1
|
Taha MS, Ahmadian MR. Nucleophosmin: A Nucleolar Phosphoprotein Orchestrating Cellular Stress Responses. Cells 2024; 13:1266. [PMID: 39120297 PMCID: PMC11312075 DOI: 10.3390/cells13151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nucleophosmin (NPM1) is a key nucleolar protein released from the nucleolus in response to stress stimuli. NPM1 functions as a stress regulator with nucleic acid and protein chaperone activities, rapidly shuttling between the nucleus and cytoplasm. NPM1 is ubiquitously expressed in tissues and can be found in the nucleolus, nucleoplasm, cytoplasm, and extracellular environment. It plays a central role in various biological processes such as ribosome biogenesis, cell cycle regulation, cell proliferation, DNA damage repair, and apoptosis. In addition, it is highly expressed in cancer cells and solid tumors, and its mutation is a major cause of acute myeloid leukemia (AML). This review focuses on NPM1's structural features, functional diversity, subcellular distribution, and role in stress modulation.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Yan M, Wu J, Wang L, Wang K, Li L, Sun T, Zhang H, Zhang M, Zou L, Yang S, Liu J. Ginkgolide injections in meglumine, combined with edaravone, significantly increases the efficacy in acute ischemic stroke: A meta-analysis. Front Pharmacol 2024; 14:1236684. [PMID: 38726464 PMCID: PMC11079130 DOI: 10.3389/fphar.2023.1236684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 05/12/2024] Open
Abstract
Objective This study aimed to evaluate the efficacy of combining diterpene ginkgolide meglumine injection (DGMI) with edaravone for the treatment of acute ischemic stroke. This is particularly relevant because Western drugs, excluding intravenous thrombolysis, have shown limited success. Methods A comprehensive search was conducted using multiple databases, including PubMed, Cochrane Library, Web of Science, China National Knowledge Infrastructure WanFang, VIP, and Chinese Biomedical Database (CBM) until June 2023. The data were analyzed using fixed-effects and random-effects models in Review Manager. The mean difference with 95% confidence interval was calculated for each outcome. Results Eighteen studies involving 1,636 participants were included in the analysis. The DGMI group showed significant reductions in the National Institutes of Health Stroke Scale (NIHSS) score, modified Rankin Scale (mRS) score, and C-reactive protein (CRP) level, compared to the control group. Furthermore, the DGMI group showed a significant improvement in superoxide dismutase (SOD) levels and a reduction in malondialdehyde (MDA) levels. The combination of DGMI and edaravone was more effective in reducing neuron-specific enolase (NSE) levels following brain tissue injury than edaravone alone. Additionally, DGMI complemented edaravone in reducing rheological parameters associated with ischemic stroke, including hematocrit, plasma viscosity, platelet adhesion rate, and erythrocyte deformation index. Conclusion The combination of DGMI and edaravone significantly improved the therapeutic efficacy in patients with acute ischemic stroke. However, more extensive and high-quality clinical trials are required to validate these underlying mechanisms. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=260215, identifier: PROSPERO (CRD42021260215).
Collapse
Affiliation(s)
- Mingyuan Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wu
- Dongzhimen Hospital, University of Chinese Medicine, Beijing, China
| | - Le Wang
- Encephalopathy Department I, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyue Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lili Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Tianye Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Han Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Mi Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zou
- Beijing University of Chinese Medicine, Beijing, China
| | - Songyi Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jinmin Liu
- Encephalopathy Department I, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Kikuchi K, Otsuka S, Takada S, Nakanishi K, Setoyama K, Sakakima H, Tanaka E, Maruyama I. 1,5-anhydro-D-fructose induces anti-aging effects on aging-associated brain diseases by increasing 5'-adenosine monophosphate-activated protein kinase activity via the peroxisome proliferator-activated receptor-γ co-activator-1α/brain-derived neurotrophic factor pathway. Aging (Albany NY) 2023; 15:11740-11763. [PMID: 37950725 PMCID: PMC10683599 DOI: 10.18632/aging.205228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/11/2023] [Indexed: 11/13/2023]
Abstract
5'-Adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor that serves as a cellular housekeeper; it also controls energy homeostasis and stress resistance. Thus, correct regulation of this factor can enhance health and survival. AMPK signaling may have a critical role in aging-associated brain diseases. Some in vitro studies have shown that 1,5-anhydro-D-fructose (1,5-AF) induces AMPK activation. In the present study, we experimentally evaluated the effects of 1,5-AF on aging-associated brain diseases in vivo using an animal model of acute ischemic stroke (AIS), stroke-prone spontaneously hypertensive rats (SHRSPs), and the spontaneous senescence-accelerated mouse-prone 8 (SAMP8) model. In the AIS model, intraperitoneal injection of 1,5-AF reduced cerebral infarct volume, neurological deficits, and mortality. In SHRSPs, oral administration of 1,5-AF reduced blood pressure and prolonged survival. In the SAMP8 model, oral administration of 1,5-AF alleviated aging-related decline in motor cognitive function. Although aging reduced the expression levels of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) and brain-derived neurotrophic factor (BDNF), we found that 1,5-AF activated AMPK, which led to upregulation of the PGC-1α/BDNF pathway. Our results suggest that 1,5-AF can induce endogenous neurovascular protection, potentially preventing aging-associated brain diseases. Clinical studies are needed to determine whether 1,5-AF can prevent aging-associated brain diseases.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Fukuoka 830-0011, Japan
- Department of Neurosurgery, Kurume University School of Medicine, Fukuoka 830-0011, Japan
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Shotaro Otsuka
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Seiya Takada
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Kazuki Nakanishi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Kentaro Setoyama
- Division of Laboratory Animal Resources and Research, Center for Advanced Science Research and Promotion, Kagoshima University, Kagoshima 890-8520, Japan
| | - Harutoshi Sakakima
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| |
Collapse
|
4
|
Zhang J, Cai W, Wei X, Shi Y, Zhang K, Hu C, Wan J, Luo K, Shen W. Moxibustion ameliorates cerebral ischemia-reperfusion injury by regulating ferroptosis in rats. Clin Exp Pharmacol Physiol 2023; 50:779-788. [PMID: 37417429 DOI: 10.1111/1440-1681.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023]
Abstract
Moxibustion is an effective treatment for the clinical management of acute cerebral infarction. However, its exact mechanism of action is still not fully understood. This study aimed to investigate the protective effect of moxibustion on cerebral ischemia-reperfusion injury (CIRI) in rats. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to construct a CIRI rat model, all animals were randomly divided into four groups including sham operation group, MCAO/R group (MCAO/R), moxibustion therapy + MCAO/R (Moxi) and ferrostatin-1 + MCAO/R (Fer-1) group. In the Moxi group, moxibustion treatment was initiated 24 h after modeling, once a day for 30 mins each time for 7 days. Moreover, the Fer-1 group received intraperitoneal injections of Fer-1 12 h after modeling, once a day for a total of 7 days. The results showed that moxibustion could reduce nerve function damage and neuronal death. Additionally, moxibustion could reduce the production of lipid peroxides such as lipid peroxide, malondialchehyche and ACSL4 to regulate lipid metabolism, promote the production of glutathione and glutathione peroxidase 4 and reduce the expression of hepcidin by inhibiting the production of inflammatory factor interleukin-6, therefore, downregulating the expression of SLC40A1, reducing the iron level in the cerebral cortex, reducing the accumulation of reactive oxygen species and inhibiting ferroptosis. Based on our studies, it can be concluded that moxibustion has the ability to inhibit ferroptosis of nerve cells post CIRI and plays a protective role in the brain. This protective role can be attributed to the regulation of iron metabolism of nerve cells, reduction of iron deposition in the hippocampus and lowering the level of lipid peroxidation.
Collapse
Affiliation(s)
- JingRuo Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture and Moxibustion, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Wa Cai
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xifang Wei
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Kun Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Hu
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaitao Luo
- Department of Acupuncture and Moxibustion, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Weidong Shen
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Li LD, Zhou Y, Shi SF. Edaravone combined with Shuxuening versus edaravone alone in the treatment of acute cerebral infarction: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e32929. [PMID: 36862906 PMCID: PMC9981379 DOI: 10.1097/md.0000000000032929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Shuxuening injection (SXN) is a traditional Chinese medicine used in the treatment of cardiovascular diseases. Whether it can provide better outcomes when combined with edaravone injection (ERI) for the treatment of acute cerebral infarction is not well determined. Therefore, we evaluated the efficacy of ERI combined with SXN versus that of ERI alone in patients with acute cerebral infarction. METHODS PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and Wanfang electronic databases were searched up to July 2022. Randomized controlled trials comparing the outcomes of efficacy rate, neurologic impairment, inflammatory factors, and hemorheology were included. Odds ratio or standard mean difference (SMD) with corresponding 95% confidence intervals (CIs) were used to present the overall estimates. The quality of the included trials was evaluated by the Cochrane risk of bias tool. The study was performed according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses. RESULTS Seventeen randomized controlled trials were included consisting of 1607 patients. Compared to ERI alone, treatment with ERI plus SXN had a greater effective rate than ER alone (odds ratio = 3.94; 95% CI: 2.85, 5.44; I2 = 0%, P < .00001), a lower National Institute of Health Stroke Scale (SMD= -1.39; 95% CI: -1.73, -1.05; I2 = 71%, P < .00001), lower neural function defect score (SMD= -0.75; 95% CI: -1.06,-0.43; I2 = 67%, P < .00001), and lower level of neuron-specific enolase (SMD= -2.10; 95% CI: -2.85, -1.35; I2 = 85%, P < .00001). ERI plus SXN treatment provided significant improvements in whole blood high shear viscosity (SMD = -0.87; 95% CI: -1.17, -0.57; I2 = 0%, P < .00001), and whole blood low shear viscosity (SMD = -1.50; 95% CI: -1.65, -1.36; I2 = 0%, P < .00001) compared to ERI alone. CONCLUSION ERI plus SXN showed better efficacy than ERI alone for patients with acute cerebral infarction. Our study provides evidence supporting the application of ERI plus SXN for acute cerebral infarction.
Collapse
Affiliation(s)
- Liang-Da Li
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
- * Correspondence: Liang-Da Li, Department of Neurology, The People’ s Hospital Affiliated to Ningbo University, No. 251, Baizhang East Road, Yinzhou District, Ningbo, Zhejiang Province 315040, China (e-mail: )
| | - Yue Zhou
- Department of Neurology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
| | - Shan-Fen Shi
- Department of Rheumatology, The People’s Hospital Affiliated to Ningbo University, Ningbo, Zhejiang Province, China
| |
Collapse
|
6
|
Enhancing the Neuroprotection Potential of Edaravone in Transient Global Ischemia Treatment with Glutathione- (GSH-) Conjugated Poly(methacrylic acid) Nanogel as a Promising Carrier for Targeted Brain Drug Delivery. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7643280. [PMID: 36865347 PMCID: PMC9974254 DOI: 10.1155/2023/7643280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/15/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023]
Abstract
Ischemic stroke is the most common among various stroke types and the second leading cause of death, worldwide. Edaravone (EDV) is one of the cardinal antioxidants that is capable of scavenging reactive oxygen species, especially hydroxyl molecules, and has been already used for ischemic stroke treatment. However, poor water solubility, low stability, and bioavailability in aqueous media are major EDV drawbacks. Thus, to overcome the aforementioned drawbacks, nanogel was exploited as a drug carrier of EDV. Furthermore, decorating the nanogel surface with glutathione as targeting ligands would potentiate the therapeutic efficacy. Nanovehicle characterization was assessed with various analytical techniques. Size (199 nm, hydrodynamic diameter) and zeta potential (-25 mV) of optimum formulation were assessed. The outcome demonstrated a diameter of around 100 nm, sphere shape, and homogenous morphology. Encapsulation efficiency and drug loading were determined to be 99.9% and 37.5%, respectively. In vitro drug release profile depicted a sustained release process. EDV and glutathione presence in one vehicle simultaneously made the possibility of antioxidant effects on the brain in specific doses, which resulted in elevated spatial memory and learning along with cognitive function in Wistar rats. In addition, significantly lower MDA and PCO and higher levels of neural GSH and antioxidant levels were observed, while histopathological improvement was approved. The developed nanogel can be a suited vehicle for drug delivery of EDV to the brain and improve ischemia-induced oxidative stress cell damage.
Collapse
|
7
|
Mao D, Zheng Y, Xu F, Han X, Zhao H. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Front Neurol 2022; 13:1029891. [PMID: 36388178 PMCID: PMC9659947 DOI: 10.3389/fneur.2022.1029891] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein associated with early inflammatory changes upon extracellular secretion expressed in various cells, including neurons and microglia. With the progress of research, neuroinflammation is believed to be involved in the pathogenesis of neurological diseases such as Parkinson's, epilepsy, and autism. As a key promoter of neuroinflammation, HMGB1 is thought to be involved in the pathogenesis of Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, and amyotrophic lateral sclerosis. However, in the clinic, HMGB1 has not been described as a biomarker for the above-mentioned diseases. However, the current preclinical research results show that HMGB1 antagonists have positive significance in the treatment of Parkinson's disease, stroke, traumatic brain injury, epilepsy, and other diseases. This review discusses the possible mechanisms by which HMGB1 mediates Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, amyotrophic lateral sclerosis, and the potential of HMGB1 as a biomarker for these diseases. Future research needs to further explore the underlying molecular mechanisms and clinical translation.
Collapse
Affiliation(s)
- Di Mao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Han
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hongyang Zhao
| |
Collapse
|
8
|
Neuroprotection of Oral Edaravone on Middle Cerebral Artery Occlusion in Rats. Neurotox Res 2022; 40:995-1006. [DOI: 10.1007/s12640-022-00520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
|
9
|
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med 2022; 54:91-102. [PMID: 35217834 PMCID: PMC8894452 DOI: 10.1038/s12276-022-00736-w] [Citation(s) in RCA: 345] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage. A nuclear protein that gets released after cell death or is actively secreted by immune cells offers a promising therapeutic target for treating diseases linked to excessive inflammation. Daolin Tang from the University of Texas Southwestern Medical Center in Dallas, USA, and colleagues review how cellular stresses can trigger the accumulation of HMGB1, a type of alarm signal protein that promotes the recruitment and activation of inflammation-promoting immune cells. The researchers discuss various mechanisms that drive both passive and active release of HMGB1 into the space around cells. These processes, which include enzymatic modifications of the HMGB1 protein, cell–cell interactions and molecular pathways of cell death, could be targeted by drugs to lessen tissue damage and inflammatory disease caused by HMGB1-induced immune responses
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
1,5-Anhydro-D-fructose Protects against Rotenone-Induced Neuronal Damage In Vitro through Mitochondrial Biogenesis. Int J Mol Sci 2021; 22:ijms22189941. [PMID: 34576111 PMCID: PMC8466044 DOI: 10.3390/ijms22189941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial functional abnormalities or quantitative decreases are considered to be one of the most plausible pathogenic mechanisms of Parkinson’s disease (PD). Thus, mitochondrial complex inhibitors are often used for the development of experimental PD. In this study, we used rotenone to create in vitro cell models of PD, then used these models to investigate the effects of 1,5-anhydro-D-fructose (1,5-AF), a monosaccharide with protective effects against a range of cytotoxic substances. Subsequently, we investigated the possible mechanisms of these protective effects in PC12 cells. The protection of 1,5-AF against rotenone-induced cytotoxicity was confirmed by increased cell viability and longer dendritic lengths in PC12 and primary neuronal cells. Furthermore, in rotenone-treated PC12 cells, 1,5-AF upregulated peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) expression and enhanced its deacetylation, while increasing AMP-activated protein kinase (AMPK) phosphorylation. 1,5-AF treatment also increased mitochondrial activity in these cells. Moreover, PGC-1α silencing inhibited the cytoprotective and mitochondrial biogenic effects of 1,5-AF in PC12 cells. Therefore, 1,5-AF may activate PGC-1α through AMPK activation, thus leading to mitochondrial biogenic and cytoprotective effects. Together, our results suggest that 1,5-AF has therapeutic potential for development as a treatment for PD.
Collapse
|
11
|
Bakhtiari M, Ghasemi N, Salehi H, Amirpour N, Kazemi M, Mardani M. Evaluation of Edaravone effects on the differentiation of human adipose derived stem cells into oligodendrocyte cells in multiple sclerosis disease in rats. Life Sci 2021; 282:119812. [PMID: 34265362 DOI: 10.1016/j.lfs.2021.119812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/28/2023]
Abstract
AIMS Among all the treatments for Multiple Sclerosis, stem cell transplantation, such as ADSCs, has attracted a great deal of scientific attention. On the other hand, Edaravone, as an antioxidant component, in combination with stem cells, could increase the survival and differentiation potential of stem cells. MAIN METHODS 42 rats were divided into: Control, Cuprizone (CPZ), Sham, Edaravone (Ed), hADSCs, and Ed/hADSCs groups. Following induction of cuprizone, induced MS model, behavioral tests were designed to evaluate motor function during. Luxal fast blue staining was done to measure the level of demyelination and remyelination. Immunofluorescent staining was used to evaluate the amount of MBP, OLIG2, and MOG proteins. The mRNA levels of human MBP, MOG, and OLIG2 and rat Mbp, Mog, and Olig2 were determined via RT-PCR. KEY FINDINGS Flow cytometry analysis exhibited that the extracted cells were positive for CD73 (93.8 ± 3%) and CD105 (91.6 ± 3%), yet negative for CD45 (2.06 ± 0.5%). Behavioral tests, unveiled a significant improvement in the Ed (P < 0.001), hADSCs (P < 0.001), and Ed/hADSCs (P < 0.001) groups compared to the others. In the Ed/hADSCs group, the myelin density was significantly higher than that in the Ed treated and hADSCs treated groups (P < 0.01). Edaravone and hADSCs increased the expression of Mbp, Mog, and Olig2 genes in the cuprizone rat models. Moreover, significant differences were seen between the Ed treated and hADSCs treated groups and the Ed/hADSCs group (P < 0.05 for Mbp and Olig2 and P < 0.01 for Mog). SIGNIFICANCE Edaravone in combination with hADSCs reduced demyelination and increased oligodendrogenesis in the cuprizone rat models.
Collapse
Affiliation(s)
- Mohammad Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mardani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran.
| |
Collapse
|
12
|
Yang H, Li GP, Liu Q, Zong SB, Li L, Xu ZL, Zhou J, Cao L, Wang ZZ, Zhang QC, Li M, Fan QR, Hu HF, Xiao W. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother Res 2021; 35:2727-2744. [PMID: 33452698 DOI: 10.1002/ptr.7018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/07/2022]
Abstract
The present study was undertaken to identify whether prostaglandin E2 receptor is the potential receptor/binding site for Ginkgolide A, Ginkgolide B, Ginkgolide K, and Bilobalide, the four main ingredients of the Ginkgo biloba L., leaves. Using functional assays, we identified EP4, coupled with Gs protein, as a target of Ginkgolide B. In human neuroblastoma SH-SY5Y cells suffered from oxygen-glucose deprivation/reperfusion, Ginkgolide B-activated PKA, Akt, and ERK1/2 as well as Src-mediated transactivation of epidermal growth factor receptor. These resulted in downstream signaling pathways, which enhanced cell survival and inhibited apoptosis. Knockdown of EP4 prevented Ginkgolide B-mediated Src, epidermal growth factor receptor (EGFR), Akt, and ERK1/2 phosphorylation and neuroprotective effects. Moreover, Src inhibitor prevented Ginkgolide B-mediated EGFR transactivation and the downstream Akt and ERK1/2 activation, while the phosphorylation of PKA induced by Ginkgolide B was not affected, indicating Ginkgolide B might transactivate EGFR in a ligand-independent manner. EP4 knockdown in a rat middle cerebral artery occlusion (MCAO) model prevented Ginkgolide B-mediated infarct size reduction and neurological assessment improvement. At the same time, the increased expressions of p-Akt, p-ERK1/2, p-PKA, p-Src, and p-EGFR and the deceased expression of cleaved capases-3 induced by Ginkgolide B in cerebral cortex were blocked due to EP4 knockdown. In conclusion, Ginkgolide B exerts neuroprotective effects in rat MCAO model through the activation of EP4 and the downstream transactivation of EGFR.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Gui-Ping Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qiu Liu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shao-Bo Zong
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhi-Liang Xu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Cao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhen-Zhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Quan-Chang Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Ming Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qi-Ru Fan
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Han-Fei Hu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
13
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
14
|
Nakatomi K, Ueno H, Ishikawa Y, Salim RC, Mori Y, Kanemoto I, Tancharoen S, Kikuchi K, Miura N, Omori T, Okuda-Ashitaka E, Matsumura K, Imaizumi H, Motomiya Y, Maruyama I, Kawahara KI. TLR4/MD-2 is a receptor for extracellular nucleophosmin 1. Biomed Rep 2020; 14:21. [PMID: 33335727 PMCID: PMC7739869 DOI: 10.3892/br.2020.1397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
Nucleophosmin 1 (NPM1) primarily localizes to the nucleus and is passively released into the extracellular milieu by necrotic or damaged cells, or is secreted by monocytes and macrophages. Extracellular NPM1 acts as a potent inflammatory stimulator by promoting cytokine production [e.g., tumor necrosis factor-α (TNF-α)], which suggests that NPM1 acts as a damage-associated molecular pattern. However, the receptor of NPM1 is unknown. Evidence indicates that DAMPs, which include high mobility group box 1 and histones, may bind Toll-like receptors (TLRs). In the present study, it was shown that NPM1 signaling was mediated via the TLR4 pathway, which suggests that TLR4 is an NPM1 receptor. TLR4 binds myeloid differentiation protein-2 (MD-2), which is essential for intracellular signaling. Furthermore, the TLR4 antagonist, LPS-Rhodobacter sphaeroides (an MD-2 antagonist) and TAK-242 (a TLR4 signaling inhibitor) significantly inhibited NPM1-induced TNF-α production by differentiated THP-1 cells as well as reducing ERK1/2 activation. Far-western blot analysis revealed that NPM1 directly bound MD-2. Thus, the results of the present study provide compelling evidence that TLR4 binds NPM1, and it is hypothesized that inhibiting NPM1 activity may serve as a novel strategy for treating TLR4-related diseases.
Collapse
Affiliation(s)
- Kota Nakatomi
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Hikari Ueno
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Yuto Ishikawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Ronny Christiadi Salim
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Yuki Mori
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Issey Kanemoto
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Salunya Tancharoen
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan.,Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand
| | - Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand.,Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan.,Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8520, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-8580, Japan
| | - Taketo Omori
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Emiko Okuda-Ashitaka
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Kiyoshi Matsumura
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Hitoshi Imaizumi
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Medical University, School of Medicine, Tokyo 160-0023, Japan
| | | | - Ikuro Maruyama
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan.,Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8520, Japan
| | - Ko-Ichi Kawahara
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan.,Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima 890-8520, Japan
| |
Collapse
|
15
|
Chen H, Chen Y, Wang X, Yang J, Huang C. Edaravone attenuates myocyte apoptosis through the JAK2/STAT3 pathway in acute myocardial infarction. Free Radic Res 2020; 54:351-359. [PMID: 32543312 DOI: 10.1080/10715762.2020.1772469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Yongjun Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Jing Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, PR China
- Cardiovascular Research Institute, Wuhan University, Wuhan, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, PR China
| |
Collapse
|
16
|
Guo Q, Yang S, Yang D, Zhang N, Li X, Chen T, Chen J, Li G, Yin L, Wu Q. Differential mRNA expression combined with network pharmacology reveals network effects of Liangxue Tongyu Prescription for acute intracerebral hemorrhagic rats. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112231. [PMID: 31520671 DOI: 10.1016/j.jep.2019.112231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/27/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liangxue Tongyu Prescription (LTP) is a traditional Chinese medicine formula composed of 8 crude drugs that is widely used to treat acute intracerebral hemorrhage (AICH). AIM OF THE STUDY To verify the efficacy of LTP on the survival time in the treatment of acute intracerebral hemorrhagic rats (AICHs), and to elucidate its network pharmacodynamic mechanism of multi-component, multi-target, and multi-signaling pathways. MATERIALS AND METHODS Survival analysis was used to evaluate the survival time of AICH rats induced by different doses of collagenase and the efficacy of three doses of LTP in the treatment of AICH rats. The Kaplan-Meier curves for survival time were produced and compared with the Log-rank test and Wilcoxon (Gehan) χ2. Differential mRNA-seq combined with network pharmacology was used to disclose the network effect mechanism of LTP on AICH, and the obtained differential genes were mapped into the predictive empirical compound-target network model (ECT network model) and the empirical compound-target-pathogenesis (disease) network model (ECTP network model). RESULTS The median survival time of four different doses of LTP-treated groups (0.00 g/kg, 5.78 g/kg, 11.55 g/kg, 23.10 g/kg) for adult AICH rats by 0.18 U collagenase was 14 h, 37 h, 150 h, and 51 h respectively, and the 7-day survival rates were 33.3%, 41.7%, 50.0%, and 38.5%, of which the medium-dose group (MD) had a longer survival time and higher survival rate. Through further validation experiments, the MD group had a better efficacy trend with a median survival time of 168 h vs 23 h in the model control group (MC) (Wilcoxon Gehan Test, χ2 = 3.478, P = 0.062). The transcriptomic analysis of mRNA showed that 583 significant differential genes were found between the MC and MD group and 7 key therapeutic targets regulated by 29 compounds in LTP on AICH were screened out by VCT and VCTP network model. These targets were involved in 5 regulatory models or pathways. CONCLUSION Our study confirmed the exact efficacy of the LTP in the treatment of AICH and revealed the potential pharmacodynamic components and mode of action of the LTP on AICH. Using differential transcriptome of mRNA combined with network pharmacology, we screened out 29 chemical compounds as the potential effective ingredients of LTP which acted on 7 targets of AICH involving 5 pathological pathways, mainly including repairing the brain function defect, improving neural function, protecting blood-brain barrier from damage, reducing inflammatory factors, and inhibiting apoptosis. The present study not only provides a new explanation for the 'multi-component, multi-target, multi-pathway' effects of the LTP on AICH but also screened out some major compounds of LTP and their potential targets which will facilitate the development of new drugs for AICH.
Collapse
Affiliation(s)
- Qingqing Guo
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Shijin Yang
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Dongqing Yang
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Ning Zhang
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Xun Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Nanjing, PR China
| | - Tianli Chen
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Jiayan Chen
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China
| | - Guochun Li
- Department of Public Health, Nanjing University of Chinese Medicine, 210023, Nanjing, PR China.
| | - Lian Yin
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Nanjing, PR China.
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China.
| |
Collapse
|
17
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
18
|
Kikuchi K, Setoyama K, Tanaka E, Otsuka S, Terashi T, Nakanishi K, Takada S, Sakakima H, Ampawong S, Kawahara KI, Nagasato T, Hosokawa K, Harada Y, Yamamoto M, Kamikokuryo C, Kiyama R, Morioka M, Ito T, Maruyama I, Tancharoen S. Uric acid enhances alteplase-mediated thrombolysis as an antioxidant. Sci Rep 2018; 8:15844. [PMID: 30367108 PMCID: PMC6203847 DOI: 10.1038/s41598-018-34220-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/01/2023] Open
Abstract
Uric acid (UA) therapy may prevent early ischemic worsening after acute stroke in thrombolysis patients. The aim of this study was to examine the influence of UA on the thrombolytic efficacy of alteplase in human blood samples by measuring thrombolysis under flow conditions using a newly developed microchip-based flow-chamber assay. Human blood samples from healthy volunteers were exposed to UA, alteplase, or a combination of UA and alteplase. Whole blood and platelet-rich plasma were perfused over a collagen- and thromboplastin-coated microchip, and capillary occlusion was monitored with a video microscope and flow-pressure sensor. The area under the curve (extent of thrombogenesis or thrombolysis) at 30 minutes was 92% lower in the UA-alteplase-treated group compared with the alteplase-treated group. D-dimers were measured to evaluate these effects in human platelet-poor plasma samples. Although hydrogen peroxide significantly decreased the elevation of D-dimers by alteplase, UA significantly inhibited the effect of hydrogen peroxide. Meanwhile, rat models of thromboembolic cerebral ischemia were treated with either alteplase or UA-alteplase combination therapy. Compared with alteplase alone, the combination therapy reduced the infarct volume and inhibited haemorrhagic transformation. UA enhances alteplase-mediated thrombolysis, potentially by preventing oxidative stress, which inhibits fibrinolysis by alteplase in thrombi.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan.,Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan.,Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan.,Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Kentaro Setoyama
- Natural Science Center for Research and Education, Division of Laboratory Animal Science, Kagoshima University, Kagoshima, Japan
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | - Shotaro Otsuka
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Takuto Terashi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Kazuki Nakanishi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Seiya Takada
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Harutoshi Sakakima
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, (S.A.), Mahidol University, Bangkok, Thailand
| | - Ko-Ichi Kawahara
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan.,Laboratory of Functional Foods, Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Tomoka Nagasato
- Research Institute, Fujimori Kogyo Co., Yokohama, Kanagawa, Japan
| | - Kazuya Hosokawa
- Research Institute, Fujimori Kogyo Co., Yokohama, Kanagawa, Japan
| | - Yoichiro Harada
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Mika Yamamoto
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Chinatsu Kamikokuryo
- Department of Emergency and Critical Care Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Ryoji Kiyama
- School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, Kurume, Japan
| | - Takashi Ito
- Department of Emergency and Critical Care Medicine, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
19
|
Quinolinic Acid-Induced Huntington Disease-Like Symptoms Mitigated by Potent Free Radical Scavenger Edaravone-a Pilot Study on Neurobehavioral, Biochemical, and Histological Approach in Male Wistar Rats. J Mol Neurosci 2018; 66:322-341. [PMID: 30284227 DOI: 10.1007/s12031-018-1168-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/28/2018] [Indexed: 12/14/2022]
Abstract
In this study, we demonstrated for the first time the neuroprotective role of edaravone (Eda) (5 and 10 mg/kg b.w.), a potent free radical scavenger against the unilateral stereotaxic induction of quinolinic acid (QA) (300 nm/4 μl saline)-induced Huntington disease (HD)-like symptoms in behavioral, biochemical, and histological features in male Wistar rats striatum. QA induction, which mimics the early stage of HD, commonly causes oxidative stress to the cell and decreases the antioxidant defense mechanism by altering the level of lipid peroxidation (LPO), protein carbonyls, and nitrate concentration (NO) and the activities of glutathione family enzymes (GPx, GST, GR) and acetyl choline esterase concentration (AChE) which was found to be ameliorated by Eda treatment in both the tested doses 5 and 10 mg/kg b.w. in the significance of P < 0.05 and P < 0.01, respectively. Finally histopathological analysis by hematoxylin and eosin stain concluded the promising neurodefensive role of Eda in rat striatum at the dosage of 10 mg/kg b.w., with the decreased tissue damage and the number of damaged granular cells when compared to QA-induced groups.
Collapse
|
20
|
Takase H, Liang AC, Miyamoto N, Hamanaka G, Ohtomo R, Maki T, Pham LDD, Lok J, Lo EH, Arai K. Protective effects of a radical scavenger edaravone on oligodendrocyte precursor cells against oxidative stress. Neurosci Lett 2018; 668:120-125. [PMID: 29337010 PMCID: PMC5829007 DOI: 10.1016/j.neulet.2018.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/26/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) play critical roles in maintaining the number of oligodendrocytes in white matter. Previously, we have shown that oxidative stress dampens oligodendrocyte regeneration after white matter damage, while a clinically proven radical scavenger, edaravone, supports oligodendrocyte repopulation. However, it is not known how edaravone exerts this beneficial effect against oxidative stress. Using in vivo and in vitro experiments, we have examined whether edaravone exhibits direct OPC-protective effects. For in vivo experiments, prolonged cerebral hypoperfusion was induced by bilateral common carotid artery stenosis in mice. OPC damage was observed on day 14 after the onset of cerebral hypoperfusion, and edaravone was demonstrated to decrease OPC death in cerebral white matter. In vitro experiments also confirmed that edaravone reduced oxidative-stress-induced OPC death. Because white matter damage is a major hallmark of many neurological diseases, and OPCs are instrumental in white matter repair after injury, our current study supports the idea that radical scavengers may provide a potential therapeutic approach for white matter related diseases.
Collapse
Affiliation(s)
- Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Japan
| | - Anna C Liang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Nobukazu Miyamoto
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Loc-Duyen D Pham
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA; Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
21
|
Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Biosci Rep 2017; 37:BSR20171104. [PMID: 29054968 PMCID: PMC5715129 DOI: 10.1042/bsr20171104] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/29/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
Stroke is a major cause of mortality and disability worldwide. Stroke is a frequent and severe neurovascular disorder. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, prevention and treatment of stroke are crucial issues in humans. High mobility group box 1 (HMGB1) is non-histone nuclear protein that is currently one of the crucial proinflammatory alarmins in ischemic stroke (IS). It is instantly released from necrotic cells in the ischemic core and activates an early inflammatory response. HMGB1 may signal via its putative receptors, such as receptor for advanced glycation end products (RAGE), toll-like receptors (TLRs) as well as matrix metalloproteinase (MMP) enzymes during IS. These receptors are expressed in brain cells. Additionally, brain-released HMGB1 can be redox modified in the circulation and activate peripheral immune cells. The role of HMGB1 may be more complex. HMGB1 possesses beneficial actions, such as endothelial activation, enhancement of neurite outgrowth, and neuronal survival. HMGB1 may also provide a novel link for brain-immune communication leading to post-stroke immunomodulation. Therefore, HMGB1 is new promising therapeutic intervention aimed at promoting neurovascular repair and remodeling after stroke. In this review, we look at the mechanisms of secretion of HMGB1, the role of receptors, MMP enzymes, hypoglycemia, atherosclerosis, edema, angiogenesis as well as neuroimmunological reactions and post-ischemic brain recovery in IS. We also outline therapeutic roles of HMGB1 in IS.
Collapse
|
22
|
Edaravone, a Synthetic Free Radical Scavenger, Enhances Alteplase-Mediated Thrombolysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6873281. [PMID: 29259732 PMCID: PMC5702421 DOI: 10.1155/2017/6873281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/07/2017] [Indexed: 12/12/2022]
Abstract
The combination of alteplase, a recombinant tissue plasminogen activator, and edaravone, an antioxidant, reportedly enhances recanalization after acute ischemic stroke. We examined the influence of edaravone on the thrombolytic efficacy of alteplase by measuring thrombolysis using a newly developed microchip-based flow-chamber assay. Rat models of embolic cerebral ischemia were treated with either alteplase or alteplase-edaravone combination therapy. The combination therapy significantly reduced the infarct volume and improved neurological deficits. Human blood samples from healthy volunteers were exposed to edaravone, alteplase, or a combination of alteplase and edaravone or hydrogen peroxide. Whole blood was perfused over a collagen- and thromboplastin-coated microchip; capillary occlusion was monitored with a video microscope and flow-pressure sensor. The area under the curve (extent of thrombogenesis or thrombolysis) at 30 minutes was 69.9% lower in the edaravone-alteplase- than alteplase-treated group. The thrombolytic effect of alteplase was significantly attenuated in the presence of hydrogen peroxide, suggesting that oxidative stress might hinder thrombolysis. D-dimers were measured to evaluate these effects in human platelet-poor plasma samples. Although hydrogen peroxide significantly decreased the elevation of D-dimers by alteplase, edaravone significantly inhibited the decrease. Edaravone enhances alteplase-mediated thrombolysis, likely by preventing oxidative stress, which inhibits fibrinolysis by alteplase in thrombi.
Collapse
|
23
|
Meng FX, Hou JM, Sun TS. Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury. J Orthop Surg Res 2017; 12:24. [PMID: 28178997 PMCID: PMC5299723 DOI: 10.1186/s13018-017-0526-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 01/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Central pain (CP) is a common clinical problem in patients with spinal cord injury (SCI). Recent studies found the pathogenesis of CP was related to the remodeling of the brain. We investigate the roles of iron overload and subsequent oxidative stress in the remodeling of the brain after SCI. METHODS We established a rat model of central pain after SCI. Rats were divided randomly into four groups: SCI, sham operation, SCI plus deferoxamine (DFX) intervention, and SCI plus nitric oxide synthase (NOS) inhibitor treatment. Pain behavior was observed and thermal pain threshold was measured regularly, and brain levels of iron, transferrin receptor 1 (TfR1), ferritin (Fn), and lactoferrin (Lf), were detected in the different groups 12 weeks after establishment of the model. RESULTS Rats demonstrated self-biting behavior after SCI. Furthermore, the latent period of thermal pain was reduced and iron levels in the hind limb sensory area, hippocampus, and thalamus increased after SCI. Iron-regulatory protein (IRP) 1 levels increased in the hind limb sensory area, while Fn levels decreased. TfR1 mRNA levels were also increased and oxidative stress was activated. Oxidative stress could be inhibited by ferric iron chelators and NOS inhibitors. CONCLUSIONS SCI may cause intracranial iron overload through the NOS-iron-responsive element/IRP pathway, resulting in central pain mediated by the oxidative stress response. Iron chelators and oxidative stress inhibitors can effectively relieve SCI-associated central pain.
Collapse
Affiliation(s)
- Fan Xing Meng
- Third Military Medical University, No. 30 Gaotanyan Street, 400038 Chongqing, China
- Department of Orthopedics, Chinese PLA Army General Hospital, Dongcheng District, Nanmencang No. 5, 100700 Beijing, China
| | - Jing Ming Hou
- Department of Orthopedics, Chinese PLA Army General Hospital, Dongcheng District, Nanmencang No. 5, 100700 Beijing, China
- Southwest Hospital, Third Military Medical University, No. 30 Gaotanyan Street, 400038 Chongqing, China
| | - Tian Sheng Sun
- Third Military Medical University, No. 30 Gaotanyan Street, 400038 Chongqing, China
- Department of Orthopedics, Chinese PLA Army General Hospital, Dongcheng District, Nanmencang No. 5, 100700 Beijing, China
| |
Collapse
|
24
|
Edaravone attenuates hippocampal damage in an infant mouse model of pneumococcal meningitis by reducing HMGB1 and iNOS expression via the Nrf2/HO-1 pathway. Acta Pharmacol Sin 2016; 37:1298-1306. [PMID: 27569388 DOI: 10.1038/aps.2016.71] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022] Open
Abstract
AIM Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a free radical scavenger that has shown potent antioxidant, anti-inflammatory and neuroprotective effects in variety of disease models. In this study, we investigated whether edaravone produced neuroprotective actions in an infant mouse model of pneumococcal meningitis. METHODS C57BL/6 mice were infected on postnatal d 11 by intracisternal injection of a certain inoculum of Streptococcus pneumoniae. The mice received intracisternal injection of 10 μL of saline containing edaravone (3 mg/kg) once a day for 7 d. The severity of pneumococcal meningitis was assessed with a clinical score. In mice with severe meningitis, the survival rate from the time of infection to d 8 after infection was analyzed using Kaplan-Meier curves. In mice with mild meningitis, the CSF inflammation and cytokine levels in the hippocampus were analyzed d 7 after infection, and the clinical neurological deficit score was evaluated using a neurological scoring system d 14 after infection. The nuclear factor (erythroid-derived 2)-like 2 knockout (Nrf2 KO) mice and heme oxygenase-1 knockout (HO-1 KO) mice were used to confirm the involvement of Nrf2/HO-1 pathway in the neuroprotective actions of edaravone. RESULTS In mice with severe meningitis, edaravone treatment significantly increased the survival rate (76.4%) compared with the meningitis model group (32.2%). In mice with mild meningitis, edaravone treatment significantly decreased the number of leukocytes and TNF- levels in CSF, as well as the neuronal apoptosis and protein levels of HMGB1 and iNOS in the hippocampus, but did not affect the high levels of IL-10 and IL-6 in the hippocampus. Moreover, edaravone treatment significantly improved the neurological function of mice with mild meningitis. In Nrf2 KO or HO-1 KO mice with the meningitis, edaravone treatment was no longer effective in improving the survival rate of the mice with severe meningitis (20.2% and 53.6%, respectively), nor it affected the protein levels of HMGB1 and iNOS in the hippocampus of the mice with mild meningitis. CONCLUSION Edaravone produces neuroprotective actions in a mouse model of pneumococcal meningitis by reducing neuronal apoptosis and HMGB1 and iNOS expression in the hippocampus via the Nrf2/HO-1 pathway. Thus, edaravone may be a promising agent for the treatment of bacterial meningitis.
Collapse
|
25
|
Progress in AQP Research and New Developments in Therapeutic Approaches to Ischemic and Hemorrhagic Stroke. Int J Mol Sci 2016; 17:ijms17071146. [PMID: 27438832 PMCID: PMC4964519 DOI: 10.3390/ijms17071146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/17/2022] Open
Abstract
Cerebral edema often manifests after the development of cerebrovascular disease, particularly in the case of stroke, both ischemic and hemorrhagic. Without clinical intervention, the influx of water into brain tissues leads to increased intracranial pressure, cerebral herniation, and ultimately death. Strategies to manage the development of edema constitute a major unmet therapeutic need. However, despite its major clinical significance, the mechanisms underlying cerebral water transport and edema formation remain elusive. Aquaporins (AQPs) are a class of water channel proteins which have been implicated in the regulation of water homeostasis and cerebral edema formation, and thus represent a promising target for alleviating stroke-induced cerebral edema. This review examines the significance of relevant AQPs in stroke injury and subsequently explores neuroprotective strategies aimed at modulating AQP expression, with a particular focus on AQP4, the most abundant AQP in the central nervous system.
Collapse
|
26
|
Chen H, Guan B, Shen J. Targeting ONOO -/HMGB1/MMP-9 Signaling Cascades: Potential for Drug Development from Chinese Medicine to Attenuate Ischemic Brain Injury and Hemorrhagic Transformation Induced by Thrombolytic Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1159/000442468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Cai J, Wen J, Bauer E, Zhong H, Yuan H, Chen AF. The Role of HMGB1 in Cardiovascular Biology: Danger Signals. Antioxid Redox Signal 2015; 23:1351-69. [PMID: 26066838 DOI: 10.1089/ars.2015.6408] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Accumulating evidence shows that dysregulated immune response contributes to several types of CVDs such as atherosclerosis and pulmonary hypertension (PH). Vascular intimal impairment and low-density lipoprotein oxidation trigger a complex network of innate immune responses and sterile inflammation. RECENT ADVANCES High-mobility group box 1 (HMGB1), a nuclear DNA-binding protein, was recently discovered to function as a damage-associated molecular pattern molecule (DAMP) that initiates the innate immune responses. These findings lead to the understanding that HMGB1 plays a critical role in the inflammatory response in the pathogenesis of CVD. CRITICAL ISSUES In this review, we highlight the role of extracellular HMGB1 as a proinflammatory mediator as well as a DAMP in coronary artery disease, cerebral artery disease, peripheral artery disease, and PH. FUTURE DIRECTIONS A key focus for future researches on HMGB1 location, structure, modification, and signaling will reveal HMGB1's multiple functions and discover a targeted therapy that can eliminate HMGB1-mediated inflammation without interfering with adaptive immune responses.
Collapse
Affiliation(s)
- Jingjing Cai
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Juan Wen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Eileen Bauer
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Hua Zhong
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Hong Yuan
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 3 Department of Cardiology, The Third Xiangya Hospital, Central South University , Changsha, China
| | - Alex F Chen
- 1 The Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University , Changsha, China
- 2 Department of Surgery, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Neuroprotective Effect of Xueshuantong for Injection (Lyophilized) in Transient and Permanent Rat Cerebral Ischemia Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:134685. [PMID: 26681963 PMCID: PMC4670871 DOI: 10.1155/2015/134685] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/22/2022]
Abstract
Xueshuantong for Injection (Lyophilized) (XST), a Chinese Materia Medica standardized product extracted from Panax notoginseng (Burk.), is used extensively for the treatment of cerebrovascular diseases such as acutely cerebral infarction clinically in China. In the present study, we evaluated the acute and extended protective effects of XST in different rat cerebral ischemic model and explored its effect on peroxiredoxin (Prx) 6-toll-like receptor (TLR) 4 signaling pathway. We found that XST treatment for 3 days could significantly inhibit transient middle cerebral artery occlusion (MCAO) induced infarct volume and swelling percent and regulate the mRNA expression of interleukin-1β (IL-1β), IL-17, IL-23p19, tumor necrosis factor-α (TNFα), and inducible nitric oxide synthase (iNOS) in brain. Further study demonstrated that treatment with XST suppressed the protein expression of peroxiredoxin (Prx) 6-toll-like receptor (TLR) 4 and phosphorylation level of p38 and upregulated the phosphorylation level of STAT3. In permanent MCAO rats, XST could reduce the infarct volume and swelling percent. Moreover, our results revealed that XST treatment could increase the rats' weight and improve a batch of functional outcomes. In conclusion, the present data suggested that XST could protect against ischemia injury in transient and permanent MCAO rats, which might be related to Prx6-TLR4 pathway.
Collapse
|
29
|
Protective Effect of Edaravone in Primary Cerebellar Granule Neurons against Iodoacetic Acid-Induced Cell Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:606981. [PMID: 26557222 PMCID: PMC4628655 DOI: 10.1155/2015/606981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/19/2014] [Accepted: 10/22/2014] [Indexed: 01/07/2023]
Abstract
Edaravone (EDA) is clinically used for treatment of acute ischemic stroke in Japan and China due to its potent free radical-scavenging effect. However, it has yet to be determined whether EDA can attenuate iodoacetic acid- (IAA-) induced neuronal death in vitro. In the present study, we investigated the effect of EDA on damage of IAA-induced primary cerebellar granule neurons (CGNs) and its possible underlying mechanisms. We found that EDA attenuated IAA-induced cell injury in CGNs. Moreover, EDA significantly reduced intracellular reactive oxidative stress production, loss of mitochondrial membrane potential, and caspase 3 activity induced by IAA. Taken together, EDA protected CGNs against IAA-induced neuronal damage, which may be attributed to its antiapoptotic and antioxidative activities.
Collapse
|
30
|
Edaravone, a Free Radical Scavenger, Delayed Symptomatic and Pathological Progression of Motor Neuron Disease in the Wobbler Mouse. PLoS One 2015; 10:e0140316. [PMID: 26469273 PMCID: PMC4607459 DOI: 10.1371/journal.pone.0140316] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022] Open
Abstract
Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group) or vehicle (n = 10), daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg) of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.
Collapse
|
31
|
Hassan MQ, Akhtar MS, Akhtar M, Ali J, Haque SE, Najmi AK. Edaravone protects rats against oxidative stress and apoptosis in experimentally induced myocardial infarction: Biochemical and ultrastructural evidence. Redox Rep 2015; 20:275-81. [PMID: 25893851 DOI: 10.1179/1351000215y.0000000011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVES The present study was designed to evaluate the cardioprotective potential of edaravone on oxidative stress, anti-apoptotic, anti-inflammatory and ultrastructure findings in isoproterenol (ISO) induced myocardial infarction (MI) in rats. METHODS Rats were pretreated with edaravone (1, 3, 10 mg/kg body weight-1 day-1) intraperitoneally. MI was induced by subcutaneous administration of ISO (85 mg/kg body weight-1) at two doses with 24h interval. RESULTS ISO treated rats showed significant increase in the levels of thiobarbituric acid reactive substances (TBARS) and decreased levels of reduced glutathione, glutathione perdoxidase, glutathione reductase and glutathione-S- transferase in the cardiac tissues. Moreover, significant increase in the levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), C--reactive protein and caspase-3 activity was observed in ISO treated group. Pretreatment of ISO intoxicated rats with edaravone showed significant decrease in the level of TBARS, increased activities of antioxidant enzymes and significantly decreased levels of LDH and CK-MB. Moreover, results also showed decreased C-reactive protein level, caspase-3 activity and maintained ultrastructure of the myocardial cells. DISCUSSION Our study suggests that edaravone possess strong cardioprotective potential. Edaravone may have exhibited cardioprotective effects by restoring antioxidant defense mechanism, maintaining integrity of myocardial cell membrane, reducing apoptosis and inflammation against ISO induced MI and associated oxidative stress.
Collapse
|
32
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 712] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
33
|
Stanley JA, Sivakumar KK, Arosh JA, Burghardt RC, Banu SK. Edaravone mitigates hexavalent chromium-induced oxidative stress and depletion of antioxidant enzymes while estrogen restores antioxidant enzymes in the rat ovary in F1 offspring. Biol Reprod 2014; 91:12. [PMID: 24804965 PMCID: PMC4434959 DOI: 10.1095/biolreprod.113.113332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Environmental contamination of drinking water with chromium (Cr) has been increasing in more than 30 cities in the United States. Previous studies from our group have shown that Cr affects reproductive functions in female Sprague Dawley rats. Although it is impossible to completely remove Cr from the drinking water, it is imperative to develop effective intervention strategies to inhibit Cr-induced deleterious health effects. Edaravone (EDA), a potential inhibitor of free radicals, has been clinically used to treat cancer and cardiac ischemia. This study evaluated the efficacy of EDA against Cr-induced ovarian toxicity. Results showed that maternal exposure to CrVI in rats increased follicular atresia, decreased steroidogenesis, and delayed puberty in F1 offspring. CrVI increased oxidative stress and decreased antioxidant (AOX) enzyme levels in the ovary. CrVI increased follicle atresia by increased expression of cleaved caspase 3, and decreased expression of Bcl2 and Bcl2l1 in the ovary. EDA mitigated or inhibited the effects of CrVI on follicle atresia, pubertal onset, steroid hormone levels, and AOX enzyme activity, as well as the expression of Bcl2 and Bcl2l1 in the ovary. In a second study, CrVI treatment was withdrawn, and F1 rats were injected with estradiol (E₂) (10 μg in PBS/ethanol per 100 g body weight) for a period of 2 wk to evaluate whether E₂ treatment will restore Cr-induced depletion of AOX enzymes. E₂ restored CrVI-induced depletion of glutathione peroxidase 1, catalase, thioredoxin 2, and peroxiredoxin 3 in the ovary. This is the first study to demonstrate the protective effects of EDA against any toxicant in the ovary.
Collapse
Affiliation(s)
- Jone A Stanley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
34
|
Okuma Y, Date I, Nishibori M. [Anti-HMGB1 antibody therapy for traumatic brain injury and neuropathic pain]. Nihon Yakurigaku Zasshi 2014; 143:5-9. [PMID: 24420129 DOI: 10.1254/fpj.143.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
35
|
Kikuchi K, Tancharoen S, Ito T, Morimoto-Yamashita Y, Miura N, Kawahara KI, Maruyama I, Murai Y, Tanaka E. Potential of the angiotensin receptor blockers (ARBs) telmisartan, irbesartan, and candesartan for inhibiting the HMGB1/RAGE axis in prevention and acute treatment of stroke. Int J Mol Sci 2013; 14:18899-924. [PMID: 24065095 PMCID: PMC3794813 DOI: 10.3390/ijms140918899] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 12/29/2022] Open
Abstract
Stroke is a major cause of mortality and disability worldwide. The main cause of stroke is atherosclerosis, and the most common risk factor for atherosclerosis is hypertension. Therefore, antihypertensive treatments are recommended for the prevention of stroke. Three angiotensin receptor blockers (ARBs), telmisartan, irbesartan and candesartan, inhibit the expression of the receptor for advanced glycation end-products (RAGE), which is one of the pleiotropic effects of these drugs. High mobility group box 1 (HMGB1) is the ligand of RAGE, and has been recently identified as a lethal mediator of severe sepsis. HMGB1 is an intracellular protein, which acts as an inflammatory cytokine when released into the extracellular milieu. Extracellular HMGB1 causes multiple organ failure and contributes to the pathogenesis of hypertension, hyperlipidemia, diabetes mellitus, atherosclerosis, thrombosis, and stroke. This is the first review of the literature evaluating the potential of three ARBs for the HMGB1-RAGE axis on stroke therapy, including prevention and acute treatment. This review covers clinical and experimental studies conducted between 1976 and 2013. We propose that ARBs, which inhibit the HMGB1/RAGE axis, may offer a novel option for prevention and acute treatment of stroke. However, additional clinical studies are necessary to verify the efficacy of ARBs.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
| | - Takashi Ito
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; E-Mails: (T.I.); (I.M.)
| | - Yoko Morimoto-Yamashita
- Department of Restorative Dentistry and Endodontology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; E-Mail:
| | - Naoki Miura
- Laboratory of Diagnostic Imaging, Department of Veterinary Science, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; E-Mail:
| | - Ko-ichi Kawahara
- Laboratory of Functional Foods, Department of Biomedical Engineering Osaka Institute of Technology, 5-16-1 Omiya, Asahi Ward, Osaka 535-8585, Japan; E-Mail:
| | - Ikuro Maruyama
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan; E-Mails: (T.I.); (I.M.)
| | - Yoshinaka Murai
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-942-31-7542; Fax: +81-942-31-7695
| |
Collapse
|
36
|
Kikuchi K, Tancharoen S, Takeshige N, Yoshitomi M, Morioka M, Murai Y, Tanaka E. The efficacy of edaravone (radicut), a free radical scavenger, for cardiovascular disease. Int J Mol Sci 2013; 14:13909-30. [PMID: 23880849 PMCID: PMC3742225 DOI: 10.3390/ijms140713909] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 02/07/2023] Open
Abstract
Edaravone was originally developed as a potent free radical scavenger, and has been widely used to treat acute ischemic stroke in Japan since 2001. Free radicals play an important role in the pathogenesis of a variety of diseases, such as cardiovascular diseases and stroke. Therefore, free radicals may be targets for therapeutic intervention in these diseases. Edaravone shows protective effects on ischemic insults and inflammation in the heart, vessel, and brain in experimental studies. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic, and anti-cytokine effects in cardiovascular diseases and stroke. Edaravone has preventive effects on myocardial injury following ischemia and reperfusion in patients with acute myocardial infarction. Edaravone may represent a new therapeutic intervention for endothelial dysfunction in the setting of atherosclerosis, heart failure, diabetes, or hypertension, because these diseases result from oxidative stress and/or cytokine-induced apoptosis. This review evaluates the potential of edaravone for treatment of cardiovascular disease, and covers clinical and experimental studies conducted between 1984 and 2013. We propose that edaravone, which scavenges free radicals, may offer a novel option for treatment of cardiovascular diseases. However, additional clinical studies are necessary to verify the efficacy of edaravone.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, 6 Yothe Road, Rajthevee, Bangkok 10400, Thailand; E-Mails: (K.K.); (S.T.)
| | - Nobuyuki Takeshige
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Munetake Yoshitomi
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mails: (N.T.); (M.Y.); (M.M.)
| | - Yoshinaka Murai
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
| | - Eiichiro Tanaka
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan; E-Mail:
- Author to whom correspondence should be addressed. E-Mail: ; Tel.: +81-942-31-7542; Fax: +81-942-31-7695
| |
Collapse
|
37
|
He M, Zhang B, Wei X, Wang Z, Fan B, Du P, Zhang Y, Jian W, Chen L, Wang L, Fang H, Li X, Wang PA, Yi F. HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med 2013; 17:531-42. [PMID: 23480850 PMCID: PMC3822653 DOI: 10.1111/jcmm.12040] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/15/2013] [Indexed: 12/27/2022] Open
Abstract
Histone deacetylases (HDACs)-mediated epigenetic mechanisms play critical roles in the homeostasis of histone acetylation and gene transcription. HDAC inhibitors have displayed neuroprotective properties in animal models for various neurological diseases including Alzheimer's disease and ischaemic stroke. However, some studies have also reported that HDAC enzymes exert protective effects in several pathological conditions including ischaemic stress. The mixed results indicate the specific roles of each HDAC protein in different diseased states. However, the subtypes of HDACs associated with ischaemic stroke keep unclear. Therefore, in this study, we used an in vivo middle cerebral artery occlusion (MCAO) model and in vitro cell cultures by the model of oxygen glucose deprivation to investigate the expression patterns of HDACs and explore the roles of individual HDACs in ischaemic stroke. Our results showed that inhibition of NADPH oxidase activity ameliorated cerebral ischaemia/reperfusion (I/R) injury and among Zn2+-dependent HDACs, HDAC4 and HDAC5 were significantly decreased both in vivo and in vitro, which can be reversed by NADPH oxidase inhibitor apocynin. We further found that both HDAC4 and HDAC5 increased cell viability through inhibition of HMGB1, a central mediator of tissue damage following acute injury, expression and release in PC12 cells. Our results for the first time provide evidence that NADPH oxidase-mediated HDAC4 and HDAC5 expression contributes to cerebral ischaemia injury via HMGB1 signalling pathway, suggesting that it is important to elucidate the role of individual HDACs within the brain, and the development of HDAC inhibitors with improved specificity is required to develop effective therapeutic strategies to treat stroke.
Collapse
Affiliation(s)
- Min He
- Department of Pharmacology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
SHEN L, YE M, DING X, HAN Q, ZHANG C, LIU X, HUANG H, WU E, HUANG H, GU X. Protective effects of MCI-186 on transplantation of bone marrow stromal cells in rat ischemic stroke model. Neuroscience 2012; 223:315-24. [DOI: 10.1016/j.neuroscience.2012.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 12/11/2022]
|
39
|
de Souza A, Westra J, Limburg P, Bijl M, Kallenberg C. HMGB1 in vascular diseases: Its role in vascular inflammation and atherosclerosis. Autoimmun Rev 2012; 11:909-17. [DOI: 10.1016/j.autrev.2012.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
|
40
|
Kikuchi K, Miura N, Kawahara KI, Murai Y, Morioka M, Lapchak PA, Tanaka E. Edaravone (Radicut), a free radical scavenger, is a potentially useful addition to thrombolytic therapy in patients with acute ischemic stroke. Biomed Rep 2012; 1:7-12. [PMID: 24648884 DOI: 10.3892/br.2012.7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/08/2012] [Indexed: 01/30/2023] Open
Abstract
Acute ischemic stroke (AIS) is a major cause of morbidity and mortality in the aging population worldwide. Alteplase, a recombinant tissue plasminogen activator, is the only Food and Drug Administration-approved thrombolytic agent for the treatment of AIS. Only 2-5% of patients with stroke receive thrombolytic treatment, mainly due to delay in reaching the hospital. Edaravone is a free radical scavenger marketed in Japan to treat patients with AIS, who present within 24 h of the onset of symptoms. When used in combination with alteplase, edaravone may have three useful effects: enhancement of early recanalization, inhibition of alteplase-induced hemorrhagic transformation and extension of the therapeutic time window for alteplase. This is the first review of the literature evaluating the clinical efficacy of edaravone, aiming to clarify whether edaravone should be further evaluated for clinical use worldwide. This review covers both clinical and experimental studies conducted between 1994 and 2012. Edaravone is a potentially useful neurovascular protective agent, used in combination with thrombolytic agents to treat >15 million patients devastated by stroke worldwide annually. Additional clinical studies are necessary to verify the efficacy of edaravone when used in combination with a thrombolytic agent.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Neurology, Cedars-Sinai Medical Center, Davis Research Building, Los Angeles, CA 90048, USA
| | - Naoki Miura
- Veterinary Teaching Hospital and Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065
| | - Ko-Ichi Kawahara
- Laboratory of Functional Foods, Department of Biomedical Engineering, Osaka Institute of Technology, Osaka 535-8585; ; Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | | | - Motohiro Morioka
- Neurosurgery, Kurume University School of Medicine, Fukuoka 830-0011
| | - Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, Davis Research Building, Los Angeles, CA 90048, USA
| | | |
Collapse
|
41
|
Clinical neuroprotective drugs for treatment and prevention of stroke. Int J Mol Sci 2012; 13:7739-7761. [PMID: 22837724 PMCID: PMC3397556 DOI: 10.3390/ijms13067739] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/15/2012] [Accepted: 06/19/2012] [Indexed: 01/12/2023] Open
Abstract
Stroke is an enormous public health problem with an imperative need for more effective therapies. In therapies for ischemic stroke, tissue plasminogen activators, antiplatelet agents and anticoagulants are used mainly for their antithrombotic effects. However, free radical scavengers, minocycline and growth factors have shown neuroprotective effects in the treatment of stroke, while antihypertensive drugs, lipid-lowering drugs and hypoglycemic drugs have shown beneficial effects for the prevention of stroke. In the present review, we evaluate the treatment and prevention of stroke in light of clinical studies and discuss new anti-stroke effects other than the main effects of drugs, focusing on optimal pharmacotherapy.
Collapse
|
42
|
Tanaka Y, Fukumitsu H, Soumiya H, Yoshimura S, Iwama T, Furukawa S. 2-decenoic acid ethyl ester, a compound that elicits neurotrophin-like intracellular signals, facilitating functional recovery from cerebral infarction in mice. Int J Mol Sci 2012; 13:4968-4981. [PMID: 22606023 PMCID: PMC3344259 DOI: 10.3390/ijms13044968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 02/07/2023] Open
Abstract
In our previous study, we found that trans-2-decenoic acid ethyl ester (DAEE), a derivative of a medium-chain fatty acid, elicits neurotrophin-like signals including the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in cultured mouse cortical neurons. Here, we examined the efficacy of intraperitoneal administration of DAEE on the treatment of a mouse model of the cerebral infarction caused by unilateral permanent middle cerebral artery occlusion (PMCAO). DAEE-treatment (100 μg/kg body weight injected at 0.5, 24, 48, 72 h after PMCAO) significantly restored the mice from PMCAO-induced neurological deficits including motor paralysis when evaluated 48, 72, and 96 h after the PMCAO. Furthermore, DAEE facilitated the phosphorylation of ERK1/2 on the infarction side of the brain when analyzed by Western immunoblot analysis, and it enhanced the number of phosphorylated ERK1/2-positive cells in the border areas between the infarction and non-infarction regions of the cerebral cortex, as estimated immunohistochemically. As the infarct volume remained unchanged after DAEE-treatment, it is more likely that DAEE improved the neurological condition through enhanced neuronal functions of the remaining neurons in the damaged areas rather than by maintaining neuronal survival. These results suggest that DAEE has a neuro-protective effect on cerebral infarction.
Collapse
Affiliation(s)
- Yoshitaka Tanaka
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Hidefumi Fukumitsu
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
| | - Hitomi Soumiya
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
| | - Shinichi Yoshimura
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Yanagido 1-1, Gifu 501-1194, Japan; E-Mails: (S.Y.); (T.I.)
| | - Shoei Furukawa
- Laboratory of Molecular Biology, Gifu Pharmaceutical University, Daigaku-nishi, 1-25-4, Gifu 501-1190, Japan; E-Mails: (Y.T.); (H.F.): (H.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-58-230-8100; Fax: +81-58-230-8105
| |
Collapse
|
43
|
Shingu C, Hagiwara S, Iwasaka H, Matsumoto S, Koga H, Yokoi I, Noguchi T. EPCK1, a Vitamin C and E Analogue, Reduces Endotoxin-Induced Systemic Inflammation in Mice. J Surg Res 2011; 171:719-25. [DOI: 10.1016/j.jss.2010.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/16/2010] [Accepted: 03/17/2010] [Indexed: 01/25/2023]
|
44
|
Suzuki M, Uchihara T, Toru S, Bae Y, Igari T, Kitagawa M, Uchiyama S, Hirokawa K, Kobayashi T. Correlative magnetic resonance imaging and autopsy findings in a patient with coagulation necrosis treated with tissue plasminogen activator. J Stroke Cerebrovasc Dis 2011; 21:512-4. [PMID: 22000524 DOI: 10.1016/j.jstrokecerebrovasdis.2010.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/01/2010] [Accepted: 10/10/2010] [Indexed: 10/16/2022] Open
Abstract
Coagulation necrosis is a peculiar type of ischemic necrosis that is characterized by firm, eosinophilic parenchyma with recognizable cell outlines without massive glial reactions. This is an autopsy report of coagulation necrosis 6 months after thrombolytic tissue plasminogen activator therapy against massive cerebral embolism in an 84-year-old man with atrial fibrillation.
Collapse
Affiliation(s)
- Miki Suzuki
- Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kikuchi K, Uchikado H, Miura N, Morimoto Y, Ito T, Tancharoen S, Miyata K, Sakamoto R, Kikuchi C, Iida N, Shiomi N, Kuramoto T, Miyagi N, Kawahara KI. HMGB1 as a therapeutic target in spinal cord injury: A hypothesis for novel therapy development. Exp Ther Med 2011; 2:767-770. [PMID: 22977572 DOI: 10.3892/etm.2011.310] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/29/2011] [Indexed: 12/20/2022] Open
Abstract
Historically, clinical outcomes following spinal cord injury (SCI) have been dismal. Severe SCI leads to devastating neurological deficits, and there is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. To address all the issues associated with SCI, a multidisciplinary approach is required, as it is unlikely that a single approach, such as surgical intervention, pharmacotherapy or cellular transplantation, will suffice. High mobility group box 1 (HMGB1) is an inflammatory cytokine. Various studies have shown that HMGB1 plays a critical role in SCI and that inhibition of HMGB1 release may be a novel therapeutic target for SCI and may support spinal cord repair. In addition, HMGB1 has been associated with graft rejection in the early phase. Therefore, HMGB1 may be a promising therapeutic target for SCI transplant patients. We hypothesize that inhibition of HMGB1 release rescues patients with SCI. Taken together, our findings suggest that anti-HMGB1 monoclonal antibodies or short hairpin RNA-mediated HMGB1 could be administered for spinal cord repair in SCI patients.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Neurosurgery, Yame Public General Hospital, Yame 834-0034
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kikuchi K, Kawahara KI, Uchikado H, Miyagi N, Kuramoto T, Miyagi T, Morimoto Y, Ito T, Tancharoen S, Miura N, Takenouchi K, Oyama Y, Shrestha B, Matsuda F, Yoshida Y, Arimura S, Mera K, Tada KI, Yoshinaga N, Maenosono R, Ohno Y, Hashiguchi T, Maruyama I, Shigemori M. Potential of edaravone for neuroprotection in neurologic diseases that do not involve cerebral infarction. Exp Ther Med 2011; 2:771-775. [PMID: 22977573 DOI: 10.3892/etm.2011.281] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 05/19/2011] [Indexed: 11/06/2022] Open
Abstract
Edaravone was originally developed as a potent free radical scavenger and has been widely used to treat cerebral infarction in Japan since 2001. Several free radical scavengers have been developed and some of them have progressed to clinical trials for the treatment of cerebral infarction. One such scavenger, edaravone, has been approved by the regulatory authority in Japan for the treatment of patients with cerebral infarction. Of particular interest is the ability of edaravone to diffuse into the central nervous system in various neurologic diseases. Aside from its hydroxyl radical scavenging effect, edaravone has been found to have beneficial effects on inflammation, matrix metalloproteinases, nitric oxide production and apoptotic cell death. Concordantly, edaravone has been found to have neuroprotective effects in a number of animal models of disease, including stroke, spinal cord injury, traumatic brain injury, neurodegenerative diseases and brain tumors. The proven safety of edaravone following 9 years of use as a free radical scavenger suggests that it may have potential for development into an effective treatment of multiple neurologic conditions in humans.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Neurosurgery, Yame Public General Hospital, Yame 834-0034
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ozgiray E, Serarslan Y, Oztürk OH, Altaş M, Aras M, Söğüt S, Yurtseven T, Oran I, Zileli M. Protective effects of edaravone on experimental spinal cord injury in rats. Pediatr Neurosurg 2011; 47:254-60. [PMID: 22310070 DOI: 10.1159/000335400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 11/24/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a leading cause of morbidity and mortality among youth and adults. Secondary injury mechanisms within the spinal cord (SC) are well known to cause deterioration after an acute impact. Free radical scavengers are among the most studied agents in animal models of SCI. Edaravone is a scavenger of hydroxyl radicals. METHODS We aimed to measure and compare the effects of both methylprednisolone and edaravone on tissue and on serum concentrations of nitric oxide (NO), malondialdehyde (MDA) levels, superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity, and tissue total antioxidant capacity (TAC) in rats with SCI. SCI was induced in four groups of Wistar albino rats by a weight-drop method. The neurological function of the rats was periodically tested. At the end of the experiment, blood samples were collected, and SC tissue samples were harvested for biochemical evaluation. RESULTS The tissue level of NO was decreased in the edaravone-treated group compared with the no-treatment group (p < 0.05). The tissue levels of SOD and GSH-Px were higher in the edaravone-treated group than in the no-treatment group (p < 0.05). The serum levels of NO were lower in the edaravone-treated and methylprednisolone-treated groups than in the no-treatment group (p < 0.05). The serum levels of SOD in the edaravone-treated group did not differ from those of any other group. The serum levels of MDA in the edaravone-treated and no-treatment groups were higher than in the two other groups (p < 0.05). Tissue levels of MDA in the edaravone-treated group were lower than in the no-treatment group (p < 0.05). Tissue levels of TAC in the edaravone-treated group were higher than in the no-treatment and methylprednisolone-treated groups (p < 0.05). The neurological outcome scores of the animals in treatment groups did not depict any statistically significant improvement in motor functions. However, edaravone seemed to prevent further worsening of the immediate post-SCI neurological status. CONCLUSION Our biochemical analyses indicate that edaravone is capable of blunting the increased oxidative stress that follows SCI. We show, for the first time, that edaravone enhances the TAC in SC tissue. This beneficial effect of edaravone on antioxidant status may act to minimize the secondary neurological damage that occurs during the acute phase after SCI.
Collapse
Affiliation(s)
- Erkin Ozgiray
- Department of Neurosurgery, Tayfur Ata Sökmen Medical Faculty, Mustafa Kemal University, Hatay, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kikuchi K, Kawahara KI, Miyagi N, Uchikado H, Kuramoto T, Morimoto Y, Tancharoen S, Miura N, Takenouchi K, Oyama Y, Shrestha B, Matsuda F, Yoshida Y, Arimura S, Mera K, Tada KI, Yoshinaga N, Maenosono R, Ohno Y, Hashiguchi T, Maruyama I, Shigemori M. Edaravone: a new therapeutic approach for the treatment of acute stroke. Med Hypotheses 2010; 75:583-5. [PMID: 20728280 DOI: 10.1016/j.mehy.2010.07.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/12/2010] [Accepted: 07/17/2010] [Indexed: 01/27/2023]
Abstract
Acute stroke, including acute ischemic stroke (AIS) and acute hemorrhagic stroke, (AHS) is a common medical problem with particular relevance to the demographic changes in industrialized societies. In recent years, treatments for AIS have emerged, including thrombolysis with tissue plasminogen activator (t-PA). Although t-PA is the most effective currently available therapy, it is limited by a narrow therapeutic time window and side effects, and only 3% of all AIS patients receive thrombolysis. Edaravone was originally developed as a potent free radical scavenger and, since 2001, has been widely used to treat AIS in Japan. It was shown that edaravone extended the narrow therapeutic time window of t-PA in rats. The therapeutic time window is very important for the treatment of AIS, and early edaravone treatment is more effective. Thus, more AIS patients might be rescued by administering edaravone with t-PA. Meanwhile, edaravone attenuates AHS-induced brain edema, neurologic deficits and oxidative injury in rats. Although edaravone treatment is currently only indicated for AIS, it does offer neuroprotective effects against AHS in rats. Therefore, we hypothesize that early administration of edaravone can rescue AHS patients as well as AIS patients. Taken together, our findings suggest that edaravone should be immediately administered on suspicion of acute stroke, including AIS and AHS.
Collapse
Affiliation(s)
- Kiyoshi Kikuchi
- Department of Neurosurgery, Yame Public General Hospital, 540-2 Takatsuka, Yame 834-0034, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother 2010; 11:1753-63. [PMID: 20491547 DOI: 10.1517/14656566.2010.493558] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Edaravone (Radicut) is a free radical scavenger marketed in Japan by Mitsubishi Tanabe Pharma Corp. to treat acute ischemic stroke (AIS) patients presenting within 24 h of the attack. Injectable edaravone ampoules (30 mg b.i.d., i.v., 14 days) were first approved on 23 May 2001. On 19 January 2010, as a new innovation, the Radicut BAG (Intravenous BAG) was approved by the Japanese Ministry of Health and Welfare. Efficacy of edaravone ranges from large significant clinical improvements to only modest improvements in clinical function measured using standard stroke scales when administered 6-72 h following an ischemic stroke. With almost 17 years of edaravone clinical experience, a few adverse events--including acute renal failure--have been noted. WHAT THE READER WILL GAIN This is the only article to date to critically review available clinical efficacy and toxicology data published in the literature to ascertain whether edaravone should be further pursued as a candidate for development worldwide. AREAS COVERED IN THIS REVIEW This review covers clinical studies carried out over the period 1993-2008. TAKE HOME MESSAGE Edaravone may be a useful neuroprotective agent to treat the > 15 million victims worldwide who are devastated by stroke annually. Additional clinical studies are necessary to verify the efficacy of edaravone.
Collapse
Affiliation(s)
- Paul A Lapchak
- Department of Neurology, Cedars-Sinai Medical Center, 8730 Alden Drive, Thalians E216, Los Angeles, CA 90048, USA.
| |
Collapse
|
50
|
Smirnova NA, Rakhman I, Moroz N, Basso M, Payappilly J, Kazakov S, Hernandez-Guzman F, Gaisina IN, Kozikowski AP, Ratan RR, Gazaryan IG. Utilization of an in vivo reporter for high throughput identification of branched small molecule regulators of hypoxic adaptation. ACTA ACUST UNITED AC 2010; 17:380-91. [PMID: 20416509 DOI: 10.1016/j.chembiol.2010.03.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 01/03/2023]
Abstract
Small molecules inhibiting hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are the focus of drug development efforts directed toward the treatment of ischemia and metabolic imbalance. A cell-based reporter produced by fusing HIF-1 alpha oxygen degradable domain (ODD) to luciferase was shown to work as a capture assay monitoring stability of the overexpressed luciferase-labeled HIF PHD substrate under conditions more physiological than in vitro test tubes. High throughput screening identified novel catechol and oxyquinoline pharmacophores with a "branching motif" immediately adjacent to a Fe-binding motif that fits selectively into the HIF PHD active site in in silico models. In accord with their structure-activity relationship in the primary screen, the best "hits" stabilize HIF1 alpha, upregulate known HIF target genes in a human neuronal line, and exert neuroprotective effects in established model of oxidative stress in cortical neurons.
Collapse
Affiliation(s)
- Natalya A Smirnova
- Burke Medical Research Institute, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 785 Mamaroneck Ave, White Plains, NY 10605, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|