1
|
Lunerti V, Li H, Benvenuti F, Shen Q, Domi A, Soverchia L, Concetta Di Martino RM, Bottegoni G, Haass-Koffler CL, Cannella N. The multitarget FAAH inhibitor/D3 partial agonist ARN15381 decreases nicotine self-administration in male rats. Eur J Pharmacol 2022; 928:175088. [PMID: 35690082 DOI: 10.1016/j.ejphar.2022.175088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
Tobacco use disorder is a worldwide health problem for which available medications show limited efficacy. Nicotine is the psychoactive component of tobacco responsible for its addictive liability. Similar to other addictive drugs, nicotine enhances mesolimbic dopamine transmission. Inhibition of the fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide (AEA), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), reduces nicotine-enhanced dopamine transmission and acquisition of nicotine self-administration in rats. Down-regulation of dopamine transmission by antagonists or partial agonists of the dopamine D3 receptor (DRD3) also reduced nicotine self-administration and conditioned place preference. Based on these premises, we evaluated the effect of ARN15381, a multitarget compound showing FAAH inhibition and DRD3 partial agonist activity in the low nanomolar range, on nicotine self-administration in rats. Pretreatment with ARN15381 dose dependently decreased self-administration of a nicotine dose at the top of the nicotine dose/response (D/R) curve, while it did not affect self-administration of a nicotine dose laying on the descending limb of the D/R curve. Conversely, pretreatment with the selective FAAH inhibitor URB597 and the DRD3 partial agonist CJB090 failed to modify nicotine self-administration independent of the nicotine dose self-administered. Our data indicates that the concomitant FAAH inhibition and DRD3 partial agonism produced by ARN15381 is key to the observed reduction of nicotine self-administration, demonstrating that a multitarget approach may hold clinical importance for the treatment of tobacco use disorder.
Collapse
Affiliation(s)
- Veronica Lunerti
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Hongwu Li
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy; School of Chemical Engineering, Changchun University of Changchung, 130012, China
| | | | - Qianwei Shen
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Ana Domi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | - Laura Soverchia
- School of Pharmacy, Pharmacology Unit, University of Camerino, Italy
| | | | - Giovanni Bottegoni
- School of Pharmacy, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom; Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | - Carolina L Haass-Koffler
- Center for Alcohol and Addiction Studies, Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Department of Behavioral and Social Sciences, School of Public Health, Carney Institute for Brain Science, Brown University, USA
| | | |
Collapse
|
2
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
3
|
Pfeifer E, Parrott J, Lee GT, Domalakes E, Zhou H, He L, Mason CW. Regulation of human placental drug transporters in HCV infection and their influence on direct acting antiviral medications. Placenta 2018; 69:32-39. [PMID: 30213482 PMCID: PMC6140346 DOI: 10.1016/j.placenta.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The objectives of this study were to determine how HCV infection affects placental drug transporters, and to determine the role of drug transporters on the cellular accumulation of direct-acting antiviral drugs in human trophoblasts. METHODS Eighty-four ABC and SLC transporter genes were first screened in normal and HCV infected pregnant women using PCR profiler array. The changes in expression were confirmed by qPCR and Western blot. The impact of selected drug transporters on the cellular accumulation of radiolabeled antiviral drugs sofosbuvir, entecavir, and tenofovir was measured in primary human trophoblasts (PHT) and BeWo b30 cells in the presence or absence of transporter-specific inhibitors. PHT were then treated with CL097, ssRNA40, and imquimod to determine the impact of Toll-like receptor (TLR) 7/8 activation on drug transporter expression. RESULTS The expression of the ABC efflux transporters ABCB1/P-gp and ABCG2/BCRP was increased in placenta of women with HCV, while the nucleoside transporters SLC29A1/ENT1 and SLC29A2/ENT2 remained unchanged. The accumulation of sofosbuvir and tenofovir was unaffected by inhibition of these transporters in trophoblast cells. Entecavir accumulation was decreased by the inhibition of ENT2. P-gp and BCRP inhibition enhanced entecavir accumulation in BeWo b30, but not PHT. Overall, there was little effect of TLR7/8 activation on these drug transporters, and the accumulation of entecavir in PHT. DISCUSSION The data suggest that expression of placental drug transporters and selection of antiviral drug may impact fetal drug exposure in pregnancies complicated by HCV infections.
Collapse
Affiliation(s)
- Emily Pfeifer
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Jessica Parrott
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Gene T Lee
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Ericka Domalakes
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Helen Zhou
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Lily He
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Clifford W Mason
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA; Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, 66208, USA.
| |
Collapse
|
4
|
Solís O, Garcia-Montes JR, González-Granillo A, Xu M, Moratalla R. Dopamine D3 Receptor Modulates l-DOPA-Induced Dyskinesia by Targeting D1 Receptor-Mediated Striatal Signaling. Cereb Cortex 2018; 27:435-446. [PMID: 26483399 DOI: 10.1093/cercor/bhv231] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The dopamine D3 receptor (D3R) belongs to the dopamine D2-like receptor family and is principally located in the ventral striatum. However, previous studies reported D3R overexpression in the dorsal striatum following l-DOPA treatment in parkinsonian animals. This fact has drawn attention in the importance of D3R in l-DOPA-induced dyskinesia (LID). Here, we used D3R knockout mice to assess the role of D3R in LID and rotational sensitization in the hemiparkinsonian model. Mice lacking D3R presented a reduction in dyskinesia without interfering with the antiparkinsonian l-DOPA effect and were accompanied by a reduction in the l-DOPA-induced rotations. Interestingly, deleting D3R attenuated important molecular markers in the D1R-neurons such as FosB, extracellular signal-regulated kinase, and histone-3 (H3)-activation. Colocalization studies in D1R-tomato and D2R-green fluorescent protein BAC-transgenic mice indicated that l-DOPA-induced D3R overexpression principally occurs in D1R-containing neurons although it is also present in the D2R-neurons. Moreover, D3R pharmacological blockade with PG01037 reduced dyskinesia and the molecular markers expressed in D1R-neurons. In addition, this antagonist further reduced dyskinetic symptoms in D1R heterozygous mice, indicating a direct interaction between D1R and D3R. Together, our results demonstrate that D3R modulates the development of dyskinesia by targeting D1R-mediated intracellular signaling and suggest that decreasing D3R activity may help to ameliorate LID.
Collapse
Affiliation(s)
- Oscar Solís
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid 28002, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Ruben Garcia-Montes
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid 28002, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Aldo González-Granillo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid 28002, Spain
| | - Ming Xu
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, CSIC, Madrid 28002, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J Pharm Sci 2017; 106:2312-2325. [DOI: 10.1016/j.xphs.2017.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
6
|
Thomsen M, Barrett AC, Butler P, Negus SS, Caine SB. Effects of Acute and Chronic Treatments with Dopamine D 2 and D 3 Receptor Ligands on Cocaine versus Food Choice in Rats. J Pharmacol Exp Ther 2017; 362:161-176. [PMID: 28473458 DOI: 10.1124/jpet.117.241141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/20/2017] [Indexed: 02/01/2023] Open
Abstract
Dopamine D3 receptor ligands are potential medications for psychostimulant addiction. Medication assessment may benefit from preclinical studies that evaluate chronic medication effects on choice between an abused drug and an alternative, nondrug reinforcer. This study compared acute and chronic effects of dopamine D2- and D3-preferring ligands on choice between intravenous cocaine and palatable food in rats. Under baseline conditions, cocaine maintained dose-dependent increases in cocaine choice and reciprocal decreases in food choice. Acutely, the D2 agonist R-(-)-norpropylapomorphine (NPA) and antagonist L-741,626 [3-[[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole] produced leftward and rightward shifts in cocaine dose-effect curves, respectively, whereas the partial agonist terguride had no effect. All three drugs dose-dependently decreased food-maintained responding. Chronically, the effects of R-(-)-norpropylapomorphine and L-741,626 on cocaine self-administration showed marked tolerance, whereas suppression of food-reinforced behavior persisted. Acute effects of the D3 ligands were less systematic and most consistent with nonselective decreases in cocaine- and food-maintained responding. Chronically, the D3 agonist PF-592,379 [5-[(2R,5S)-5-methyl-4-propylmorpholin-2-yl]pyridin-2-amine] increased cocaine choice, whereas an intermediate dose of the D3 antagonist PG01037 [N-[(E)-4-[4-(2,3-dichlorophenyl)piperazin-1-yl]but-2-enyl]-4-pyridin-2-ylbenzamide] produced a therapeutically desirable decrease in cocaine choice early in treatment; however, tolerance to this effect developed, and lower and higher doses were ineffective. D3 ligands failed to significantly modify total cocaine intake but caused persistent decreases in food intake. Thus, D2-and D3-preferring ligands showed distinct profiles, consistent with different pharmacological actions. In addition, these results highlight the role of acute versus chronic treatment as a determinant of test drug effects. With the possible exception of the D3 antagonist PG01037, no ligand was promising in terms of cocaine addiction treatment.
Collapse
Affiliation(s)
- Morgane Thomsen
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - Andrew C Barrett
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - Paul Butler
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - S Stevens Negus
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| | - S Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts (M.T., A.C.B., S.B.C.); Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, University of Copenhagen, Copenhagen, Denmark (M.T.); Drug Safety Research and Development, Pfizer, San Diego, California (P.B.); and Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia (S.S.N.)
| |
Collapse
|
7
|
Nakhla DS, Hussein LA, Magdy N, Abdallah IA, Hassan HE. Precise simultaneous quantification of methadone and cocaine in rat serum and brain tissue samples following their successive i.p. administration. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:19-29. [PMID: 28192759 DOI: 10.1016/j.jchromb.2017.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 11/28/2022]
Abstract
A sensitive high-performance liquid chromatography (HPLC) assay with dual UV detection has been developed and validated for the simultaneous quantification of methadone and cocaine in rat serum and brain tissue samples. Liquid-liquid extraction using hexanes was applied for samples extraction with Levo-Tetrahydropalmatine (L-THP) as the internal standard. Chromatographic separation of the analytes was achieved on a reversed-phase Waters Symmetry® C18 column (150mm×4.6mm, 5μm). A gradient elution was employed with a mobile phase consisting of 5mM potassium phosphate containing 0.1% triethylamine (pH=6.5) (A) and acetonitrile (B) with a flow rate of 1mL/min. UV detection was employed at 215nm and 235nm for the determination of methadone and cocaine, respectively. The calibration curves were linear over the range of 0.05-10μg/mL for both methadone and cocaine. The assay was validated according to FDA guidelines for bioanalytical method validation and results were satisfactory and met FDA criteria. Inter-day accuracy values of serum and brain samples ranged from 96.97 to 105.59% while intra-day accuracy values ranged from 91.49 to 111.92%. Stability assays showed that both methadone and cocaine were stable during sample storage, preparation, and analytical procedures. The method was successfully used to analyze biological samples obtained from a drug- drug interaction pharmacokinetics (PK) study conducted in rats to investigate the effect of methadone on cocaine PK. Our method not only can be used for bioanalysis of samples obtained from rats but also can potentially be applied to human biological serum samples to monitor compliance to methadone maintenance therapy (MMT) and to detect possible cocaine-methadone co-abuse.
Collapse
Affiliation(s)
- David S Nakhla
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, United States; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Lobna A Hussein
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - N Magdy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Inas A Abdallah
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, United States; Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, United States; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
8
|
Inhibition of dopamine receptor D3 signaling in dendritic cells increases antigen cross-presentation to CD8 + T-cells favoring anti-tumor immunity. J Neuroimmunol 2017; 303:99-107. [PMID: 28077213 DOI: 10.1016/j.jneuroim.2016.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/06/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022]
Abstract
Dendritic cells (DCs) display the unique ability for cross-presenting antigens to CD8+ T-cells, promoting their differentiation into cytotoxic T-lymphocytes (CTLs), which play a pivotal role in anti-tumor immunity. Emerging evidence points to dopamine receptor D3 (D3R) as a key regulator of immunity. Accordingly, we studied how D3R regulates DCs function in anti-tumor immunity. The results show that D3R-deficiency in DCs enhanced expansion of CTLs in vivo and induced stronger anti-tumor immunity. Co-culture experiments indicated that D3R-inhibition in DCs potentiated antigen cross-presentation and CTLs activation. Our findings suggest that D3R in DCs constitutes a new therapeutic target to strengthen anti-tumor immunity.
Collapse
|
9
|
Elgueta D, Aymerich MS, Contreras F, Montoya A, Celorrio M, Rojo-Bustamante E, Riquelme E, González H, Vásquez M, Franco R, Pacheco R. Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease. Neuropharmacology 2016; 113:110-123. [PMID: 27693549 DOI: 10.1016/j.neuropharm.2016.09.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/25/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022]
Abstract
Neuroinflammation involves the activation of glial cells, which is associated to the progression of neurodegeneration in Parkinson's disease. Recently, we and other researchers demonstrated that dopamine receptor D3 (D3R)-deficient mice are completely refractory to neuroinflammation and consequent neurodegeneration associated to the acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we examined the therapeutic potential and underlying mechanism of a D3R-selective antagonist, PG01037, in mice intoxicated with a chronic regime of administration of MPTP and probenecid (MPTPp). Biodistribution analysis indicated that intraperitoneally administered PG01037 crosses the blood-brain barrier and reaches the highest concentration in the brain 40 min after the injection. Furthermore, the drug was preferentially distributed to the brain in comparison to the plasma. Treatment of MPTPp-intoxicated mice with PG01037 (30 mg/kg, administrated twice a week for five weeks) attenuated the loss of dopaminergic neurons in the substantia nigra pars compacta, as evaluated by stereological analysis, and the loss of striatal dopaminergic terminals, as determined by densitometric analyses of tyrosine hydroxylase and dopamine transporter immunoreactivities. Accordingly, the treatment resulted in significant improvement of motor performance of injured animals. Interestingly, the therapeutic dose of PG01037 exacerbated astrogliosis and resulted in increased ramification density of microglial cells in the striatum of MPTPp-intoxicated mice. Further analyses suggested that D3R expressed in astrocytes favours a beneficial astrogliosis with anti-inflammatory consequences on microglia. Our findings indicate that D3R-antagonism exerts a therapeutic effect in parkinsonian animals by reducing the loss of dopaminergic neurons in the nigrostriatal pathway, alleviating motor impairments and modifying the pro-inflammatory phenotype of glial cells.
Collapse
Affiliation(s)
- Daniela Elgueta
- Fundación Ciencia & Vida, Ñuñoa, Santiago 7780272, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile
| | - María S Aymerich
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, 31008, Spain
| | | | - Andro Montoya
- Fundación Ciencia & Vida, Ñuñoa, Santiago 7780272, Chile
| | - Marta Celorrio
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain
| | - Estefanía Rojo-Bustamante
- Division of Neurosciences, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona 31008, Spain; Department of Biochemistry and Genetics, School of Science, University of Navarra, Pamplona 31008, Spain
| | | | - Hugo González
- Fundación Ciencia & Vida, Ñuñoa, Santiago 7780272, Chile
| | - Mónica Vásquez
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, Chile
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona 08028, Spain; CIBERNED. Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28049, Madrid, Spain
| | - Rodrigo Pacheco
- Fundación Ciencia & Vida, Ñuñoa, Santiago 7780272, Chile; Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago 8370146, Chile.
| |
Collapse
|
10
|
Liu F, Wang X, Li Z, Li J, Zhuang X, Zhang Z. P-Glycoprotein (ABCB1) limits the brain distribution of YQA-14, a novel dopamine D3 receptor antagonist. Chem Pharm Bull (Tokyo) 2016; 63:512-8. [PMID: 26133067 DOI: 10.1248/cpb.c15-00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
YQA-14 is a promising agent for treating addiction to cocaine and opioids. However, previous studies have showed there is marked contrast between the relatively small differences in pharmacological action in vivo and the large differences in their respective receptor binding properties in vitro. We hypothesized that the conflict between the in vivo and in vitro outcomes was attributable to poor brain exposure to YQA-14 caused by drug efflux transporters. To address this issue, we investigated the directional flux of YQA-14 across Caco-2 cells at 37°C or 4°C and the bidirectional transport in the presence and absence of transporter chemical inhibitors. These phenomena were further investigated by an in vivo determination of the brain and blood pharmacokinetics (PK) profile of YQA-14 following intraperitoneal administration with and without inhibitor. The efflux ratio of YQA-14 on Caco-2 cell monolayers was 2.39 and the efflux was temperature-dependent. When co-incubated with GF120918 or LY335979, the efflux of YQA-14 was markedly decreased. However, there was no significant difference in the permeability of YQA-14 when the cells were treated with Ko143. In vivo experiments showed that the brain-to-plasma ratio increased by more than 75-fold and 20-fold with co-administration of GF120918 and LY335979, respectively. Use of Ko143 did not change the brain-to-blood ratio of YQA-14. The results indicate that the brain distribution of YQA-14 was restricted because of active efflux transport at the blood brain barrier. In addition, P-glycoprotein (P-gp) played a dominant role in limiting the distribution of YQA-14 to the brain.
Collapse
Affiliation(s)
- Fei Liu
- Department of Pharmacy, The First Affiliated Hospital of PLA
| | | | | | | | | | | |
Collapse
|
11
|
Fandy TE, Abdallah I, Khayat M, Colby DA, Hassan HE. In vitro characterization of transport and metabolism of the alkaloids: vincamine, vinpocetine and eburnamonine. Cancer Chemother Pharmacol 2015; 77:259-67. [PMID: 26666648 DOI: 10.1007/s00280-015-2924-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/14/2015] [Indexed: 11/27/2022]
Abstract
PURPOSE Vincamine, vinpocetine and eburnamonine are alkaloids known for their neuroprotective attributes, enhancement of cerebrovascular blood flow and antitumor effect of their derivatives. However, the relative metabolic stability of these alkaloids and their extrusion by the drug efflux transporters expressed at the blood-brain barrier (BBB) are not clear. In this study, we developed rapid and sensitive methods for the detection of these alkaloids and investigated their relative metabolic stability and their interaction with drug efflux transporters. METHODS UPLC methods were developed to analyze metabolic in vitro samples. Intrinsic clearance was determined using rat liver microsomal enzymes. Drug-stimulated transporter activity was estimated by measuring inorganic phosphate released from ATP spectrophotometrically. RESULTS The UPLC methods quantification level ranged from 0.02 to 0.025 µg/mL, indicating high sensitivity. The intrinsic clearance of eburnamonine was significantly less than both vincamine and vinpocetine. Different concentrations of the three drugs (4, 20 and 100 µM) induced minimal stimulation of the ATPase activity of the Bcrp and Pgp membrane transporters. CONCLUSIONS The developed simple, sensitive and reliable UPLC analysis methods can be utilized in future in vitro and in vivo studies. The three alkaloids demonstrated minimal interaction with the drug efflux transporters Pgp and Bcrp, concordant with the ability of these alkaloids to cross the BBB. The relative metabolic stability of eburnamonine compared to the other alkaloids suggests the use of eburnamonine or its derivatives as lead compounds for the development of antitumor and nootropic agents that need to cross the BBB and produce their pharmacological effects in the CNS.
Collapse
Affiliation(s)
- Tamer E Fandy
- Department of Pharmaceutical Sciences, Albany College of Pharmacy, Colchester, VT, USA
| | - Inas Abdallah
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine Street, Room: N525 (Office), Baltimore, MD, 21201, USA
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Maan Khayat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah, KSA
| | - David A Colby
- Department of BioMolecular Science, University of Mississippi, University, MS, USA
| | - Hazem E Hassan
- Pharmacokinetics and Biopharmaceutics Laboratory, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 N Pine Street, Room: N525 (Office), Baltimore, MD, 21201, USA.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
12
|
Keck TM, John WS, Czoty PW, Nader MA, Newman AH. Identifying Medication Targets for Psychostimulant Addiction: Unraveling the Dopamine D3 Receptor Hypothesis. J Med Chem 2015; 58:5361-80. [PMID: 25826710 PMCID: PMC4516313 DOI: 10.1021/jm501512b] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The dopamine D3 receptor (D3R) is a target for developing medications to treat substance use disorders. D3R-selective compounds with high affinity and varying efficacies have been discovered, providing critical research tools for cell-based studies that have been translated to in vivo models of drug abuse. D3R antagonists and partial agonists have shown especially promising results in rodent models of relapse-like behavior, including stress-, drug-, and cue-induced reinstatement of drug seeking. However, to date, translation to human studies has been limited. Herein, we present an overview and illustrate some of the pitfalls and challenges of developing novel D3R-selective compounds toward clinical utility, especially for treatment of cocaine abuse. Future research and development of D3R-selective antagonists and partial agonists for substance abuse remains critically important but will also require further evaluation and development of translational animal models to determine the best time in the addiction cycle to target D3Rs for optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Thomas M Keck
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - William S John
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Paul W Czoty
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Michael A Nader
- §Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157-1083, United States
| | - Amy Hauck Newman
- †Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
13
|
Castro-Hernández J, Afonso-Oramas D, Cruz-Muros I, Salas-Hernández J, Barroso-Chinea P, Moratalla R, Millan MJ, González-Hernández T. Prolonged treatment with pramipexole promotes physical interaction of striatal dopamine D3 autoreceptors with dopamine transporters to reduce dopamine uptake. Neurobiol Dis 2014; 74:325-35. [PMID: 25511804 DOI: 10.1016/j.nbd.2014.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/14/2014] [Accepted: 12/05/2014] [Indexed: 12/15/2022] Open
Abstract
The dopamine (DA) transporter (DAT), a membrane glycoprotein expressed in dopaminergic neurons, clears DA from extracellular space and is regulated by diverse presynaptic proteins like protein kinases, α-synuclein, D2 and D3 autoreceptors. DAT dysfunction is implicated in Parkinson's disease and depression, which are therapeutically treated by dopaminergic D2/D3 receptor (D2/D3R) agonists. It is, then, important to improve our understanding of interactions between D3R and DAT. We show that prolonged administration of pramipexole (0.1mg/kg/day, 6 to 21 days), a preferential D3R agonist, leads to a decrease in DA uptake in mouse striatum that reflects a reduction in DAT affinity for DA in the absence of any change in DAT density or subcellular distribution. The effect of pramipexole was absent in mice with genetically-deleted D3R (D3R(-/-)), yet unaffected in mice genetically deprived of D2R (D2R(-/-)). Pramipexole treatment induced a physical interaction between D3R and DAT, as assessed by co-immunoprecipitation and in situ proximity ligation assay. Furthermore, it promoted the formation of DAT dimers and DAT association with both D2R and α-synuclein, effects that were abolished in D3R(-/-) mice, yet unaffected in D2R(-/-) mice, indicating dependence upon D3R. Collectively, these data suggest that prolonged treatment with dopaminergic D3 agonists provokes a reduction in DA reuptake by dopaminergic neurons related to a hitherto-unsuspected modification of the DAT interactome. These observations provide novel insights into the long-term antiparkinson, antidepressant and additional clinical actions of pramipexole and other D3R agonists.
Collapse
Affiliation(s)
- Javier Castro-Hernández
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Domingo Afonso-Oramas
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Ignacio Cruz-Muros
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Josmar Salas-Hernández
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Pedro Barroso-Chinea
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain
| | - Rosario Moratalla
- Departamento de Biología Funcional y de Sistemas, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain; Centro de investigación Biomédica en Red sobre enfermedades neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Spain
| | - Mark J Millan
- Pole of Innovation in Neuropsychopharmacology, Institut de Recherches Servier, 78290 Croissy sur Seine, France
| | - Tomás González-Hernández
- Departamento de Anatomía, Facultad de Medicina, Instituto de Tecnologías Biomédicas (ITB, CIBICAN), Universidad de La Laguna, Tenerife, Spain; Centro de investigación Biomédica en Red sobre enfermedades neurodegenerativas, CIBERNED, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
14
|
Keck TM, Burzynski C, Shi L, Newman AH. Beyond small-molecule SAR: using the dopamine D3 receptor crystal structure to guide drug design. ADVANCES IN PHARMACOLOGY 2014; 69:267-300. [PMID: 24484980 DOI: 10.1016/b978-0-12-420118-7.00007-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small-molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This chapter will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small-molecule SAR to improve the selectivity and directed efficacy profiles are examined.
Collapse
Affiliation(s)
- Thomas M Keck
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Caitlin Burzynski
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA
| | - Lei Shi
- Department of Physiology and Biophysics and Institute for Computational Biomedicine, Weill Cornell Medical College, New York, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, Maryland, USA.
| |
Collapse
|
15
|
Hachimine P, Seepersad N, Ananthan S, Ranaldi R. The novel dopamine D3 receptor antagonist, SR 21502, reduces cocaine conditioned place preference in rats. Neurosci Lett 2014; 569:137-41. [DOI: 10.1016/j.neulet.2014.03.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/13/2014] [Accepted: 03/24/2014] [Indexed: 01/15/2023]
|
16
|
Liu F, Zhuang X, Yang C, Li Z, Xiong S, Zhang Z, Li J, Lu C, Zhang Z. Characterization of preclinicalin vitroandin vivoADME properties and prediction of human PK using a physiologically based pharmacokinetic model for YQA-14, a new dopamine D3receptor antagonist candidate for treatment of drug addiction. Biopharm Drug Dispos 2014; 35:296-307. [DOI: 10.1002/bdd.1897] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 03/09/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Fei Liu
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
- Department of Pharmacy; The First Affiliated Hospital of PLA; 51 Fucheng Road Beijing 10048 PR China
| | - Xiaomei Zhuang
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
| | - Cuiping Yang
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
| | - Zheng Li
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
| | - Shan Xiong
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
| | - Zhiwei Zhang
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
| | - Jin Li
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
| | - Chuang Lu
- Millennium Pharmaceuticals, Inc.; Cambridge Massachusetts USA
| | - Zhenqing Zhang
- The Key Laboratory of Drug Metabolism and Pharmacokinetics; Beijing Institute of Pharmacology and Toxicology; 27 Taiping Road Beijing 100850 PR China
| |
Collapse
|
17
|
Galaj E, Ananthan S, Saliba M, Ranaldi R. The effects of the novel DA D3 receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-induced locomotor activity in rats. Psychopharmacology (Berl) 2014; 231:501-10. [PMID: 24037509 DOI: 10.1007/s00213-013-3254-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/18/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE There is a focus on developing D3 receptor antagonists as cocaine addiction treatments. OBJECTIVE We investigated the effects of a novel selective D3 receptor antagonist, SR 21502, on cocaine reward, cocaine-seeking, food reward, spontaneous locomotor activity and cocaine-induced locomotor activity in rats. METHODS In Experiment 1, rats were trained to self-administer cocaine under a progressive ratio (PR) schedule of reinforcement and tested with vehicle or one of three doses of SR 21502. In Experiment 2, animals were trained to self-administer cocaine under a fixed ratio schedule of reinforcement followed by extinction of the response. Then, animals were tested with vehicle or one of the SR 21502 doses on cue-induced reinstatement of responding. In Experiment 3, animals were trained to lever press for food under a PR schedule and tested with vehicle or one dose of the compound. In Experiments 4 and 5, in separate groups of animals, the vehicle and three doses of SR 21502 were tested on spontaneous or cocaine (10 mg/kg, IP)-induced locomotor activity, respectively. RESULTS SR 21502 produced significant, dose-related (3.75, 7.5 and 15 mg/kg) reductions in breakpoint for cocaine self-administration, cue-induced reinstatement (3.75, 7.5 and 15 mg/kg) and cocaine-induced locomotor activity (3.75, 7.5 and 15 mg/kg) but failed to reduce food self-administration and spontaneous locomotor activity. CONCLUSIONS SR 21502 decreases cocaine reward, cocaine-seeking and locomotor activity at doses that have no effect on food reward or spontaneous locomotor activity. These data suggest SR 21502 may selectively inhibit cocaine's rewarding, incentive motivational and stimulant effects.
Collapse
Affiliation(s)
- E Galaj
- Neuropsychology Doctoral Program, CUNY Graduate Center, New York, NY, USA
| | | | | | | |
Collapse
|
18
|
Mason CW, Buhimschi IA, Buhimschi CS, Dong Y, Weiner CP, Swaan PW. ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab Dispos 2011; 39:1000-7. [PMID: 21430233 DOI: 10.1124/dmd.111.038166] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fetal drug exposure is determined by the type and concentration of placental transporters, and their regulation is central to the development of new treatments and delivery strategies for pregnant women and their fetuses. We tested the expression of several clinically important transporters in the human placenta associated with various pregnancy conditions (i.e., labor, preeclampsia, and preterm labor-inflammation). Placentas were obtained from five groups of women at the time of primary cesarean section: 1) term no labor; 2) term labor; 3) preterm no labor (delivered for severe preeclampsia); 4) preterm labor without inflammation (PTLNI); and 5) preterm labor with inflammation (PTLI). Samples were analyzed by Western blot and immunohistochemistry to identify changes in protein expression. Relative mRNA expression was determined by quantitative real-time polymerase chain reaction. A functional genomic approach was used to identify placental gene expression and elucidate molecular events that underlie the given condition. Placental expression of ATP-binding cassette transporters from women in labor and women with preeclampsia was unaltered. Multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP) and mRNA expression increased in placentas of women with preterm labor with inflammation. Molecular pathways of genes up-regulated in PTLI samples included cytokine-cytokine receptor interactions and inflammatory response compared with those in the PTLNI group. The mRNA expression of MDR1 and BCRP was correlated with that of interleukin-8, which also increased significantly in PTLI samples. These data suggest that the transfer of drugs across the placenta may be altered in preterm pregnancy conditions associated with inflammation through changes in MDR1 and BCRP.
Collapse
Affiliation(s)
- Cifford W Mason
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
19
|
Micheli F. Recent Advances in the Development of Dopamine D3 Receptor Antagonists: a Medicinal Chemistry Perspective. ChemMedChem 2011; 6:1152-62. [DOI: 10.1002/cmdc.201000538] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 11/08/2022]
|
20
|
Effect of cyclosporin A on the uptake of D3-selective PET radiotracers in rat brain. Nucl Med Biol 2011; 38:725-39. [PMID: 21718948 DOI: 10.1016/j.nucmedbio.2011.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/28/2010] [Accepted: 01/03/2011] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Four benzamide analogs having a high affinity and selectivity for D(3) versus D(2) receptors were radiolabeled with (11)C or (18)F for in vivo evaluation. METHODS Precursors were synthesized, and the four D(3) selective benzamide analogs were radiolabeled. The tissue distribution and brain uptake of the four compounds were evaluated in control rats and rats pretreated with cyclosporin A, a modulator of P-glycoprotein and an inhibitor of other ABC efflux transporters that contribute to the blood brain barrier. Micro-positron emission tomographic (PET) imaging was carried out for [(11)C]6 in a control and a cyclosporin A pretreated rat. RESULTS All four compounds showed low brain uptake in control rats at 5 and 30 min post-injection; despite recently reported rat behavioral studies conducted on analogs 6 (WC-10) and 7 (WC-44). Following administration of cyclosporin A, increased brain uptake was observed with all four PET radiotracers at both 5 and 30 min post-intravenous injection. An increase in brain uptake following modulation/inhibition of the ABC transporters was also observed in the microPET study. CONCLUSIONS These data suggest that D3 selective conformationally-flexible benzamide analogs which contain a N-2-methoxyphenylpiperazine moiety are substrates for P-glycoprotein or other adenosine triphosphate (ATP)-binding cassette transporters expressed at the blood-brain barrier, and that PET radiotracers containing this pharmacophore may display low brain uptake in rodents due to the action of these efflux transporters.
Collapse
|