1
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
2
|
Nicaise AJ, McDonald A, Sears ER, Sturgis T, Kaplan BLF. TCDD Inhibition of IgG1 Production in Experimental Autoimmune Encephalomyelitis (EAE) and In Vitro. Antibodies (Basel) 2022; 11:4. [PMID: 35076460 PMCID: PMC8788515 DOI: 10.3390/antib11010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/02/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The environmental contaminant 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD) is a ligand for the aryl hydrocarbon receptor (AhR). TCDD is well-characterized to produce immunotoxicity, including suppression of antibody production. Previously we showed that TCDD inhibited myelin oligodendrocyte glycoprotein (MOG) peptide-specific IgG and attenuated disease in experimental autoimmune encephalomyelitis (EAE) model in mice. Thus, the purpose of this study was to characterize the effects of TCDD on IgG subclasses in EAE and in vitro and assess effects in B cells derived from various tissues. TCDD modestly suppressed intracellular IgG expression in splenocytes (SPLC), but not bone marrow (BM) or lymph node (LN) cells. To further understand TCDD's effects on IgG, we utilized LPS and LPS + IL-4 in vitro to stimulate IgG3 and IgG1 production, respectively. TCDD preferentially suppressed IgG1+ cell surface expression, especially in SPLC. However, TCDD was able to suppress IgG1 and IgG3 secretion from SPLC and B cells, but not BM cells. Lastly, we revisited the EAE model and determined that TCDD suppressed MOG-specific IgG1 production. Together these data show that the IgG1 subclass of IgG is a sensitive target of suppression by TCDD. Part of the pathophysiology of EAE involves production of pathogenic antibodies that can recruit cytolytic cells to destroy MOG-expressing cells that comprise myelin, so inhibition of IgG1 likely contributes to TCDD's EAE disease attenuation.
Collapse
Affiliation(s)
| | | | | | | | - Barbara L. F. Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA; (A.J.N.); (A.M.); (E.R.S.); (T.S.)
| |
Collapse
|
3
|
The Landscape of AhR Regulators and Coregulators to Fine-Tune AhR Functions. Int J Mol Sci 2021; 22:ijms22020757. [PMID: 33451129 PMCID: PMC7828596 DOI: 10.3390/ijms22020757] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/04/2023] Open
Abstract
The aryl-hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates numerous cellular responses. Originally investigated in toxicology because of its ability to bind environmental contaminants, AhR has attracted enormous attention in the field of immunology in the last 20 years. In addition, the discovery of endogenous and plant-derived ligands points to AhR also having a crucial role in normal cell physiology. Thus, AhR is emerging as a promiscuous receptor that can mediate either toxic or physiologic effects upon sensing multiple exogenous and endogenous molecules. Within this scenario, several factors appear to contribute to the outcome of gene transcriptional regulation by AhR, including the nature of the ligand as such and its further metabolism by AhR-induced enzymes, the local tissue microenvironment, and the presence of coregulators or specific transcription factors in the cell. Here, we review the current knowledge on the array of transcription factors and coregulators that, by interacting with AhR, tune its transcriptional activity in response to endogenous and exogenous ligands.
Collapse
|
4
|
Snyder AD, Ochs SD, Johnson BE, Sulentic CEW. Aryl hydrocarbon receptor-induced activation of the human IGH hs1.2 enhancer: Mutational analysis of putative regulatory binding motifs. Mol Immunol 2020; 120:164-178. [PMID: 32146146 DOI: 10.1016/j.molimm.2020.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/31/2019] [Accepted: 02/06/2020] [Indexed: 11/25/2022]
Abstract
The human hs1.2 enhancer within the Ig heavy chain gene (IGH) is polymorphic and associated with a number of autoimmune diseases. The polymorphic region is characterized by tandem repeats of an ∼53-bp invariant sequence containing possible binding sites for several transcription factors. Our previous studies suggest the human hs1.2 enhancer is sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental toxicant and high affinity ligand of the aryl hydrocarbon receptor (AhR). TCDD induced hs1.2 enhancer activity in an AhR-dependent manner and the number of invariant sequences influenced the magnitude of activity. To better understand the regulation of human hs1.2 enhancer activity, the objective of the current study was to utilize mutational analysis and luciferase reporter constructs to evaluate the contribution of putative transcription factor binding sites to overall hs1.2 enhancer activity and modulation by TCDD. Basal and LPS-induced activity of the hs1.2 enhancer appeared to be most affected by mutation of sites outside of the invariant sequence or deletion of the entire invariant sequence; whereas sites influencing the effect of TCDD were dependent on the cellular activation state (i.e. unstimulated vs. LPS stimulation) and relatively independent of the putative AhR binding site within the invariant sequence. These results suggest that AhR activation affects human hs1.2 activity through an as yet undetermined non-canonical pathway. A better understanding regarding the role of the hs1.2 enhancer in human Ig expression and how AhR ligands modulate its activity may lead to insights into overall Ig regulation and mechanisms of dysfunction.
Collapse
Affiliation(s)
- Andrew D Snyder
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, United States
| | - Sharon D Ochs
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, United States
| | - Brooke E Johnson
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, United States
| | - Courtney E W Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, United States.
| |
Collapse
|
5
|
Zhou J, Zhang Q, Henriquez JE, Crawford RB, Kaminski NE. Lymphocyte-Specific Protein Tyrosine Kinase (LCK) is Involved in the Aryl Hydrocarbon Receptor-Mediated Impairment of Immunoglobulin Secretion in Human Primary B Cells. Toxicol Sci 2018; 165:322-334. [PMID: 29860352 PMCID: PMC6659013 DOI: 10.1093/toxsci/kfy133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytosolic ligand-activated transcription factor involved in xenobiotic sensing, cell cycle regulation, and cell development. In humans, the activation of AHR by 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a high affinity AHR-ligand, impairs the secretion of immunoglobulin M (IgM) to suppress humoral immunity. However, the mechanisms bridging the activation of AHR and the impairment of IgM secretion by human primary B cells remain poorly understood. Recent transcriptomic analysis revealed upregulation of lymphocyte-specific protein tyrosine kinase (LCK) in AHR-activated human primary B cells. LCK is a well-characterized tyrosine kinase that phosphorylates critical signaling proteins involved in activation and cytokine production in T cells. Conversely, the role of LCK in human primary B cells is not well understood. In the current studies, we have verified the transcriptomic finding by detecting AHR-mediated upregulation of LCK protein in human primary B cells. We also confirmed the role of AHR in the upregulation of LCK by using a specific AHR antagonist, which abolished the AHR-mediated increase of LCK. Furthermore, we have confirmed the role of LCK in the AHR-mediated suppression of IgM by using LCK specific inhibitors, which restored the IgM secretion by human B cells in the presence of TCDD. Collectively, the current studies demonstrate a novel role of LCK in IgM response and provide new insights into the mechanism for AHR-mediated impairment of immunoglobulin secretion by human primary B cells.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology & Molecular Genetics
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Georgia 30322
| | - Joseph E Henriquez
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Norbert E Kaminski
- Department of Microbiology & Molecular Genetics
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
6
|
Zhou J, Henriquez J, Crawford R, Kaminski N. Suppression of the IgM Response by Aryl Hydrocarbon Receptor Activation in Human Primary B Cells Involves Impairment of Immunoglobulin Secretory Processes. Toxicol Sci 2018; 163:319-329. [PMID: 29462421 PMCID: PMC6659029 DOI: 10.1093/toxsci/kfy036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aryl hydrocarbon receptor (AHR) activation by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is well established at suppressing humoral immunity. Previous studies in mouse B cells revealed that decreased IgM production was due to a significant suppression in the mRNA levels of the immunoglobulin M components (IgH, IgJ, and Igκ chains) and subsequent decrease in IgM synthesis. In contrast, the current study shows that activation of AHR in human B cells also results in a significant suppression of the number of IgM-secreting cells, but this is not due to a decrease in the transcription or translation of IgH, IgJ, and Igκ chains. Instead, the reduced humoral response is due to the impairment of IgM secretion. This is further evidenced by an accumulation of intracellular IgM in human B cells, which indicates that activation of AHR alters distinct regulatory pathways in human and mouse B cells leading to the suppressed primary IgM response. Collectively, these results demonstrate that although AHR activation mediates suppression of humoral immune responses across many different animal species, the mechanism of action is not necessarily conserved across species.
Collapse
Affiliation(s)
- Jiajun Zhou
- Department of Microbiology and Molecular Genetics
- Institute for Integrative Toxicology
| | - Joseph Henriquez
- Institute for Integrative Toxicology
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| | | | - Norbert Kaminski
- Institute for Integrative Toxicology
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
7
|
Zeliger HI. Predicting disease onset in clinically healthy people. Interdiscip Toxicol 2016; 9:39-54. [PMID: 28652846 PMCID: PMC5458104 DOI: 10.1515/intox-2016-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 04/17/2016] [Indexed: 11/17/2022] Open
Abstract
Virtually all human disease is induced by oxidative stress. Oxidative stress, which is caused by toxic environmental exposure, the presence of disease, lifestyle choices, stress, chronic inflammation or combinations of these, is responsible for most disease. Oxidative stress from all sources is additive and it is the total oxidative stress from all sources that induces the onset of most disease. Oxidative stress leads to lipid peroxidation, which in turn produces Malondialdehyde. Serum malondialdehyde level is an additive parameter resulting from all sources of oxidative stress and, therefore, is a reliable indicator of total oxidative stress which can be used to predict the onset of disease in clinically asymptomatic individuals and to suggest the need for treatment that can prevent much human disease.
Collapse
|
8
|
Salisbury RL, Sulentic CEW. The AhR and NF-κB/Rel Proteins Mediate the Inhibitory Effect of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on the 3' Immunoglobulin Heavy Chain Regulatory Region. Toxicol Sci 2015; 148:443-59. [PMID: 26377645 DOI: 10.1093/toxsci/kfv193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Transcriptional regulation of the murine immunoglobulin (Ig) heavy chain gene (Igh) involves several regulatory elements including the 3'Igh regulatory region (3'IghRR), which is composed of at least 4 enhancers (hs3A, hs1.2, hs3B, and hs4). The hs1.2 and hs4 enhancers exhibit the greatest transcriptional activity and contain binding sites for several transcription factors including nuclear factor kappaB/Rel (NF-κB/Rel) proteins and the aryl hydrocarbon receptor (AhR). Interestingly, the environmental immunosuppressant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which potently inhibits antibody secretion, also profoundly inhibits 3'IghRR and hs1.2 enhancer activation induced by the B-lymphocyte activator lipopolysaccharide (LPS), but enhances LPS-induced activation of the hs4 enhancer. Within the hs1.2 and hs4 enhancers, the AhR binding site is in close proximity or overlaps an NF-κB/Rel binding site suggesting a potential reciprocal modulation of the 3'IghRR by AhR and NF-κB/Rel. The objective of the current study was to evaluate the role of NF-κB/Rel and the AhR on the 3'IghRR and its enhancers using the AhR ligand TCDD, the AhR antagonist CH223191, and toll-like receptor agonists LPS, Resiquimod (R848), or cytosine-phosphate-guanine-oligodeoxynucleotides (CpG). Utilizing the CH12.LX B-lymphocyte cell line and variants expressing either a 3'IghRR-regulated transgene reporter or an inducible IκBα (inhibitor kappa B-alpha protein) superrepressor (IκBαAA), we demonstrate an AhR- and NF-κB/Rel-dependent modulation of 3'IghRR and hs4 activity. Additionally, in mouse splenocytes or CH12.LX cells, binding within the hs1.2 and hs4 enhancer of the AhR and the NF-κB/Rel proteins RelA and RelB was differentially altered by the cotreatment of LPS and TCDD. These results suggest that the AhR and NF-κB/Rel protein binding profile within the 3'IghRR mediates the inhibitory effects of TCDD on Ig expression and therefore antibody levels.
Collapse
Affiliation(s)
- Richard L Salisbury
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| | - Courtney E W Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435
| |
Collapse
|
9
|
Wourms MJ, Sulentic CEW. The aryl hydrocarbon receptor regulates an essential transcriptional element in the immunoglobulin heavy chain gene. Cell Immunol 2015; 295:60-6. [PMID: 25749007 DOI: 10.1016/j.cellimm.2015.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 01/26/2023]
Abstract
Ig heavy chain (Igh) transcription involves several regulatory elements including the 3'Igh regulatory region (3'IghRR). 3'IghRR activity is modulated by several transcription factors, including NF-κB and AP-1 and potentially the aryl hydrocarbon receptor (AhR). The prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) inhibits antibody secretion and 3'IghRR activity. However, the exact mechanism is unknown and TCDD can modulate NF-κB and AP-1 in an AhR-independent manner. To determine if the AhR is a significant regulator of the 3'IghRR, we utilized a mouse B-cell line that stably expresses a 3'IghRR-regulated transgene and either an AhR antagonist or shRNA targeting the AhR. Disruption of the AhR pathway reversed TCDD-induced suppression of the 3'IghRR-regulated transgene and of endogenous Ig demonstrating a biologically significant effect of the AhR on 3'IghRR activation. Altered human 3'IGHRR activity by AhR ligands, which include dietary, environmental, and pharmaceutical chemicals, may have significant implications to human diseases previously associated with the 3'IGHRR.
Collapse
Affiliation(s)
- Michael J Wourms
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Courtney E W Sulentic
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| |
Collapse
|
10
|
|
11
|
Zhang Q, Kline DE, Bhattacharya S, Crawford RB, Conolly RB, Thomas RS, Andersen ME, Kaminski NE. All-or-none suppression of B cell terminal differentiation by environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 2013; 268:17-26. [PMID: 23357550 DOI: 10.1016/j.taap.2013.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
Many environmental contaminants can disrupt the adaptive immune response. Exposure to the ubiquitous aryl hydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other agonists suppresses the antibody response. The underlying pathway mechanism by which TCDD alters B cell function is not well understood. The present study investigated the mechanism of AhR-mediated pathways and mode of suppression by which TCDD perturbs terminal differentiation of B cells to plasma cells and thereby impairs antibody production. An integrated approach combining computational pathway modeling and in vitro assays with primary mouse B cells activated by lipopolysaccharide was employed. We demonstrated that suppression of the IgM response by TCDD occurs in an all-or-none (binary) rather than graded mode: i.e., it reduces the number of IgM-secreting cells in a concentration-dependent manner without affecting the IgM content in individual plasma cells. The mathematical model of the gene regulatory circuit underpinning B cell differentiation revealed that two previously identified AhR-regulated pathways, inhibition of signaling protein AP-1 and activation of transcription factor Bach2, could account for the all-or-none mode of suppression. Both pathways disrupt the operation of a bistable-switch circuit that contains transcription factors Bcl6, Prdm1, Pax5, and Bach2 and regulates B cell fate. The model further predicted that by transcriptionally activating Bach2, TCDD might delay B cell differentiation and increase the likelihood of isotype switching, thereby altering the antibody repertoire. In conclusion, the present study revealed the mode and specific pathway mechanisms by which the environmental immunosuppressant TCDD suppresses B cell differentiation.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Fernando TM, Ochs SD, Liu J, Chambers-Turner RC, Sulentic CEW. 2,3,7,8-tetrachlorodibenzo-p-dioxin induces transcriptional activity of the human polymorphic hs1,2 enhancer of the 3'Igh regulatory region. THE JOURNAL OF IMMUNOLOGY 2012; 188:3294-306. [PMID: 22357631 DOI: 10.4049/jimmunol.1101111] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxicant known to inhibit Ab secretion and Ig expression. Inhibition of Ig expression may be partially mediated through repression of the 3'Igh regulatory region (3'IghRR). TCDD inhibits mouse 3'IghRR activation and induces aryl hydrocarbon receptor binding to dioxin response elements within the 3'IghRR enhancers hs1,2 and hs4. The human hs1,2 enhancer (hu-hs1,2) is polymorphic as the result of the presence of one to four invariant sequences (ISs), which have been correlated with several autoimmune diseases. The IS also contains a dioxin response element core motif. Therefore, the objective was to determine whether hu-hs1,2 activity is sensitive to TCDD. Using a mouse B cell line (CH12.LX), we compared the effects of TCDD on mouse hs1,2 versus hu-hs1,2 activity. TCDD inhibited mouse hs1,2 similarly to the mouse 3'IghRR. In contrast, hu-hs1,2 was activated by TCDD, and antagonist studies supported an aryl hydrocarbon receptor-dependent activation, which was replicated in a human B cell line (IM-9). Absence of Pax5 binding sites is a major difference between the human and mouse hs1,2 sequence. Insertion of the high-affinity Pax5 site in hu-hs1,2 markedly blunted reporter activity but did not alter TCDD's effect (i.e., no shift from activation to inhibition). Additionally, deletional analysis demonstrated a significant IS contribution to hu-hs1,2 basal activity, but TCDD-induced activity was not strictly IS number dependent. Taken together, our results suggest that hu-hs1,2 is a significant target of TCDD and support species differences in hs1,2 regulation. Therefore, sensitivity of hu-hs1,2 to chemical-induced modulation may influence the occurrence and/or severity of human diseases associated with hu-hs1,2.
Collapse
Affiliation(s)
- Tharu M Fernando
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
13
|
Lu H, Crawford RB, Kaplan BLF, Kaminski NE. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated disruption of the CD40 ligand-induced activation of primary human B cells. Toxicol Appl Pharmacol 2011; 255:251-60. [PMID: 21807014 DOI: 10.1016/j.taap.2011.06.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 06/21/2011] [Accepted: 06/30/2011] [Indexed: 11/27/2022]
Abstract
Suppression of the primary antibody response is particularly sensitive to suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in mice; however, surprisingly little is known concerning the effects of TCDD on humoral immunity or B cell function in humans. Results from a limited number of previous studies, primarily employing in vitro activation models, suggested that human B cell effector function is suppressed by TCDD. The present study sought to extend these findings by investigating, in primary human B cells, the effects of TCDD on several critical stages leading to antibody secretion including activation and plasmacytic differentiation using an in vitro CD40 ligand activation model. These studies revealed important differences in the response of human and mouse B cells to TCDD, the most striking being altered expression of plasmacytic differentiation regulators, B lymphocyte-induced maturation protein 1 and paired box protein 5, in mouse but not human B cells. The activation of human B cells was profoundly impaired by TCDD, as evidenced by decreased expression of activation markers CD80, CD86, and CD69. The impaired activation correlated with decreased cell viability, which prevented the progression of human B cells toward plasmacytic differentiation. TCDD treatment also attenuated the early activation of mitogen-activated protein kinases (MAPK) and Akt signaling in human B cells. Collectively, the present study provided experimental evidence for novel mechanisms by which TCDD impairs the effector function of primary human B cells.
Collapse
Affiliation(s)
- Haitian Lu
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
14
|
McClure EA, North CM, Kaminski NE, Goodman JI. Changes in DNA methylation and gene expression during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced suppression of the lipopolysaccharide-stimulated IgM response in splenocytes. Toxicol Sci 2011; 120:339-48. [PMID: 21212295 DOI: 10.1093/toxsci/kfq396] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) is a bacterial endotoxin and a potent B-cell activator capable of inducing a humoral immune response. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-established immunotoxicant that can suppress humoral immune responses, including those initiated by LPS stimulation. In murine models, TCDD-induced suppression of the LPS-activated primary immunoglobulin M (IgM) response is observed both in vivo and in vitro and is typically evaluated as a decrease in the number of IgM antibody-forming cells. The TCDD-induced suppression of the primary humoral immune response occurs, at least in part, upstream of IgM production. The current study was designed as an initial test of our hypothesis that altered DNA methylation, an epigenetic event, is involved in the LPS-induced IgM response by splenocytes as is the suppression of this response by TCDD. Splenocyte-derived DNA from mice treated in vivo with sesame oil + PBS, LPS, TCDD, or LPS + TCDD was used for the current investigation. DNA methylation was evaluated using a technique that permits assessment of the methylation status of multiple genomic regions simultaneously in an unbiased fashion (no specific genes or genomic regions are preselected). Additionally, the expression of selected genes was determined. Our results indicate that treatment with LPS or TCDD can alter DNA methylation and, importantly, combined TCDD + LPS results in altered DNA methylation that was not simply the addition of the changes discerned in the individual treatment groups. Thus, we have identified cross talk between LPS and TCDD at the level of DNA methylation and gene expression.
Collapse
Affiliation(s)
- Emily A McClure
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
15
|
Sulentic CEW, Kaminski NE. The long winding road toward understanding the molecular mechanisms for B-cell suppression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2010; 120 Suppl 1:S171-91. [PMID: 20952503 DOI: 10.1093/toxsci/kfq324] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Suppression of humoral immune responses by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was first reported in the mid-1970s. Since this initial observation, much effort has been devoted by many laboratories toward elucidation of the cellular and molecular mechanisms responsible for the profound impairment of humoral immune responses by TCDD, which is characterized by decreased B cell to plasma cell differentiation and suppression of immunoglobulin production. These efforts have led to a significant body of research demonstrating a direct effect of TCDD on B-cell maturation and function as well as a requisite but as yet undefined role of the aryl hydrocarbon receptor (AhR) in these effects. Likewise, a number of molecular targets putatively involved in mediating B-cell dysfunction by TCDD, and other AhR ligands, have been identified. However, our current understanding has primarily relied on findings from mouse models, and the translation of this knowledge to effects on human B cells and humoral immunity in humans is less clear. Therefore, a current challenge is to determine how TCDD and the AhR affect human B cells. Efforts have been made in this direction but continued progress in developing adequate human models is needed. An in-depth discussion of these advances and limitations in elucidating the cellular and molecular mechanisms putatively involved in the suppression of B-cell function by TCDD as well as the implications on human diseases associated in epidemiological studies with exposure to TCDD and dioxin-like compounds is the primary focus of this review.
Collapse
Affiliation(s)
- Courtney E W Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio 45435, USA
| | | |
Collapse
|
16
|
De Abrew KN, Kaminski NE, Thomas RS. An integrated genomic analysis of aryl hydrocarbon receptor-mediated inhibition of B-cell differentiation. Toxicol Sci 2010; 118:454-69. [PMID: 20819909 DOI: 10.1093/toxsci/kfq265] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters differentiation of B cells and suppresses antibody production. A combination of whole-genome, microarray-based chromatin immunoprecipitation (ChIP-on-chip), and time course gene expression microarray analysis was performed on the mouse B-cell line CH12.LX following exposure to lipopolysaccharide (LPS) or LPS and TCDD to identify the primary and downstream transcriptional elements of B-cell differentiation that are altered by the AHR. ChIP-on-chip analysis identified 1893 regions with a significant increase in AHR binding with TCDD treatment. Transcription factor binding site analysis on the ChIP-on-chip data showed enrichment in AHR response elements. Other transcription factors showed significant coenrichment with AHR response elements. When ChIP-on-chip regions were compared with gene expression changes at the early time points, 78 genes were identified as potential direct targets of the AHR. AHR binding and expression changes were confirmed for a subset of genes in primary mouse B cells. Network analysis examining connections between the 78 potential AHR target genes and three transcription factors known to regulate B-cell differentiation indicated multiple paths for potential regulation by the AHR. Enrichment analysis on the differentially expressed genes at each time point evaluated the downstream impact of AHR-regulated gene expression changes on B-cell-related processes. AHR-mediated impairment of B-cell differentiation occurred at multiple nodes of the B-cell differentiation network and potentially through multiple mechanisms including direct cis-acting effects on key regulators of B-cell differentiation, indirect regulation of B-cell differentiation-related pathways, and transcriptional coregulation of target genes by AHR and other transcription factors.
Collapse
Affiliation(s)
- K Nadira De Abrew
- The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
17
|
North CM, Crawford RB, Lu H, Kaminski NE. 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated suppression of toll-like receptor stimulated B-lymphocyte activation and initiation of plasmacytic differentiation. Toxicol Sci 2010; 116:99-112. [PMID: 20348231 PMCID: PMC2886857 DOI: 10.1093/toxsci/kfq095] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 03/23/2010] [Indexed: 01/20/2023] Open
Abstract
2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD) is a potent suppressor of humoral immunity, disrupting antibody production in response to both T cell-dependent and T cell-independent antigens. Among the cell types required for humoral responses, the B cell is highly, and directly, sensitive to TCDD. B cells become antibody-secreting cells via plasmacytic differentiation, a process regulated by several transcription factors, including activator protein-1, B-cell CLL/lymphoma 6 (BCL-6), and B lymphocyte-induced maturation protein 1 (Blimp-1). The overarching conceptual framework guiding experimentation is that TCDD disrupts plasmacytic differentiation by altering the expression or activity for upstream regulators of Blimp-1. Multiparametric flow cytometry was used to investigate TCDD-induced alterations in both activation marker and transcription factor expression following lipopolysaccharide (LPS) activation of purified B cells. TCDD significantly impaired LPS-activated expression of major histocompatibility complex class II, cluster of differentiation (CD)69, CD80, and CD86. Immunosuppressive concentrations of TCDD also suppressed LPS-activated Blimp-1 and phosphorylated c-Jun expression, whereas elevating BCL-6 expression. Because BCL-6 and c-Jun are directly and indirectly regulated by the kinases AKT, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), it was hypothesized that TCDD alters toll-like receptor-activated kinase phosphorylation. TCDD at 0.03 and 0.3 nM significantly impaired phosphorylation of AKT, ERK, and JNK in CH12.LX B cells activated with LPS, CpG oligonucleotides, or resiquimod (R848). In primary B cells, R848-activated phosphorylation of AKT, ERK, and JNK was also impaired by TCDD at 30 nM. These results suggest that impairment of plasmacytic differentiation by TCDD involves altered transcription factor expression, in part, by suppressed kinase phosphorylation.
Collapse
Affiliation(s)
| | | | | | - Norbert E. Kaminski
- Center for Integrative Toxicology, Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
18
|
Zhang Q, Bhattacharya S, Kline DE, Crawford RB, Conolly RB, Thomas RS, Kaminski NE, Andersen ME. Stochastic modeling of B lymphocyte terminal differentiation and its suppression by dioxin. BMC SYSTEMS BIOLOGY 2010; 4:40. [PMID: 20359356 PMCID: PMC2859749 DOI: 10.1186/1752-0509-4-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 04/01/2010] [Indexed: 12/14/2022]
Abstract
Background Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists. Results To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype. Conclusion Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.
Collapse
Affiliation(s)
- Qiang Zhang
- Division of Computational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Bhattacharya S, Conolly RB, Kaminski NE, Thomas RS, Andersen ME, Zhang Q. A bistable switch underlying B-cell differentiation and its disruption by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 2010; 115:51-65. [PMID: 20123757 DOI: 10.1093/toxsci/kfq035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The differentiation of B cells into antibody-secreting plasma cells upon antigen stimulation, a crucial step in the humoral immune response, is disrupted by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Several key regulatory proteins in the B-cell transcriptional network have been identified, with two coupled mutually repressive feedback loops among the three transcription factors B-cell lymphoma 6 (Bcl-6), B lymphocyte-induced maturation protein 1(Blimp-1), and paired box 5 (Pax5) forming the core of the network. However, the precise mechanisms underlying B-cell differentiation and its disruption by TCDD are not fully understood. Here we show with a computational systems biology model that coupling of the two feedback loops at the Blimp-1 node, through parallel inhibition of Blimp-1 gene activation by Bcl-6 and repression of Blimp-1 gene deactivation by Pax5, can generate a bistable switch capable of directing B cells to differentiate into plasma cells. We also use bifurcation analysis to propose that TCDD may suppress the B-cell to plasma cell differentiation process by raising the threshold dose of antigens such as lipopolysaccharide required to trigger the bistable switch. Our model further predicts that high doses of TCDD may render the switch reversible, thus causing plasma cells to lose immune function and dedifferentiate to a B cell-like state. The immunotoxic implications of these predictions are twofold. First, TCDD and related compounds would disrupt the initiation of the humoral immune response by reducing the proportion of B cells that respond to antigen and differentiate into antibody-secreting plasma cells. Second, TCDD may also disrupt the maintenance of the immune response by depleting the pool of available plasma cells through dedifferentiation.
Collapse
Affiliation(s)
- Sudin Bhattacharya
- Division of Computational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Murray IA, Morales JL, Flaveny CA, Dinatale BC, Chiaro C, Gowdahalli K, Amin S, Perdew GH. Evidence for ligand-mediated selective modulation of aryl hydrocarbon receptor activity. Mol Pharmacol 2010; 77:247-54. [PMID: 19903824 PMCID: PMC2812074 DOI: 10.1124/mol.109.061788] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 11/06/2009] [Indexed: 11/22/2022] Open
Abstract
The concept of selective receptor modulators has been established for the nuclear steroid hormone receptors. Such selective modulators have been used therapeutically with great success in the treatment of cancer. However, this concept has not been examined with regard to the aryl hydrocarbon receptor (AHR) because of the latent toxicity commonly associated with AHR activation. AHR-mediated toxicity is primarily derived from AHR binding to its dioxin response element (DRE) and driving expression of CYP1 family members, which have the capacity to metabolize procarcinogens to genotoxic carcinogens. Recent evidence using a non-DRE binding AHR mutant has established the DRE-independent suppression of inflammatory markers by the AHR. We wished to determine whether such DRE-independent repression with wild-type AHR could be dissociated from canonical DRE-dependent transactivation in a ligand-dependent manner and, in doing so, prove the concept of a selective AHR modulator (SAhRM). Here, we identify the selective estrogen receptor (ER) modulator Way-169916 as a dually selective modulator, binding both ER and AHR. Inflammatory gene expression associated with the cytokine-inducible acute-phase response (e.g., SAA1 and CRP) are diminished by Way-169916 in an AHR-dependent manner. Furthermore, activation of AHR by Way-169916 fails to stimulate canonical DRE-driven AHR-mediated CYP1A1 expression, thus eliminating the potential for AHR-mediated genotoxic stress. Such anti-inflammatory activity in the absence of DRE-mediated expression fulfills the major criteria of an SAhRM, which suggests that selective modulation of AHR is possible and renders the AHR a therapeutically viable drug target for the amelioration of inflammatory disease.
Collapse
Affiliation(s)
- Iain A Murray
- The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
North CM, Crawford RB, Lu H, Kaminski NE. Simultaneous in vivo time course and dose response evaluation for TCDD-induced impairment of the LPS-stimulated primary IgM response. Toxicol Sci 2009; 112:123-32. [PMID: 19675145 PMCID: PMC2769062 DOI: 10.1093/toxsci/kfp187] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 07/28/2009] [Indexed: 11/14/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent suppressor of humoral immunity but the specific molecular mechanisms responsible for immunosuppression by TCDD are poorly understood. In vivo and in vitro studies of the primary humoral IgM response demonstrated that the B cell is a sensitive cell type to modulation by TCDD. We hypothesized that in vivo administration of TCDD disrupts expression of transcription factors controlling B cell to plasma cell differentiation. Female C57BL6 mice were treated with a single dose of TCDD (3, 10, or 30 microg/kg) and/or vehicle (sesame oil). On day 4 post-TCDD administration mice were sensitized with 25 microg lipopolysacchride (LPS) by intraperitioneal injection to stimulate an immune response. Splenocytes were isolated on subsequent days following LPS, up to 3 days post-LPS, and the expression of IgM, XBP-1, PAX5, BCL-6, and Blimp-1 was assessed. TCDD treatment dose-dependently suppressed LPS-induced IgM antibody-forming cell number, which was correlated with decreased frequency of CD19+ CD138+ cells. Gene expression analysis revealed that TCDD caused a dose-dependent suppression of Igmicro chain, Igkappa chain, IgJ chain, XBP-1, and Blimp-1. TCDD also dose-dependently suppressed LPS-stimulated increases in Blimp-1 protein expression in CD19+ B cells. The deregulation of Blimp-1 expression by TCDD provides a partial explanation for the concomitant suppression of the IgM response and confirms previous observations established in vitro.
Collapse
Affiliation(s)
- Colin M. North
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Robert B. Crawford
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Haitian Lu
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Norbert E. Kaminski
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
22
|
Lu H, Crawford RB, North CM, Kaplan BLF, Kaminski NE. Establishment of an immunoglobulin m antibody-forming cell response model for characterizing immunotoxicity in primary human B cells. Toxicol Sci 2009; 112:363-73. [PMID: 19767444 DOI: 10.1093/toxsci/kfp224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rodent models have been extensively utilized to identify putative human immunotoxicants; however, even when immunotoxicity is established, uncertainty remains whether the effects are predictive of human risk. Therefore, the objective of this study was to establish a polyclonal immunoglobulin M (IgM) antibody-forming cell (AFC) response model to directly characterize immunotoxicity in primary mouse or human B cells. CD40 ligand (CD40L) was selected to activate B cells because it effectively drives both primary human and mouse B cells in vitro to AFC in a physiologically relevant manner to mimic T-cell-dependent antibody responses in vivo. In this model, the IgM AFC response is induced by cell surface-expressed CD40L and promoted by recombinant cytokines. Reported here are the conditions required to induce IgM AFC responses using mouse splenic B cells or human peripheral blood B cells, allowing for species comparisons. Moreover, less than one order of magnitude difference was observed in the CD40L-induced B-cell AFC responses based on data from multiple donors. In addition to antibody production, proliferation and phenotypic changes characteristic of B-cell activation as well as the plasma cell phenotype were also significantly induced. Finally, two well-characterized immunotoxicants, arsenic and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, using the CD40L-induced IgM AFC response were compared in both mouse and human B cells. Collectively, an IgM AFC response model is described that can be applied to assess the sensitivity of antibody responses to modulation by xenobiotics using mouse as well as human primary B cells.
Collapse
Affiliation(s)
- Haitian Lu
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
23
|
Schneider D, Manzan MA, Yoo BS, Crawford RB, Kaminski N. Involvement of Blimp-1 and AP-1 dysregulation in the 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated suppression of the IgM response by B cells. Toxicol Sci 2009; 108:377-88. [PMID: 19237549 PMCID: PMC2664693 DOI: 10.1093/toxsci/kfp028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/06/2009] [Indexed: 12/22/2022] Open
Abstract
B cell differentiation and humoral immune responses are markedly suppressed by the persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The suppression of humoral immune responses by TCDD occurs by direct actions on the B cell and involves activation of the aryl hydrocarbon receptor. Transcriptional regulation of paired box gene 5 (Pax5), an important regulator of B cell differentiation, is altered by TCDD in concordance with the suppression of B cell differentiation and humoral immunoglobulin M response. We hypothesized that TCDD treatment leads to dysregulation of Pax5 transcription by interfering with the basic B cell differentiation mechanisms and aimed to determine the effects of TCDD on upstream regulators of Pax5. A critical regulator of B cell differentiation, B lymphocyte-induced maturation protein-1 (Blimp-1) acts as a transcriptional repressor of Pax5. In lipopolysaccharide (LPS)-activated murine B cell lymphoma, CH12.LX, Blimp-1 messenger RNA, and DNA-binding activity within the Pax5 promoter were suppressed by TCDD. Furthermore, LPS activation of CH12.LX cells upregulated DNA-binding activity of activator protein 1 (AP-1) at three responsive element-like motifs within the Blimp-1 promoter. TCDD treatment of LPS-activated CH12.LX cells suppressed AP-1 binding to these motifs between 24 and 72 h, in concordance with the suppression of Blimp-1 by TCDD. A more comprehensive analysis at 72 h demonstrated that the suppression of AP-1 binding within the Blimp-1 promoter by TCDD was concentration dependent. In summary, our findings link the TCDD-mediated suppression of Blimp-1 through AP-1 to the dysregulation of Pax5, which ultimately leads to the suppression of B cell differentiation and humoral immune responses.
Collapse
Affiliation(s)
- Dina Schneider
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Maria A. Manzan
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| | - Byung Sun Yoo
- Department of Biology, Kyonggi University, Paldal-gu, Suwon-Si, Korea
| | - Robert B. Crawford
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
| | - Norbert Kaminski
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|