1
|
Touaibia M, Chiasson AI, Robichaud S, Doiron JA, Hébert MPA, Surette ME. Single and multiple inhibitors of the biosynthesis of 5-, 12-, 15-lipoxygenase products derived from cinnamyl-3,4-dihydroxy-α-cyanocinnamate: Synthesis and structure-activity relationship. Drug Dev Res 2024; 85:e22181. [PMID: 38619209 DOI: 10.1002/ddr.22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The involvement of lipoxygenases in various pathologies, combined with the unavailability of safe and effective inhibitors of the biosynthesis of their products, is a source of inspiration for the development of new inhibitors. Based on a structural analysis of known inhibitors of lipoxygenase products biosynthesis, a comprehensive structure-activity study was carried out, which led to the discovery of several novel compounds (16a-c, 17a) demonstrating promising potency to inhibit the biosynthesis of products of 5-, 12- and 15-LO. Compounds 16b and 16c outperformed zileuton (1), the only FDA-approved 5-LO inhibitor, as well as known inhibitors such as caffeic acid phenethyl ester (CAPE (2)) and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC (4)). However, the introduction of a cyano group at the α-position of the carbonyl abolished the activity. Compounds 16a and 17a also inhibited the biosynthesis of 12- and 15-LO products. Compounds 16a, 17a far surpassed baicalein, a known 12-LO inhibitor, as inhibitors of 12-LO products biosynthesis. Compound 17a and CDC (4) showed equivalent inhibition of LO products, proposing that the double bond in the ester moiety is not necessary for the inhibitory activity. The introduction of the cyano group, as in compound 17a, at the α-position of the carbonyl in compound 16a significantly reduced the inhibitory activity against the biosynthesis of 15-LO products. In addition to the interactions with residues His372 and Phe421 also found with zileuton and CAPE, compounds 16a and 16c each interact with residue His367 as shown by molecular docking. This new interaction may explain their high affinity with the 5-LO active site.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Audrey Isabel Chiasson
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Samuel Robichaud
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
| | - Jérémie A Doiron
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| | - Mathieu P A Hébert
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| | - Marc E Surette
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, New Brunswick, Canada
- New Brunswick Center for Precision Medicine, Université de Moncton, Moncton, New Brunswick, Canada
| |
Collapse
|
2
|
Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther 2023; 8:372. [PMID: 37735472 PMCID: PMC10514338 DOI: 10.1038/s41392-023-01606-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/24/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023] Open
Abstract
Ferroptosis is an iron-dependent form of regulated cell death with distinct characteristics, including altered iron homeostasis, reduced defense against oxidative stress, and abnormal lipid peroxidation. Recent studies have provided compelling evidence supporting the notion that ferroptosis plays a key pathogenic role in many diseases such as various cancer types, neurodegenerative disease, diseases involving tissue and/or organ injury, and inflammatory and infectious diseases. Although the precise regulatory networks that underlie ferroptosis are largely unknown, particularly with respect to the initiation and progression of various diseases, ferroptosis is recognized as a bona fide target for the further development of treatment and prevention strategies. Over the past decade, considerable progress has been made in developing pharmacological agonists and antagonists for the treatment of these ferroptosis-related conditions. Here, we provide a detailed overview of our current knowledge regarding ferroptosis, its pathological roles, and its regulation during disease progression. Focusing on the use of chemical tools that target ferroptosis in preclinical studies, we also summarize recent advances in targeting ferroptosis across the growing spectrum of ferroptosis-associated pathogenic conditions. Finally, we discuss new challenges and opportunities for targeting ferroptosis as a potential strategy for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shumin Sun
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Shen
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianwei Jiang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Contursi A, Tacconelli S, Hofling U, Bruno A, Dovizio M, Ballerini P, Patrignani P. Biology and pharmacology of platelet-type 12-lipoxygenase in platelets, cancer cells, and their crosstalk. Biochem Pharmacol 2022; 205:115252. [PMID: 36130648 DOI: 10.1016/j.bcp.2022.115252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
Platelet-type lipoxygenase (pl12-LOX), encoded by ALOX12, catalyzes the production of the lipid mediator 12S-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12S-HpETE), which is quickly reduced by cellular peroxidases to form 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12S-HETE). Platelets express high levels of pl12-LOX and generate considerable amounts of 12S-HETE from arachidonic acid (AA; C20:4, n-6). The development of sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods has allowed the accurate quantification of 12S-HETE in biological samples. Moreover, advances in the knowledge of the mechanism of action of 12S-HETE have been achieved. The orphan G-protein-coupled receptor 31 (GPR31) has been identified as the high-affinity 12S-HETE receptor. Moreover, upon platelet activation, 12S-HETE is produced, and significant amounts are found esterified to membrane phospholipids (PLs), such as phosphatidylethanolamine (PE) and phosphatidylcholine (PC), promoting thrombin generation. Platelets play many roles in cancer metastasis. Among them, the platelets' ability to interact with cancer cells and transfer platelet molecules by the release of extracellular vesicles (EVs) is noteworthy. Recently, it was found that platelets induce epithelial-mesenchymal transition(EMT) in cancer cells, a phenomenon known to confer high-grade malignancy, through the transfer of pl12-LOX contained in platelet-derived EVs. These cancer cells now generate 12-HETE, considered a key modulator of cancer metastasis. Interestingly, 12-HETE was mainly found esterified in plasmalogen phospholipids of cancer cells. This review summarizes the current knowledge on the regulation and functions of pl12-LOX in platelets and cancer cells and their crosstalk.Novel approaches to preventing cancer and metastasis by the pharmacological inhibition of pl12-LOX and the internalization of mEVs are discussed.
Collapse
Affiliation(s)
- Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Ulrika Hofling
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Melania Dovizio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
4
|
Chen S, Zou H. Key Role of 12-Lipoxygenase and Its Metabolite 12-Hydroxyeicosatetraenoic Acid (12-HETE) in Diabetic Retinopathy. Curr Eye Res 2022; 47:329-335. [PMID: 35129022 DOI: 10.1080/02713683.2021.1995003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Abnormal lipid metabolism has been proved to be implicated in the complex pathogenesis of diabetic retinopathy (DR). 12-lipoxygenase (12-LOX) is a member of lipoxygenase family responsible for the oxygenation of cellular polyunsaturated fatty acids to produce lipid mediators which modulate cell inflammation. This review explores the role of 12-lipoxygenase and its products in the pathogenesis of DR. METHODS A comprehensive medical literature search was conducted on PubMed till September 2021. RESULTS Emerging evidence has demonstrated that 12-LOX and its main product 12- hydroxyeicosatetraenoic acid (12-HETE) activate retinal cells, especially retinal vascular endothelial cells, through the activation of NADPH oxidase and the subsequent generation of reactive oxygen species (ROS), mediating multiple pathological changes during DR. Genetic deletion or pharmacological inhibition models of 12-LOX in mice show protection from DR. CONCLUSION 12-LOX and its product 12-HETE take important part in DR pathogenesis and show their potential as future therapeutic targets for DR. Further studies are needed on the specific mechanism including 12-LOX pathway related molecules, 12-HETE receptors and downstream signaling pathways.
Collapse
Affiliation(s)
- Shuli Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haidong Zou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, China.,Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
5
|
Phenolic Compounds of Rumex roseus L. Extracts and Their Effect as Antioxidant and Cytotoxic Activities. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2029507. [PMID: 34608436 PMCID: PMC8487361 DOI: 10.1155/2021/2029507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/02/2021] [Indexed: 12/30/2022]
Abstract
Rumex roseus L. (R. roseus) is acknowledged as an aromatic plant. For its excellent biological properties, it was used as a traditional medicine. The aim of the present study is to evaluate the chemical components and their effect as the biological activities of Tunisian extracts of R. roseus. Consecutive extractions by cold maceration of the aerial part with solvents of increasing polarity (cyclohexane (CYH), dichloromethane (DCM), and methanol (MeOH)) were performed, and the different chemical groups (phenolics, flavonoids, tannins, anthocyanins, etc.) were identified. In addition, the volatile compounds of the obtained extracts were identified before and after derivatization. Moreover, their antioxidant and anticancer activities were evaluated. The analysis of HPLC-DAD revealed the identification of 18 components from organic extracts, among them are, for example, chlorogenic acid and shikonin, while GC-MS analysis allowed the detection of 34 volatile compounds. Some of those compounds were identified for the first time in plant extracts such as pyrazolo[3,4-d] pyrimidine-3,4(2H,5H)-dione (1); L-proline (16); 2-amino-3-hydroxybutanoic acid (19); L-(-)-arabitol (23); D-(-)-fructopyranose (25); and D-(+)-talopyranose (27). DPPH tests revealed that the most important antioxidant activity was found in the methanolic extract with 75.2% inhibition at 50 mg/L and that the highest cytotoxic activity against HCT-116 and MCF-7 was recorded in the dichloromethane extract with 62.1 and 80.0% inhibition at 50 mg/L, respectively. The biological activities were fully correlated with the chemical composition of the different extracts. So, we can suggest that R. roseus is a source of bioactive molecules that could be considered potential alternatives for use in dietary supplements for the prevention or treatment of diseases.
Collapse
|
6
|
Contursi A, Schiavone S, Dovizio M, Hinz C, Fullone R, Tacconelli S, Tyrrell VJ, Grande R, Lanuti P, Marchisio M, Zucchelli M, Ballerini P, Lanas A, O'Donnell VB, Patrignani P. Platelets induce free and phospholipid-esterified 12-hydroxyeicosatetraenoic acid generation in colon cancer cells by delivering 12-lipoxygenase. J Lipid Res 2021; 62:100109. [PMID: 34428433 PMCID: PMC8456051 DOI: 10.1016/j.jlr.2021.100109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022] Open
Abstract
Platelets promote tumor metastasis by inducing promalignant phenotypes in cancer cells and directly contributing to cancer-related thrombotic complications. Platelet-derived extracellular vesicles (EVs) can promote epithelial-mesenchymal transition (EMT) in cancer cells, which confers high-grade malignancy. 12S-hydroxyeicosatetraenoic acid (12-HETE) generated by platelet-type 12-lipoxygenase (12-LOX) is considered a key modulator of cancer metastasis through unknown mechanisms. In platelets, 12-HETE can be esterified into plasma membrane phospholipids (PLs), which drive thrombosis. Using cocultures of human platelets and human colon adenocarcinoma cells (line HT29) and LC-MS/MS, we investigated the impact of platelets on cancer cell biosynthesis of 12S-HETE and its esterification into PLs and whether platelet ability to transfer its molecular cargo might play a role. To this aim, we performed coculture experiments with CFSE[5-(and-6)-carboxyfluorescein diacetate, succinimidyl ester]-loaded platelets. HT29 cells did not generate 12S-HETE or express 12-LOX. However, they acquired the capacity to produce 12S-HETE mainly esterified in plasmalogen phospholipid forms following the uptake of platelet-derived medium-sized EVs (mEVs) expressing 12-LOX. 12-LOX was detected in plasma mEV of patients with adenomas/adenocarcinomas, implying their potential to deliver the protein to cancer cells in vivo. In cancer cells exposed to platelets, endogenous but not exogenous 12S-HETE contributed to changes in EMT gene expression, mitigated by three structurally unrelated 12-LOX inhibitors. In conclusion, we showed that platelets induce the generation of primarily esterified 12-HETE in colon cancer cells following mEV-mediated delivery of 12-LOX. The modification of cancer cell phospholipids by 12-HETE may functionally impact cancer cell biology and represent a novel target for anticancer agent development.
Collapse
Affiliation(s)
- Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Simone Schiavone
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Melania Dovizio
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Christine Hinz
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Rosa Fullone
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Rosalia Grande
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Medicine and Aging Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Marco Marchisio
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy; Department of Medicine and Aging Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University, Chieti, Italy
| | - Angel Lanas
- University Hospital LB, Aragon Health Research Institute (IISAragon), CIBERehd, University of Zaragoza, Zaragoza, Spain
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy; Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
7
|
Debieu S, Solier S, Colombeau L, Versini A, Sindikubwabo F, Forrester A, Müller S, Cañeque T, Rodriguez R. Small Molecule Regulators of Ferroptosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1301:81-121. [PMID: 34370289 DOI: 10.1007/978-3-030-62026-4_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a dedicated mode of cell death involving iron, reactive oxygen species and lipid peroxidation. Involved in processes such as glutathione metabolism, lysosomal iron retention or interference with lipid metabolism, leading either to activation or inhibition of ferroptosis. Given the implications of ferroptosis in diseases such as cancer, aging, Alzheimer and infectious diseases, new molecular mechanisms underlying ferroptosis and small molecules regulators that target those mechanisms have prompted a great deal of interest. Here, we discuss the current scenario of small molecules modulating ferroptosis and critically assess what is known about their mechanisms of action.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Stéphanie Solier
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Ludovic Colombeau
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Antoine Versini
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Fabien Sindikubwabo
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Alison Forrester
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Sebastian Müller
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Tatiana Cañeque
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France
- PSL Université Paris, Paris, France
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France
| | - Raphaël Rodriguez
- Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
- PSL Université Paris, Paris, France.
- Chemical Biology of Cancer Laboratory, CNRS UMR 3666, INSERM U1143, Paris, France.
| |
Collapse
|
8
|
Brash AR. Challenging the evidence for hepoxilin A 3 being a mediator of neutrophil epithelial transmigration. Am J Physiol Lung Cell Mol Physiol 2020; 319:L752-L753. [PMID: 33021845 DOI: 10.1152/ajplung.00349.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Alan R Brash
- Division of Clinical Pharmacology, Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
9
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
10
|
Dobrian AD, Morris MA, Taylor-Fishwick DA, Holman TR, Imai Y, Mirmira RG, Nadler JL. Role of the 12-lipoxygenase pathway in diabetes pathogenesis and complications. Pharmacol Ther 2018; 195:100-110. [PMID: 30347209 DOI: 10.1016/j.pharmthera.2018.10.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
12-lipoxygenase (12-LOX) is one of several enzyme isoforms responsible for the metabolism of arachidonic acid and other poly-unsaturated fatty acids to both pro- and anti-inflammatory lipid mediators. Mounting evidence has shown that 12-LOX plays a critical role in the modulation of inflammation at multiple checkpoints during diabetes development. Due to this, interventions to limit pro-inflammatory 12-LOX metabolites either by isoform-specific 12-LOX inhibition, or by providing specific fatty acid substrates via dietary intervention, has the potential to significantly and positively impact health outcomes of patients living with both type 1 and type 2 diabetes. To date, the development of truly specific and efficacious inhibitors has been hampered by homology of LOX family members; however, improvements in high throughput screening have improved the inhibitor landscape. Here, we describe the function and role of human 12-LOX, and mouse 12-LOX and 12/15-LOX, in the development of diabetes and diabetes-related complications, and describe promise in the development of strategies to limit pro-inflammatory metabolites, primarily via new small molecule 12-LOX inhibitors.
Collapse
Affiliation(s)
- A D Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, United States
| | - M A Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - D A Taylor-Fishwick
- Department of Microbiology, Cell and Molecular Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - T R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Y Imai
- University of Iowa Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa, city, IA, United States
| | - R G Mirmira
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - J L Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, United States.
| |
Collapse
|
11
|
Rettner J, Werner M, Meyer N, Werz O, Pohnert G. Survey of the C20 and C22 oxylipin family in marine diatoms. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li Y, Zhang L, Wang X, Chen M, Liu Y, Xing Y, Wang X, Gao S, Zhu D. Elk-1-mediated 15-lipoxygenase expression is required for hypoxia-induced pulmonary vascular adventitial fibroblast dynamics. Acta Physiol (Oxf) 2016; 218:276-289. [PMID: 27174674 DOI: 10.1111/apha.12711] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
AIM 15-Lipoxygenase (15-LO) is an important factor in the pathogenesis of pulmonary artery hypertension (PAH). However, the role of 15-LO in the adventitia of the pulmonary arterial wall is unclear. The aim of this study was to explore the role of 15-LO in the modulation of pulmonary adventitial fibroblast (PAF) dynamics. METHODS Rats were exposed to normoxic or hypoxic (fraction of inspired O2 = 0.12) treatments for 7 days. PAF proliferation and cell cycle alterations were measured by MTT assay, cell immunofluorescence, flow cytometry and Western blot analysis. The 15-LO promoter was analysed by luciferase reporter and ChIP assays. RESULTS Our results showed that hypoxia induced 15-LO expression in PAFs both in vivo and in vitro. In addition, hypoxia stimulated JNK phosphorylation in PAFs. Blocking 15-LO or JNK suppressed 15-LO-induced PAF proliferation and cell cycle alterations. The inhibition of p27kipl by gene silencing attenuated 15-LO-induced PAF proliferation and cell cycle alterations. Furthermore, JNK inhibition or Elk-1 knockdown suppressed hypoxia-induced 15-LO expression in PAFs. Luciferase reporter and ChIP assays revealed that the 15-LO promoter contains Elk-1-binding sites and also that Elk-1 increased the hypoxia-induced activity of the 15-LO promoter. CONCLUSION These results suggest that hypoxia promotes changes in the cellular dynamics of PAFs by inducing 15-LO expression, which leads to vascular adventitial remodelling. The modulation of p27kipl expression by 15-LO enhances PAF proliferation and cell cycle alterations. Furthermore, the JNK-dependent increase in Elk-1 signalling is required for hypoxia-induced 15-LO expression in PAFs.
Collapse
Affiliation(s)
- Y. Li
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
- Biopharmaceutical Institute of the Heilongjiang Academy of Medical Sciences; Harbin Heilongjiang China
| | - L. Zhang
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
| | - X. Wang
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
| | - M. Chen
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
| | - Y. Liu
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
| | - Y. Xing
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
| | - X. Wang
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
| | - S. Gao
- Biopharmaceutical Institute of the Heilongjiang Academy of Medical Sciences; Harbin Heilongjiang China
| | - D. Zhu
- Department of Pharmacology; Harbin Medical University-Daqing; Daqing Heilongjiang China
- Biopharmaceutical Institute of the Heilongjiang Academy of Medical Sciences; Harbin Heilongjiang China
| |
Collapse
|
13
|
A dual-targeting approach to inhibit Brucella abortus replication in human cells. Sci Rep 2016; 6:35835. [PMID: 27767061 PMCID: PMC5073326 DOI: 10.1038/srep35835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/05/2016] [Indexed: 12/20/2022] Open
Abstract
Brucella abortus is an intracellular bacterial pathogen and an etiological agent of the zoonotic disease known as brucellosis. Brucellosis can be challenging to treat with conventional antibiotic therapies and, in some cases, may develop into a debilitating and life-threatening chronic illness. We used multiple independent assays of in vitro metabolism and intracellular replication to screen a library of 480 known bioactive compounds for novel B. abortus anti-infectives. Eighteen non-cytotoxic compounds specifically inhibited B. abortus replication in the intracellular niche, which suggests these molecules function by targeting host cell processes. Twenty-six compounds inhibited B. abortus metabolism in axenic culture, thirteen of which are non-cytotoxic to human host cells and attenuate B. abortus replication in the intracellular niche. The most potent non-cytotoxic inhibitors of intracellular replication reduce B. abortus metabolism in axenic culture and perturb features of mammalian cellular biology including mitochondrial function and receptor tyrosine kinase signaling. The efficacy of these molecules as inhibitors of B. abortus replication in the intracellular niche suggests “dual-target” compounds that coordinately perturb host and pathogen are promising candidates for development of improved therapeutics for intracellular infections.
Collapse
|
14
|
Lang L, Dong N, Wu D, Yao X, Lu W, Zhang C, Ouyang P, Zhu J, Tang Y, Wang W, Li J, Huang J. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors. J Enzyme Inhib Med Chem 2016; 31:98-105. [DOI: 10.1080/14756366.2016.1220376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Li Lang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Ningning Dong
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Deyan Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Xue Yao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China, and
| | - Chen Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Ping Ouyang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Jin Zhu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Wei Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
- Department of Chemistry & Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | - Jian Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| | - Jin Huang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China,
| |
Collapse
|
15
|
Schaible AM, Filosa R, Krauth V, Temml V, Pace S, Garscha U, Liening S, Weinigel C, Rummler S, Schieferdecker S, Nett M, Peduto A, Collarile S, Scuotto M, Roviezzo F, Spaziano G, de Rosa M, Stuppner H, Schuster D, D’Agostino B, Werz O. The 5-lipoxygenase inhibitor RF-22c potently suppresses leukotriene biosynthesis in cellulo and blocks bronchoconstriction and inflammation in vivo. Biochem Pharmacol 2016; 112:60-71. [DOI: 10.1016/j.bcp.2016.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
|
16
|
Novel series of benzoquinones with high potency against 5-lipoxygenase in human polymorphonuclear leukocytes. Eur J Med Chem 2015; 94:132-9. [DOI: 10.1016/j.ejmech.2015.02.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/18/2015] [Accepted: 02/21/2015] [Indexed: 11/20/2022]
|
17
|
Synthesis and biological activity of arylspiroborate salts derived from caffeic Acid phenethyl ester. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2015; 2015:418362. [PMID: 25834744 PMCID: PMC4365380 DOI: 10.1155/2015/418362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/27/2015] [Accepted: 02/07/2015] [Indexed: 12/04/2022]
Abstract
Two novel boron compounds containing caffeic acid phenethyl ester (CAPE) derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.
Collapse
|
18
|
Suzuki H, Kayama Y, Sakamoto M, Iuchi H, Shimizu I, Yoshino T, Katoh D, Nagoshi T, Tojo K, Minamino T, Yoshimura M, Utsunomiya K. Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes 2015; 64:618-30. [PMID: 25187369 DOI: 10.2337/db13-1896] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes affects cardiac structure and function, and it has been suggested that diabetes leads to cardiomyopathy. Arachidonate 12/15-lipoxygenase (LOX) has been suggested to play an important role in atherogenesis and heart failure. However, the role of 12/15-LOX in diabetic cardiomyopathy has not been examined. In this study, we investigated the effects of cardiac 12/15-LOX on diabetic cardiomyopathy. We created streptozotocin (STZ)-induced diabetic mice and compared them with Alox15-deficient mice. Expression of 12/15-LOX and inflammatory cytokines such as tumor necrosis factor (TNF)-α and nuclear factor (NF)-κB were upregulated in STZ-induced diabetic hearts. Disruption of 12/15-LOX significantly improved STZ-induced cardiac dysfunction and fibrosis. Moreover, deletion of 12/15-LOX inhibited the increases of TNF-α and NF-κB as well as the production of STZ-induced reactive oxygen species in the heart. Administration of N-acetylcysteine in diabetic mice prevented STZ-induced cardiac fibrosis. Neonatal cultured cardiomyocytes exposed to high glucose conditions induced the expression of 12/15-LOX as well as TNF-α, NF-κB, and collagen markers. These increases were inhibited by treatment of the 12/15-LOX inhibitor. Our results suggest that cardiac 12/15-LOX-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy and that inhibition of 12/15-LOX could be a novel treatment for this condition.
Collapse
Affiliation(s)
- Hirofumi Suzuki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yosuke Kayama
- Division of Cardiology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masaya Sakamoto
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiroyuki Iuchi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Takuya Yoshino
- Division of Cardiology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Daisuke Katoh
- Division of Cardiology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tomohisa Nagoshi
- Division of Cardiology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Katsuyoshi Tojo
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kazunori Utsunomiya
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
19
|
Peduto A, Bruno F, Dehm F, Krauth V, de Caprariis P, Weinigel C, Barz D, Massa A, De Rosa M, Werz O, Filosa R. Further studies on ethyl 5-hydroxy-indole-3-carboxylate scaffold: Design, synthesis and evaluation of 2-phenylthiomethyl-indole derivatives as efficient inhibitors of human 5-lipoxygenase. Eur J Med Chem 2014; 81:492-8. [DOI: 10.1016/j.ejmech.2014.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/07/2014] [Accepted: 05/11/2014] [Indexed: 10/25/2022]
|
20
|
Vougogiannopoulou K, Lemus C, Halabalaki M, Pergola C, Werz O, Smith AB, Michel S, Skaltsounis L, Deguin B. One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. JOURNAL OF NATURAL PRODUCTS 2014; 77:441-445. [PMID: 24568174 DOI: 10.1021/np401010x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The dialdehydes oleacein (2) and oleocanthal (4) are closely related to oleuropein (1) and ligstroside (3), the two latter compounds being abundant iridoids of Olea europaea. By exploiting oleuropein isolated from the plant leaf extract, an efficient procedure has been developed for a one-step semisynthesis of oleacein under Krapcho decarbomethoxylation conditions. Highlighted is the fact that 5-lipoxygenase is a direct target for oleacein with an inhibitory potential (IC50: 2 μM) more potent than oleocanthal (4) and oleuropein (1). This enzyme catalyzes the initial steps in the biosynthesis of pro-inflammatory leukotrienes. Taken together, the methodology presented here offers an alternative solution to isolation or total synthesis for the procurement of oleacein, thus facilitating the further development as a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Konstantina Vougogiannopoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, University of Athens , Panepistimiopolis, GR-15771, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Clicked cinnamic/caffeic esters and amides as radical scavengers and 5-lipoxygenase inhibitors. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2014; 2014:931756. [PMID: 25383225 PMCID: PMC4207410 DOI: 10.1155/2014/931756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 01/17/2023]
Abstract
5-Lipoxygenase (5-LO) is the key enzyme responsible for the conversion of arachidonic acid to leukotrienes, a class of lipid mediators implicated in inflammatory disorders. In this paper, we describe the design, synthesis, and preliminary activity studies of novel clicked caffeic esters and amides as radical scavengers and 5-LO inhibitors. From known 5-LO inhibitor 3 as a lead, cinnamic esters 8a-h and amides 9a-h as well as caffeic esters 15a-h and amides 16a-h were synthesized by Cu(I)-catalyzed [1,3]-dipolar cycloaddition with the appropriate azide precursors and terminal alkynes. All caffeic analogs are proved to be good radical scavengers (IC50: 10-20 μM). Esters 15g and 15f possessed excellent 5-LO inhibition activity in HEK293 cells and were equipotent with the known 5-LO inhibitor CAPE and more potent than Zileuton. Several synthesized esters possess activities rivaling Zileuton in stimulated human polymorphonuclear leukocytes.
Collapse
|
22
|
A fluorescence-based assay for measuring the redox potential of 5-lipoxygenase inhibitors. PLoS One 2014; 9:e87708. [PMID: 24498359 PMCID: PMC3912022 DOI: 10.1371/journal.pone.0087708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022] Open
Abstract
The activities and side effects of 5-lipoxygenase (5-LO) inhibitors can be predicted by identifying their redox mechanisms. In this study, we developed a fluorescence-based method to measure the redox potential of 5-LO inhibitors and compared it to the conventional, absorbance-based method. After the pseudo-peroxidase reaction, the amount of remaining lipid peroxide was quantified using the H2DCFDA (2′,7′-dichlorodihydrofluorescein diacetate) fluorescence dye. Our method showed large signal windows and provided comparable redox potential values. Importantly, the redox mechanisms of known inhibitors were accurately measured with the fluorescence assay, whereas the conventional, absorbance-based method showed contradictory results. Our findings suggest that our developed method is a better alternative for classifying the redox potential of 5-LO inhibitors, and the fluorescence assay can be effectively used to study the mechanisms of action that are related to redox cycling.
Collapse
|
23
|
Gregus AM, Dumlao DS, Wei SC, Norris PC, Catella LC, Meyerstein FG, Buczynski MW, Steinauer JJ, Fitzsimmons BL, Yaksh TL, Dennis EA. Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia. FASEB J 2013; 27:1939-49. [PMID: 23382512 DOI: 10.1096/fj.12-217414] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we overexpressed each of the 6 rat 12/15-LOX enzymes in HEK-293T cells and measured by LC-MS/MS the formation of HXB3, 12-HETE, 8-HETE, and 15-HETE from arachidonic acid (AA) at baseline and in the presence of LOX inhibitors (NDGA, AA-861, CDC, baicalein, and PD146176) vs. vehicle-treated and mock-transfected controls. We detected the following primary intrinsic activities: 12-LOX (Alox12, Alox15), 15-LOX (Alox15b), and HXS (Alox12, Alox15). Similar to human and mouse orthologs, proteins encoded by rat Alox12b and Alox12e possessed minimal 12-LOX activity with AA as substrate, while eLOX3 (encoded by Aloxe3) exhibited HXS without 12-LOX activity when coexpressed with Alox12b or supplemented with 12-HpETE. CDC potently inhibited HXS and 12-LOX activity in vitro (relative IC50s: CDC, ~0.5 and 0.8 μM, respectively) and carrageenan-evoked tactile allodynia in vivo. Notably, peripheral inflammation significantly increased spinal eLOX3; intrathecal pretreatment with either siRNA targeting Aloxe3 or an eLOX3-selective antibody attenuated the associated allodynia. These findings implicate spinal eLOX3-mediated hepoxilin synthesis in inflammatory hyperesthesia and underscore the importance of developing more selective 12-LOX/HXS inhibitors.
Collapse
Affiliation(s)
- Ann M Gregus
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Stavniichuk R, Obrosov AA, Drel VR, Nadler JL, Obrosova IG, Yorek MA. 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy. ACTA ACUST UNITED AC 2013; 3. [PMID: 24175152 DOI: 10.4236/jdm.2013.33015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. METHODS To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in 5.5 mM or 30 mM glucose with or without CDC. RESULTS 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. CONCLUSION 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, USA
| | | | | | | | | | | |
Collapse
|
25
|
Aparoy P, Reddy KK, Reddanna P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr Med Chem 2012; 19:3763-78. [PMID: 22680930 PMCID: PMC3480706 DOI: 10.2174/092986712801661112] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/30/2012] [Accepted: 02/07/2012] [Indexed: 12/26/2022]
Abstract
Lipoxygenases (LOXs) are non-heme iron containing dioxygenases involved in the oxygenation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA). Depending on the position of insertion of oxygen, LOXs are classified into 5-, 8-, 9-, 12- and 15-LOX. Among these, 5-LOX is the most predominant isoform associated with the formation of 5-hydroperoxyeicosatetraenoic acid (5-HpETE), the precursor of non-peptido (LTB4) and peptido (LTC4, LTD4, and LTE4) leukotrienes. LTs are involved in inflammatory and allergic diseases like asthma, ulcerative colitis, rhinitis and also in cancer. Consequently 5-LOX has become target for the development of therapeutic molecules for treatment of various inflammatory disorders. Zileuton is one such inhibitor of 5-LOX approved for the treatment of asthma. In the recent times, computer aided drug design (CADD) strategies have been applied successfully in drug development processes. A comprehensive review on structure based drug design strategies in the development of novel 5-LOX inhibitors is presented in this article. Since the crystal structure of 5-LOX has been recently solved, efforts to develop 5-LOX inhibitors have mostly relied on ligand based rational approaches. The present review provides a comprehensive survey on these strategies in the development of 5-LOX inhibitors.
Collapse
|
26
|
Zasłona Z, Peters-Golden M. A lipid mediator controls neutrophil recruitment in acute lung injury--should we really be surprised? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:161. [PMID: 23102473 PMCID: PMC3682262 DOI: 10.1186/cc11519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
New therapeutic approaches are sorely needed for acute lung injury. Neutrophil recruitment is a pathological hallmark of this syndrome, and is mainly regulated by CXC chemokine receptor 2 and its ligand CXC ligand 1. Rossaint and colleagues have described a new mechanism for regulation of this axis by 12/15-lipoxygenase products. This work opens the door for new therapeutic approaches and highlights the crucial interplay between lipid mediators and chemokines, a time-honored but often-ignored concept.
Collapse
|
27
|
Yeung J, Holinstat M. 12-lipoxygenase: a potential target for novel anti-platelet therapeutics. Cardiovasc Hematol Agents Med Chem 2012; 9:154-64. [PMID: 21838667 DOI: 10.2174/187152511797037619] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/07/2011] [Indexed: 01/31/2023]
Abstract
Platelets play an essential role in the regulation of hemostasis and thrombosis and controlling their level of activation is central to prevention of occlusive clot formation and stroke. Although a number of anti-platelet targets have been identified to address this issue including COX-1, the P2Y(12) receptor, the integrin αIIbβ3, and more recently the protease-activated receptor-1, these targets often result in a significant increased risk of bleeding which may lead to pathologies as serious as the thrombosis they were meant to treat including intracranial hemorrhage and gastrointestinal bleeding. Therefore, alternative approaches to treat uncontrolled platelet activation are warranted. Platelet-type 12-lipoxygenase is an enzyme which oxidizes the free fatty acid in the platelet resulting in the production of the stable metabolite 12-hydroxyeicosatetraenoic acid (12-HETE). The role of 12-HETE in the platelet has been controversial with reports associating its function as being both anti- and pro-thrombotic. In this review, the role of 12-lipoxygenase and its bioactive metabolites in regulation of platelet reactivity, clot formation, and hemostasis is described. Understanding the mechanisms by which 12-lipoxygenase and its metabolites modulate platelet function may lead to the development of a novel class of anti-platelet therapies targeting the enzyme in order to attenuate injury-induced clot formation, vessel occlusion and pathophysiological shifts in hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Department of Medicine, Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|