1
|
Shen X, Miao S, Zhang Y, Guo X, Li W, Mao X, Zhang Q. Stearic acid metabolism in human health and disease. Clin Nutr 2025; 44:222-238. [PMID: 39709650 DOI: 10.1016/j.clnu.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
Named after the Greek term for "hard fat", stearic acid has gradually entered people's field of vision. As an important component of various physiological cellular functions, stearic acid plays a regulatory role in diverse aspects of energy metabolism and signal transduction. Its applications range from serving as a bodily energy source to participating in endogenous biosynthesis. Similar to palmitate, stearic acid serves as a primary substrate for the stearoyl coenzyme A desaturase, which catalyzes the conversion of stearate to oleate and is involved in the synthesis of triglyceride and other complex lipids. Additionally, stearic acid functions as a vital signaling molecule in pathological processes such as cardiovascular diseases, diabetes development, liver injury and even nervous system disorders. Therefore, we conduct a comprehensive review of stearic acid, summarizing its role in various diseases and attempting to provide a systematic overview of its homeostasis, physiological functions, and pathological process. From a medical standpoint, we also explore potential applications and discuss stearic acid as a potential therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Xinyi Shen
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China; School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shuo Miao
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yaping Zhang
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingying Guo
- Department of Operating Room, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenxian Li
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Mao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Qingsong Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Miao S, Yang L, Xu T, Liu Z, Zhang Y, Ding L, Ding W, Ao X, Wang J. A novel circPIK3C2A/miR‐31‐5p/TFRC axis drives ferroptosis and accelerates myocardial injury. MedComm (Beijing) 2024; 5:e571. [PMID: 38840772 PMCID: PMC11151151 DOI: 10.1002/mco2.571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/08/2024] [Accepted: 03/16/2024] [Indexed: 06/07/2024] Open
Abstract
Iron overload is common in cardiovascular disease, it is also the factor that drives ferroptosis. Noncoding RNAs play an important role in heart disease; however, their regulatory role in iron overload-mediated ferroptosis remains much unknown. In our study, the iron overload model in mice was constructed through a high-iron diet, and ammonium iron citrate treatment was used to mimic iron overload in vitro. We found iron overload induced ferroptosis in cardiomyocytes, which was dependent on the high expression of transferrin receptor (TFRC). MiR-31-5p was downregulated during iron overload; it inhibited cardiomyocyte ferroptosis by targeting TFRC. CircPIK3C2A, a highly expressed circRNA in the heart, was upregulated when iron was overloaded. CircPIK3C2A enhanced the expression of TFRC by sponging miR-31-5p and promoted ferroptosis during iron overload. Our results reveal a novel mechanistic insight into noncoding RNA-based ferroptosis and identify the circPIK3C2A/miR-31-5p/TFRC axis as a promising therapeutic target for myocardial damage.
Collapse
Affiliation(s)
- Shuo Miao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lanting Yang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Tao Xu
- Central LaboratoryQingdao Agricultural UniversityQingdaoChina
| | - Zhantao Liu
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Yixiao Zhang
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Lin Ding
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Wei Ding
- Department of Comprehensive Internal MedicineAffiliated Hospital of Qingdao UniversityQingdaoChina
| | - Xiang Ao
- School of Basic MedicineQingdao UniversityQingdaoChina
| | - Jianxun Wang
- School of Basic MedicineQingdao UniversityQingdaoChina
| |
Collapse
|
3
|
Kumfu S, Sripetchwandee J, Thonusin C, Sumneang N, Maneechote C, Arunsak B, Chunchai T, Oo TT, Kongkaew A, Chattipakorn SC, Chattipakorn N. Ferroptosis inhibitor improves cardiac function more effectively than inhibitors of apoptosis and necroptosis through cardiac mitochondrial protection in rats with iron-overloaded cardiomyopathy. Toxicol Appl Pharmacol 2023; 479:116727. [PMID: 37863361 DOI: 10.1016/j.taap.2023.116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Iron overload cardiomyopathy (IOC) is the leading cause of death in cases of iron overload in patients. Previous studies demonstrated that iron overload led to cardiomyocyte dysfunction and death through multiple pathways including apoptosis, necroptosis and ferroptosis. However, the dominant cell death pathway in the iron-overloaded heart needs clarification. We tested the hypothesis that ferroptosis, an iron-dependent cell death, plays a dominant role in IOC, and ferroptosis inhibitor exerts greater efficacy than inhibitors of apoptosis and necroptosis on improving cardiac function in iron-overloaded rats. Iron dextran was injected intraperitoneally into male Wistar rats for four weeks to induce iron overload. Then, the rats were divided into 5 groups: treated with vehicle, apoptosis inhibitor (z-VAD-FMK), necroptosis inhibitor (Necrostatin-1), ferroptosis inhibitor (Ferrostatin-1) or iron chelator (deferoxamine) for 2 weeks. Cardiac function, mitochondrial function, apoptosis, necroptosis and ferroptosis were determined. The increased expression of apoptosis-, necroptosis- and ferroptosis-related proteins, were associated with impaired cardiac and mitochondrial function in iron-overloaded rats. All cell death inhibitors attenuated cardiac apoptosis, necroptosis and ferroptosis in iron-overloaded rats. Ferrostatin-1 was more effective than the other drugs in diminishing mitochondrial dysfunction and Bax/Bcl-2 ratio. Moreover, both Ferrostatin-1 and deferoxamine reversed iron overload-induced cardiac dysfunction as indicated by restored left ventricular ejection fraction and E/A ratio, whereas z-VAD-FMK and Necrostatin-1 only partially improved this parameter. These results indicated that ferroptosis could be the predominant form of cardiomyocyte death in IOC, and that inhibiting ferroptosis might be a potential novel treatment for IOC.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natticha Sumneang
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thura Tun Oo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Sönmez Aydın F, Hukkamlı B, Budak H. Coaction of hepatic thioredoxin and glutathione systems in iron overload-induced oxidative stress. J Biochem Mol Toxicol 2021; 35:e22704. [PMID: 33393188 DOI: 10.1002/jbt.22704] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/12/2020] [Accepted: 12/12/2020] [Indexed: 01/15/2023]
Abstract
In the present study, we demonstrate the coaction of thioredoxin and glutathione (GSH) systems in mouse liver against iron overload-induced oxidative stress (OS). Mice were injected intraperitoneally with an iron dextran solution twice a week for 3 weeks. Iron accumulation in mouse liver was demonstrated spectroscopically. To confirm the iron overload model in the liver, the increased gene expression levels of hepcidin (Hamp), ferroportin (Fpn1), and ferritin (Fth1), which regulate iron trafficking, were observed by a quantitative polymerase chain reaction. In the case of iron overload, the GSH level and the reduced glutathione/oxidized glutathione ratio, which represents a marker of OS, decreased significantly. An increase in the malondialdehyde level, one of the final products of the lipid peroxidation process, was observed. The gene expression of the thioredoxin system, including thioredoxin (Trx1) and thioredoxin reductase (TrxR1), was examined. Though TrxR1 expression decreased, no changes were observed in Trx1. The enzyme activity and semiquantitative protein expression of TRXR1 increased. The activity of GSH reductase and GSH peroxidase increased in the iron overload group. The gene and protein expressions of thioredoxininteracting protein, which is an indicator of the commitment of the cell to apoptosis, were elevated significantly. The increased protein expression of Bcl-2-related X protein and CASPASE-3, which is an indicator of apoptosis, increased significantly. In conclusion, excess iron accumulation in mouse liver tissue causes OS, which affects the redox state of the thioredoxin and GSH systems, inducing cell apoptosis and also ferroptosis due to increased lipid peroxidation and the depletion of GSH level.
Collapse
Affiliation(s)
- Feyza Sönmez Aydın
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Turkey
| | - Berna Hukkamlı
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Turkey.,Department of Chemical and Chemical Processing Technologies, Boyabat Vocational School, Sinop University, Sinop, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Science Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Kumfu S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Silencing of lipocalin-2 improves cardiomyocyte viability under iron overload conditions via decreasing mitochondrial dysfunction and apoptosis. J Cell Physiol 2020; 236:5108-5120. [PMID: 33319934 DOI: 10.1002/jcp.30219] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
This study aimed to investigate the mechanistic roles of LCN-2 and LCN-2 receptors (LCN-2R) as iron transporters in cardiomyocytes under iron overload condition. H9c2 cardiomyocytes were treated with either LCN-2 small interfering RNA (siRNA) or LCN-2R siRNA or L-type or T-type calcium channel (LTCC or TTCC) blockers, or iron chelator deferiprone (DFP). After the treatments, the cells were exposed to Fe3+ or Fe2+ , after that biological parameters were determined. Silencing of lipocalin-2 or its receptor improved cardiomyocyte viability via decreasing iron uptake, mitochondrial fission, mitophagy and cleaved caspase-3 only in the Fe3+ overload condition. In contrast, treatments with LTCC blocker and TTCC blocker showed beneficial effects on those parameters only in conditions of Fe2+ overload. Treatment with DFP has been shown beneficial effects both in Fe2+ and Fe3+ overload condition. All of these findings suggested that LTCC and TTCC play crucial roles in the Fe2+ uptake, whereas LCN-2 and LCN-2R were essential for Fe3+ uptake into the cardiomyocytes under iron overload conditions.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
6
|
The effects of serum iron level without anemia on long-term prognosis of patients with coronary heart disease complicated with chronic heart failure: a retrospective cohort study. Heart Vessels 2020; 35:1419-1428. [PMID: 32361848 DOI: 10.1007/s00380-020-01613-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
The effects of serum iron level without anemia on long-term prognosis of patients with coronary heart disease (CHD) complicated with chronic heart failure (CHF) is still unclear. The objective of this study was to explore the effects of serum iron level without anemia on long-term prognosis of patients with CHD complicated with CHF. In this retrospective cohort study, 221 patients with CHD complicated with CHF were consecutively investigated. These patients were divided into three groups according to the tertiles of the serum iron level: low-iron group (n = 71), medium-iron group (n = 76) and high-iron group (n = 74). The overall serum iron without anemia was 13.0 ± 5.50 μmol/L and serum iron in each group was 7.58 ± 1.63 μmol/L, 11.94 ± 1.79 μmol/L, and 19.37 ± 3.81 μmol/L, respectively. Composite endpoint events were composed of major adverse cardiovascular and cerebrovascular events (MACCE), including recurrent heart failure, all-cause death, acute coronary syndrome (ACS) and ischemic stroke. The median follow-up duration was 239 days. After adjusting relevant confounding risk factors, we found that excessively low or high serum iron level is correlated to the MACCE in patients with CHD complicated with CHF and that the prognosis of patients with excessively high serum iron level is poorer than that of patients with excessively low serum iron level. We further revealed the effect of serum iron level on MACCE is U-shaped, but not linear relationship. Sensitivity analysis showed that the correlation between serum iron level and MACCE is stable. In addition, according to the test for interaction, the variables that modify the effect including CRP (P for interaction < 0.0001), diuretics (P for interaction = 0.0212) and antiplatelet drugs (P for interaction = 0.0167). This study showed that excessively low or high serum iron level without anemia is an independent risk factor of MACCE in patients with CHD complicating with CHF.
Collapse
|
7
|
Fanoudi S, Alavi MS, Karimi G, Hosseinzadeh H. Milk thistle ( Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol 2020; 43:240-254. [PMID: 30033764 DOI: 10.1080/01480545.2018.1485687] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/17/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Biological and chemical agents cause dangerous effects on human health via different exposing ways. Recently, herbal medicine is considered as a biological and safe treatment for toxicities. Silybum marianum (milk thistle), belongs to the Asteraceae family, possesses different effects such as hepatoprotective, cardioprotective, neuroprotective, anti-inflammatory and anti-carcinogenic activities. Several studies have demonstrated that this plant has protective properties against toxic agents. Herein, the protective effects of S. marianum and its main component, silymarin, which is the mixture of flavonolignans including silibinin, silydianin and silychristin acts against different biological (mycotoxins, snake venoms, and bacterial toxins) and chemical (metals, fluoride, pesticides, cardiotoxic, neurotoxic, hepatotoxic, and nephrotoxic agents) poisons have been summarized. This review reveals that main protective effects of milk thistle and its components are attributed to radical scavenging, anti-oxidative, chelating, anti-apoptotic properties, and regulating the inflammatory responses.
Collapse
Affiliation(s)
- Sahar Fanoudi
- Department of Pharmacology Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| |
Collapse
|
8
|
Iron deficiency in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Int J Cardiol 2020; 300:14-19. [DOI: 10.1016/j.ijcard.2019.07.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Accepted: 07/28/2019] [Indexed: 12/11/2022]
|
9
|
Yang X, Zhu X, Tang X, Liu M, Zheng H, Zheng L. Astragalus polysaccharides meliorate cardiovascular dysfunction in iron-overloaded thalassemic mice. Exp Biol Med (Maywood) 2019; 244:1202-1209. [PMID: 31514541 DOI: 10.1177/1535370219876540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Xue Yang
- Department of Eugenics and Genetics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550003, China
| | - Xiaoxi Zhu
- Department of Eugenics and Genetics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550003, China
| | - Xianying Tang
- Department of Eugenics and Genetics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550003, China
| | - Mei Liu
- Department of Eugenics and Genetics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550003, China
| | - Huiling Zheng
- Department of Eugenics and Genetics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550003, China
| | - Lin Zheng
- Department of Eugenics and Genetics, Guiyang Maternal and Child Health-Care Hospital, Guiyang 550003, China
| |
Collapse
|
10
|
More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond) 2018; 132:909-923. [PMID: 29739822 DOI: 10.1042/cs20171592] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a small circulating protein that is highly modulated in a wide variety of pathological situations, making it a useful biomarker of various disease states. It is one of the best markers of acute kidney injury, as it is rapidly released after tubular damage. However, a growing body of evidence highlights an important role for NGAL beyond that of a biomarker of renal dysfunction. Indeed, numerous studies have demonstrated a role for NGAL in both cardiovascular and renal diseases. In the present review, we summarize current knowledge concerning the involvement of NGAL in cardiovascular and renal diseases and discuss the various mechanisms underlying its pathological implications.
Collapse
|
11
|
Kumfu S, Khamseekaew J, Palee S, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N. Combined iron chelator and T-type calcium channel blocker exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Eur J Pharmacol 2018; 822:43-50. [DOI: 10.1016/j.ejphar.2018.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
|
12
|
Kumfu S, Khamseekaew J, Palee S, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N. A combination of an iron chelator with an antioxidant exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Free Radic Res 2017; 52:70-79. [DOI: 10.1080/10715762.2017.1414208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Juthamas Khamseekaew
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | | | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Molazem Z, Noormohammadi R, Dokouhaki R, Zakerinia M, Bagheri Z. The Effects of Nutrition, Exercise, and a Praying Program on Reducing Iron Overload in Patients With Beta-Thalassemia Major: A Randomized Clinical Trial. IRANIAN JOURNAL OF PEDIATRICS 2017; 26:e3869. [PMID: 28203323 PMCID: PMC5297260 DOI: 10.5812/ijp.3869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 04/20/2016] [Accepted: 05/08/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Excessive iron accumulation in the visceral organs creates problems for patients with beta-thalassemia major. Despite chelation therapy, mortality rate from the complications of this disease is still quite high. OBJECTIVES This study aimed to investigate the effectiveness of nutrition, exercise, and a praying program at reducing iron overload in patients with beta-thalassemia major. PATIENTS AND METHODS This randomized clinical trial assessed the effect of the designed care program on iron overload. The study was conducted in 38 patients with beta-thalassemia major who ranged in age from 15 - 35 years and had been referred to the largest center for thalassemic patients in Shiraz. The patients were randomly assigned to an intervention (n = 18) and a control (n = 20) group. Blood samples were collected from the participants before and two months after the intervention. Then, the data were statistically analyzed using chi-square, Fisher's exact test, Mann-Whitney U-test, Wilcoxon, independent samples t-test, and paired samples t-test. RESULTS The results showed that the mean level of serum ferritin significantly decreased in the intervention group two months after beginning the intervention. Also, the mean level of serum iron decreased in the intervention group, but the difference was not statistically significant. CONCLUSIONS The planned educational program could be used to reduce iron overload and ultimately improve the patients' health status.
Collapse
Affiliation(s)
- Zahra Molazem
- Community Based Nursing and Midwifery Research Center, Faculty of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, IR Iran
- Corresponding author: Zahra Molazem, Community Based Nursing and Midwifery Research Center, Faculty of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, IR Iran. Tel: +98-9177154036, Fax: +98-7116474252, E-mail:
| | | | - Roya Dokouhaki
- Department of Nursing, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Maryam Zakerinia
- Department of Internal Medicine, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, IR Iran
| | - Zahra Bagheri
- Department of Biostatistics, Shiraz University of Medical Sciences, Shiraz, IR Iran
| |
Collapse
|
14
|
Khamseekaew J, Kumfu S, Wongjaikam S, Kerdphoo S, Jaiwongkam T, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N. Effects of iron overload, an iron chelator and a T-Type calcium channel blocker on cardiac mitochondrial biogenesis and mitochondrial dynamics in thalassemic mice. Eur J Pharmacol 2017; 799:118-127. [PMID: 28192097 DOI: 10.1016/j.ejphar.2017.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/07/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022]
Abstract
Although cardiac mitochondrial dysfunction is involved in the pathophysiology of iron-overload cardiomyopathy, the precise mechanisms of iron-induced mitochondrial dysfunction, and the roles of the iron chelator deferiprone and the T-type calcium channel blocker efonidipine on cardiac mitochondrial biogenesis in thalassemic mice are still unknown. β-thalassemic (HT) mice were fed with a normal diet (ND) or a high iron-diet (FE) for 90 days. Then, the FE-fed mice were treated with deferiprone (75mg/kg/day) or efonidipine (4mg/kg/day) for 30 days. The hearts were used to determine cardiac mitochondrial function, biogenesis, mitochondrial dynamics and protein expressions for oxidative phosphorylation (OXPHOS) and apoptosis. ND-fed HT mice had impaired heart rate variability (HRV), increased mitochondrial dynamic proteins and caspase-3, compared with ND-fed wild-type mice. Iron overload led to increased plasma non-transferrin bound iron, oxidative stress, and the impairments of HRV and left ventricular function, cardiac mitochondrial function and mitochondrial dynamics, and decreased complex IV in thalassemic mice. Our results suggested that deferiprone and efonidipine treatment showed similar benefit in attenuating cardiac iron deposit and oxidative stress, and improved cardiac mitochondrial function, leading to improved left ventricular function, without altering the cardiac mitochondrial biogenesis, and apoptosis proteins in iron-overload thalassemic mice.
Collapse
Affiliation(s)
- Juthamas Khamseekaew
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Suwakon Wongjaikam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | | | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
15
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|
16
|
Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y, Izawa-Ishizawa Y, Kihira Y, Miyamoto L, Ishizawa K, Tsuchiya K, Tamaki T. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol 2016; 35:66-76. [PMID: 27049128 DOI: 10.1016/j.jtemb.2016.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/02/2016] [Accepted: 01/22/2016] [Indexed: 12/21/2022]
Abstract
Skeletal muscle wasting or sarcopenia is a critical health problem. Skeletal muscle atrophy is induced by an excess of iron, which is an essential trace metal for all living organisms. Excessive amounts of iron catalyze the formation of highly toxic hydroxyl radicals via the Fenton reaction. However, the molecular mechanism of iron-induced skeletal muscle atrophy has remained unclear. In this study, 8-weeks-old C57BL6/J mice were divided into 2 groups: vehicle-treated group and the iron-injected group (10 mg iron day(-1)mouse(-1)) during 2 weeks. Mice in the iron-injected group showed an increase in the iron content of the skeletal muscle and serum and ferritin levels in the muscle, along with reduced skeletal muscle mass. The skeletal muscle showed elevated mRNA expression of the muscle atrophy-related E3 ubiquitin ligases, atrogin-1 and muscle ring finger-1(MuRF1), on days 7 and 14 of iron treatment. Moreover, iron-treated mice showed reduced phosphorylation of Akt and forkhead box O3 (FOXO3a) in skeletal muscles. Inhibition of FOXO3a using siRNA in vitro in C2C12 myotube cells inhibited iron-induced upregulation of atrogin-1 and MuRF1 and reversed the reduction in myotube diameters. Iron-load caused oxidative stress, and an oxidative stress inhibitor abrogated iron-induced muscle atrophy by reactivating the Akt-FOXO3a pathway. Iron-induced skeletal muscle atrophy is suggested to involve the E3 ubiquitin ligase mediated by the reduction of Akt-FOXO3a signaling by oxidative stress.
Collapse
Affiliation(s)
- Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Mizuki Imao
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akiho Satoh
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroaki Watanabe
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshitaka Kihira
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Clinical Pharmacy, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan; Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
17
|
Kumfu S, Chattipakorn SC, Fucharoen S, Chattipakorn N. Dual T-type and L-type calcium channel blocker exerts beneficial effects in attenuating cardiovascular dysfunction in iron-overloaded thalassaemic mice. Exp Physiol 2016; 101:521-39. [DOI: 10.1113/ep085517] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences; Mahidol University; Nakhon Pathom Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
18
|
Yang L, Yu D, Mo R, Zhang J, Hua H, Hu L, Feng Y, Wang S, Zhang WY, Yin N, Mo XM. The Succinate Receptor GPR91 Is Involved in Pressure Overload-Induced Ventricular Hypertrophy. PLoS One 2016; 11:e0147597. [PMID: 26824665 PMCID: PMC4732750 DOI: 10.1371/journal.pone.0147597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/06/2016] [Indexed: 01/03/2023] Open
Abstract
Background Pulmonary arterial hypertension is characterized by increased pressure overload that leads to right ventricular hypertrophy (RVH). GPR91 is a formerly orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate; however, its role in RVH remains unknown. Methods and Results We investigated the role of succinate-GPR91 signaling in a pulmonary arterial banding (PAB) model of RVH induced by pressure overload in SD rats. GPR91 was shown to be located in cardiomyocytes. In the sham and PAB rats, succinate treatment further aggravated RVH, up-regulated RVH-associated genes and increased p-Akt/t-Akt levels in vivo. In vitro, succinate treatment up-regulated the levels of the hypertrophic gene marker anp and p-Akt/t-Akt in cardiomyocytes. All these effects were inhibited by the PI3K antagonist wortmannin both in vivo and in vitro. Finally, we noted that the GPR91-PI3K/Akt axis was also up-regulated compared to that in human RVH. Conclusions Our findings indicate that succinate-GPR91 signaling may be involved in RVH via PI3K/Akt signaling in vivo and in vitro. Therefore, GPR91 may be a novel therapeutic target for treating pressure overload-induced RVH.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Gene Expression Regulation
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Humans
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/surgery
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Stroke Volume
- Succinic Acid/metabolism
- Succinic Acid/pharmacology
- Wortmannin
Collapse
Affiliation(s)
- Lei Yang
- Department of Gastroenterology, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Di Yu
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Ran Mo
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, the affiliated hospital of Nanjing University Medical School, Nanjing, China
| | - Jiru Zhang
- Department of Anesthesiology, Affiliated Hospital of Jiangnan University, Wuxi No.4 People’s Hospital, Nanjing, China
| | - Hu Hua
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Liang Hu
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yu Feng
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Song Wang
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Wei-yan Zhang
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Ning Yin
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, China
- * E-mail: (XMM); (NY)
| | - Xu-Ming Mo
- Department of Cardiothoracic Surgery, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
- * E-mail: (XMM); (NY)
| |
Collapse
|
19
|
Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:230182. [PMID: 25878762 PMCID: PMC4387903 DOI: 10.1155/2015/230182] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.
Collapse
|
20
|
Chen MP, Cabantchik ZI, Chan S, Chan GCF, Cheung YF. Iron overload and apoptosis of HL-1 cardiomyocytes: effects of calcium channel blockade. PLoS One 2014; 9:e112915. [PMID: 25390893 PMCID: PMC4229305 DOI: 10.1371/journal.pone.0112915] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 10/20/2014] [Indexed: 02/03/2023] Open
Abstract
Background Iron overload cardiomyopathy that prevails in some forms of hemosiderosis is caused by excessive deposition of iron into the heart tissue and ensuing damage caused by a raise in labile cell iron. The underlying mechanisms of iron uptake into cardiomyocytes in iron overload condition are still under investigation. Both L-type calcium channels (LTCC) and T-type calcium channels (TTCC) have been proposed to be the main portals of non-transferrinic iron into heart cells, but controversies remain. Here, we investigated the roles of LTCC and TTCC as mediators of cardiac iron overload and cellular damage by using specific Calcium channel blockers as potential suppressors of labile Fe(II) and Fe(III) ingress in cultured cardiomyocytes and ensuing apoptosis. Methods Fe(II) and Fe(III) uptake was assessed by exposing HL-1 cardiomyocytes to iron sources and quantitative real-time fluorescence imaging of cytosolic labile iron with the fluorescent iron sensor calcein while iron-induced apoptosis was quantitatively measured by flow cytometry analysis with Annexin V. The role of calcium channels as routes of iron uptake was assessed by cell pretreatment with specific blockers of LTCC and TTCC. Results Iron entered HL-1 cardiomyocytes in a time- and dose-dependent manner and induced cardiac apoptosis via mitochondria-mediated caspase-3 dependent pathways. Blockade of LTCC but not of TTCC demonstrably inhibited the uptake of ferric but not of ferrous iron. However, neither channel blocker conferred cardiomyocytes with protection from iron-induced apoptosis. Conclusion Our study implicates LTCC as major mediators of Fe(III) uptake into cardiomyocytes exposed to ferric salts but not necessarily as contributors to ensuing apoptosis. Thus, to the extent that apoptosis can be considered a biological indicator of damage, the etiopathology of cardiosiderotic damage that accompanies some forms of hemosiderosis would seem to be unrelated to LTCC or TTCC, but rather to other routes of iron ingress present in heart cells.
Collapse
Affiliation(s)
- Mei-pian Chen
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Z. Ioav Cabantchik
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Safra Campus at Givat Ram, Jerusalem, Israel
| | - Shing Chan
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
| | - Godfrey Chi-fung Chan
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail: (GCFC); (YFC)
| | - Yiu-fai Cheung
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
- * E-mail: (GCFC); (YFC)
| |
Collapse
|
21
|
Kolli MB, Manne NDPK, Para R, Nalabotu SK, Nandyala G, Shokuhfar T, He K, Hamlekhan A, Ma JY, Wehner PS, Dornon L, Arvapalli R, Rice KM, Blough ER. Cerium oxide nanoparticles attenuate monocrotaline induced right ventricular hypertrophy following pulmonary arterial hypertension. Biomaterials 2014; 35:9951-9962. [PMID: 25224369 DOI: 10.1016/j.biomaterials.2014.08.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/23/2014] [Indexed: 12/16/2022]
Abstract
Cerium oxide (CeO2) nanoparticles have been posited to exhibit potent anti-oxidant activity which may allow for the use of these materials in biomedical applications. Herein, we investigate whether CeO2 nanoparticle administration can diminish right ventricular (RV) hypertrophy following four weeks of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). Male Sprague Dawley rats were randomly divided into three groups: control, MCT only (60 mg/kg), or MCT + CeO2 nanoparticle treatment (60 mg/kg; 0.1 mg/kg). Compared to the control group, the RV weight to body weight ratio was 45% and 22% higher in the MCT and MCT + CeO2 groups, respectively (p < 0.05). Doppler echocardiography demonstrated that CeO2 nanoparticle treatment attenuated monocrotaline-induced changes in pulmonary flow and RV wall thickness. Paralleling these changes in cardiac function, CeO2 nanoparticle treatment also diminished MCT-induced increases in right ventricular (RV) cardiomyocyte cross sectional area, β-myosin heavy chain, fibronectin expression, protein nitrosylation, protein carbonylation and cardiac superoxide levels. These changes with treatment were accompanied by a decrease in the ratio of Bax/Bcl2, diminished caspase-3 activation and reduction in serum inflammatory markers. Taken together, these data suggest that CeO2 nanoparticle administration may attenuate the hypertrophic response of the heart following PAH.
Collapse
Affiliation(s)
- Madhukar B Kolli
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, United States; Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
| | - Nandini D P K Manne
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, United States; Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
| | - Radhakrishna Para
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
| | - Siva K Nalabotu
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, United States; Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
| | - Geeta Nandyala
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
| | - Tolou Shokuhfar
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, United States
| | - Kun He
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, United States; School of Materials Science and Engineering, Shandong University, Ji'nan, China
| | - Azhang Hamlekhan
- Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, United States
| | - Jane Y Ma
- Health Effects Laboratory Division, NIOSH, Morgantown, WV, United States
| | - Paulette S Wehner
- Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Lucy Dornon
- Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Ravikumar Arvapalli
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
| | - Kevin M Rice
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States
| | - Eric R Blough
- Department of Pharmacology, Physiology and Toxicology, Marshall University, Joan C. Edwards School of Medicine, Huntington, WV, United States; Center for Diagnostic Nanosystems, Marshall University, Huntington, WV, United States; Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States; Department of Pharmaceutical Sciences and Research, Marshall University, Huntington, WV, United States.
| |
Collapse
|
22
|
Abd Allah ESH, Ahmed MA, Abdel Mola AF. Comparative study of the effect of verapamil and vitamin D on iron overload-induced oxidative stress and cardiac structural changes in adult male rats. ACTA ACUST UNITED AC 2014; 21:293-300. [PMID: 25092628 DOI: 10.1016/j.pathophys.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/24/2014] [Accepted: 06/11/2014] [Indexed: 01/17/2023]
Abstract
The present study was designed to compare the effect of verapamil and vitamin D on the expression of the voltage-dependent LTCC alpha 1c subunit (Cav1.2) and thereby on iron overload-induced cardiac dysfunction in adult male rat. Forty rats were randomly divided into four groups. Control group received the vehicle, iron overload group received ferrous sulfate intraperitoneally (IP) for 4 weeks, iron overload+verapamil received ferrous sulfate and verapamil IP concurrently for 4 weeks and iron overload+vitamin D group received ferrous sulfate IP and vitamin D3 orally concurrently for 4 weeks. Serum ferritin, total antioxidant capacity (TAC), total peroxide (TP) and cardiac iron and calcium were determined. Oxidative stress index (OSI) was calculated. Histopathological studies using H&E, Masson trichrome and Prussian blue stains and immunohistochemical studies using Cav1.2 antibody were also carried out. Administration of ferrous sulfate induced a significant increase in serum ferritin, OSI, cardiac iron and calcium contents. Moreover, cardiomyocytes were degenerated and the expression of Cav1.2 protein was increased in iron overload group as compared to control. Verapamil decreased ferrous sulfate-induced increase in serum ferritin, OSI and cardiac iron deposition. In addition, verapamil improved myocardial degeneration and decreased the expression of Cav1.2 protein. In contrast, vitamin D produced insignificant changes in ferrous sulfate-induced increase in cardiac iron content, myocardial degeneration and the expression of Cav1.2 protein. These results indicate that verapamil has a protective effect against iron overload-induced cardiac dysfunction, oxidative stress and structural changes, while vitamin D has an insignificant effect on these parameters.
Collapse
Affiliation(s)
- Eman S H Abd Allah
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Marwa A Ahmed
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | |
Collapse
|
23
|
de Oliveira GMT, Kist LW, Pereira TCB, Bortolotto JW, Paquete FL, de Oliveira EMN, Leite CE, Bonan CD, de Souza Basso NR, Papaleo RM, Bogo MR. Transient modulation of acetylcholinesterase activity caused by exposure to dextran-coated iron oxide nanoparticles in brain of adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2014; 162:77-84. [PMID: 24704546 DOI: 10.1016/j.cbpc.2014.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 03/14/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to their capability to act simultaneously as a contrast agent and as a targeted drug delivery system. At present, one of the biggest concerns about the use of SPIONs remains around its toxicity and, for this reason, it is important to establish the safe upper limit for each use. In the present study, SPION coated with cross-linked aminated dextran (CLIO-NH₂) were synthesized and their toxicity to zebrafish brain was investigated. We have evaluated the effect of different CLIO-NH₂ doses (20, 50, 100, 140 and 200 mg/kg) as a function of time after exposure (one, 16, 24 and 48 h) on AChE activity and ache expression in zebrafish brain. The animals exposed to 200 mg/kg and tested 24 h after administration of the nanoparticles have shown decreased AChE activity, reduction in the exploratory performance, significantly higher level of ferric iron in the brains and induction of casp8, casp 9 and jun genes. Taken together, these findings suggest acute brain toxicity by the inhibition of acetylcholinesterase and induction of apoptosis.
Collapse
Affiliation(s)
- Giovanna Medeiros Tavares de Oliveira
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Josiane Woutheres Bortolotto
- Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Francisco Lima Paquete
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Elisa Magno Nunes de Oliveira
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carlos Eduardo Leite
- Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Nara Regina de Souza Basso
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Ricardo Meurer Papaleo
- Laboratório de Síntese de Materiais Nanoestruturados, Faculdade de Física, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil; Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
24
|
Hansen JB, Moen IW, Mandrup-Poulsen T. Iron: the hard player in diabetes pathophysiology. Acta Physiol (Oxf) 2014; 210:717-32. [PMID: 24521359 DOI: 10.1111/apha.12256] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/09/2014] [Accepted: 02/03/2014] [Indexed: 12/14/2022]
Abstract
The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides the relay between inflammation and oxidative β-cell damage. Iron chelation may be a potential therapeutic approach to reduce disease severity and mortality among diabetes patients. However, the therapeutic effect and safety of iron reduction need to be tested in clinical trials before dietary interventions or the use of iron chelation therapy titrated to avoid anaemia.
Collapse
Affiliation(s)
- J. B. Hansen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - I. W. Moen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - T. Mandrup-Poulsen
- Section for Endocrinological Research; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
- Department of Molecular Medicine and Surgery; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
25
|
Sripetchwandee J, KenKnight SB, Sanit J, Chattipakorn S, Chattipakorn N. Blockade of mitochondrial calcium uniporter prevents cardiac mitochondrial dysfunction caused by iron overload. Acta Physiol (Oxf) 2014; 210:330-41. [PMID: 24034353 DOI: 10.1111/apha.12162] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/15/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022]
Abstract
AIM Iron overload in the heart can lead to iron-overload cardiomyopathy and cardiac arrhythmia. In the past decades, growing evidence has suggested that cardiac mitochondrial dysfunction is associated with the development of cardiac dysfunction and lethal arrhythmias. Despite these facts, the effect of iron overload on cardiac mitochondrial function is still unclear. In this study, we determined the effects of iron overload on the cardiac mitochondrial function and the routes of cardiac mitochondrial iron uptake. We tested the hypothesis that iron overload can lead to cardiac mitochondrial dysfunction and that mitochondrial calcium uniporter (MCU) plays a major role for cardiac mitochondrial iron uptake under iron-overload condition. Cardiac mitochondrial function was assessed via the determination of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential changes. METHODS Isolated cardiac mitochondria from male Wistar rats were used in this study. To determine the routes for cardiac mitochondrial iron uptake, isolated mitochondria were exposed to MCU blocker (Ru360), mitochondrial permeability transition pore (mPTP) blocker (cyclosporin A) and an iron chelator (deferoxamine). RESULTS We found that (i) iron overload caused cardiac mitochondrial dysfunction, indicated by increased ROS production, mitochondrial membrane depolarization and mitochondrial swelling; and (ii) only MCU blocker completely protected cardiac mitochondrial dysfunction caused by iron overload. CONCLUSIONS These findings strongly suggest that MCU could be the major route for iron uptake into cardiac mitochondria. The inhibition of MCU could be the novel pharmacological intervention for preventing iron-overload cardiomyopathy.
Collapse
Affiliation(s)
- J. Sripetchwandee
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - S. B. KenKnight
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - J. Sanit
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - S. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - N. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Biomedical Engineering Center; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
26
|
Wang C, Blough ER, Arvapalli R, Dai X, Paturi S, Manne N, Addagarla H, Triest WE, Olajide O, Wu M. Metabolic syndrome-induced tubulointerstitial injury: role of oxidative stress and preventive effects of acetaminophen. Free Radic Biol Med 2013; 65:1417-1426. [PMID: 24140865 DOI: 10.1016/j.freeradbiomed.2013.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/17/2022]
Abstract
The prevalence of metabolic syndrome persistently increases and affects over 30% of U.S. adults. To study how metabolic syndrome may induce tubulointerstitial injury and whether acetaminophen has renal-protective properties, 4-week-old obese Zucker rats were randomly assigned into three groups, control (OC), vehicle dimethyl sulfoxide (OV), and acetaminophen treatment (30 mg/kg/day for 26 weeks), and lean Zucker rats served as healthy controls. Significant tubulointerstitial injuries were observed in both OC and OV animals, evidenced by increased tubular cell death, tubular atrophy/dilation, inflammatory cell infiltration, and fibrosis. These tubulointerstitial alterations were significantly reduced by treatment with a chronic but low dose of acetaminophen, which acted to diminish NADPH oxidase isoforms Nox2 and Nox4 and decrease tubulointerstitial oxidative stress (reduced tissue superoxide and macromolecular oxidation). Decreased oxidative stress by acetaminophen was paralleled by the reduction of tubular proapoptotic signaling (diminished Bax/Bcl-2 ratio and caspase 3 activation) and the alleviation of tubular epithelial-to-mesenchymal transition (decreased transforming growth factor β, connective tissue growth factor, α-smooth muscle actin, and laminin). These data suggest that increased oxidative stress plays a critical role in mediating metabolic syndrome-induced tubulointerstitial injury and provide the first evidence suggesting that acetaminophen may be of therapeutic benefit for the prevention of tubulointerstitial injury.
Collapse
Affiliation(s)
- Cuifen Wang
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Southeast University, Nanjing, Jiangsu, China
| | - Eric R Blough
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA.
| | - Ravikumar Arvapalli
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA
| | - Xiaoniu Dai
- Southeast University, Nanjing, Jiangsu, China
| | - Satyanarayana Paturi
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA
| | - Nandini Manne
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Hari Addagarla
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA
| | - William E Triest
- Huntington Veterans Affairs Medical Center, Huntington, WV 25704, USA
| | - Omolola Olajide
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Miaozong Wu
- Center for Diagnostic Nanosystems, Marshall University, Huntington, WV 25755, USA; School of Pharmacy, Marshall University, Huntington, WV 25755, USA; Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
27
|
Fannin J, Rice KM, Thulluri S, Arvapalli RK, Wehner P, Blough ER. The Effects of Aging on Indices of Oxidative Stress and Apoptosis in the Female Fischer 344/Nnia X Brown Norway/BiNia Rat Heart. Open Cardiovasc Med J 2013; 7:113-21. [PMID: 24358061 PMCID: PMC3866772 DOI: 10.2174/1874192401307010113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 01/30/2023] Open
Abstract
Oxidative-nitrosative stress may play a role in age-associated cardiovascular disease as implied by recent studies.However, limited research has been conducted using aged female rodent models. In this study, we examined hearts obtained from 6-, 26-, and 30-month old female Fischer 344/Nnia x Brown Norway/BiNia (F344xBN) rats in order to examine how aging affects levels of cardiac oxidative-nitrosative stress and apoptosis. Oxidative (superoxide anion and 4-HNE) and nitrosative (protein nitrosylation) stress markers were increased 180 ± 17 %, 110 ± 3 %, and 14 ± 2 %, respectively in 30-month hearts compared to the hearts of 6-month female rats. Coincident with these changes in oxidative-nitrosative stress, aging was also found to be associated with increases in the number of Tdt-mediated dUTP nick labeling (TUNEL)-positive cardiomyocytes, alterations in the Bax/Bcl-2 ratio, and elevated cleavage of caspase-3. Regression analysis demonstrates significant correlation in the age-associated changes markers of oxidative–nitrosative stress with changes in apoptotic signaling. The findings from this descriptive study imply that age-associated increases in mitochondrial-mediated apoptosis may be associated with the increase in oxidative-nitrosative stress in the aging F344xBN female heart.
Collapse
Affiliation(s)
- Jacqueline Fannin
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, USA ; Center for Diagnostic Nanosystems, Marshall University, Huntington WV, USA
| | - Kevin M Rice
- Department of Internal Medicine, Joan C. Edwards School of Medicine, Marshall University, Huntington WV, USA ; Center for Diagnostic Nanosystems, Marshall University, Huntington WV, USA
| | - Srininvas Thulluri
- Center for Diagnostic Nanosystems, Marshall University, Huntington WV, USA
| | | | - Paulette Wehner
- Department of Cardiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Eric R Blough
- Department of Pharmacology, Physiology, and Toxicology, Joan C. Edwards School of Medicine, Marshall University, USA ; Center for Diagnostic Nanosystems, Marshall University, Huntington WV, USA ; Department of Pharmaceutical Science Research, School of Pharmacy, Marshall University, Huntington WV, USA
| |
Collapse
|
28
|
Bavbek N, Yilmaz H, Erdemli HK, Selcuki Y, Duranay M, Akçay A. Correlation between iron stores and QTc dispersion in chronic ambulatory peritoneal dialysis patients. Ren Fail 2013; 36:187-90. [PMID: 24059284 DOI: 10.3109/0886022x.2013.836750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIM We aimed to investigate the QT dispersion and corrected QT (QTc) dispersion which are suggested as the signals of ventricular arrhythmias, in patients on maintenance CAPD and to evaluate the correlation between iron stores and these electrocardiographic parameters. MATERIALS AND METHOD Fifty-eight patients on maintenance CAPD and 19 healthy age- and sex-matched adults without cardiac disease were included. The PD patients were divided into two groups according to whether their computerized measurements of QTc dispersion were longer than 65 ms. RESULTS Although QT interval was statistically significantly shorter in control group (34 ± 28 vs. 43 ± 34 ms; p < 0.05), there was no significant difference in regards to the QTc, QT dispersion and QTc dispersion between two groups. PD patients with QTc dispersion longer than 65 ms had higher levels of serum ferritin (p = 0.038) and transferrin saturation (TSAT; p = 0.022) than the others. QTc dispersion were positively correlated with ferritin (r = 0.469, p < 0.01) and TSAT (r = 0.430, p < 0.01) in CAPD patients. CONCLUSION Although prolonged QTc, QT dispersion and QTc dispersion were suggested as the markers of ventricular arrhythmias we did not find any significant difference in regards to these parameters between control patients and CAPD patients. But the high body iron stores in these patients increase the risk of increased QT dispersion. The concern over iron overload in dialysis patients is not only because of its oxidative toxicity, but also its precipitation of arrhythmias, which may be measured by the surrogate marker of QTc dispersion.
Collapse
Affiliation(s)
- Nuket Bavbek
- Department of Nephrology, Turgut Ozal University Medical School , Ankara , Turkey
| | | | | | | | | | | |
Collapse
|
29
|
Esmaeil N, Moayedi B, Gharagozloo M, Maracy MR. Elevated serum levels of cell death circulating biomarkers, M30 and M65, in patients with β-thalassemia major. Hemoglobin 2013; 37:404-10. [PMID: 23600495 DOI: 10.3109/03630269.2013.790828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Deposition of iron in visceral organs, mainly in the liver, causes tissue damage in β-thalassemia major (β-TM) patients. Keratin 18 (K18) represents one of the major caspase substrates during apoptosis of hepatocytes. To better characterize the hepatic apoptosis and/or necrosis in β-thal patients, the circulating levels of M65 (soluble intact K18) and M30 (the caspases-generated K18 fragment) were measured in 40 β-TM patients and compared with 40 healthy controls. The ratio of M30/M65 (caspase-cleaved to total K18) was also determined in thalassemic and normal subjects. Results of the ELISA assays revealed that the serum levels of hepatocyte death markers, M65 and M30, were significantly increased in β-thal patients compared to healthy controls (p <0.0001). M30 serum levels were also positively correlated with the serum levels of liver transaminases including aspartate aminotransferase (AST) (r = 0.337, p = 0.047) and alanine aminotransferase (ALT) (r =0.391, p = 0.02).
Collapse
Affiliation(s)
- Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | |
Collapse
|
30
|
Jankowska EA, von Haehling S, Anker SD, Macdougall IC, Ponikowski P. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur Heart J 2012; 34:816-29. [PMID: 23100285 PMCID: PMC3596759 DOI: 10.1093/eurheartj/ehs224] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Iron is a micronutrient essential for cellular energy and metabolism, necessary for maintaining body homoeostasis. Iron deficiency is an important co-morbidity in patients with heart failure (HF). A major factor in the pathogenesis of anaemia, it is also a separate condition with serious clinical consequences (e.g. impaired exercise capacity) and poor prognosis in HF patients. Experimental evidence suggests that iron therapy in iron-deficient animals may activate molecular pathways that can be cardio-protective. Clinical studies have demonstrated favourable effects of i.v. iron on the functional status, quality of life, and exercise capacity in HF patients. It is hypothesized that i.v. iron supplementation may become a novel therapy in HF patients with iron deficiency.
Collapse
Affiliation(s)
- Ewa A Jankowska
- Department of Heart Diseases, Wroclaw Medical University, ul Weigla 5, 50-981 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
31
|
Xu G, Ahn J, Chang S, Eguchi M, Ogier A, Han S, Park Y, Shim C, Jang Y, Yang B, Xu A, Wang Y, Sweeney G. Lipocalin-2 induces cardiomyocyte apoptosis by increasing intracellular iron accumulation. J Biol Chem 2011; 287:4808-17. [PMID: 22117066 DOI: 10.1074/jbc.m111.275719] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our objective was to determine whether lipocalin-2 (Lcn2) regulates cardiomyocyte apoptosis, the mechanisms involved, and the functional significance. Emerging evidence suggests that Lcn2 is a proinflammatory adipokine associated with insulin resistance and obesity-related complications, such as heart failure. Here, we used both primary neonatal rat cardiomyocytes and H9c2 cells and demonstrated for the first time that Lcn2 directly induced cardiomyocyte apoptosis, an important component of cardiac remodeling leading to heart failure. This was shown by detection of DNA fragmentation using TUNEL assay, phosphatidylserine exposure using flow cytometry to detect annexin V-positive cells, caspase-3 activity using enzymatic assay and immunofluorescence, and Western blotting for the detection of cleaved caspase-3. We also observed that Lcn2 caused translocation of the proapoptotic protein Bax to mitochondria and disruption of mitochondrial membrane potential. Using transient transfection of GFP-Bax, we confirmed that Lcn2 induced co-localization of Bax with MitoTracker® dye. Importantly, we used the fluorescent probe Phen Green SK to demonstrate an increase in intracellular iron in response to Lcn2, and depleting intracellular iron using an iron chelator prevented Lcn2-induced cardiomyocyte apoptosis. Administration of recombinant Lcn2 to mice for 14 days increased cardiomyocyte apoptosis as well as an acute inflammatory response with compensatory changes in cardiac functional parameters. In conclusion, Lcn2-induced cardiomyocyte apoptosis is of physiological significance and occurs via a mechanism involving elevated intracellular iron levels and Bax translocation.
Collapse
Affiliation(s)
- Guoxiong Xu
- Toxicity Group, and Drug Biology Group, Institut Pasteur Korea, Seongnam, Gyeonggi 463-400, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Deugnier Y, Turlin B, Ropert M, Cappellini MD, Porter JB, Giannone V, Zhang Y, Griffel L, Brissot P. Improvement in liver pathology of patients with β-thalassemia treated with deferasirox for at least 3 years. Gastroenterology 2011; 141:1202-11, 1211.e1-3. [PMID: 21741344 DOI: 10.1053/j.gastro.2011.06.065] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/27/2011] [Accepted: 06/09/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Most data on the effects of iron chelation therapy for patients with liver fibrosis come from small studies. We studied the effects of the oral iron chelator deferasirox on liver fibrosis and necroinflammation in a large population of patients with iron overload β-thalassemia. METHODS We studied data from 219 patients with β-thalassemia, collected from histologic analyses of biopsy samples taken at baseline and after at least 3 years of treatment with deferasirox. Treatment response was assessed from liver iron concentrations at baseline and the end of the study. Liver fibrosis, necroinflammation, and markers of iron overload and liver enzymes were recorded. Patients were also assessed, by serologic analysis at baseline, for hepatitis C virus infection. RESULTS By the end of the study, stability of Ishak fibrosis staging scores (change of -1, 0, or +1) or improvements (change of ≤-2) were observed in 82.6% of patients; Ishak necroinflammatory scores improved by a mean value of -1.3 (P<.001). Improvements in fibrosis stage and necroinflammation were independent of hepatitis C virus exposure or reduction in liver iron concentration defined by the response criteria. Absolute changes in concentrations of liver iron by the end of the study did not correlate with improved Ishak fibrosis or necroinflammatory scores. CONCLUSIONS Deferasirox treatment for 3 or more years reversed or stabilized liver fibrosis in 83% of patients with iron-overloaded β-thalassemia. This therapeutic effect was independent of reduced concentration of liver iron (defined by the response criteria) or previous exposure to hepatitis C virus.
Collapse
Affiliation(s)
- Yves Deugnier
- Liver Disease Unit and Inserm U-991, Department of Pathology, University Hospital Pontchaillou, Rennes, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Al-Rousan RM, Rice KM, Katta A, Laurino J, Walker EM, Wu M, Triest WE, Blough ER. Deferasirox protects against iron-induced hepatic injury in Mongolian gerbil. Transl Res 2011; 157:368-77. [PMID: 21575921 DOI: 10.1016/j.trsl.2010.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/02/2010] [Accepted: 12/17/2010] [Indexed: 12/13/2022]
Abstract
Iron overload is associated with an increased risk of liver complications including fibrosis, cirrhosis, and hepatocellular carcinoma. Deferasirox is a new oral chelator with high iron-binding potency and selectivity. Here we investigate the ability of deferasirox to remove excessive hepatic iron and prevent iron-induced hepatic injury. Adult male Mongolian gerbils were divided into 3 groups (n=5/group)-control, iron overload (100 mg iron-dextran/kg body weight/5 days; intraperitoneal for 10 weeks), and iron overload followed by deferasirox treatment (100 mg deferasirox/kg body weight/d; pulse oral for 1 or 3 months). Compared with the nontreated iron overload group, deferasirox reduced hepatic iron concentration by 44% after 3 months of treatment (P<0.05). Histological analysis of hepatic tissue from the iron overloaded group detected frequent iron deposition, evidence of hepatic damage, and an accumulation of lipid vacuoles. Iron deposition was significantly diminished with deferasirox treatment, and no evidence of lipid accumulation was observed. Immunoblotting demonstrated that iron overload caused approximately 2-fold increase in hepatic ferritin expression (P<0.05), which was 48% lower after 3 months of deferasirox treatment (P<0.05). Deferasirox treatment also was associated with reduced hepatic protein oxidation, superoxide abundance, and cell death. The percentage of terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells in the deferasirox-treated livers was 41% lower than that of iron overloaded group (P<0.05). Similarly, an iron-related increase in the expression of Bax/Bcl2, Bad, and caspase-3 were significantly lower after deferasirox treatment. These findings suggest that deferasirox may confer protection against iron-induced hepatic toxicity.
Collapse
Affiliation(s)
- Rabaa M Al-Rousan
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV, USA
| | | | | | | | | | | | | | | |
Collapse
|