1
|
Guerzoni S, Castro FL, Brovia D, Baraldi C, Pani L. Evaluation of the risk of hypertension in patients treated with anti-CGRP monoclonal antibodies in a real-life study. Neurol Sci 2024; 45:1661-1668. [PMID: 37926748 DOI: 10.1007/s10072-023-07167-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE To explore the rate of hypertension incoming in patients treated with monoclonal antibodies against the calcitonin gene-related peptide. BACKGROUND The monoclonal antibodies blocking the calcitonin gene-related peptide are unquestionable effective in the prevention of migraine. Despite this, the development of hypertension has been detected in some patients. METHODS This was a retrospective study conducted at the University Hospital of Modena. Patients were visited quarterly up to 1 year. RESULTS Globally, no significant increase in the blood pressure was detected. The 5.7% of the patients developed a significant increase in their blood pressure. In particular, patients with a pre-existing hypertension were more likely to have a significant increase in the blood pressure. CONCLUSION The risk of developing hypertension during a treatment with anti-calcitonin gene-related peptide monoclonal antibodies seems low. Anyway, patients with a pre-existing hypertension should be cautiously monitored because they are more likely to develop hypertension.
Collapse
Affiliation(s)
- Simona Guerzoni
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics; Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy
| | - Flavia Lo Castro
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics; Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy.
| | - Daria Brovia
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics; Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy
| | - Carlo Baraldi
- Pharmacology Unit; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Pani
- Digital and Predictive Medicine, Pharmacology and Clinical Metabolic Toxicology-Headache Center and Drug Abuse-Laboratory of Clinical Pharmacology and Pharmacogenomics; Department of Specialist Medicines, AOU Policlinico di Modena, Modena, Italy
- Pharmacology Unit; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Coral Gables, USA
- VeraSci, Durham, USA
| |
Collapse
|
2
|
de Vries T, Boucherie DM, van den Bogaerdt A, Danser AHJ, MaassenVanDenBrink A. Blocking the CGRP Receptor: Differences across Human Vascular Beds. Pharmaceuticals (Basel) 2023; 16:1075. [PMID: 37630989 PMCID: PMC10459004 DOI: 10.3390/ph16081075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple drugs targeting the calcitonin gene-related peptide (CGRP) receptor have been developed for the treatment of migraine. Here, the effect of the small-molecule CGRP receptor antagonist zavegepant (0.1 nM-1 µM) on CGRP-induced relaxation in isolated human coronary arteries (HCAs) was investigated. A Schild plot was constructed and a pA2 value was calculated to determine the potency of zavegepant. The potency and Schild plot slopes of atogepant, olcegepant, rimegepant, telcagepant, ubrogepant and zavegepant in HCAs and human middle meningeal arteries (HMMAs), obtained from our earlier studies, were compared. Zavegepant shifted the concentration-response curve to CGRP in HCAs. The corresponding Schild plot slope was not different from unity, resulting in a pA2 value of 9.92 ± 0.24. No potency difference between HCAs and HMMAs was observed. Interestingly, olcegepant, atogepant and rimegepant, with a Schild plot slope < 1 in HCAs, were all >1 log unit more potent in HMMAs than in HCAs, while telcagepant, ubrogepant and zavegepant, with a Schild plot slope not different from unity, showed similar (<1 log difference) potency across both tissues. As a Schild plot slope < 1 may point to the involvement of multiple receptors, it is important to further identify the receptors involved in the relaxation to CGRP in HCAs, which may be used to improve the cardiovascular safety of future antimigraine drugs.
Collapse
Affiliation(s)
- Tessa de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| | - Deirdre M. Boucherie
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| | | | - A. H. Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.d.V.)
| |
Collapse
|
3
|
Cooper D, Laidig WD, Sappington A, MacGregor G. A Pharmacological Review of Calcitonin Gene-Related Peptide Biologics and Future Use for Chronic Pain. Cureus 2023; 15:e35109. [PMID: 36945265 PMCID: PMC10024944 DOI: 10.7759/cureus.35109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 02/19/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) antagonist medications have become the mainstay of acute and chronic migraine management in the outpatient setting and look to become more widely utilized by clinicians once the medications become available in generic form. However, their role in practice has remained limited to the treatment of migraines despite the ubiquitous presence of the molecule throughout the body. The literature surrounding expansion of the utility of these medications is limited; however, there have been several promising publications, and further studies are in the process to quantify their utility in the treatment of other pain-related disorders. This is a qualitative review of the current literature surrounding CGRP, particularly in relation to the treatment of non-migraine pain conditions, and looks to suggest potential utility in the field of chronic pain.
Collapse
Affiliation(s)
- David Cooper
- Medicine, Alabama College of Osteopathic Medicine, Mobile, USA
| | | | | | - Gordon MacGregor
- Pharmacology, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
4
|
Edvinsson L. Calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks-Successful translation of basic science to clinical practice. J Intern Med 2022; 292:575-586. [PMID: 35532284 PMCID: PMC9546117 DOI: 10.1111/joim.13506] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Migraine is a highly prevalent neurovascular disorder afflicting more than 15% of the global population. Nearly three times more females are afflicted by migraine in the 18-50 years age group, compared to males. Migraine attacks are most often sporadic, but a subgroup of individuals experience a gradual increase in frequency over time; among these, up to 1%-2% of the global population develop chronic migraine. Although migraine symptoms have been known for centuries, the underlying mechanisms remain largely unknown. Two theories have dominated the current thinking-a neurovascular theory and a central neuronal theory with the origin of the attacks in the hypothalamus. During the last decades, the understanding of migraine has markedly advanced. This is supported by the early seminal demonstration of the trigeminovascular reflex 35 years ago and the insight that calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks. The more recent findings that gepants, small molecule CGRP receptor blockers, and monoclonal antibodies generated against CGRP, or its canonical receptor are useful for the treatment of migraine, are other important issues. CGRP has been established as a key molecule in the neurobiology of migraine. Moreover, monoclonal antibodies to CGRP or the CGRP receptor represent a breakthrough in the understanding of migraine pathophysiology and have emerged as an efficacious prophylactic treatment for patients with severe migraine with excellent tolerability. This review describes the progression of research to reach the clinical usefulness of a large group of molecules that have in common the interaction with CGRP mechanisms in the trigeminal system to alleviate the burden for individuals afflicted by migraine.
Collapse
Affiliation(s)
- Lars Edvinsson
- Department of Medicine, Institute of Clinical Sciences, University Hospital Lund, Lund, Sweden.,Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Glostrup, Denmark
| |
Collapse
|
5
|
Abstract
Introduction: Migraine is one of the most common neurological disorders. Nowadays, the 5-HT1B/1D receptor agonists, namely triptans, are considered as the standard of care for migraine acute treatment. However, triptans have limitations in some patients, such as incomplete pain relief, headache recurrence, and cardiovascular contraindications. New 5-HT1F receptor agonists, namely ditans, and calcitonin gene-related peptide receptor antagonists, namely gepants, have been developed as migraine-specific treatments.Areas covered: This paper reviews the available data from RCTs to assess the clinical efficacy, safety, and tolerability profile of lasmiditan, rimegepant, and ubrogepant for the acute treatment of migraine and atogepant for the prevention of migraine.Expert opinion: Available data suggest that lasmiditan, rimegepant, and ubrogepant might not have a clinical efficacy similar to triptans. Lasmiditan did not cause the typical triptan side effects but was associated with central nervous system side effects, causing temporary driving impairment. On the contrary, the new generation of gepants showed a placebo-like tolerability profile and the absence of a specific pattern of side effects. Future studies on lasmiditan and gepants with respect to established effective comparators are mandatory to support phase III results and to help clinicians to balance the benefit/risk profiles of the various acute and preventive medications.
Collapse
Affiliation(s)
- Andrea Negro
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Via di Grottarossa, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sant'Andrea University Hospital, Via di Grottarossa, Rome, Italy.,Regional Referral Headache Centre, Sant'Andrea Hospital, Rome, Italy
| |
Collapse
|
6
|
Small-molecule CGRP receptor antagonists: A new approach to the acute and preventive treatment of migraine. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
7
|
Mulder IA, Li M, de Vries T, Qin T, Yanagisawa T, Sugimoto K, van den Bogaerdt A, Danser AHJ, Wermer MJH, van den Maagdenberg AMJM, MaassenVanDenBrink A, Ferrari MD, Ayata C. Anti-migraine Calcitonin Gene-Related Peptide Receptor Antagonists Worsen Cerebral Ischemic Outcome in Mice. Ann Neurol 2020; 88:771-784. [PMID: 32583883 PMCID: PMC7540520 DOI: 10.1002/ana.25831] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 06/11/2020] [Accepted: 06/21/2020] [Indexed: 12/31/2022]
Abstract
Objective Calcitonin gene–related peptide (CGRP) pathway inhibitors are emerging treatments for migraine. CGRP‐mediated vasodilation is, however, a critical rescue mechanism in ischemia. We, therefore, investigated whether gepants, small molecule CGRP receptor antagonists, worsen cerebral ischemia. Methods Middle cerebral artery was occluded for 12 to 60 minutes in mice. We compared infarct risk and volumes, collateral flow, and neurological deficits after pretreatment with olcegepant (single or 10 daily doses of 0.1–1mg/kg) or rimegepant (single doses of 10–100mg/kg) versus vehicle. We also determined their potency on CGRP‐induced relaxations in mouse and human vessels, in vitro. Results Olcegepant (1mg/kg, single dose) increased infarct risk after 12‐ to 20‐minute occlusions mimicking transient ischemic attacks (14/19 vs 6/18 with vehicle, relative risk = 2.21, p < 0.022), and doubled infarct volumes (p < 0.001) and worsened neurological deficits (median score = 9 vs 5 with vehicle, p = 0.008) after 60‐minute occlusion. Ten daily doses of 0.1 to 1mg/kg olcegepant yielded similar results. Rimegepant 10mg/kg increased infarct volumes by 60% after 20‐minute ischemia (p = 0.03); 100mg/kg caused 75% mortality after 60‐minute occlusion. In familial hemiplegic migraine type 1 mice, olcegepant 1mg/kg increased infarct size after 30‐minute occlusion (1.6‐fold, p = 0.017). Both gepants consistently diminished collateral flow and reduced reperfusion success. Olcegepant was 10‐fold more potent than rimegepant on CGRP‐induced relaxations in mouse aorta. Interpretation Gepants worsened ischemic stroke in mice via collateral dysfunction. CGRP pathway blockers might thus aggravate coincidental cerebral ischemic events. The cerebrovascular safety of these agents must therefore be better delineated, especially in patients at increased risk of ischemic events or on prophylactic CGRP inhibition. ANN NEUROL 2020;88:771–784
Collapse
Affiliation(s)
- Inge A Mulder
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mei Li
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tessa de Vries
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tao Qin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Takeshi Yanagisawa
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazutaka Sugimoto
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Cenk Ayata
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
De Matteis E, Guglielmetti M, Ornello R, Spuntarelli V, Martelletti P, Sacco S. Targeting CGRP for migraine treatment: mechanisms, antibodies, small molecules, perspectives. Expert Rev Neurother 2020; 20:627-641. [PMID: 32434430 DOI: 10.1080/14737175.2020.1772758] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Calcitonin Gene-Related Peptide (CGRP) has gradually emerged as a suitable therapeutic target to treat migraine. Considering the social and economic burden of migraine, it is fundamental to optimize the disease management with efficacious and safe treatments. In this scenario, drugs targeting GCRP, monoclonal antibodies (MoAbs) and gepants, represent new therapeutic strategies. AREAS COVERED In the present work, the authors aim at appraising the main insights and implications of treatments targeting CGRP by reviewing pathophysiology and clinical information. EXPERT OPINION Anti-CGRP MoAbs are the first migraine-specific preventive treatments representing a suitable option especially for difficult-to-treat patients. They can be safely administered for long periods even in association with preventatives acting on different targets. Gepants are a safe alternative to triptans for the acute management of migraine and are currently being tested for prevention, thus representing the first transitional molecules for disease therapy. In the future, it might be possible to adapt the treatment according to patients' characteristics and disease phenotype even combining the two treatments targeting the CGRP pathway.
Collapse
Affiliation(s)
- Eleonora De Matteis
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila , L'Aquila, Italy.,Regional Referral Headache Center of the Abruzzo Region, ASL Avezzano-Sulmona-L'Aquila , L'Aquila, Italy
| | - Martina Guglielmetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome, Italy.,Regional Referral Headache Center of the Lazio Region, Sant'Andrea Hospital , Rome, Italy
| | - Raffaele Ornello
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila , L'Aquila, Italy.,Regional Referral Headache Center of the Abruzzo Region, ASL Avezzano-Sulmona-L'Aquila , L'Aquila, Italy
| | - Valerio Spuntarelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome, Italy.,Regional Referral Headache Center of the Lazio Region, Sant'Andrea Hospital , Rome, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome , Rome, Italy.,Regional Referral Headache Center of the Lazio Region, Sant'Andrea Hospital , Rome, Italy
| | - Simona Sacco
- Neuroscience Section, Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila , L'Aquila, Italy.,Regional Referral Headache Center of the Abruzzo Region, ASL Avezzano-Sulmona-L'Aquila , L'Aquila, Italy
| |
Collapse
|
9
|
Li CC, Palcza J, Xu J, Thornton B, Ankrom W, Jakate A, Marcantonio EE. The effect of multiple doses of ubrogepant on the pharmacokinetics of an oral contraceptive in healthy women: Results of an open-label, single-center, two-period, fixed-sequence study. CEPHALALGIA REPORTS 2020. [DOI: 10.1177/2515816320905082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Ubrogepant is a novel, oral calcitonin gene–related peptide receptor antagonist for acute treatment of migraine. This study evaluated potential drug–drug interactions between ubrogepant and an oral contraceptive containing ethinyl estradiol (EE) and norgestimate (NGM). Methods: This open-label, single-center, two-period, fixed-sequence study enrolled healthy, postmenopausal or oophorectomized, adult women. In period 1, participants received a single oral dose of EE 0.035 mg/NGM 0.25 mg (EE-NGM) followed by a 7-day washout. In period 2, participants received oral ubrogepant 50 mg daily on days 1–14; single-dose EE-NGM was coadministered with ubrogepant on day 10. Pharmacokinetic parameters for plasma EE and norelgestromin (NGMN) were compared with and without ubrogepant. Results: Twenty-two participants aged 46–66 years were enrolled; 21 completed the study. Geometric mean ratios and 90% confidence intervals for the comparison of EE-NGM + ubrogepant to EE-NGM alone were contained within 0.80 and 1.25 for area under the plasma drug concentration–time curve (AUC) from time zero to infinity (AUC0–∞; 0.96 [0.91, 1.01]) and C max (0.91 [0.82, 1.004]) of NGMN and AUC0–∞ (0.97 [0.93, 1.01]) of EE, but not C max of EE (0.74 [0.69, 0.79]). Median t max of EE was delayed following EE-NGM + ubrogepant (3.0 h) versus EE-NGM alone (median of 1.5 h), whereas median t max of NGMN was unchanged (1.5 h). Geometric mean apparent terminal half-life ( t ½) was similar with and without ubrogepant for EE (23 vs. 21 h) and NGMN (36 h both conditions). All ubrogepant-related adverse events were mild or moderate. Conclusion: Ubrogepant did not demonstrate potential for clinically meaningful drug–drug interactions with an EE-NGM oral contraceptive. Trial registration: Not applicable (phase 1 trial)
Collapse
Affiliation(s)
| | | | - Jialin Xu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | |
Collapse
|
10
|
Wattiez AS, Sowers LP, Russo AF. Calcitonin gene-related peptide (CGRP): role in migraine pathophysiology and therapeutic targeting. Expert Opin Ther Targets 2020; 24:91-100. [PMID: 32003253 DOI: 10.1080/14728222.2020.1724285] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: The neuropeptide calcitonin gene-related peptide (CGRP) is recognized as a critical player in migraine pathophysiology. Excitement has grown regarding CGRP because of the development and clinical testing of drugs targeting CGRP or its receptor. While these drugs alleviate migraine symptoms in half of the patients, the remaining unresponsive half of this population creates an impetus to address unanswered questions that exist in this field.Areas covered: We describe the role of CGRP in migraine pathophysiology and CGRP-targeted therapeutics currently under development and in use. We also discuss how a second CGRP receptor may provide a new therapeutic target.Expert opinion: CGRP-targeting drugs have shown a remarkable safety profile. We speculate that this may reflect the redundancy of peptides within the CGRP family and a second CGRP receptor that may compensate for reduced CGRP activity. Furthermore, we propose that an inherent safety feature of peptide-blocking antibodies is attributed to the fundamental nature of peptide release, which occurs as a large bolus in short bursts of volume transmission. These facts support the development of more refined CGRP therapeutic drugs, as well as drugs that target other neuropeptides. We believe that the future of migraine research is bright with exciting advances on the horizon.
Collapse
Affiliation(s)
- Anne-Sophie Wattiez
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Levi P Sowers
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA
| | - Andrew F Russo
- Department of Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.,VA Center for the Prevention and Treatment of Visual Loss, VA Medical Center, Iowa City, IA, USA.,Department of Neurology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
11
|
Gao B, Yang Y, Wang Z, Sun Y, Chen Z, Zhu Y, Wang Z. Efficacy and Safety of Rimegepant for the Acute Treatment of Migraine: Evidence From Randomized Controlled Trials. Front Pharmacol 2020; 10:1577. [PMID: 32038251 PMCID: PMC6992660 DOI: 10.3389/fphar.2019.01577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Background As one of the novel therapeutic drugs that targets Calcitonin gene-related peptide (CGRP), 75 mg rimegepant has been used for the acute management of migraine, which is one of the most common neurological diseases worldwide. Several clinical trials have been conducted to investigate the efficacy and safety of rimegepant for the acute management of migraine, but no systematic review of existing literature has been performed. We therefore performed a meta-analysis to investigate the efficacy and safety of rimegepant in treatment of patients with migraine. Method Pubmed, Embased, and Cochrane Library were searched from January 2001 to August 2019 for randomized controlled trials (RCTs). Four RCTs with 3,827 patients were finally included in our study. Result We pooled 3,827 patients from four RCTs, and the primary endpoints were freedom from pain, most bothersome symptom, and pain relief at 2 hr post dose. We found that 75 mg rimegepant led to significant freedom from pain (P < 0.001), pain relief (P < 0.001), and freedom from the most bothersome symptom (P < 0.001) at 2 hr post dose compared with the placebo. In addition, there was no statistically significant increase in adverse events compared with the placebo. Conclusions 75 mg rimegepant had good efficacy and safety for acute treatment of migraine. Further studies are needed to compare the efficacy of rimegepant with traditional drugs for acute management of migraine.
Collapse
Affiliation(s)
- Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanbo Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Calcitonin Gene-Related Peptide (CGRP) and Cluster Headache. Brain Sci 2020; 10:brainsci10010030. [PMID: 31935868 PMCID: PMC7016902 DOI: 10.3390/brainsci10010030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 12/28/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023] Open
Abstract
Cluster headache (CH) is a severe primary headache with a prevalence of 1/1000 individuals, and a predominance in men. Calcitonin gene-related peptide (CGRP) is a potent vasodilator, originating in trigeminal neurons and has a central role in CH pathophysiology. CGRP and the CGRP receptor complex have recently taken center stage as therapeutic targets for primary headaches, such as migraine. Multiple CGRP and CGRP receptor monoclonal antibodies, as well as small molecule antagonists (gepants) are on their way constituting a new frontier of migraine and possibly CH medication. During a CH attack, there is an activation of the trigeminal-autonomic reflex with the release of CGRP, and inversely if CGRP is administered to a CH patient in an active disease phase, it triggers an attack. Increased levels of CGRP have been found in ipsilateral jugular vein blood during the active phase of CH. This process is hypothesized to have a key role in the intense pain perception and in the associated distinctive vasodilation. So far, clinical tests of CGRP antibodies have been inconclusive in CH patients. This review summarizes the current state of knowledge on the role of CGRP in CH pathology, and as a target for future treatments.
Collapse
|
13
|
Increased Mortality and Vascular Phenotype in a Knock-In Mouse Model of Retinal Vasculopathy With Cerebral Leukoencephalopathy and Systemic Manifestations. Stroke 2020; 51:300-307. [DOI: 10.1161/strokeaha.119.025176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background and Purpose—
Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S) is an autosomal dominant small vessel disease caused by C-terminal frameshift mutations in the
TREX1
gene that encodes the major mammalian 3′ to 5′ DNA exonuclease. RVCL-S is characterized by vasculopathy, especially in densely vascularized organs, progressive retinopathy, cerebral microvascular disease, white matter lesions, and migraine, but the underlying mechanisms are unknown.
Methods—
Homozygous transgenic RVCL-S knock-in mice expressing a truncated Trex1 (three prime repair exonuclease 1) protein (similar to what is seen in patients) and wild-type littermates, of various age groups, were subjected to (1) a survival analysis, (2) in vivo postocclusive reactive hyperemia and ex vivo Mulvany myograph studies to characterize the microvascular and macrovascular reactivity, and (3) experimental stroke after transient middle cerebral artery occlusion with neurological deficit assessment.
Results—
The mutant mice show increased mortality starting at midlife (
P
=0.03 with hazard ratio, 3.14 [95% CI, 1.05–9.39]). The mutants also show a vascular phenotype as evidenced by attenuated postocclusive reactive hyperemia responses (across all age groups; F[1, 65]=5.7,
P
=0.02) and lower acetylcholine-induced relaxations in aortae (in 20- to 24-month-old mice; RVCL-S knock-in: E
max
: 37±8% versus WT: E
max
: 65±6%,
P
=0.01). A vascular phenotype is also suggested by the increased infarct volume seen in 12- to 14-month-old mutant mice at 24 hours after infarct onset (RVCL-S knock-in: 75.4±2.7 mm
3
versus WT: 52.9±5.6 mm
3
,
P
=0.01).
Conclusions—
Homozygous RVCL-S knock-in mice show increased mortality, signs of abnormal vascular function, and increased sensitivity to experimental stroke and can be instrumental to investigate the pathology seen in patients with RVCL-S.
Collapse
|
14
|
Oakes TM, Kovacs R, Rosen N, Doty E, Kemmer P, Aurora SK, Camporeale A. Evaluation of Cardiovascular Outcomes in Adult Patients With Episodic or Chronic Migraine Treated With Galcanezumab: Data From Three Phase 3, Randomized, Double-Blind, Placebo-Controlled EVOLVE-1, EVOLVE-2, and REGAIN Studies. Headache 2019; 60:110-123. [PMID: 31721185 DOI: 10.1111/head.13684] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Blood pressure (BP), pulse, electrocardiogram (ECG), and clinical cardiovascular (CV) outcomes in patients with episodic or chronic migraine treated for up to 6 months with galcanezumab compared to placebo were evaluated. BACKGROUND Calcitonin gene-related peptide, a potent microvascular vasodilator, has a hypothesized protective role in CV health. Increased CV risks have been reported in patients with migraine. METHODS In 2 similarly designed episodic migraine 6-month studies and 1 chronic migraine 3-month study, data from patients randomized (1:1:2) to subcutaneous injection of galcanezumab 120 mg/month (following initial 240 mg loading dose) or 240 mg/month or placebo were pooled. Treatment comparisons for cardiovascular treatment-emergent adverse events (CV TEAE) and categorical and mean changes in BP, pulse, and ECG were evaluated using the Cochran-Mantel-Haenszel test. Mean changes from baseline in BP, pulse, and ECG were evaluated using the analysis of covariance model. RESULTS Overall, among galcanezumab 120 mg (n = 705) and 240 mg (n = 730), and placebo (n = 1451) groups, the percentage of patients reporting ≥1 CV TEAE was low and was similar between the galcanezumab 120 mg (2.6%; odds ratio [OR] = 0.9; 95% confidence interval [CI]: 0.5,1.5) and galcanezumab 240 mg (3.3%; OR = 1.1; 95% CI: 0.7,1.9), and placebo (2.9%) groups. The frequency of any individual CV TEAE, broad or narrow term, was ≤1.4%. The CV-related serious adverse events that occurred in the galcanezumab 240 mg group (n = 3; acute myocardial infarction, pulmonary embolism, and transient ischemic attack) and placebo group (n = 3; pulmonary embolism, deep vein thrombosis, and myocardial infarction) were not considered treatment related. Four placebo- and 1 galcanezumab-treated patient discontinued due to a CV TEAE. Least squares mean and categorical changes from baseline in BP, pulse, and QT interval corrected using Fridericia's correction were similar across treatment groups. CONCLUSIONS In this 6-month treatment trial, the percentages of galcanezumab- and placebo-treated patients that reported CV TEAEs or serious adverse events were low and similar between groups with few discontinuations. Thus, no clinically meaningful treatment group differences were observed for changes in BP, pulse, or ECG parameters. Additional longer-term studies in a broader and larger cohort are required to better characterize CV safety.
Collapse
Affiliation(s)
| | - Richard Kovacs
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Noah Rosen
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Erin Doty
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | |
Collapse
|
15
|
Rubio-Beltran E, Chan KY, Danser AJ, MaassenVanDenBrink A, Edvinsson L. Characterisation of the calcitonin gene-related peptide receptor antagonists ubrogepant and atogepant in human isolated coronary, cerebral and middle meningeal arteries. Cephalalgia 2019; 40:357-366. [PMID: 31674221 DOI: 10.1177/0333102419884943] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Migraine has been associated with a dysfunctional activation of the trigeminovascular system. Calcitonin gene-related peptide, a neuropeptide released from the trigeminal nerve fibres, has an important role in the pathophysiology of migraine and is a current therapeutic target for migraine treatment. METHODS We examined the effects of two novel calcitonin gene-related peptide receptor antagonists, ubrogepant and atogepant, on the relaxations induced by α calcitonin gene-related peptide in human isolated middle meningeal, cerebral and coronary arteries. Furthermore, the contractile responses to atogepant and ubrogepant per se were studied and compared to the responses elicited by zolmitriptan in proximal and distal human coronary arteries. RESULTS In intracranial arteries, both blockers antagonized the calcitonin gene-related peptide-induced relaxations more potently when compared to the inhibition observed in distal human coronary arteries, with atogepant showing a higher potency. When analysing their antagonistic profile in HCA, ubrogepant showed a competitive antagonist profile, while atogepant showed a non-competitive one. Neither of the gepants had vasoconstrictor effect at any of the concentrations studied in human coronary arteries, whereas zolmitriptan elicited concentration-dependent contractions. CONCLUSION ubrogepant and atogepant differentially inhibit the calcitonin gene-related peptide-dependent vasodilatory responses in intracranial arteries when compared to distal human coronary arteries. Also, both gepants are devoid of vasoconstrictive properties in human coronary arteries.
Collapse
Affiliation(s)
- Eloísa Rubio-Beltran
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ka Yi Chan
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Ah Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Lars Edvinsson
- Department of Internal Medicine, Institute of Clinical Sciences, Lund University Hospital, Lund, Sweden
| |
Collapse
|
16
|
Messlinger K, MaassenVanDenBrink A. Cardio- and cerebrovascular safety of erenumab, a monoclonal antibody targeting CGRP receptors - important studies on human isolated arteries. Cephalalgia 2019; 39:1731-1734. [PMID: 31526030 DOI: 10.1177/0333102419877169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Rubio-Beltrán E, Labastida-Ramírez A, Haanes KA, van den Bogaerdt A, Bogers AJ, Dirven C, Danser AJ, Xu C, Snellman J, MaassenVanDenBrink A. Characterisation of vasodilatory responses in the presence of the CGRP receptor antibody erenumab in human isolated arteries. Cephalalgia 2019; 39:1735-1744. [PMID: 31284729 DOI: 10.1177/0333102419863027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Migraine is associated with activation of the trigeminovascular system, release of calcitonin gene-related peptide (CGRP) and dilation of dural arteries. Novel treatments target calcitonin gene-related peptide or its receptor, which are present in all vascular beds, raising cardiovascular concerns. Erenumab is a human CGRP-receptor antibody approved for the prophylactic treatment of migraine. METHODS We characterised the relaxant responses to CGRP in the absence and presence of erenumab (1 μM) in isolated human middle meningeal, internal mammary and (proximal and distal) coronary arteries. Furthermore, in human internal mammary arteries from cardiovascularly-compromised patients, we assessed the pharmacological specificity of erenumab by investigating whether the vasodilatory responses to acetylcholine, sodium nitroprusside, pituitary adenylate cyclase activating polypeptide-38 (PACAP), vasoactive intestinal peptide and nicardipine, along with the vasoconstrictor responses to dihydroergotamine, were modified by erenumab. RESULTS Calcitonin gene-related peptide induced concentration-dependent vasodilatory responses in all vessels studied that were significantly antagonised by erenumab. In human internal mammary arteries from cardiovascularly-compromised patients, the responses to acetylcholine, sodium nitroprusside, PACAP, vasoactive intestinal peptide, nicardipine and dihydroergotamine were unaffected by erenumab. CONCLUSION Erenumab inhibits calcitonin gene-related peptide-induced vasodilatory responses in human middle meningeal arteries, human internal mammary arteries and human coronary arteries. Moreover, erenumab shows functional specificity as no interaction was observed with the relaxant responses to several vasodilators, nor the dihydroergotamine-dependent vasoconstrictor responses.
Collapse
Affiliation(s)
- Eloísa Rubio-Beltrán
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Alejandro Labastida-Ramírez
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Kristian A Haanes
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Antoon van den Bogaerdt
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Ad Jjc Bogers
- Department of Cardiothoracic Surgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Clemens Dirven
- Department of Neurosurgery, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Ah Jan Danser
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Cen Xu
- Amgen Inc, Thousand Oaks, CA, USA
| | | | - Antoinette MaassenVanDenBrink
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
18
|
Bigal ME, Walter S, Rapoport AM. Fremanezumab as a preventive treatment for episodic and chronic migraine. Expert Rev Neurother 2019; 19:719-728. [PMID: 31043094 DOI: 10.1080/14737175.2019.1614742] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The importance of calcitonin gene-related peptide (CGRP) in migraine pathogenesis is well established. Fremanezumab is a humanized IgG2a monoclonal antibody that binds to CGRP. Areas covered: In this paper, we review the development of fremanezumab, from early development into approval. The authors focus on the efficacy and safety of fremanezumab in both migraine stages. The authors highlight studies conducted in special populations and focus on unique aspects of its development, as well as on clinical pearls supported by the data. Expert opinion: Fremanezumab was shown to be effective in episodic and chronic migraine, with a monthly and quarterly dose of administration, as monotherapy and add-on therapy. As with other monoclonal antibodies, the anti-CGRP onset of action was remarkably quick, and the effect seems to be maintained over time. No overt safety concerns emerged from the clinical studies, although long-term surveillance is necessary.
Collapse
Affiliation(s)
| | | | - Alan M Rapoport
- c Department of Neurology , The David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| |
Collapse
|
19
|
Abstract
INTRODUCTION Migraine is the most common of all neurological disorders. A breakthrough in migraine treatment emerged in the early nineties with the introduction of 5-HT1B/D receptor agonists called triptans. Triptans are used as the standard of care for acute migraine; however, they have significant limitations such as incomplete and inconsistent pain relief, high rates of headache recurrence, class- specific side effects and cardiovascular contraindications. First- and second-generation calcitonin gene-related peptide (CGRP) receptor antagonists, namely gepants, is a class of drugs primarily developed for the acute treatment of migraine. CGRP is the most evaluated target for migraine treatments that are in development. AREAS COVERED This article reviews the available data for first- and second-generation CGRP receptor antagonists, the role of CGRPs in human physiology and migraine pathophysiology and the possible mechanism of action and safety of CGRP-targeted drugs. EXPERT OPINION Available data suggest that second generation of gepants has clinical efficacy similar to triptans and lasmiditan (5-HT1F receptor agonist) and has improved tolerability. Future studies will assess their safety, especially in specific populations such as patients with cardiovascular disease and pregnant women.
Collapse
Affiliation(s)
- Andrea Negro
- a Department of Clinical and Molecular Medicine , Sapienza University , Rome , Italy.,b Regional Referral Headache Centre , Rome , Italy
| | - Paolo Martelletti
- a Department of Clinical and Molecular Medicine , Sapienza University , Rome , Italy.,b Regional Referral Headache Centre , Rome , Italy
| |
Collapse
|
20
|
Bussiere JL, Davies R, Dean C, Xu C, Kim KH, Vargas HM, Chellman GJ, Balasubramanian G, Rubio-Beltran E, MaassenVanDenBrink A, Monticello TM. Nonclinical safety evaluation of erenumab, a CGRP receptor inhibitor for the prevention of migraine. Regul Toxicol Pharmacol 2019; 106:224-238. [PMID: 31085251 DOI: 10.1016/j.yrtph.2019.05.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/11/2022]
Abstract
Calcitonin gene-related peptide (CGRP) and its receptor have been implicated as a key mediator in the pathophysiology of migraine. Thus, erenumab, a monoclonal antibody antagonist of the CGRP receptor, administered as a once monthly dose of 70 or 140 mg has been approved for the preventive treatment of migraine in adults. Due to the species specificity of erenumab, the cynomolgus monkey was used in the pharmacology, pharmacokinetics, and toxicology studies to support the clinical program. There were no effects of erenumab on platelets in vitro (by binding, activation or phagocytosis assays). Specific staining of human tissues with erenumab did not indicated any off-target binding. There were no erenumab-related findings in a cardiovascular safety pharmacology study in cynomolgus monkeys or in vitro in human isolated coronary arteries. Repeat-dose toxicology studies conducted in cynomolgus monkeys at dose levels up to 225 mg/kg (1 month) or up to 150 mg/kg (up to 6 months) with twice weekly subcutaneous (SC) doses showed no evidence of erenumab-mediated adverse toxicity. There were no effects on pregnancy, embryo-fetal or postnatal growth and development in an enhanced pre-postnatal development study in the cynomolgus monkey. There was evidence of placental transfer of erenumab based on measurable serum concentrations in the infants up to 3 months post birth. The maternal and developmental no-observed-effect level (NOEL) was the highest dose tested (50 mg/kg SC Q2W). These nonclinical data in total indicate no safety signal of concern to date and provide adequate margins of exposure between the observed safe doses in animals and clinical dose levels.
Collapse
Affiliation(s)
| | - Rhian Davies
- Amgen Research, 1120 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - Charles Dean
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Cen Xu
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Kyung Hoon Kim
- Amgen Research, 1120 Veterans Blvd., South San Francisco, CA, 94080, USA
| | - Hugo M Vargas
- Amgen Research, One Amgen Center Dr., Thousand Oaks, CA, 91320, USA
| | - Gary J Chellman
- Charles River Laboratories Inc., 6995 Longley Lane, Reno, NV, 89511, USA
| | | | | | | | | |
Collapse
|
21
|
Manoukian R, Sun H, Miller S, Shi D, Chan B, Xu C. Effects of monoclonal antagonist antibodies on calcitonin gene-related peptide receptor function and trafficking. J Headache Pain 2019; 20:44. [PMID: 31039731 PMCID: PMC6734291 DOI: 10.1186/s10194-019-0992-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/04/2019] [Indexed: 12/29/2022] Open
Abstract
Background Monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor are efficacious for the prevention of migraine headaches. The downstream molecular mechanisms following ligand-receptor blockade by which these antibodies prevent CGRP signaling through CGRP receptors have not been demonstrated. Methods Here we produced tool monoclonal functional antagonist antibodies against CGRP and its canonical receptor and developed a novel cellular model using fluorogen-activated protein technology that allows detection of CGRP receptor internalization by flow cytometry and, for an extended time course, visualization by confocal microscopy. Results Using this cell model we showed that these antagonist antibodies block both CGRP-induced cAMP signaling and CGRP receptor internalization. At least 10-fold higher concentrations of either antibody are necessary to block CGRP receptor internalization compared with cAMP accumulation in our cell model. Conclusion These data reinforce our understanding of how monoclonal functional antagonist antibodies interfere with CGRP signaling.
Collapse
Affiliation(s)
- Raffi Manoukian
- Department of Cytometry Sciences, Amgen Research, 360 Binney Street, Cambridge, MA, 02142, USA
| | - Hong Sun
- Department of Neuroscience, Amgen Research, 360 Binney Street, Cambridge, MA, 02142, USA
| | - Silke Miller
- Department of Neuroscience, Amgen Research, 360 Binney Street, Cambridge, MA, 02142, USA
| | - Di Shi
- Department of Neuroscience, Amgen Research, 360 Binney Street, Cambridge, MA, 02142, USA
| | - Brian Chan
- Department of Biologic Discovery, Amgen Research, 7990 Enterprise Street, Burnaby, BC, V5A1V7, Canada
| | - Cen Xu
- Department of Neuroscience, Amgen Research, One Amgen Center Dr., MS 29-2-B, Thousand Oaks, CA, 91320-1799, USA.
| |
Collapse
|
22
|
Hargreaves R, Olesen J. Calcitonin Gene-Related Peptide Modulators - The History and Renaissance of a New Migraine Drug Class. Headache 2019; 59:951-970. [PMID: 31020659 DOI: 10.1111/head.13510] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 01/31/2023]
Abstract
Several lines of evidence pointed to an important role for CGRP in migraine. These included the anatomic colocalization of CGRP and its receptor in sensory fibers innervating pain-producing meningeal blood vessels, its release by trigeminal stimulation, the observation of elevated CGRP in the cranial circulation during migraine with normalization concomitant with headache relief by sumatriptan, and translational studies with intravenous (IV) CGRP that evoked migraine only in migraineurs. The development of small molecule CGRP receptor antagonists (CGRP-RAs) that showed clinical antimigraine efficacy acutely and prophylactically in randomized placebo-controlled clinical trials subsequently gave definitive pharmacological proof of the importance of CGRP in migraine. More recently, CGRP target engagement imaging studies using a CGRP receptor PET ligand [11 C]MK-4232 demonstrated that there was no brain CGRP receptor occupancy at clinically effective antimigraine doses of telcagepant, a prototypic CGRP-RA. Taken together, these data indicated that (1) the therapeutic site of action of the CGRP-RAs was peripheral not central; (2) that IV CGRP had most likely evoked migraine through an action at sites outside the blood-brain barrier; and (3) that migraine pain was therefore, at least in part, peripheral in origin. The evolution of CGRP migraine science gave impetus to the development of peripherally acting drugs that could modulate CGRP chronically to prevent frequent episodic and chronic migraine. Large molecule biologic antibody (mAb) approaches that are given subcutaneously to neutralize circulating CGRP peptide (fremanezumab, galcanezumab) or block CGRP receptors (erenumab) have shown consistent efficacy and tolerability in multicenter migraine prevention trials and are now approved for clinical use. Eptinezumab, a CGRP neutralizing antibody given IV, shows promise in late stage clinical development. Recently, orally administered next-generation small molecule CGRP-RAs have been shown to have safety and efficacy in acute treatment (ubrogepant and rimegepant) and prevention (atogepant) of migraine, giving additional CGRP-based therapeutic options for migraine patients.
Collapse
Affiliation(s)
- Richard Hargreaves
- Center for Pain and the Brain, Harvard Medical School and Department of Anesthesia, Boston Children's Hospital, Boston, MA, USA
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
23
|
Maassen van den Brink A, Rubio-Beltrán E, Duncker D, Villalón CM. Is CGRP Receptor Blockade Cardiovascularly Safe? Appropriate Studies Are Needed. Headache 2019; 58:1257-1258. [PMID: 30289181 DOI: 10.1111/head.13402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022]
Affiliation(s)
- A Maassen van den Brink
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - E Rubio-Beltrán
- Division of Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - D Duncker
- Department of Experimental Cardiology, Erasmus MC, Rotterdam, The Netherlands
| | - C M Villalón
- Department Pharmacobiology, Cinvestav-Coapa, Tlalpan, Mexico City, Mexico
| |
Collapse
|
24
|
Abstract
Increasing knowledge about the role of calcitonin gene-related peptide (CGRP) in migraine pathophysiology has led to the development of antibodies against this peptide or its receptor. However, CGRP is widely expressed throughout the body, participating not only in pathophysiological conditions but also in several physiological processes and homeostatic responses during pathophysiological events. Therefore, in this chapter, the risks of long-term blockade of the CGRP pathway will be discussed, with focus on the cardiovascular system, as this peptide has been described to have a protective role during ischemic events, and migraine patients present a higher risk of stroke and myocardial infarction.
Collapse
Affiliation(s)
- Eloísa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Antoinette Maassen van den Brink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide of importance in migraine pathogenesis. Its central role in migraine was proven pharmacologically by the development of CGRP receptor antagonists. Monoclonal antibodies targeting CGRP or its receptor are effective in the preventive treatment of episodic and chronic migraine and are considered potential breakthroughs in their treatment. Fremanezumab (previously known as TEV-48125, LBR-101, or RN-307) is a humanized IgG2a monoclonal antibody that binds to CGRP. The development of this antibody validated the role of CGRP in chronic migraine and the drug has been recently approved in the US by the FDA, while it continues to be reviewed by other regulatory agencies. Herein we provide an in-depth review of its development. We start by summarizing its in vitro and in vivo pharmacology, and the phase I studies. We then review the late-stage clinical development, with a focus on its efficacy, safety, similarities, and uniqueness relative to other CGRP antibodies. We close by discussing lessons learned on the mechanisms of migraine and areas for future development and exploration.
Collapse
|
26
|
Abstract
Background A better understanding of the mechanisms underlying the migraine attack has reinforced the concept that migraine is a complex brain disease, and has paved the way for the development of new migraine specific acute treatments. In recent years, targeting the calcitonin gene-related peptide and its receptors has been one of the most promising pharmacological strategies for both acute and preventive treatment of migraine. Findings Randomized double-blind placebo-controlled trials have demonstrated the superiority of small molecule calcitonin gene-related peptide receptor antagonists (gepants) over placebo in treating acute migraine attacks measured as the two-hour pain free endpoint. Gepants also improved migraine associated symptoms, such as nausea, photophobia and phonophobia. Two of the class have had their development stopped because of hepatotoxicity, which is emerging as being due to metabolites. Gepants have a good tolerability and can be safely used in patients with stable cardiovascular disease. Conclusion Exciting results have been obtained targeting the calcitonin gene-related peptide pathway to abort acute migraine attacks, thus reinforcing the relevance of mechanism-based treatments specific for migraine.
Collapse
Affiliation(s)
- Roberta Messina
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Peter J Goadsby
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- NIHR-Wellcome Trust King’s Clinical Research Facility, King’s College Hospital, London, UK
| |
Collapse
|
27
|
Abstract
There is substantial evidence indicating a role for glutamate in migraine. Levels of glutamate are higher in the brain and possibly also in the peripheral circulation in migraine patients, particularly during attacks. Altered blood levels of kynurenines, endogenous modulators of glutamate receptors, have been reported in migraine patients. Population genetic studies implicate genes that are involved with glutamate signaling in migraine, and gene mutations responsible for familial hemiplegic migraine and other familial migraine syndromes may influence glutamate signaling. Animal studies indicate that glutamate plays a key role in pain transmission, central sensitization, and cortical spreading depression. Multiple therapies that target glutamate receptors including magnesium, topiramate, memantine, and ketamine have been reported to have efficacy in the treatment of migraine, although with the exception of topiramate, the evidence for the efficacy of these therapies is not strong. Also, because all of these therapies have other mechanisms of action, it is not possible to conclude that the efficacy of these drugs is entirely due to their effects on glutamate receptors. Further studies are needed to more clearly delineate the possible roles of glutamate and its specific receptor subtypes in migraine and to identify new ways of targeting glutamate for migraine therapy.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), 635 Charles Young Drive, Los Angeles, CA 90095 USA
| |
Collapse
|
28
|
|
29
|
González-Hernández A, Marichal-Cancino BA, MaassenVanDenBrink A, Villalón CM. Side effects associated with current and prospective antimigraine pharmacotherapies. Expert Opin Drug Metab Toxicol 2018; 14:25-41. [PMID: 29226741 DOI: 10.1080/17425255.2018.1416097] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Migraine is a neurovascular disorder. Current acute specific antimigraine pharmacotherapies target trigeminovascular 5-HT1B/1D, 5-HT1F and CGRP receptors but, unfortunately, they induce some cardiovascular and central side effects that lead to poor treatment adherence/compliance. Therefore, new antimigraine drugs are being explored. Areas covered: This review considers the adverse (or potential) side effects produced by current and prospective antimigraine drugs, including medication overuse headache (MOH) produced by ergots and triptans, the side effects observed in clinical trials for the new gepants and CGRP antibodies, and a section discussing the potential effects resulting from disruption of the cardiovascular CGRPergic neurotransmission. Expert opinion: The last decades have witnessed remarkable developments in antimigraine therapy, which includes acute (e.g. triptans) and prophylactic (e.g. β-adrenoceptor blockers) antimigraine drugs. Indeed, the triptans represent a considerable advance, but their side effects (including nausea, dizziness and coronary vasoconstriction) preclude some patients from using triptans. This has led to the development of the ditans (5-HT1F receptor agonists), the gepants (CGRP receptor antagonists) and the monoclonal antibodies against CGRP or its receptor. The latter drugs represent a new hope in the antimigraine armamentarium, but as CGRP plays a role in cardiovascular homeostasis, the potential for adverse cardiovascular side effects remains latent.
Collapse
Affiliation(s)
| | - Bruno A Marichal-Cancino
- b Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes , Ciudad Universitaria , Aguascalientes , México
| | - Antoinette MaassenVanDenBrink
- c Division of Vascular Medicine and Pharmacology, Department of Internal Medicine , Erasmus University Medical Center , Rotterdam , The Netherlands
| | - Carlos M Villalón
- d Departamento de Farmacobiología , Cinvestav-Coapa , Ciudad de México , México
| |
Collapse
|
30
|
Sheykhzade M, Amandi N, Pla MV, Abdolalizadeh B, Sams A, Warfvinge K, Edvinsson L, Pickering DS. Binding and functional pharmacological characteristics of gepant-type antagonists in rat brain and mesenteric arteries. Vascul Pharmacol 2017; 90:36-43. [PMID: 28192258 DOI: 10.1016/j.vph.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
AIM The neuropeptide calcitonin gene-related peptide (CGRP) is found in afferent sensory nerve fibers innervating the resistance arteries and plays a pivotal role in a number of neurovascular diseases such as migraine and subarachnoid bleedings. The present study investigates the binding and antagonistic characteristics of small non-peptide CGRP receptor antagonists (i.e. gepants) in isolated rat brain and mesenteric resistance arteries. METHODS The antagonistic behavior of gepants was investigated in isolated rat mesenteric arteries using a wire myograph setup while binding of gepants to CGRP receptors was investigated in rat brain membranes using a radioligand competitive binding assay. Furthermore, the histological location of the key components of CGRP receptor (RAMP1 and CLR) was assessed by immunohistochemistry. RESULTS Our functional studies clearly show that all gepants are reversible competitive antagonists producing Schild plot slopes not significantly different from unity and thus suggesting presence of a uniform CGRP receptor population in the arteries. A uniform receptor population was also confirmed by radioligand competitive binding studies showing similar affinities for the gepants in rat brain and mesenteric arteries, the exception being rimegepant which had 50-fold lower affinity in brain than mesenteric arteries. CLR and RAMP1 were shown to be located in both vascular smooth muscle and endothelial cells of rat mesenteric arteries by immunohistochemistry. CONCLUSION The present results indicate that, despite species differences in the CGRP receptor affinity, the antagonistic nature of these gepants, the distribution pattern of CGRP receptor components and the mechanism behind CGRP-induced vasodilation seem to be similar in resistance-sized arteries of human and rats.
Collapse
Affiliation(s)
- Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Nilofar Amandi
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Monica Vidal Pla
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bahareh Abdolalizadeh
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, DK-2600 Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, DK-2600 Glostrup, Denmark
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Glostrup University Hospital, DK-2600 Glostrup, Denmark
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
31
|
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium-Derived Hyperpolarization and Coronary Vasodilation: Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen Peroxide, and Gap Junctions. Microcirculation 2016; 23:15-32. [PMID: 26541094 DOI: 10.1111/micc.12255] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/01/2015] [Indexed: 12/22/2022]
Abstract
Myocardial perfusion and coronary vascular resistance are regulated by signaling metabolites released from the local myocardium that act either directly on the VSMC or indirectly via stimulation of the endothelium. A prominent mechanism of vasodilation is EDH of the arteriolar smooth muscle, with EETs and H(2)O(2) playing important roles in EDH in the coronary microcirculation. In some cases, EETs and H(2)O(2) are released as transferable hyperpolarizing factors (EDHFs) that act directly on the VSMCs. By contrast, EETs and H(2)O(2) can also promote endothelial KCa activity secondary to the amplification of extracellular Ca(2+) influx and Ca(2+) mobilization from intracellular stores, respectively. The resulting endothelial hyperpolarization may subsequently conduct to the media via myoendothelial gap junctions or potentially lead to the release of a chemically distinct factor(s). Furthermore, in human isolated coronary arterioles dilator signaling involving EETs and H(2)O(2) may be integrated, being either complimentary or inhibitory depending on the stimulus. With an emphasis on the human coronary microcirculation, this review addresses the diverse and integrated mechanisms by which EETs and H(2)O(2) regulate vessel tone and also examines the hypothesis that myoendothelial microdomain signaling facilitates EDH activity in the human heart.
Collapse
Affiliation(s)
| | - Shaun L Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nilima Shukla
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Yanping Liu
- Division of Research Infrastructure, National Center for Research Resources, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Y Jeremy
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - David D Gutterman
- Division of Cardiovascular Medicine, Departments of Medicine, Physiology and Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
32
|
MaassenVanDenBrink A, Meijer J, Villalón CM, Ferrari MD. Wiping Out CGRP: Potential Cardiovascular Risks. Trends Pharmacol Sci 2016; 37:779-788. [DOI: 10.1016/j.tips.2016.06.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 01/06/2023]
|
33
|
Negro A, Curto M, Lionetto L, Giamberardino MA, Martelletti P. Chronic migraine treatment: from OnabotulinumtoxinA onwards. Expert Rev Neurother 2016; 16:1217-27. [DOI: 10.1080/14737175.2016.1200973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Haanes KA, Chan KY, MaassenVanDenBrink A. Comment on "A second trigeminal CGRP receptor: function and expression of the AMY1 receptor". Ann Clin Transl Neurol 2016; 3:307-8. [PMID: 27081661 PMCID: PMC4818740 DOI: 10.1002/acn3.286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kristian Agmund Haanes
- Internal Medicine Division of Vascular Medicine and Pharmacology Erasmus MC Rotterdam The Netherlands
| | - Ka Yi Chan
- Internal Medicine Division of Vascular Medicine and Pharmacology Erasmus MC Rotterdam The Netherlands
| | | |
Collapse
|
35
|
TEV-48125: a review of a monoclonal CGRP antibody in development for the preventive treatment of migraine. Curr Pain Headache Rep 2015; 19:6. [PMID: 25754596 DOI: 10.1007/s11916-015-0476-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino-acid neuropeptide whose involvement in migraine pathophysiology is well established. Originally migraine was believed to be a disease of the vasculature, but research has highlighted this to be a disease of the brain with CGRP playing an important role. While targeting CGRP using small molecule antagonists against the receptor has been effective, long-term use of these agents has not been possible due to safety concerns and/or formulation challenges. Recent advances in therapeutic antibodies have opened up new possibilities for treatment of migraine. TEV-48125 is one of four monoclonal antibodies targeting CGRP or its receptors, currently in development for the preventive treatment of migraine. This article discusses the in vitro and in vivo pharmacology of TEV-48125 as well as highlighting its safety profile through the six Phase 1 studies that have been conducted. Finally, the current state of development and future studies for TEV-48125 will be reviewed.
Collapse
|
36
|
Edvinsson L. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment. Br J Clin Pharmacol 2015; 80:193-9. [PMID: 25731075 DOI: 10.1111/bcp.12618] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/15/2015] [Accepted: 02/25/2015] [Indexed: 01/16/2023] Open
Abstract
Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one of the major limitations in the use of triptans. However their use had to be discontinued because of risk of liver toxicity after continuous exposure. As an alternative approach to block CGRP transmission, fully humanized monoclonal antibodies towards CGRP and the CGRP receptor have been developed for treatment of chronic migraine (attacks >15 days/month). Initial results from phase I and II clinical trials have revealed promising results with minimal side effects and significant relief from chronic migraine as compared with placebo. The effectiveness of these various molecules raises the question of where is the target site(s) for antimigraine action. The gepants are small molecules that can partially pass the blood-brain barrier (BBB) and therefore, might have effects in the CNS. However, antibodies are large molecules and have limited possibility to pass the BBB, thus effectively excluding them from having a major site of action within the CNS. It is suggested that the antimigraine site should reside in areas not limited by the BBB such as intra- and extracranial vessels, dural mast cells and the trigeminal system. In order to clarify this topic and surrounding questions, it is important to understand the localization of CGRP and the CGRP receptor components in these possible sites of migraine-related regions and their relation to the BBB.
Collapse
|
37
|
|
38
|
Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood–brain barrier. Brain Res 2015; 1600:93-109. [DOI: 10.1016/j.brainres.2014.11.031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023]
|
39
|
Yao G, Han X, Hao T, Huang Q, Yu T. Effects of rizatriptan on the expression of calcitonin gene-related peptide and cholecystokinin in the periaqueductal gray of a rat migraine model. Neurosci Lett 2015; 587:29-34. [DOI: 10.1016/j.neulet.2014.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/30/2022]
|
40
|
Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014; 94:1099-142. [PMID: 25287861 PMCID: PMC4187032 DOI: 10.1152/physrev.00034.2013] [Citation(s) in RCA: 812] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule.
Collapse
Affiliation(s)
- F A Russell
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - R King
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S-J Smillie
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - X Kodji
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| | - S D Brain
- Cardiovascular Division, BHF Centre of Research Excellence & Centre of Integrative Biomedicine, King's College London, Waterloo Campus, London SE1 9NH, United Kingdom
| |
Collapse
|
41
|
Vécsei L, Szok D, Csáti A, Tajti J. CGRP antagonists and antibodies for the treatment of migraine. Expert Opin Investig Drugs 2014; 24:31-41. [DOI: 10.1517/13543784.2015.960921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
42
|
Bell IM. Calcitonin Gene-Related Peptide Receptor Antagonists: New Therapeutic Agents for Migraine. J Med Chem 2014; 57:7838-58. [DOI: 10.1021/jm500364u] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Ian M. Bell
- Department of Discovery Chemistry,
Merck Research Laboratories, West
Point, Pennsylvania 19486, United States
| |
Collapse
|
43
|
Walter S, Alibhoy A, Escandon R, Bigal ME. Evaluation of cardiovascular parameters in cynomolgus monkeys following IV administration of LBR-101, a monoclonal antibody against calcitonin gene-related peptide. MAbs 2014; 6:871-8. [PMID: 24866108 PMCID: PMC4171022 DOI: 10.4161/mabs.29242] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a well-validated target for migraine therapy and a known potent systemic vasodilator. LBR-101 is a monoclonal antibody against CGRP in clinical development for the preventive treatment of episodic and chronic migraine. Understanding the hemodynamic and cardiovascular consequences of chronic CGRP inhibition is therefore warranted. Given the conservation in CGRP sequence between monkeys and humans, addressing this question in monkeys is ideal as it allows dosing at super-therapeutic levels. To this end, two independent studies were conducted in monkeys: a single dedicated cardiovascular safety study and a repeat-dose, chronic study, both with electrocardiogram and hemodynamic assessments. LBR-101 was very well tolerated in both studies, with no clinically significant changes noted in any hemodynamic parameter, nor any relevant changes noted in any ECG parameter. In cynomolgus monkeys, cardiovascular and hemodynamic parameters do not appear to be affected by long-term inhibition of CGRP with LBR-101.
Collapse
|
44
|
Vanheel B. Calcitonin gene-related powerpeptide and its puzzling receptor. Acta Physiol (Oxf) 2014; 210:710-3. [PMID: 24495305 DOI: 10.1111/apha.12245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- B. Vanheel
- Department of Basic Medical Sciences; Division of Physiology; Ghent University; Ghent Belgium
| |
Collapse
|
45
|
Edvinsson L, Ahnstedt H, Larsen R, Sheykhzade M. Differential localization and characterization of functional calcitonin gene-related peptide receptors in human subcutaneous arteries. Acta Physiol (Oxf) 2014; 210:811-22. [PMID: 24330354 DOI: 10.1111/apha.12213] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/08/2013] [Accepted: 12/06/2013] [Indexed: 11/28/2022]
Abstract
AIM Calcitonin gene-related peptide (CGRP) and its receptor are widely distributed within the circulation and the mechanism behind its vasodilation not only differs from one animal species to another but is also dependent on the type and size of vessel. The present study examines the nature of CGRP-induced vasodilation, characteristics of the CGRP receptor antagonist telcagepant and localization of the key components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) of the CGRP receptor in human subcutaneous arteries. METHODS CGRP-induced vasodilation and receptor localization in human subcutaneous arteries were studied by wire myograph in the presence and absence of the CGRP receptor antagonist telcagepant and immunohistochemistry respectively. RESULTS At concentrations of 1, 3, 5, 10 and 30 nm, telcagepant had a competitive antagonist-like behaviour characterized by a parallel rightwards shift in the log CGRP concentration-tension/calcium curve with no depression of the maximal relaxation. CGRP-induced vasodilation was not affected by mechanical removal of the endothelium or addition of L-NG-nitroarginine methyl ester and indomethacin, antagonists for synthesis of nitric oxide and prostaglandins, respectively. CLR and RAMP1 were localized in the vascular smooth muscle and endothelial cells. CONCLUSION The present results indicate that CGRP exerts its vasodilatory effect in human subcutaneous arteries by binding to its receptors located on the smooth muscle cells and is suggested to be endothelium-independent. In conclusion, these results underline the dynamic distribution of CGRP receptor components in the human circulation reflecting the important role of CGRP in fine tuning of the blood flow in resistance arteries.
Collapse
Affiliation(s)
- L. Edvinsson
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - H. Ahnstedt
- Department of Clinical Sciences; Division of Experimental Vascular Research; Lund University; Lund Sweden
| | - R. Larsen
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - M. Sheykhzade
- Department of Drug Design and Pharmacology; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
46
|
Bigal ME, Walter S, Bronson M, Alibhoy A, Escandon R. Cardiovascular and hemodynamic parameters in women following prolonged CGRP inhibition using LBR-101, a monoclonal antibody against CGRP. Cephalalgia 2014; 34:968-76. [PMID: 24662322 DOI: 10.1177/0333102414527646] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The vascular effects of acute calcitonin gene-related peptide (CGRP) inhibition are well described, but the effects of sustained inhibition warrant further exploration in humans. OBJECTIVES The objective of this article is to assess the effects of sustained CGRP inhibition on blood pressure, heart rate, and ECGs in healthy women ≥ 40 years of age. METHODS In this double-blind, placebo-controlled study, 31 women (mean age = 56) were randomized to receive placebo or an anti-CGRP monoclonal antibody at doses up to 2000 mg. Participants were confined for seven days and followed for 168 days. Cardiac telemetry was conducted for eight hours after infusion completion. Hemodynamic assessments and ECGs were conducted six times during Day 1 and periodically for three months. RESULTS No clinically relevant changes in systolic or diastolic blood pressure, heart rate, or ECG parameters (RR, PR, QRS, or QTcF) were observed when comparing baseline vs. post-dose time-points or in-between groups. No significant changes were seen for adjusted QTcF (baseline subtracted and placebo and baseline subtracted). No significant differences or relevant abnormalities were seen when comparing parameters obtained at Tmax vs. any other time-point. CONCLUSION Sustained CGRP inhibition was not associated with hemodynamic or ECG changes in a population at an increased age risk for cardiovascular events.
Collapse
|
47
|
Chan KY, Labruijere S, Ramírez Rosas MB, de Vries R, Garrelds IM, Danser AHJ, Villalón CM, van den Bogaerdt A, Dirven C, MaassenVanDenBrink A. Cranioselectivity of sumatriptan revisited: pronounced contractions to sumatriptan in small human isolated coronary artery. CNS Drugs 2014; 28:273-8. [PMID: 24430784 DOI: 10.1007/s40263-013-0136-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Initial concerns about the coronary side-effect potential of the anti-migraine drug sumatriptan and second-generation triptans initiated cranioselectivity studies using proximal human coronary arteries. However, myocardial ischaemia may originate from both large and small human coronary arteries. METHODS We investigated the contractions to sumatriptan in proximal (internal diameter 2-3 mm), distal (internal diameter 1,000-1,500 μm) and small (internal diameter 500-1,000 μm) human epicardial coronary arteries and compared these with contractions in the human middle meningeal artery. Concentration response curves to sumatriptan in human coronary arteries were constructed in the absence or presence of the 5-hydroxytryptamine1B (5-HT1B) receptor antagonist SB224289 and the 5-HT1D receptor antagonist BRL15572. The effect of sumatriptan on increased cyclic adenosine monophosphate (cAMP) levels induced by forskolin in proximal and distal coronary artery segments was investigated using a biochemical assay. Western blotting was used to analyse the 5-HT1B receptor density in the human arteries. RESULTS Contractions in the proximal human coronary artery were significantly smaller than those in the human meningeal artery, as we showed previously. In contrast, contractions to sumatriptan in distal and small human coronary arteries were not different from those in the human meningeal artery. The 5-HT1B receptor antagonist SB224289, but not the 5-HT1D receptor antagonist BRL15572, inhibited the contraction induced by sumatriptan in the coronary arteries. Moreover, in distal, but not in proximal, coronary arteries, sumatriptan inhibited the increase in cAMP levels induced by forskolin. Contrary to our expectations, the 5-HT1B receptor expression was more pronounced in the proximal human coronary artery than in the distal and small human coronary artery. CONCLUSIONS Based on functional experiments in distal and small human coronary arteries, contractions to sumatriptan are not as cranioselective as previously assumed. However, the vast clinical experience with sumatriptan and other triptans has proven that these drugs are cardiovascularly safe when contraindications are taken into account.
Collapse
Affiliation(s)
- Kayi Y Chan
- Department of Internal Medicine, Division of Pharmacology, Erasmus Medical Centre, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bigal ME, Escandon R, Bronson M, Walter S, Sudworth M, Huggins JP, Garzone P. Safety and tolerability of LBR-101, a humanized monoclonal antibody that blocks the binding of CGRP to its receptor: Results of the Phase 1 program. Cephalalgia 2013; 34:483-92. [PMID: 24366980 DOI: 10.1177/0333102413517775] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/28/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND LBR-101 is a fully humanized monoclonal antibody that binds to calcitonin gene-related peptide. OBJECTIVE The objective of this article is to characterize the safety and tolerability of LBR-101 when administered intravenously to healthy volunteers, by presenting the pooled results of the Phase 1 program. METHODS LBR-101 was administered to 94 subjects, while 45 received placebo. Doses ranged from 0.2 mg to 2000 mg given once (Day 1), as a single IV infusion, or up to 300 mg given twice (Day 1 and Day 14). RESULTS Subjects receiving placebo reported an average of 1.3 treatment-emerging adverse events vs 1.4 per subject among those receiving any dose of LBR-101, and 1.6 in those receiving 1000 mg or higher. Treatment-related adverse events occurred in 21.2% of subjects receiving LBR-101, compared to 17.7% in those receiving placebo. LBR-101 was not associated with any clinically relevant patterns of change in vital signs, ECG parameters, or laboratory findings. The only serious adverse event consisted of "thoracic aortic aneurysm" in a participant later found to have an unreported history of Ehlers-Danlos syndrome. CONCLUSION Single IV doses of LBR-101 ranging from 0.2 mg up to 2000 mg and multiple IV doses up to 300 mg were well tolerated. Overt safety concerns have not emerged. A maximally tolerated dose has not been identified.
Collapse
|
49
|
Labruijere S, Ibrahimi K, Chan KY, MaassenVanDenBrink A. Discovery techniques for calcitonin gene-related peptide receptor antagonists for potential antimigraine therapies. Expert Opin Drug Discov 2013; 8:1309-23. [DOI: 10.1517/17460441.2013.826644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
|