displaying the same amino acid sequences. They were activated through a hapten pathway; displayed CD45RO, CD28, PD-1, and CTLA-4 surface molecules; secreted the same panel of effector molecules as HLA class-I‒restricted TCCs; but displayed a lower capacity to lyse target cells. To conclude, DDS and DDS-NO interact with a number of HLA molecules to activate CD8+ TCCs, with HLA class-II‒restricted CD8+ TCCs that display hybrid CD4‒CD8 features also contributing to the promiscuous immune response that develops in patients.
Collapse
Affiliation(s)
- Qing Zhao
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom; Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Mubarak Almutairi
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Arun Tailor
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Adam Lister
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Nicolas Harper
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Jirawat Pratoomwun
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Centre (SDMC), Ramathibodi Hospital, Bangkok, Thailand; Faculty of Medical Technology, Huachiew Chalermprakiet University, Samut Prakan, Thailand
| | - Kanoot Jaruthamsophon
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom; Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Centre (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Monday O Ogese
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - David J MacEwan
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A∗STAR, Singapore
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Whole genome sequencing identifies genetic variants associated with co-trimoxazole hypersensitivity in Asians. J Allergy Clin Immunol 2020; 147:1402-1412. [PMID: 32791162 DOI: 10.1016/j.jaci.2020.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Co-trimoxazole, a sulfonamide antibiotic, is used to treat a variety of infections worldwide, and it remains a common first-line medicine for prophylaxis against Pneumocystis jiroveci pneumonia. However, it can cause severe cutaneous adverse reaction (SCAR), including Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms. The pathomechanism of co-trimoxazole-induced SCAR remains unclear. OBJECTIVE We aimed to investigate the genetic predisposition of co-trimoxazole-induced SCAR. METHODS We conducted a multicountry case-control association study that included 151 patients with of co-trimoxazole-induced SCAR and 4631 population controls from Taiwan, Thailand, and Malaysia, as well as 138 tolerant controls from Taiwan. Whole-genome sequencing was performed for the patients and population controls from Taiwan; it further validated the results from Thailand and Malaysia. RESULTS The whole-genome sequencing study (43 case patients vs 507 controls) discovered that the single-nucleotide polymorphism rs41554616, which is located between the HLA-B and MICA loci, had the strongest association with co-trimoxazole-induced SCAR (P = 8.2 × 10-9; odds ratio [OR] = 7.7). There were weak associations of variants in co-trimoxazole-related metabolizing enzymes (CYP2D6, GSTP1, GCLC, N-acetyltransferase [NAT2], and CYP2C8). A replication study using HLA genotyping revealed that HLA-B∗13:01 was strongly associated with co-trimoxazole-induced SCAR (the combined sample comprised 91 case patients vs 2545 controls [P = 7.2 × 10-21; OR = 8.7]). A strong HLA association was also observed in the case patients from Thailand (P = 3.2 × 10-5; OR = 3.6) and Malaysia (P = .002; OR = 12.8), respectively. A meta-analysis and phenotype stratification study further indicated a strong association between HLA-B∗13:01 and co-trimoxazole-induced drug reaction with eosinophilia and systemic symptoms (P = 4.2 × 10-23; OR = 40.1). CONCLUSION This study identified HLA-B∗13:01 as an important genetic factor associated with co-trimoxazole-induced SCAR in Asians.
Collapse
|
9
|
Elzagallaai AA, Sultan EA, Bend JR, Abuzgaia AM, Loubani E, Rieder MJ. Role of Oxidative Stress in Hypersensitivity Reactions to Sulfonamides. J Clin Pharmacol 2019; 60:409-421. [PMID: 31709574 DOI: 10.1002/jcph.1535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
Antimicrobial sulfonamides are important medications. However, their use is associated with major immune-mediated drug hypersensitivity reactions with a rate that ranges from 3% to 4% in the general population. The pathophysiology of sulfa-induced drug hypersensitivity reactions is not well understood, but accumulation of reactive metabolites (sulfamethoxazole [SMX] hydroxylamine [SMX-HA] and SMX N-nitrosamine [SMX-NO]) is thought to be a major factor. These reactive metabolites contribute to the formation of reactive oxygen species (ROS) known to cause cellular damage and induce cell death through apoptosis and necroptosis. ROS can also serve as "danger signals," priming immune cells to mount an immunological reaction. We recruited 26 sulfa-hypersensitive (HS) patients, 19 healthy control subjects, and 6 sulfa-tolerant patients to this study. Peripheral blood monocytes and platelets were isolated from blood samples and analyzed for in vitro cytotoxicity, ROS and carbonyl protein formation, lipid peroxidation, and GSH (glutathione) content after challenge with SMX-HA. When challenged with SMX-HA, cells isolated from sulfa-HS patients exhibited significantly (P ≤ .05) higher cell death, ROS and carbonyl protein formation, and lipid peroxidation. In addition, there was a high correlation between cell death in PBMCs and ROS levels. There was also depletion of GSH and lower GSH/GSSG ratios in peripheral blood mononuclear cells from sulfa-HS patients. The amount of ROS formed was negatively correlated with intracellular GSH content. The data demonstrate a major role for oxidative stress in in vitro cytotoxicity of SMX reactive metabolites and indicate increased vulnerability of cells from sulfa-HS patients to the in vitro challenge.
Collapse
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Elham A Sultan
- Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - John R Bend
- Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Awatif M Abuzgaia
- Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Eman Loubani
- Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Michael J Rieder
- Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.,Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Phillips IR, Shephard EA. Flavin-containing monooxygenase 3 (FMO3): genetic variants and their consequences for drug metabolism and disease. Xenobiotica 2019; 50:19-33. [DOI: 10.1080/00498254.2019.1643515] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ian R. Phillips
- Research Department of Structural and Molecular Biology, University College London, London, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Elizabeth A. Shephard
- Research Department of Structural and Molecular Biology, University College London, London, UK
| |
Collapse
|
11
|
Pyo SM, Maibach HI. Skin Metabolism: Relevance of Skin Enzymes for Rational Drug Design. Skin Pharmacol Physiol 2019; 32:283-294. [PMID: 31357203 DOI: 10.1159/000501732] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/25/2019] [Indexed: 11/19/2022]
Abstract
Transdermal therapeutic systems (TTS) have numerous pharmacological benefits. Drug release, for example, is independent of whether a patient is in a fed or a fasted state, and lower doses can be given as gastrointestinal and hepatic first-pass metabolism is avoided. In addition, inter- and intrapatient variability is minimized as the release of the drug is mainly controlled by the system. This makes TTS interesting as alternative systems to the most common dosage form of oral tablets. The difficulty with the dermal administration route is transporting the drug through the skin, since the skin is an efficient barrier against foreign bodies. Various strategies have been reported in the literature of how drug penetration can be improved. Most of them, however, focus on overcoming the stratum corneum as the first (mechanical) skin barrier. However, penetration is much more complex, and the skin's barrier function does not only depend on the stratum corneum; what has been underestimated is the second (biological) skin barrier formed of enzymes. Compared to the stratum corneum, very little is known about these enzymes, e.g., which enzymes are present in the skin and where exactly they are localized. Hence, very few strategies can be found for how to bypass or even use the skin enzyme barrier for TTS development. This review article provides an overview of the skin enzymes considered to be relevant for the biotransformation of dermally applied drugs. Also, we discuss the use of dermal prodrugs and soft drugs and give the stereoselectivity of skin metabolism careful consideration. Finally, we provide suggestions on how to make use of the current knowledge about skin enzymes for rational TTS design.
Collapse
Affiliation(s)
- Sung Min Pyo
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany,
| | - Howard I Maibach
- Department of Dermatology, University of California School of Medicine, San Francisco, California, USA
| |
Collapse
|
12
|
Kazem S, Linssen EC, Gibbs S. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov Today 2019; 24:1899-1910. [PMID: 31176740 DOI: 10.1016/j.drudis.2019.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023]
Abstract
Understanding skin metabolism is important when considering drug discovery and safety assessment. This review compares xenobiotic skin metabolism in ex vivo skin to reconstructed human skin and reconstructed human epidermis models, concentrating on phase I and phase II enzymes. Reports on phase I enzymes are more abundant than for phase II enzymes with mRNA and protein expression far more reported than enzyme activity. Almost all of the xenobiotic metabolizing enzymes detected in human skin are also present in liver. However, in general the relative levels are lower in skin than in liver and fewer enzymes are reported.
Collapse
Affiliation(s)
- Siamaque Kazem
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emma Charlotte Linssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
13
|
Oesch F, Fabian E, Landsiedel R. Xenobiotica-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2018; 92:2411-2456. [PMID: 29916051 PMCID: PMC6063329 DOI: 10.1007/s00204-018-2232-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
Studies on the metabolic fate of medical drugs, skin care products, cosmetics and other chemicals intentionally or accidently applied to the human skin have become increasingly important in order to ascertain pharmacological effectiveness and to avoid toxicities. The use of freshly excised human skin for experimental investigations meets with ethical and practical limitations. Hence information on xenobiotic-metabolizing enzymes (XME) in the experimental systems available for pertinent studies compared with native human skin has become crucial. This review collects available information of which—taken with great caution because of the still very limited data—the most salient points are: in the skin of all animal species and skin-derived in vitro systems considered in this review cytochrome P450 (CYP)-dependent monooxygenase activities (largely responsible for initiating xenobiotica metabolism in the organ which provides most of the xenobiotica metabolism of the mammalian organism, the liver) are very low to undetectable. Quite likely other oxidative enzymes [e.g. flavin monooxygenase, COX (cooxidation by prostaglandin synthase)] will turn out to be much more important for the oxidative xenobiotic metabolism in the skin. Moreover, conjugating enzyme activities such as glutathione transferases and glucuronosyltransferases are much higher than the oxidative CYP activities. Since these conjugating enzymes are predominantly detoxifying, the skin appears to be predominantly protected against CYP-generated reactive metabolites. The following recommendations for the use of experimental animal species or human skin in vitro models may tentatively be derived from the information available to date: for dermal absorption and for skin irritation esterase activity is of special importance which in pig skin, some human cell lines and reconstructed skin models appears reasonably close to native human skin. With respect to genotoxicity and sensitization reactive-metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the Conclusions section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Institute of Toxicology, Johannes Gutenberg-University, Obere Zahlbacherstr. 67, 55131, Mainz, Germany
| | - E Fabian
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany
| | - Robert Landsiedel
- Experimental Toxicology and Ecology, GV/TB, Z470, BASF SE, Carl-Bosch-Str. 38, 67056, Ludwigshafen, Germany.
| |
Collapse
|
14
|
Possenti CGR, Horn RC, Mori NC, Ribas Junior V, Golle DP, Koefender J. AVALIAÇÃO DE ESTRESSE OXIDATIVO NO PLASMA DE BOVINOS LEITEIROS COM MASTITE. CIÊNCIA ANIMAL BRASILEIRA 2018. [DOI: 10.1590/1809-6891v19e-39754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Resumo A mastite bovina está associada a uma resposta antibacteriana endógena mediada pela produção de espécies reativas. Contudo, o excesso de reações oxidativas pode desencadear apoptose celular agravando o quadro clínico dos animais. Neste contexto, o objetivo deste estudo foi avaliar a resposta redox no plasma de vacas leiteiras com e sem mastite submetidas ou não ao tratamento com antibioticoterapia. As vacas foram divididas em Grupo Controle (G1), vacas sem mastite; grupo G2, vacas com mastite sem tratamento com antimicrobianos; grupo G3, vacas com mastite tratadas com antibiótico. As amostras sanguíneas foram coletadas após a primeira ordenha da manhã. Foram analisados a existência de lipoperoxidação (LPO) e os níveis de proteínas carboniladas (PCs), de glutationa reduzida (GSH), de ácido ascórbico (ASA) e de ácido úrico (AU). Os animais do G3 apresentaram aumento na LPO e das PCs. Em todos os grupos, os níveis de GSH permaneceram inalterados. Os valores plasmáticos de ASA e de AU mostraram-se diminuídos nos animais dos grupos G2 e G3. Os resultados demonstraram que o tratamento com antimicrobianos parece agravar os danos oxidativos presentes na mastite bovina, reforçando a importância da busca por alternativas terapêuticas a fim de minimizar esse efeito.
Collapse
|
15
|
Adeyanju K, Bend JR, Rieder MJ, Dekaban GA. HIV-1 tat expression and sulphamethoxazole hydroxylamine mediated oxidative stress alter the disulfide proteome in Jurkat T cells. Virol J 2018; 15:82. [PMID: 29743079 PMCID: PMC5944096 DOI: 10.1186/s12985-018-0991-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/26/2018] [Indexed: 12/30/2022] Open
Abstract
Background Adverse drug reactions (ADRs) are a significant problem for HIV patients, with the risk of developing ADRs increasing as the infection progresses to AIDS. However, the pathophysiology underlying ADRs remains unknown. Sulphamethoxazole (SMX) via its active metabolite SMX-hydroxlyamine, when used prophylactically for pneumocystis pneumonia in HIV-positive individuals, is responsible for a high incidence of ADRs. We previously demonstrated that the HIV infection and, more specifically, that the HIV-1 Tat protein can exacerbate SMX-HA-mediated ADRs. In the current study, Jurkat T cell lines expressing Tat and its deletion mutants were used to determine the effect of Tat on the thiol proteome in the presence and absence of SMX-HA revealing drug-dependent changes in the disulfide proteome in HIV infected cells. Protein lysates from HIV infected Jurkat T cells and Jurkat T cells stably transfected with HIV Tat and Tat deletion mutants were subjected to quantitative slot blot analysis, western blot analysis and redox 2 dimensional (2D) gel electrophoresis to analyze the effects of SMX-HA on the thiol proteome. Results Redox 2D gel electrophoresis demonstrated that untreated, Tat-expressing cells contain a number of proteins with oxidized thiols. The most prominent of these protein thiols was identified as peroxiredoxin. The untreated, Tat-expressing cell lines had lower levels of peroxiredoxin compared to the parental Jurkat E6.1 T cell line. Conversely, incubation with SMX-HA led to a 2- to 3-fold increase in thiol protein oxidation as well as a significant reduction in the level of peroxiredoxin in all the cell lines, particularly in the Tat-expressing cell lines. Conclusion SMX-HA is an oxidant capable of inducing the oxidation of reactive protein cysteine thiols, the majority of which formed intermolecular protein bonds. The HIV Tat-expressing cell lines showed greater levels of oxidative stress than the Jurkat E6.1 cell line when treated with SMX-HA. Therefore, the combination of HIV Tat and SMX-HA appears to alter the activity of cellular proteins required for redox homeostasis and thereby accentuate the cytopathic effects associated with HIV infection of T cells that sets the stage for the initiation of an ADR. Electronic supplementary material The online version of this article (10.1186/s12985-018-0991-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kemi Adeyanju
- BioTherapeutics Research Laboratory, Molecular Medicine Research Laboratories, Robarts Research Institute, Rm 2214, 1151 Richmond Street North, London, Ontario, Canada.,Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - John R Bend
- Department of Pathology and Laboratory Medicine, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Michael J Rieder
- Drug Safety Laboratory, Molecular Medicine Research Laboratories, Robarts Research Institute, Rm 2214, 1151 Richmond Street North, London, Ontario, Canada.,Department of Pediatrics, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada
| | - Gregory A Dekaban
- BioTherapeutics Research Laboratory, Molecular Medicine Research Laboratories, Robarts Research Institute, Rm 2214, 1151 Richmond Street North, London, Ontario, Canada. .,Department of Microbiology and Immunology, University of Western Ontario, 1151 Richmond Street North, London, ON, N6A 5B7, Canada.
| |
Collapse
|
16
|
Argikar UA, Dumouchel JL, Kramlinger VM, Cirello AL, Gunduz M, Dunne CE, Sohal B. Do We Need to Study Metabolism and Distribution in the Eye: Why, When, and Are We There Yet? J Pharm Sci 2017; 106:2276-2281. [DOI: 10.1016/j.xphs.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
|
17
|
Yip VLM, Meng X, Maggs JL, Jenkins RE, Marlot PT, Marson AG, Park BK, Pirmohamed M. Mass Spectrometric Characterization of Circulating Covalent Protein Adducts Derived from Epoxide Metabolites of Carbamazepine in Patients. Chem Res Toxicol 2017; 30:1419-1435. [DOI: 10.1021/acs.chemrestox.7b00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Vincent L. M. Yip
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
- The
Wolfson Centre for Personalized Medicine, Department of Molecular
and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - James L. Maggs
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Rosalind E. Jenkins
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Philippe T. Marlot
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
- The
Wolfson Centre for Personalized Medicine, Department of Molecular
and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Anthony G. Marson
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - B. Kevin Park
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Munir Pirmohamed
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, United Kingdom
- The
Wolfson Centre for Personalized Medicine, Department of Molecular
and Clinical Pharmacology, The University of Liverpool, Liverpool L69 3GL, United Kingdom
| |
Collapse
|
18
|
The application of skin metabolomics in the context of transdermal drug delivery. Pharmacol Rep 2017; 69:252-259. [DOI: 10.1016/j.pharep.2016.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023]
|
19
|
Fu CW, Lin TH. Predicting the Metabolic Sites by Flavin-Containing Monooxygenase on Drug Molecules Using SVM Classification on Computed Quantum Mechanics and Circular Fingerprints Molecular Descriptors. PLoS One 2017; 12:e0169910. [PMID: 28072829 PMCID: PMC5224990 DOI: 10.1371/journal.pone.0169910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/22/2016] [Indexed: 01/02/2023] Open
Abstract
As an important enzyme in Phase I drug metabolism, the flavin-containing monooxygenase (FMO) also metabolizes some xenobiotics with soft nucleophiles. The site of metabolism (SOM) on a molecule is the site where the metabolic reaction is exerted by an enzyme. Accurate prediction of SOMs on drug molecules will assist the search for drug leads during the optimization process. Here, some quantum mechanics features such as the condensed Fukui function and attributes from circular fingerprints (called Molprint2D) are computed and classified using the support vector machine (SVM) for predicting some potential SOMs on a series of drugs that can be metabolized by FMO enzymes. The condensed Fukui function fA- representing the nucleophilicity of central atom A and the attributes from circular fingerprints accounting the influence of neighbors on the central atom. The total number of FMO substrates and non-substrates collected in the study is 85 and they are equally divided into the training and test sets with each carrying roughly the same number of potential SOMs. However, only N-oxidation and S-oxidation features were considered in the prediction since the available C-oxidation data was scarce. In the training process, the LibSVM package of WEKA package and the option of 10-fold cross validation are employed. The prediction performance on the test set evaluated by accuracy, Matthews correlation coefficient and area under ROC curve computed are 0.829, 0.659, and 0.877 respectively. This work reveals that the SVM model built can accurately predict the potential SOMs for drug molecules that are metabolizable by the FMO enzymes.
Collapse
Affiliation(s)
- Chien-wei Fu
- Department of Pharmacy, National Taiwan University Hospital Hsin-Chu Branch, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, HsinChu, Taiwan, ROC
| | - Thy-Hou Lin
- Department of Pharmacy, National Taiwan University Hospital Hsin-Chu Branch, Institute of Molecular Medicine and Department of Life Science, National Tsing Hua University, HsinChu, Taiwan, ROC
- * E-mail:
| |
Collapse
|
20
|
Dumont C, Prieto P, Asturiol D, Worth A. Review of the Availability ofIn VitroandIn SilicoMethods for Assessing Dermal Bioavailability. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2015.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Coralie Dumont
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - David Asturiol
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- The European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Institute for Health and Consumer Protection, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
21
|
Ogese MO, Jenkins RE, Maggs JL, Meng X, Whitaker P, Peckham D, Faulkner L, Park BK, Naisbitt DJ. Characterization of Peroxidases Expressed in Human Antigen Presenting Cells and Analysis of the Covalent Binding of Nitroso Sulfamethoxazole to Myeloperoxidase. Chem Res Toxicol 2015; 28:144-54. [PMID: 25531135 DOI: 10.1021/tx500458k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Drug hypersensitivity remains a major concern, as it causes high morbidity and mortality. Understanding the mechanistic basis of drug hypersensitivity is complicated by the multiple risk factors implicated. This study utilized sulfamethoxazole (SMX) as a model drug to (1) relate SMX metabolism in antigen presenting cells (APCs) to the activation of T-cells and (2) characterize covalent adducts of SMX and myeloperoxidase, which might represent antigenic determinants for T-cells. The SMX metabolite nitroso-SMX (SMX-NO) was found to bind irreversibly to APCs. Time- and concentration-dependent drug-protein adducts were also detected when APCs were cultured with SMX. Metabolic activation of SMX was significantly reduced by the oxygenase/peroxidase inhibitor methimazole. Similarly, SMX-NO-specific T-cells were activated by APCs pulsed with SMX, and the response was inhibited by pretreatment with methimazole or glutaraldehyde, which blocks antigen processing. Western blotting, real-time polymerase chain reaction (RT-PCR), and mass spectrometry analyses suggested the presence of low concentrations of myeloperoxidase in APCs. RT-PCR revealed mRNA expression for flavin-containing monooxygenases (FMO1-5), thyroid peroxidase, and lactoperoxidase, but the corresponding proteins were not detected. Mass spectrometric characterization of SMX-NO-modified myeloperoxidase revealed the formation of N-hydroxysulfinamide adducts on Cys309 and Cys398. These data show that SMX's metabolism in APCs generates antigenic determinants for T-cells. Peptides derived from SMX-NO-modified myeloperoxidase may represent one form of functional antigen.
Collapse
Affiliation(s)
- Monday O Ogese
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Rosalind E Jenkins
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Ashton Street, Liverpool L69 3GE, United Kingdom
| | - James L Maggs
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Paul Whitaker
- Regional Adult Cystic Fibrosis Unit, St James's University Hospital , Leeds LS9 7TF, United Kingdom
| | - Daniel Peckham
- Regional Adult Cystic Fibrosis Unit, St James's University Hospital , Leeds LS9 7TF, United Kingdom
| | - Lee Faulkner
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Ashton Street, Liverpool L69 3GE, United Kingdom
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool , Ashton Street, Liverpool L69 3GE, United Kingdom
| |
Collapse
|
22
|
Duran-Figueroa N, Badillo-Corona JA, Naisbitt DJ, Castrejon-Flores JL. Towards the development of mechanism-based biomarkers to diagnose drug hypersensitivity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00238e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
T-cells are activated by different mechanisms in the presence of drugs, metabolites or haptens, and they release several molecules that can be used in the diagnosis of drug hypersensitivity.
Collapse
Affiliation(s)
- N. Duran-Figueroa
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| | - J. A. Badillo-Corona
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| | - D. J. Naisbitt
- MRC Centre for Drug Safety Science
- Department of Pharmacology
- University of Liverpool
- Liverpool
- UK
| | - J. L. Castrejon-Flores
- Instituto Politécnico Nacional
- Unidad Profesional Interdisciplinaria de Biotecnología
- Mexico City
- Mexico
| |
Collapse
|
23
|
Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2014; 88:2135-90. [PMID: 25370008 PMCID: PMC4247477 DOI: 10.1007/s00204-014-1382-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023]
Abstract
The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the “Overview and Conclusions” section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&Co.KG, Rheinblick 21, 55263, Wackernheim, Germany
| | | | | | | |
Collapse
|
24
|
Cruciani G, Valeri A, Goracci L, Pellegrino RM, Buonerba F, Baroni M. Flavin monooxygenase metabolism: why medicinal chemists should matter. J Med Chem 2014; 57:6183-96. [PMID: 25003501 DOI: 10.1021/jm5007098] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
FMO enzymes (FMOs) play a key role in the processes of detoxification and/or bioactivation of specific pharmaceuticals and xenobiotics bearing nucleophilic centers. The N-oxide and S-oxide metabolites produced by FMOs are often active metabolites. The FMOs are more active than cytochromes in the brain and work in tandem with CYP3A4 in the liver. FMOs might reduce the risk of phospholipidosis of CAD-like drugs, although some FMOs metabolites seem to be neurotoxic and hepatotoxic. However, in silico methods for FMO metabolism prediction are not yet available. This paper reports, for the first time, a substrate-specificity and catalytic-activity model for FMO3, the most relevant isoform of the FMOs in humans. The application of this model to a series of compounds with unknown FMO metabolism is also reported. The model has also been very useful to design compounds with optimal clearance and in finding erroneous literature data, particularly cases in which substances have been reported to be FMO3 substrates when, in reality, the experimentally validated in silico model correctly predicts that they are not.
Collapse
Affiliation(s)
- Gabriele Cruciani
- Laboratory for Chemoinformatics and Molecular Modelling, Department of Chemistry, Biology and Biotechnology, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Gundert-Remy U, Bernauer U, Blömeke B, Döring B, Fabian E, Goebel C, Hessel S, Jäckh C, Lampen A, Oesch F, Petzinger E, Völkel W, Roos PH. Extrahepatic metabolism at the body's internal–external interfaces. Drug Metab Rev 2014; 46:291-324. [DOI: 10.3109/03602532.2014.900565] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Pirmohamed M, Drummond NS, Naisbitt DJ, Park BK. Drug hypersensitivity reactions in patients with HIV disease. Expert Rev Clin Immunol 2014; 3:395-410. [DOI: 10.1586/1744666x.3.3.395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Sharma AM, Uetrecht J. Bioactivation of drugs in the skin: relationship to cutaneous adverse drug reactions. Drug Metab Rev 2013; 46:1-18. [DOI: 10.3109/03602532.2013.848214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Belorgey D, Lanfranchi DA, Davioud-Charvet E. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr Pharm Des 2013; 19:2512-28. [PMID: 23116403 DOI: 10.2174/1381612811319140003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in developmental arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages.
Collapse
Affiliation(s)
- Didier Belorgey
- European School of Chemistry, Polymers and Materials (ECPM), UMR7509 CNRS - Universite de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | |
Collapse
|
29
|
Snider GW, Ruggles E, Khan N, Hondal RJ. Selenocysteine confers resistance to inactivation by oxidation in thioredoxin reductase: comparison of selenium and sulfur enzymes. Biochemistry 2013; 52:5472-81. [PMID: 23865454 DOI: 10.1021/bi400462j] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mammalian thioredoxin reductase (TR) is a selenocysteine (Sec)-containing homodimeric pyridine nucleotide oxidoreductase which catalyzes the reduction of oxidized thioredoxin. We have previously demonstrated the full-length mitochondrial mammalian TR (mTR3) enzyme to be resistant to inactivation from exposure to 50 mM H2O2. Because a Sec residue oxidizes more rapidly than a cysteine (Cys) residue, it has been previously thought that Sec-containing enzymes are "sensitive to oxidation" compared to Cys-orthologues. Here we show for the first time a direct comparison of the abilities of Sec-containing mTR3 and the Cys-orthologue from D. melanogaster (DmTR) to resist inactivation by oxidation from a variety of oxidants including H2O2, hydroxyl radical, peroxynitrite, hypochlorous acid, hypobromous acid, and hypothiocyanous acid. The results show that the Sec-containing TR is far superior to the Cys-orthologue TR in resisting inactivation by oxidation. To further test our hypothesis that the use of Sec confers strong resistance to inactivation by oxidation, we constructed a chimeric enzyme in which we replaced the active site Cys nucleophile of DmTR with a Sec residue using semisynthesis. The chimeric Sec-containing enzyme has similar ability to resist inactivation by oxidation as the wild type Sec-containing TR from mouse mitochondria. The use of Sec in the chimeric enzyme "rescued" the enzyme from oxidant-induced inactivation for all of the oxidants tested in this study, in direct contrast to previous understanding. We discuss two possibilities for this rescue effect from inactivation under identical conditions of oxidative stress: (i) Sec resists overoxidation and inactivation, whereas a Cys residue can be permanently overoxidized to the sulfinic acid form, and (ii) Sec protects the body of the enzyme from harmful oxidation by allowing the enzyme to metabolize (turnover) various oxidants much better than a Cys-containing TR.
Collapse
Affiliation(s)
- Gregg W Snider
- Department of Biochemistry, University of Vermont, 89 Beaumont Ave, Given Building Room B413, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
30
|
Uetrecht J, Naisbitt DJ. Idiosyncratic adverse drug reactions: current concepts. Pharmacol Rev 2013; 65:779-808. [PMID: 23476052 DOI: 10.1124/pr.113.007450] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Idiosyncratic drug reactions are a significant cause of morbidity and mortality for patients; they also markedly increase the uncertainty of drug development. The major targets are skin, liver, and bone marrow. Clinical characteristics suggest that IDRs are immune mediated, and there is substantive evidence that most, but not all, IDRs are caused by chemically reactive species. However, rigorous mechanistic studies are very difficult to perform, especially in the absence of valid animal models. Models to explain how drugs or reactive metabolites interact with the MHC/T-cell receptor complex include the hapten and P-I models, and most recently it was found that abacavir can interact reversibly with MHC to alter the endogenous peptides that are presented to T cells. The discovery of HLA molecules as important risk factors for some IDRs has also significantly contributed to our understanding of these adverse reactions, but it is not yet clear what fraction of IDRs have a strong HLA dependence. In addition, with the exception of abacavir, most patients who have the HLA that confers a higher IDR risk with a specific drug will not have an IDR when treated with that drug. Interindividual differences in T-cell receptors and other factors also presumably play a role in determining which patients will have an IDR. The immune response represents a delicate balance, and immune tolerance may be the dominant response to a drug that can cause IDRs.
Collapse
Affiliation(s)
- Jack Uetrecht
- Faculties of Pharmacy and Medicine, University of Toronto, Toronto, Canada M5S3M2.
| | | |
Collapse
|
31
|
Stachulski AV, Baillie TA, Kevin Park B, Scott Obach R, Dalvie DK, Williams DP, Srivastava A, Regan SL, Antoine DJ, Goldring CEP, Chia AJL, Kitteringham NR, Randle LE, Callan H, Castrejon JL, Farrell J, Naisbitt DJ, Lennard MS. The Generation, Detection, and Effects of Reactive Drug Metabolites. Med Res Rev 2012; 33:985-1080. [DOI: 10.1002/med.21273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrew V. Stachulski
- Department of Chemistry, Robert Robinson Laboratories; University of Liverpool; Liverpool; L69 7ZD; UK
| | - Thomas A. Baillie
- School of Pharmacy; University of Washington; Box 357631; Seattle; Washington; 98195-7631
| | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - R. Scott Obach
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; Groton; Connecticut 06340
| | - Deepak K. Dalvie
- Pharmacokinetics, Dynamics and Metabolism; Pfizer Worldwide Research & Development; La Jolla; California 94121
| | - Dominic P. Williams
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Abhishek Srivastava
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Sophie L. Regan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Daniel J. Antoine
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Christopher E. P. Goldring
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Alvin J. L. Chia
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Neil R. Kitteringham
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Laura E. Randle
- School of Pharmacy and Biomolecular Sciences, Faculty of Science; Liverpool John Moores University; James Parsons Building, Byrom Street; Liverpool L3 3AF; UK
| | - Hayley Callan
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - J. Luis Castrejon
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - John Farrell
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology; MRC Centre for Drug Safety Science; Institute of Translational Medicine; University of Liverpool; Sherrington Buildings, Ashton Street; Liverpool L69 3GE; UK
| | - Martin S. Lennard
- Academic Unit of Medical Education; University of Sheffield; 85 Wilkinson Street; Sheffield S10 2GJ; UK
| |
Collapse
|
32
|
Wang D, Curtis A, Papp AC, Koletar SL, Para MF. Polymorphism in glutamate cysteine ligase catalytic subunit (GCLC) is associated with sulfamethoxazole-induced hypersensitivity in HIV/AIDS patients. BMC Med Genomics 2012; 5:32. [PMID: 22824134 PMCID: PMC3418550 DOI: 10.1186/1755-8794-5-32] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/23/2012] [Indexed: 12/12/2022] Open
Abstract
Background Sulfamethoxazole (SMX) is a commonly used antibiotic for prevention of infectious diseases associated with HIV/AIDS and immune-compromised states. SMX-induced hypersensitivity is an idiosyncratic cutaneous drug reaction with genetic components. Here, we tested association of candidate genes involved in SMX bioactivation and antioxidant defense with SMX-induced hypersensitivity. Results Seventy seven single nucleotide polymorphisms (SNPs) from 14 candidate genes were genotyped and assessed for association with SMX-induced hypersensitivity, in a cohort of 171 HIV/AIDS patients. SNP rs761142 T > G, in glutamate cysteine ligase catalytic subunit (GCLC), was significantly associated with SMX-induced hypersensitivity, with an adjusted p value of 0.045. This result was replicated in a second cohort of 249 patients (p = 0.025). In the combined cohort, heterozygous and homozygous carriers of the minor G allele were at increased risk of developing hypersensitivity (GT vs TT, odds ratio = 2.2, 95% CL 1.4-3.7, p = 0.0014; GG vs TT, odds ratio = 3.3, 95% CL 1.6 – 6.8, p = 0.0010). Each minor allele copy increased risk of developing hypersensitivity 1.9 fold (95% CL 1.4 – 2.6, p = 0.00012). Moreover, in 91 human livers and 84 B-lymphocytes samples, SNP rs761142 homozygous G allele carriers expressed significantly less GCLC mRNA than homozygous TT carriers (p < 0.05). Conclusions rs761142 in GCLC was found to be associated with reduced GCLC mRNA expression and with SMX-induced hypersensitivity in HIV/AIDS patients. Catalyzing a critical step in glutathione biosynthesis, GCLC may play a broad role in idiosyncratic drug reactions.
Collapse
Affiliation(s)
- Danxin Wang
- Department of Pharmacology, Program in Pharmacogenomics, School of Biomedical Science, College of Medicine, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
33
|
Jäckh C, Fabian E, van Ravenzwaay B, Landsiedel R. Relevance of xenobiotic enzymes in human skin in vitro models to activate pro-sensitizers. J Immunotoxicol 2012; 9:426-38. [PMID: 22471730 DOI: 10.3109/1547691x.2012.664578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skin exposure to sensitizing chemicals can induce allergic reactions. Certain chemicals, so called pro-sensitizers, need metabolic activation to become allergenic. Their metabolic activation occurs in skin cells such as keratinocytes or dendritic cells. These cell types are also incorporated into dermal in vitro test systems used to assess the sensitizing potential of chemicals for humans. In vitrosystems range from single cell cultures to organotypic multi-cellular reconstructed skin models. Until now, their metabolic competence to unmask sensitizing potential of pro-sensitizers was rarely investigated. This review aims to summarize current information on available skin in vitro models and the relevance of xenobiotic metabolizing enzymes for the activation of pro-sensitizers such as eugenol, 4-allylanisole, and ethylendiamine. Among others, these chemicals are discussed as performance standards to validate new coming in vitro systems for their potential to identify pro-sensitizers.
Collapse
Affiliation(s)
- Christine Jäckh
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|
34
|
Hirakawa S, Saito R, Ohara H, Okuyama R, Aiba S. Dual Oxidase 1 Induced by Th2 Cytokines Promotes STAT6 Phosphorylation via Oxidative Inactivation of Protein Tyrosine Phosphatase 1B in Human Epidermal Keratinocytes. THE JOURNAL OF IMMUNOLOGY 2011; 186:4762-70. [DOI: 10.4049/jimmunol.1000791] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
35
|
Bordin L, Fiore C, Zen F, Coleman MD, Ragazzi E, Clari G. Dapsone hydroxylamine induces premature removal of human erythrocytes by membrane reorganization and antibody binding. Br J Pharmacol 2011; 161:1186-99. [PMID: 20662842 DOI: 10.1111/j.1476-5381.2010.00962.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE N-hydroxylation of dapsone leads to the formation of the toxic hydroxylamines responsible for the clinical methaemoglobinaemia associated with dapsone therapy. Dapsone has been associated with decreased lifespan of erythrocytes, with consequences such as anaemia and morbidity in patients treated with dapsone for malaria. Here, we investigated how dapsone and/or its hydroxylamine derivative (DDS-NHOH) induced erythrocyte membrane alterations that could lead to premature cell removal. EXPERIMENTAL APPROACH Erythrocytes from healthy donors were subjected to incubation with dapsone and DDS-NHOH for varying times and the band 3 protein tyrosine-phosphorylation process, band 3 aggregation, membrane alteration and IgG binding were all examined and compared with erythrocytes from two patients receiving dapsone therapy. KEY RESULTS The hydroxylamine derivative, but not dapsone (the parent sulphone) altered membrane protein interactions, leading both to aggregation of band 3 protein and to circulating autologous antibody binding, shown in erythrocytes from patients receiving dapsone therapy. The band 3 tyrosine-phosphorylation process can be used as a diagnostic system to monitor membrane alterations both in vitro, assessing concentration and time-dependent effects of DDS-NHOH treatment, and in vivo, evaluating erythrocytes from dapsone-treated patients, in resting or oxidatively stimulated conditions. CONCLUSIONS AND IMPLICATIONS DDS-NHOH-induced alterations of human erythrocytes can be directly monitored in vitro by tyrosine-phosphorylation level and formation of band 3 protein aggregates. The latter, together with antibody-mediated labelling of erythrocytes, also observed after clinical use of dapsone, may lead to shortening of erythrocyte lifespan.
Collapse
Affiliation(s)
- Luciana Bordin
- Department of Biological Chemistry, University of Padova, Viale G. Colombo 3, Padua, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
García-Pérez ME, Royer M, Duque-Fernandez A, Diouf PN, Stevanovic T, Pouliot R. Antioxidant, toxicological and antiproliferative properties of Canadian polyphenolic extracts on normal and psoriatic keratinocytes. JOURNAL OF ETHNOPHARMACOLOGY 2010; 132:251-258. [PMID: 20727399 DOI: 10.1016/j.jep.2010.08.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/28/2010] [Accepted: 08/07/2010] [Indexed: 05/29/2023]
Abstract
AIMS OF THE STUDY In a first attempt for establishing the possible utilization of polyphenolic extracts from barks of Canadian wood species in psoriasis treatment, we aimed to study (a) their antioxidant capacity, (b) their toxicological properties on normal human keratinocytes (NHK), and (c) their effect on the growth of normal and psoriatic keratinocytes (PK). MATERIALS AND METHODS Polyphenolic extracts were obtained by 90% ethanolic maceration and hot water extraction (HWE). Scavenging capacity was evaluated towards hydrogen peroxide, hydroxyl, superoxide, nitric oxide and peroxyl radicals. MTT assay and Trypan blue dye exclusion (TBDE) method were used for evaluating the initial toxicity of the most antioxidant extracts on NHK during 24 and 48 h. The effects of extracts on the growth of NHK and PK at non-toxic concentrations were determined after exposure for 48 h. RESULTS Yellow birch extract obtained by maceration (YB(Mac)) and black spruce extract obtained by HWE (BS(HWE)) were determined to have the highest antioxidant capacity, but BS(HWE) was less toxic on NHK. Toxicity of extracts on keratinocyte plasma membrane and mitochondria after 24 h was attributed to their content of hydroxycinnamic acids and proanthocyanidins. BS(HWE) inhibited the growth of NHK and non-lesional PK, but was not selective for lesional PK. CONCLUSION Given that BS(HWE) presented elevated content of total phenols and flavonoids and showed a low toxicity on NHK as well as an adequate chemical reactivity towards different radicals and some antiproliferative properties, it was considered as the most valuable extract obtained from barks of Canadian wood species.
Collapse
Affiliation(s)
- Martha-Estrella García-Pérez
- Centre LOEX de l'Université Laval, Génie tissulaire et régénération and Faculté de Pharmacie, Université Laval, Québec, QC, Canada G1V 0A6
| | | | | | | | | | | |
Collapse
|
37
|
Xenobiotic metabolism gene expression in the EpiDerm™ in vitro 3D human epidermis model compared to human skin. Toxicol In Vitro 2010; 24:1450-63. [DOI: 10.1016/j.tiv.2010.03.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 01/21/2023]
|
38
|
Paquet P, Piérard GE. New insights in toxic epidermal necrolysis (Lyell's syndrome): clinical considerations, pathobiology and targeted treatments revisited. Drug Saf 2010; 33:189-212. [PMID: 20158284 DOI: 10.2165/11532540-000000000-00000] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Drug-induced toxic epidermal necrolysis (TEN), also known as Lyell's syndrome, is a life-threatening drug reaction characterized by extensive destruction of the epidermis and mucosal epithelia. The eyes are typically involved in TEN. At present, the disease has a high mortality rate. Conceptually, TEN and the Stevens-Johnson syndrome are closely related, although their severity and outcome are different. Distinguishing TEN from severe forms of erythema multiforme relies on consideration of aetiological, clinical and histological characteristics. The current understanding of the pathomechanism of TEN suggests that keratinocytes are key initiator cells. It is probable that the combined deleterious effects on keratinocytes of both the cytokine tumour necrosis factor (TNF)-alpha and oxidative stress induce a combination of apoptotic and necrotic events. As yet, there is no evidence indicating the superiority of monotherapy with corticosteroids, ciclosporin (cyclosporine) or intravenous immunoglobulins over supportive care only for patients with TEN. However, the current theory of TEN pathogenesis supports the administration of a combination of antiapoptotic/antinecrotic drugs (e.g. anti-TNF-alpha antibodies plus N-acetylcysteine) targeting different levels of the keratinocyte failure machinery.
Collapse
Affiliation(s)
- Philippe Paquet
- Department of Dermatopathology, University Hospital of Liège, CHU Sart Tilman, Liège, Belgium.
| | | |
Collapse
|
39
|
Bonifas J, Hennen J, Dierolf D, Kalmes M, Blömeke B. Evaluation of cytochrome P450 1 (CYP1) and N-acetyltransferase 1 (NAT1) activities in HaCaT cells: Implications for the development of in vitro techniques for predictive testing of contact sensitizers. Toxicol In Vitro 2010; 24:973-80. [DOI: 10.1016/j.tiv.2009.12.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/27/2009] [Accepted: 12/22/2009] [Indexed: 10/20/2022]
|
40
|
Lavergne SN, Wang H, Callan HE, Park BK, Naisbitt DJ. "Danger" conditions increase sulfamethoxazole-protein adduct formation in human antigen-presenting cells. J Pharmacol Exp Ther 2009; 331:372-81. [PMID: 19666748 DOI: 10.1124/jpet.109.155374] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antigen-presenting cells (APC) are thought to play an important role in the pathogenesis of drug-induced immune reactions. Various pathological factors can activate APC and therefore influence the immune equilibrium. It is interesting that several diseases have been associated with an increased rate of drug allergy. The aim of this project was to evaluate the impact of such "danger signals" on sulfamethoxazole (SMX) metabolism in human APC (peripheral blood mononuclear cells, Epstein-Barr virus-modified B lymphocytes, monocyte-derived dendritic cells, and two cell lines). APC were incubated with SMX (100 microM-2 mM; 5 min-24 h), in the presence of pathological factors: bacterial endotoxins (lipopolysaccharide and staphylococcal enterotoxin B), flu viral proteins, cytokines [interleukin (IL)-1beta, IL-6, IL-10; tumor necrosis factor-alpha; interferon-gamma; and transforming growth factor-beta], inflammatory molecules (prostaglandin E2, human serum complement, and activated protein C), oxidants (buthionine sulfoximine and H(2)O(2)), and hyperthermia (37.5-39.5 degrees C). Adduct formation was evaluated by enzyme-linked immunosorbent assay and confocal microscopy. SMX-protein adduct formation was time- and concentration-dependent for each cell type tested, in both physiological and danger conditions. A danger environment significantly increased the formation of SMX-protein adducts and significantly shortened the delay for their detection. An additive effect was observed with a combination of danger signals. Dimedone (chemical selectively binding cysteine sulfenic acid) and antioxidants decreased both baseline and danger-enhanced SMX-adduct formation. Various enzyme inhibitors were associated with a significant decrease in SMX-adduct levels, with a pattern varying depending on the cell type and the culture conditions. These results illustrate that danger signals enhance the formation of intracellular SMX-protein adducts in human APC. These findings might be relevant to the increased frequency of drug allergy in certain disease states.
Collapse
Affiliation(s)
- S N Lavergne
- Department of Pharmacology, Centre for Drug Safety Science, The University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
41
|
Besser M, Vera J, Clark J, Chitnavis D, Beatty C, Vassiliou G. Preservation of basophils in dapsone-induced agranulocytosis suggests a possible pathogenetic role for leucocyte peroxidases. Int J Lab Hematol 2009; 31:245-7. [PMID: 19267812 DOI: 10.1111/j.1751-553x.2007.00983.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We describe a hitherto unreported laboratory observation, namely the selective preservation of basophils, in a case of severe dapsone-induced agranulocytosis. Dapsone is known to be metabolised by peroxidases to nitroso derivatives in non-hemopoietic cells where these can in turn act as haptens. Our observation that basophils are selectively spared in this syndrome supports the hypothesis that leucocyte peroxidases function in a similar way to facilitate the pathogenesis of this form of agranulocytosis in susceptible individuals.
Collapse
Affiliation(s)
- M Besser
- Department of Haematology, West Suffolk Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Hines RN, Koukouritaki SB, Poch MT, Stephens MC. Regulatory Polymorphisms and their Contribution to Interindividual Differences in the Expression of Enzymes Influencing Drug and Toxicant Disposition. Drug Metab Rev 2008; 40:263-301. [DOI: 10.1080/03602530801952682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Liu L, Wagner CR, Hanna PE. Human arylamine N-acetyltransferase 1: in vitro and intracellular inactivation by nitrosoarene metabolites of toxic and carcinogenic arylamines. Chem Res Toxicol 2008; 21:2005-16. [PMID: 18759501 DOI: 10.1021/tx800215h] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arylamines (ArNH 2) are common environmental contaminants, some of which are confirmed risk factors for cancer. Biotransformation of the amino group of arylamines involves competing pathways of oxidation and N-acetylation. Nitrosoarenes, which are products of the oxidation pathway, are electrophiles that react with cellular thiols to form sulfinamide adducts. The arylamine N-acetyltransferases, NAT1 and NAT2, catalyze N-acetylation of arylamines and play central roles in their detoxification. We hypothesized that 4-nitrosobiphenyl (4-NO-BP) and 2-nitrosofluorene (2-NO-F), which are nitroso metabolites of arylamines that are readily N-acetylated by NAT1, would be potent inactivators of NAT1 and that nitrosobenzene (NO-B) and 2-nitrosotoluene (2-NO-T), which are nitroso metabolites of arylamines that are less readily acetylated by NAT1, would be less effective inactivators. The second order rate constants for inactivation of NAT1 by 4-NO-BP and 2-NO-F were 59200 and 34500 M (-1) s (-1), respectively; the values for NO-B and 2-NO-T were 25 and 23 M (-1) s (-1). Densitometry quantification and comparisons of specific activities with those of homogeneous recombinant NAT1 showed that NAT1 constitutes approximately 0.002% of cytosolic protein in HeLa cells. Treatment of HeLa cells with 4-NO-BP (2.5 microM) for 1 h caused a 40% reduction in NAT1 activity, and 4-NO-BP (10 microM) caused a 50% loss of NAT1 activity within 30 min without affecting either glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or glutathione reductase (GR) activities. 2-NO-F (1 microM) inhibited HeLa cell NAT1 activity by 36% in 1 h, and a 10 microM concentration of 2-NO-F reduced NAT1 activity by 70% in 30 min without inhibiting GAPDH or GR. Mass spectrometric analysis of NAT1 from HeLa cells in which NAT1 was overexpressed showed that treatment of the cells with 4-NO-BP resulted in sulfinamide adduct formation. These results indicated that exposure to low concentrations of nitrosoarenes may lead to a loss of NAT1 activity, thereby compromising a critical detoxification process.
Collapse
Affiliation(s)
- Li Liu
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
45
|
The roles of drug metabolism in the pathogenesis of T-cell-mediated drug hypersensitivity. Curr Opin Allergy Clin Immunol 2008; 8:299-307. [DOI: 10.1097/aci.0b013e3283079c64] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Motika MS, Zhang J, Cashman JR. Flavin-containing monooxygenase 3 and human disease. Expert Opin Drug Metab Toxicol 2008; 3:831-45. [PMID: 18028028 DOI: 10.1517/17425255.3.6.831] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes information concerning the association of the human flavin-containing monooxygenase 3 (FMO3) and human diseases. Human FMO3 oxygenates a wide variety of nucleophilic heteroatom-containing xenobiotics, including endogenous substrates and various clinically important drugs. In this article, the authors discuss the association of FMO3 with human disease, including: i) direct association of FMO3 genetic mutations to human genetic disease; ii) association of FMO3 genetic polymorphism to altered drug metabolism and, therefore, indirect association of FMO3 with drug therapeutic efficacy of human disease; and iii) the potential impact and/or effect of FMO3 transcriptional regulation during disease states. Even though many studies discussed for the latter two points are at a preliminary stage and require much more research to bring to a definite conclusion, the authors include these studies to stimulate general interest and invite further discussion.
Collapse
Affiliation(s)
- Meike S Motika
- Human Biomolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | | | | |
Collapse
|
47
|
Oesch F, Fabian E, Oesch-Bartlomowicz B, Werner C, Landsiedel R. Drug-metabolizing enzymes in the skin of man, rat, and pig. Drug Metab Rev 2007; 39:659-98. [PMID: 18058329 DOI: 10.1080/03602530701690366] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mammalian skin has long been considered to be poor in drug metabolism. However, many reports clearly show that most drug metabolizing enzymes also occur in the mammalian skin albeit at relatively low specific activities. This review summarizes the current state of knowledge on drug metabolizing enzymes in the skin of human, rat, and pig, the latter, because it is often taken as a model for human skin on grounds of anatomical similarities. However only little is known about drug metabolizing enzymes in pig skin. Interestingly, some cytochromes P450 (CYP) have been observed in the rat skin which are not expressed in the rat liver, such as CYP 2B12 and CYP2D4. As far as investigated most drug metabolizing enzymes occur in the suprabasal (i.e. differentiating) layers of the epidermis, but the rat CYP1A1 rather in the basal layer and human UDP-glucuronosyltransferase rather in the stratum corneum. The pattern of drug metabolizing enzymes and their localization will impact not only the beneficial as well as detrimental properties of drugs for the skin but also dictate whether a drug reaches the blood flow unchanged or as activated or inactivated metabolite(s).
Collapse
Affiliation(s)
- Franz Oesch
- Institute of Toxicology, University of Mainz, Mainz, Germany.
| | | | | | | | | |
Collapse
|
48
|
Roychowdhury S, Vyas PM, Svensson CK. Formation and Uptake of Arylhydroxylamine-Haptenated Proteins in Human Dendritic Cells. Drug Metab Dispos 2007; 35:676-81. [PMID: 17220235 DOI: 10.1124/dmd.106.013680] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bioactivation of sulfonamides and the subsequent formation of haptenated proteins is believed to be a critical step in the development of hypersensitivity reactions to these drugs. Numerous lines of evidence suggest that the presence of such adducts in dendritic cells (DCs) migrating to draining lymph nodes is essential for the development of cutaneous reactions to xenobiotics. Our objective was to determine the ability of human DCs to form drug-protein covalent adducts when exposed to sulfamethoxazole (SMX), dapsone (DDS), or their arylhydroxylamine metabolites [sulfamethoxazole hydroxylamine (S-NOH) and dapsone hydroxylamine (D-NOH)] and to take up preformed adduct. Naive and immature CD34+ KG-1 cells were incubated with SMX, DDS, or metabolites. Formation of haptenated proteins was probed using confocal microscopy and ELISA. Cells were also incubated with preformed adduct (drug-bovine serum albumin conjugate), and uptake was determined using confocal microscopy. Both naive and immature KG-1 cells were able to bioactivate DDS, forming drug-protein adducts, whereas cells showed very little protein haptenation when exposed to SMX. Exposure to S-NOH or D-NOH resulted in protein haptenation in both cell types. Both immature and naive KG-1 cells were able to take up preformed haptenated proteins. Thus, DCs may acquire haptenated proteins associated with drugs via intracellular bioactivation, uptake of reactive metabolites, or uptake of adduct formed and released by adjacent cells (e.g., keratinocytes).
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Office of the Dean, College of Pharmacy, Nursing and Health Sciences, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 49707, USA
| | | | | |
Collapse
|