1
|
Vijayan M, Yin L, Reddy PH, Benamar K. Behavioral Evidence for a Tau and HIV-gp120 Interaction. Int J Mol Sci 2022; 23:ijms23105514. [PMID: 35628323 PMCID: PMC9146203 DOI: 10.3390/ijms23105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/07/2022] Open
Abstract
Despite successful virologic control with combination antiretroviral therapy (cART), about half of people living with the human immunodeficiency virus-1 (HIV) develop an HIV-associated neurocognitive disorder (HAND). It is estimated that 50% of individuals who are HIV-positive in the United States are aged 50 years or older. Therefore, a new challenge looms as individuals living with HIV increase in age. There is concern that Alzheimer’s disease (AD) may become prevalent with an earlier onset of cognitive decline in people living with HIV (PLWH). Clinical data studies reported the presence of AD biomarkers in PLWH. However, the functional significance of the interaction between HIV or HIV viral proteins and AD biomarkers is still not well studied. The main goal of the present study is to address this knowledge gap by determining if the HIV envelope glycoprotein 120 (HIV-gp120) can affect the cognitive functions in the Tau mouse AD model. Male Tau and age-matched, wild-type (WT) control mice were treated intracerebroventricularly (ICV) with HIV-gp120. The animals were evaluated for cognitive function using a Y-maze. We found that HIV-gp120 altered cognitive function in Tau mice. Notably, HIV-gp120 was able to promote a cognitive decline in transgenic Tau (P301L) mice compared to the control (HIV-gp120 and WT). We provide the first in vivo evidence of a cognitive interaction between an HIV viral protein and Tau mice.
Collapse
Affiliation(s)
- Murali Vijayan
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
| | - Linda Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA; (M.V.); (P.H.R.)
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, School of Medicine Lubbock, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: ; Tel.: +1-806-743-3570; Fax: +1-806-743-2744
| |
Collapse
|
2
|
Shanmugam S, Patel D, Guindon J, Reddy PH, Narasimhan M, Benamar K. Gene expression of endocannabinoid system in HIV-1-related neuropathic pain model. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165891. [PMID: 32629014 DOI: 10.1016/j.bbadis.2020.165891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Sambantham Shanmugam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Dhyanesh Patel
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Dobra A, Buhikire K, Voss JG. Identifying mediating variables with graphical models: an application to the study of causal pathways in people living with HIV. J Appl Stat 2020; 47:1298-1314. [DOI: 10.1080/02664763.2019.1669543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Adrian Dobra
- Department of Statistics, University of Washington, Seattle, WA, USA
| | - Katherine Buhikire
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Joachim G. Voss
- Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
4
|
Palma J, Narasimhan M, Guindon J, Benamar K. Supraspinal interaction between HIV-1-gp120 and cannabinoid analgesic effectiveness. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2018; 391:1157-1161. [PMID: 30008083 PMCID: PMC6333524 DOI: 10.1007/s00210-018-1533-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
The growing therapeutic use (self-medication) of cannabinoids by HIV-1 infected people and the recent interest in the possible medicinal use of cannabinoids, particularly in pain management, create an urgent need to identify their potential interactions with HIV-1. The goal here is to determine any interaction between proteins of HIV-1 and the analgesic effectiveness of cannabinoid at supraspinal level. Young adult male rats (Sprague-Dawley) were stereotaxically pretreated with HIV-1 envelope glycoprotein 120 (gp120) into the periaqueductal gray (PAG) area, the primary control center of pain modulation. Then, we examined its effect on cannabinoid receptor agonist WIN55,212-2-induced analgesia. Our results demonstrated that gp120 in PAG diminished the analgesic effectiveness of this cannabinoid agonist. These results suggest that gp120 may interact with the cannabinoid system through the descending modulatory pain pathways centered in the PAG to impair the analgesic effectiveness of cannabinoids.
Collapse
Affiliation(s)
- Jonathan Palma
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Khalid Benamar
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
5
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015; 2:506-21. [PMID: 27227071 PMCID: PMC4843933 DOI: 10.1080/23328940.2015.1102802] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 11/13/2022] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
6
|
Zampronio AR, Soares DM, Souza GEP. Central mediators involved in the febrile response: effects of antipyretic drugs. Temperature (Austin) 2015. [PMID: 27227071 DOI: 10.1080/23328940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
Fever is a complex signal of inflammatory and infectious diseases. It is generally initiated when peripherally produced endogenous pyrogens reach areas that surround the hypothalamus. These peripheral endogenous pyrogens are cytokines that are produced by leukocytes and other cells, the most known of which are interleukin-1β, tumor necrosis factor-α, and interleukin-6. Because of the capacity of these molecules to induce their own synthesis and the synthesis of other cytokines, they can also be synthesized in the central nervous system. However, these pyrogens are not the final mediators of the febrile response. These cytokines can induce the synthesis of cyclooxygenase-2, which produces prostaglandins. These prostanoids alter hypothalamic temperature control, leading to an increase in heat production, the conservation of heat, and ultimately fever. The effect of antipyretics is based on blocking prostaglandin synthesis. In this review, we discuss recent data on the importance of prostaglandins in the febrile response, and we show that some endogenous mediators can still induce the febrile response even when known antipyretics reduce the levels of prostaglandins in the central nervous system. These studies suggest that centrally produced mediators other than prostaglandins participate in the genesis of fever. Among the most studied central mediators of fever are corticotropin-releasing factor, endothelins, chemokines, endogenous opioids, and substance P, which are discussed herein. Additionally, recent evidence suggests that these different pathways of fever induction may be activated during different pathological conditions.
Collapse
Affiliation(s)
- Aleksander R Zampronio
- Department of Pharmacology; Biological Sciences Section; Federal University of Paraná ; Curitiba, PR, Brazil
| | - Denis M Soares
- Department of Medicament; Faculty of Pharmacy; Federal University of Bahia ; Salvador, BA, Brazil
| | - Glória E P Souza
- Discipline of Pharmacology; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo ; Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
HIV-gp120 and physical dependence to buprenorphine. Drug Alcohol Depend 2015; 150:175-8. [PMID: 25765484 PMCID: PMC4573588 DOI: 10.1016/j.drugalcdep.2015.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/20/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Opioids are among the most effective and commonly used analgesics in clinical practice for severe pain. However, the use of opioid medications is clinically limited by several adverse properties including dependence. While opioid dependence is a complex health condition, the treatment of HIV-infected individuals with opioid dependence presents additional challenges. The goal of this study was to examine the physical dependence to buprenorphine in the context of HIV. METHODS Young adult male rats (Sprague-Dawley) were pretreated with HIV-1 envelope glycoprotein 120 (gp120) injected into the periaqueductal gray area (PAG) and we examined the impact on physical dependence to opioid. RESULTS It was found that the physical dependence to methadone occurred earlier than that to buprenorphine, and that gp120 did not enhance or precipitate the buprenorphine withdrawal. CONCLUSION The results suggest that buprenorphine could be the better therapeutic option to manage opioid dependence in HIV.
Collapse
|
8
|
Brailoiu GC, Deliu E, Altmann JB, Chitravanshi V, Brailoiu E. Evidence for role of acid-sensing ion channels in nucleus ambiguus neurons: essential differences in anesthetized versus awake rats. J Comp Physiol B 2014; 184:753-61. [PMID: 24752669 DOI: 10.1007/s00360-014-0829-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 11/29/2022]
Abstract
Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca(2+) concentration by promoting Ca(2+) influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA, 19107, USA
| | | | | | | | | |
Collapse
|
9
|
Brailoiu E, Deliu E, Sporici RA, Benamar K, Brailoiu GC. HIV-1-Tat excites cardiac parasympathetic neurons of nucleus ambiguus and triggers prolonged bradycardia in conscious rats. Am J Physiol Regul Integr Comp Physiol 2014; 306:R814-22. [PMID: 24694382 DOI: 10.1152/ajpregu.00529.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms of autonomic imbalance and subsequent cardiovascular manifestations in HIV-1-infected patients are poorly understood. We report here that HIV-1 transactivator of transcription (Tat, fragment 1-86) produced a concentration-dependent increase in cytosolic Ca(2+) in cardiac-projecting parasympathetic neurons of nucleus ambiguus retrogradely labeled with rhodamine. Using store-specific pharmacological agents, we identified several mechanisms of the Tat-induced Ca(2+) elevation: 1) lysosomal Ca(2+) mobilization, 2) Ca(2+) release via inositol 1,4,5-trisphosphate-sensitive endoplasmic reticulum pools, and 3) Ca(2+) influx via transient receptor potential vanilloid type 2 (TRPV2) channels. Activation of TRPV2, nonselective cation channels, induced a robust and prolonged neuronal membrane depolarization, thus triggering an additional P/Q-mediated Ca(2+) entry. In vivo microinjection studies indicate a dose-dependent, prolonged bradycardic effect of Tat administration into the nucleus ambiguus of conscious rats, in which neuronal TRPV2 played a major role. Our results support previous studies, indicating that Tat promotes bradycardia and, consequently, may be involved in the QT interval prolongation reported in HIV-infected patients. In the context of an overall HIV-dependent autonomic dysfunction, these Tat-mediated mechanisms may account for the higher prevalence of sudden cardiac death in HIV-1-infected patients compared with general population with similar risk factors. Our results may be particularly relevant in view of the recent findings that significant Tat levels can still be identified in the cerebrospinal fluid of HIV-infected patients with viral load suppression due to efficient antiretroviral therapy.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Elena Deliu
- Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Romeo A Sporici
- Department of Internal Medicine, Brandywine Hospital, Coatesville, Pennsylvania
| | - Khalid Benamar
- Center for Substance Abuse, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Brailoiu GC, Deliu E, Rabinowitz JE, Tilley DG, Koch WJ, Brailoiu E. Urotensin II promotes vagal-mediated bradycardia by activating cardiac-projecting parasympathetic neurons of nucleus ambiguus. J Neurochem 2014; 129:628-36. [PMID: 24521102 DOI: 10.1111/jnc.12679] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/31/2014] [Accepted: 02/05/2014] [Indexed: 12/31/2022]
Abstract
Urotensin II (U-II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U-II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U-II and its receptor at this level. We report here that U-II produces an increase in cytosolic Ca(2+) concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptor; and (ii) Ca(2+) influx through P/Q-type Ca(2+) channels. In addition, U-II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U-II into nucleus ambiguus elicits dose-dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U-II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection.
Collapse
Affiliation(s)
- Gabriela Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
11
|
Palma J, Abood ME, Barbe MF, Benamar K. Functional interaction between HIV-gp120 and opioid system in the preoptic anterior hypothalamus. Drug Alcohol Depend 2014; 134:383-386. [PMID: 24120859 PMCID: PMC3974549 DOI: 10.1016/j.drugalcdep.2013.09.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Recently we found that fever (part of HIV-related wasting) is induced by the action of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein (gp120) in the preoptic anterior hypothalamus (POAH). As the opioid system plays a role in the pathogenesis of HIV-1, in the present study we sought to examine the capacity of the opioid system to regulate the febrile response induced by gp120. METHODS Stainless steel cannulas were stereotactically into the POAH, and a biotelemetry system was used to monitor the body temperature (Tb changes). We examined the in vivo effects of naloxone as well as highly opioid-selective receptor antagonists, on gp120-induced fever. RESULTS Pretreatment with naloxone or the mu-opioid receptor-selective antagonist, cyclic d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP), significantly delayed the febrile response induced by gp120. In contrast, naltriben (NTB), a selective antagonist for the delta-2 opioid receptor, did not cause any effect on gp120-induced fever. CONCLUSION These results (1) provide pharmacologic evidence of a functional in vivo interaction between the opioid system and this viral protein in the POAH and (2) show that mu-opioid receptors can regulate gp120-induced fever.
Collapse
Affiliation(s)
- Jonathan Palma
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Mary E Abood
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, Pennsylvania, U.S.A
| | - Mary F Barbe
- Department of Anatomy and Cell Biology Philadelphia, Pennsylvania, U.S.A
| | - Khalid Benamar
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Brailoiu GC, Benamar K, Arterburn JB, Gao E, Rabinowitz JE, Koch WJ, Brailoiu E. Aldosterone increases cardiac vagal tone via G protein-coupled oestrogen receptor activation. J Physiol 2013; 591:4223-35. [PMID: 23878371 DOI: 10.1113/jphysiol.2013.257204] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In addition to acting on mineralocorticoid receptors, aldosterone has been recently shown to activate the G protein-coupled oestrogen receptor (GPER) in vascular cells. In light of the newly identified role for GPER in vagal cardiac control, we examined whether or not aldosterone activates GPER in rat nucleus ambiguus. Aldosterone produced a dose-dependent increase in cytosolic Ca(2+) concentration in retrogradely labelled cardiac vagal neurons of nucleus ambiguus; the response was abolished by pretreatment with the GPER antagonist G-36, but was not affected by the mineralocorticoid receptor antagonists, spironolactone and eplerenone. In Ca(2+)-free saline, the response to aldosterone was insensitive to blockade of the Ca(2+) release from lysosomes, while it was reduced by blocking the Ca(2+) release via ryanodine receptors and abolished by blocking the IP3 receptors. Aldosterone induced Ca(2+) influx via P/Q-type Ca(2+) channels, but not via L-type and N-type Ca(2+) channels. Aldosterone induced depolarization of cardiac vagal neurons of nucleus ambiguus that was sensitive to antagonism of GPER but not of mineralocorticoid receptor. in vivo studies, using telemetric measurement of heart rate, indicate that microinjection of aldosterone into the nucleus ambiguus produced a dose-dependent bradycardia in conscious, freely moving rats. Aldosterone-induced bradycardia was blocked by the GPER antagonist, but not by the mineralocorticoid receptor antagonists. In summary, we report for the first time that aldosterone decreases heart rate by activating GPER in cardiac vagal neurons of nucleus ambiguus.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- E. Brailoiu: Center for Translational Medicine, Temple University School of Medicine, MERB, 3500 N. Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Brailoiu GC, Deliu E, Tica AA, Rabinowitz JE, Tilley DG, Benamar K, Koch WJ, Brailoiu E. Nesfatin-1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats. J Neurochem 2013; 126:739-48. [PMID: 23795642 DOI: 10.1111/jnc.12355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/12/2013] [Accepted: 06/20/2013] [Indexed: 11/30/2022]
Abstract
Nesfatin-1, a peptide whose receptor is yet to be identified, has been involved in the modulation of feeding, stress, and metabolic responses. More recently, increasing evidence supports a modulatory role for nesfatin-1 in autonomic and cardiovascular activity. This study was undertaken to test if the expression of nesfatin-1 in the nucleus ambiguus, a key site for parasympathetic cardiac control, may be correlated with a functional role. As we have previously demonstrated that nesfatin-1 elicits Ca²⁺ signaling in hypothalamic neurons, we first assessed the effect of this peptide on cytosolic Ca²⁺ in cardiac pre-ganglionic neurons of nucleus ambiguus. We provide evidence that nesfatin-1 increases cytosolic Ca²⁺ concentration via a Gi/o-coupled mechanism. The nesfatin-1-induced Ca²⁺ rise is critically dependent on Ca²⁺ influx via P/Q-type voltage-activated Ca²⁺ channels. Repeated administration of nesfatin-1 leads to tachyphylaxis. Furthermore, nesfatin-1 produces a dose-dependent depolarization of cardiac vagal neurons via a Gi/o-coupled mechanism. In vivo studies, using telemetric and tail-cuff monitoring of heart rate and blood pressure, indicate that microinjection of nesfatin-1 into the nucleus ambiguus produces bradycardia not accompanied by a change in blood pressure in conscious rats. Taken together, our results identify for the first time that nesfatin-1 decreases heart rate by activating cardiac vagal neurons of nucleus ambiguus. Our results indicate that nesfatin-1, one of the most potent feeding peptides, increases cytosolic Ca²⁺ by promoting Ca²⁺ influx via P/Q channels and depolarizes nucleus ambiguus neurons; both effects are Gi/o-mediated. In vivo studies indicate that microinjection of nesfatin-1 into nucleus ambiguus produces bradycardia in conscious rats. This is the first report that nesfatin-1 increases the parasympathetic cardiac tone.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|