1
|
Jalalypour F, Howard RJ, Lindahl E. Allosteric Cholesterol Site in Glycine Receptors Characterized through Molecular Simulations. J Phys Chem B 2024; 128:4996-5007. [PMID: 38747451 PMCID: PMC11129184 DOI: 10.1021/acs.jpcb.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024]
Abstract
Glycine receptors are pentameric ligand-gated ion channels that conduct chloride ions across postsynaptic membranes to facilitate fast inhibitory neurotransmission. In addition to gating by the glycine agonist, interactions with lipids and other compounds in the surrounding membrane environment modulate their function, but molecular details of these interactions remain unclear, in particular, for cholesterol. Here, we report coarse-grained simulations in a model neuronal membrane for three zebrafish glycine receptor structures representing apparent resting, open, and desensitized states. We then converted the systems to all-atom models to examine detailed lipid interactions. Cholesterol bound to the receptor at an outer-leaflet intersubunit site, with a preference for the open and desensitized versus resting states, indicating that it can bias receptor function. Finally, we used short atomistic simulations and iterative amino acid perturbations to identify residues that may mediate allosteric gating transitions. Frequent cholesterol contacts in atomistic simulations clustered with residues identified by perturbation analysis and overlapped with mutations influencing channel function and pathology. Cholesterol binding at this site was also observed in a recently reported pig heteromeric glycine receptor. These results indicate state-dependent lipid interactions relevant to allosteric transitions of glycine receptors, including specific amino acid contacts applicable to biophysical modeling and pharmaceutical design.
Collapse
Affiliation(s)
- Farzaneh Jalalypour
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
| | - Rebecca J. Howard
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| | - Erik Lindahl
- Science
for Life Laboratory, Department of Applied Physics, KTH Royal Institute of Technology, 17121 Solna, Sweden
- Science
for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17121 Solna, Sweden
| |
Collapse
|
2
|
Muñoz B, Mariqueo T, Murath P, Peters C, Yevenes GE, Moraga-Cid G, Peoples RW, Aguayo LG. Modulatory Actions of the Glycine Receptor β Subunit on the Positive Allosteric Modulation of Ethanol in α2 Containing Receptors. Front Mol Neurosci 2021; 14:763868. [PMID: 34867189 PMCID: PMC8637530 DOI: 10.3389/fnmol.2021.763868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 01/23/2023] Open
Abstract
Alpha1-containing glycine receptors (GlyRs) are major mediators of synaptic inhibition in the spinal cord and brain stem. Recent studies reported the presence of α2-containing GlyRs in other brain regions, such as nucleus accumbens and cerebral cortex. GlyR activation decreases neuronal excitability associated with sensorial information, motor control, and respiratory functions; all of which are significantly altered during ethanol intoxication. We evaluated the role of β GlyR subunits and of two basic amino acid residues, K389 and R390, located in the large intracellular loop (IL) of the α2 GlyR subunit, which are important for binding and functional modulation by Gβγ, the dimer of the trimeric G protein conformation, using HEK-293 transfected cells combined with patch clamp electrophysiology. We demonstrate a new modulatory role of the β subunit on ethanol sensitivity of α2 subunits. Specifically, we found a differential allosteric modulation in homomeric α2 GlyRs compared with the α2β heteromeric conformation. Indeed, while α2 was insensitive, α2β GlyRs were substantially potentiated by ethanol, GTP-γ-S, propofol, Zn2+ and trichloroethanol. Furthermore, a Gβγ scavenger (ct-GRK2) selectively attenuated the effects of ethanol on recombinant α2β GlyRs. Mutations in an α2 GlyR co-expressed with the β subunit (α2AAβ) specifically blocked ethanol sensitivity, but not propofol potentiation. These results show a selective mechanism for low ethanol concentration effects on homomeric and heteromeric conformations of α2 GlyRs and provide a new mechanism for ethanol pharmacology, which is relevant to upper brain regions where α2 GlyRs are abundantly expressed.
Collapse
Affiliation(s)
- Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Trinidad Mariqueo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Pablo Murath
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Gonzalo E Yevenes
- Laboratory of Neuropharmacology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | | | - Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
3
|
Reduced sedation and increased ethanol consumption in knock-in mice expressing an ethanol insensitive alpha 2 subunit of the glycine receptor. Neuropsychopharmacology 2021; 46:528-536. [PMID: 32357359 PMCID: PMC8026987 DOI: 10.1038/s41386-020-0689-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/20/2020] [Accepted: 04/23/2020] [Indexed: 01/24/2023]
Abstract
Previous studies have shown the presence of several subunits of the inhibitory glycine receptor (GlyR) in the reward system, specifically in medium spiny neurons (MSNs) of the nucleus Accumbens (nAc). It was suggested that GlyR α1 subunits regulate nAc excitability and ethanol consumption. However, little is known about the role of the α2 subunit in the adult brain since it is a subunit highly expressed during early brain development. In this study, we used genetically modified mice with a mutation (KR389-390AA) in the intracellular loop of the GlyR α2 subunit which results in a heteromeric α2β receptor that is insensitive to ethanol. Using this mouse model denoted knock-in α2 (KI α2), our electrophysiological studies showed that neurons in the adult nAc expressed functional KI GlyRs that were rather insensitive to ethanol when compared with WT GlyRs. In behavioral tests, the KI α2 mice did not show any difference in basal motor coordination, locomotor activity, or conditioned place preference compared with WT littermate controls. In terms of ethanol response, KI α2 male mice recovered faster from the administration of ataxic and sedative doses of ethanol. Furthermore, KI α2 mice consumed higher amounts of ethanol in the first days of the drinking in the dark protocol, as compared with WT mice. These results show that the α2 subunit is important for the potentiation of GlyRs in the adult brain and this might result in reduced sedation and increased ethanol consumption.
Collapse
|
4
|
Harvey RJ. Hijacking of GABAA Receptors by Mutant Glycine Receptors. Trends Mol Med 2019; 25:823-825. [DOI: 10.1016/j.molmed.2019.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/24/2022]
|
5
|
Brosnan RJ, Pham TL. Anesthetic-sensitive ion channel modulation is associated with a molar water solubility cut-off. BMC Pharmacol Toxicol 2018; 19:57. [PMID: 30217234 PMCID: PMC6137927 DOI: 10.1186/s40360-018-0244-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Background NMDA receptor modulation by hydrocarbons is associated with a molar water solubility cut-off. Low-affinity phenolic modulation of GABAA receptors is also associated with a cut-off, but at much lower molar solubility values. We hypothesized that other anesthetic-sensitive ion channels exhibit distinct cut-off effects associated with hydrocarbon molar water solubility, and that cut-off values are comparatively similar between related receptors than phylogenetically distant ones. Methods Glycine or GABAA receptors or TREK-1, TRESK, Nav1.2, or Nav1.4 channels were expressed separately in frog oocytes. Two electrode voltage clamp techniques were used to study current responses in the presence and absence of hydrocarbon series from eight functional groups with progressively increasing size at saturated aqueous concentrations. Null response (cut-off) was defined by current measurements that were statistically indistinguishable between baseline and hydrocarbon exposure. Results Ion channels exhibited cut-off effects associated with hydrocarbon molar water solubility in the following order of decreasing solubility: Nav1.2 ≈ Nav1.4 ≳ TRESK ≈ TREK-1 > GABAA >> glycine. Previously measured solubility cut-off values for NMDA receptors were intermediate between those for Nav1.4 and TRESK. Conclusions Water solubility cut-off responses were present for all anesthetic-sensitive ion channels; distinct cut-off effects may exist for all cell surface receptors that are sensitive to volatile anesthetics. Suggested is the presence of amphipathic receptor sites normally occupied by water molecules that have dissociation constants inversely related to the cut-off solubility value. Poorly soluble hydrocarbons unable to reach concentrations sufficient to out-compete water for binding site access fail to modulate the receptor.
Collapse
Affiliation(s)
- Robert J Brosnan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| | - Trung L Pham
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Scott LL, Iyer S, Philpo AE, Avalos MN, Wu NS, Shi T, Prakash BA, Nguyen TT, Mihic SJ, Aldrich RW, Pierce JT. A Novel Peptide Restricts Ethanol Modulation of the BK Channel In Vitro and In Vivo. J Pharmacol Exp Ther 2018; 367:282-290. [PMID: 30158242 DOI: 10.1124/jpet.118.251918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Alcohol is a widely used and abused substance. A major unresolved issue in the alcohol research field is determining which of the many alcohol target proteins identified to date is responsible for shaping each specific alcohol-related behavior. The large-conductance, calcium- and voltage-activated potassium channel (BK channel) is a conserved target of ethanol. Genetic manipulation of the highly conserved BKα channel influences alcohol-related behaviors across phylogenetically diverse species that include worm, fly, mouse, and man. A pharmacological tool that prevents alcohol's action at a single target, like the BK channel, would complement genetic approaches in the quest to define the behavioral consequences of alcohol at each target. To identify agents that specifically modulate the action of ethanol at the BK channel, we executed a high-throughput phagemid-display screen in combination with a Caenorhabditis elegans behavioral genetics assay. This screen selected a novel nonapeptide, LS10, which moderated acute ethanol intoxication in a BK channel-humanized C. elegans strain without altering basal behavior. LS10's action in vivo was dependent upon BK channel functional activity. Single-channel electrophysiological recordings in vitro showed that preincubation with a submicromolar concentration of LS10 restricted ethanol-induced changes in human BKα channel gating. In contrast, no substantial changes in basal human BKα channel function were observed after LS10 application. The results obtained with the LS10 peptide provide proof-of-concept evidence that a combined phagemid-display/behavioral genetics screening approach can provide novel tools for understanding the action of alcohol at the BK channel and how this, in turn, exerts influence over central nervous system function.
Collapse
Affiliation(s)
- Luisa L Scott
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Sangeetha Iyer
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Ashley E Philpo
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Melva N Avalos
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Natalie S Wu
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Ted Shi
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Brooke A Prakash
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Thanh-Tu Nguyen
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - S John Mihic
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Richard W Aldrich
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Jonathan T Pierce
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
7
|
Schaefer N, Roemer V, Janzen D, Villmann C. Impaired Glycine Receptor Trafficking in Neurological Diseases. Front Mol Neurosci 2018; 11:291. [PMID: 30186111 PMCID: PMC6110938 DOI: 10.3389/fnmol.2018.00291] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
Ionotropic glycine receptors (GlyRs) enable fast synaptic neurotransmission in the adult spinal cord and brainstem. The inhibitory GlyR is a transmembrane glycine-gated chloride channel. The immature GlyR protein undergoes various processing steps, e.g., folding, assembly, and maturation while traveling from the endoplasmic reticulum to and through the Golgi apparatus, where post-translational modifications, e.g., glycosylation occur. The mature receptors are forward transported via microtubules to the cellular surface and inserted into neuronal membranes followed by synaptic clustering. The normal life cycle of a receptor protein includes further processes like internalization, recycling, and degradation. Defects in GlyR life cycle, e.g., impaired protein maturation and degradation have been demonstrated to underlie pathological mechanisms of various neurological diseases. The neurological disorder startle disease is caused by glycinergic dysfunction mainly due to missense mutations in genes encoding GlyR subunits (GLRA1 and GLRB). In vitro studies have shown that most recessive forms of startle disease are associated with impaired receptor biogenesis. Another neurological disease with a phenotype similar to startle disease is a special form of stiff-person syndrome (SPS), which is most probably due to the development of GlyR autoantibodies. Binding of GlyR autoantibodies leads to enhanced receptor internalization. Here we focus on the normal life cycle of GlyRs concentrating on assembly and maturation, receptor trafficking, post-synaptic integration and clustering, and GlyR internalization/recycling/degradation. Furthermore, this review highlights findings on impairment of these processes under disease conditions such as disturbed neuronal ER-Golgi trafficking as the major pathomechanism for recessive forms of human startle disease. In SPS, enhanced receptor internalization upon autoantibody binding to the GlyR has been shown to underlie the human pathology. In addition, we discuss how the existing mouse models of startle disease increased our current knowledge of GlyR trafficking routes and function. This review further illuminates receptor trafficking of GlyR variants originally identified in startle disease patients and explains changes in the life cycle of GlyRs in patients with SPS with respect to structural and functional consequences at the receptor level.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vera Roemer
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Dieter Janzen
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Richardson BD, Rossi DJ. Recreational concentrations of alcohol enhance synaptic inhibition of cerebellar unipolar brush cells via pre- and postsynaptic mechanisms. J Neurophysiol 2017; 118:267-279. [PMID: 28381493 DOI: 10.1152/jn.00963.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 01/18/2023] Open
Abstract
Variation in cerebellar sensitivity to alcohol/ethanol (EtOH) is a heritable trait associated with alcohol use disorder in humans and high EtOH consumption in rodents, but the underlying mechanisms are poorly understood. A recently identified cellular substrate of cerebellar sensitivity to EtOH, the GABAergic system of cerebellar granule cells (GCs), shows divergent responses to EtOH paralleling EtOH consumption and motor impairment phenotype. Although GCs are the dominant afferent integrator in the cerebellum, such integration is shared by unipolar brush cells (UBCs) in vestibulocerebellar lobes. UBCs receive both GABAergic and glycinergic inhibition, both of which may mediate diverse neurological effects of EtOH. Therefore, the impact of recreational concentrations of EtOH (~10-50 mM) on GABAA receptor (GABAAR)- and glycine receptor (GlyR)-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) of UBCs in cerebellar slices was characterized. Sprague-Dawley rat (SDR) UBCs exhibited sIPSCs mediated by GABAARs, GlyRs, or both, and EtOH dose-dependently (10, 26, 52 mM) increased their frequency and amplitude. EtOH increased the frequency of glycinergic and GABAergic sIPSCs and selectively enhanced the amplitude of glycinergic sIPSCs. This GlyR-specific enhancement of sIPSC amplitude resulted from EtOH actions at presynaptic Golgi cells and via protein kinase C-dependent direct actions on postsynaptic GlyRs. The magnitude of EtOH-induced increases in UBC sIPSC activity varied across SDRs and two lines of mice, in parallel with their respective alcohol consumption/motor impairment phenotypes. These data indicate that Golgi cell-to-UBC inhibitory synapses are targets of EtOH, which acts at pre- and postsynaptic sites, via Golgi cell excitation and direct GlyR enhancement.NEW & NOTEWORTHY Genetic variability in cerebellar alcohol/ethanol sensitivity (ethanol-induced ataxia) predicts ethanol consumption phenotype in rodents and humans, but the cellular and molecular mechanisms underlying genetic differences are largely unknown. Here it is demonstrated that recreational concentrations of alcohol (10-30 mM) enhance glycinergic and GABAergic inhibition of unipolar brush cells through increases in glycine/GABA release and postsynaptic enhancement of glycine receptor-mediated responses. Ethanol effects varied across rodent genotypes parallel to ethanol consumption and motor sensitivity phenotype.
Collapse
Affiliation(s)
- Ben D Richardson
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington; and.,Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington
| | - David J Rossi
- Department of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington; and .,Alcohol and Drug Abuse Research Program, Washington State University, Pullman, Washington
| |
Collapse
|
9
|
Burgos CF, Muñoz B, Guzman L, Aguayo LG. Ethanol effects on glycinergic transmission: From molecular pharmacology to behavior responses. Pharmacol Res 2015; 101:18-29. [PMID: 26158502 DOI: 10.1016/j.phrs.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
It is well accepted that ethanol is able to produce major health and economic problems associated to its abuse. Because of its intoxicating and addictive properties, it is necessary to analyze its effect in the central nervous system. However, we are only now learning about the mechanisms controlling the modification of important membrane proteins such as ligand-activated ion channels by ethanol. Furthermore, only recently are these effects being correlated to behavioral changes. Current studies show that the glycine receptor (GlyR) is a susceptible target for low concentrations of ethanol (5-40mM). GlyRs are relevant for the effects of ethanol because they are found in the spinal cord and brain stem where they primarily express the α1 subunit. More recently, the presence of GlyRs was described in higher regions, such as the hippocampus and nucleus accumbens, with a prevalence of α2/α3 subunits. Here, we review data on the following aspects of ethanol effects on GlyRs: (1) direct interaction of ethanol with amino acids in the extracellular or transmembrane domains, and indirect mechanisms through the activation of signal transduction pathways; (2) analysis of α2 and α3 subunits having different sensitivities to ethanol which allows the identification of structural requirements for ethanol modulation present in the intracellular domain and C-terminal region; (3) Genetically modified knock-in mice for α1 GlyRs that have an impaired interaction with G protein and demonstrate reduced ethanol sensitivity without changes in glycinergic transmission; and (4) GlyRs as potential therapeutic targets.
Collapse
Affiliation(s)
- Carlos F Burgos
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | - Leonardo Guzman
- Laboratory of Molecular Neurobiology, Department of Physiology, University of Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile.
| |
Collapse
|
10
|
Horani S, Stater EP, Corringer PJ, Trudell JR, Harris RA, Howard RJ. Ethanol Modulation is Quantitatively Determined by the Transmembrane Domain of Human α1 Glycine Receptors. Alcohol Clin Exp Res 2015; 39:962-8. [PMID: 25973519 DOI: 10.1111/acer.12735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mutagenesis and labeling studies have identified amino acids from the human α1 glycine receptor (GlyR) extracellular, transmembrane (TM), and intracellular domains in mediating ethanol (EtOH) potentiation. However, limited high-resolution structural data for physiologically relevant receptors in this Cys-loop receptor superfamily have made pinpointing the critical amino acids difficult. Homologous ion channels from lower organisms provide conserved models for structural and functional properties of Cys-loop receptors. We previously demonstrated that a single amino acid variant of the Gloeobacter violaceus ligand-gated ion channel (GLIC) produced EtOH and anesthetic sensitivity similar to that of GlyRs and provided crystallographic evidence for EtOH binding to GLIC. METHODS We directly compared EtOH modulation of the α1 GlyR and GLIC to a chimera containing the TM domain from human α1 GlyRs and the ligand-binding domain of GLIC using 2-electrode voltage-clamp electrophysiology of receptors expressed in Xenopus laevis oocytes. RESULTS EtOH potentiated α1 GlyRs in a concentration-dependent manner in the presence of zinc-chelating agents, but did not potentiate GLIC at pharmacologically relevant concentrations. The GLIC/GlyR chimera recapitulated the EtOH potentiation of GlyRs, without apparent sensitivity to zinc chelation. For chimera expression in oocytes, it was essential to suppress leakage current by adding 50 μM picrotoxin to the media, a technique that may have applications in expression of other ion channels. CONCLUSIONS Our results are consistent with a TM mechanism of EtOH modulation in Cys-loop receptors. This work highlights the relevance of bacterial homologs as valuable model systems for studying ion channel function of human receptors and demonstrates the modularity of these channels across species.
Collapse
Affiliation(s)
- Suzzane Horani
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Evan P Stater
- Chemistry Department , Skidmore College, Saratoga Springs, New York
| | - Pierre-Jean Corringer
- Channel-Receptor Research Group , Pasteur Institute, Bâtiment Fernbach, Paris, France
| | - James R Trudell
- Department of Anesthesia , Stanford University School of Medicine, Stanford, California
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas
| | - Rebecca J Howard
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas.,Chemistry Department , Skidmore College, Saratoga Springs, New York
| |
Collapse
|
11
|
Sánchez A, Yévenes GE, San Martin L, Burgos CF, Moraga-Cid G, Harvey RJ, Aguayo LG. Control of ethanol sensitivity of the glycine receptor α3 subunit by transmembrane 2, the intracellular splice cassette and C-terminal domains. J Pharmacol Exp Ther 2015; 353:80-90. [PMID: 25589412 DOI: 10.1124/jpet.114.221143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have shown that the effect of ethanol onglycine receptors (GlyRs) containing the a1 subunit is affected by interaction with heterotrimeric G proteins (Gβγ). GlyRs containing the α3 subunit are involved in inflammatory pain sensitization and rhythmic breathing and have received much recent attention. For example, it is unknown whether ethanol affects the function of this important GlyR subtype. Electrophysiologic experiments showed that GlyR α3 subunits were not potentiated by pharmacologic concentrations of ethanol or by Gβγ. Thus, we studied GlyR α1–α3 chimeras and mutants to determine the molecular properties that confer ethanol insensitivity. Mutation of corresponding glycine 254 in transmembrane domain 2 (TM2) found in a1 in the α3(A254G) –α1 chimera induced a glycine-evoked current that displayed potentiation during application of ethanol (46 ± 5%, 100 mM) and Gβγ activation (80 ± 17%). Interestingly,insertion of the intracellular α3L splice cassette into GlyR α1 abolished the enhancement of the glycine-activated current by ethanol (5 ± 6%) and activation by Gβγ (21 6 7%). In corporation of the GlyR α1 C terminus into the ethanol-resistant α3S(A254G) mutant produced a construct that displayed potentiation of the glycine-activated current with 100 mM ethanol (40 ± 6%)together with a current enhancement after G protein activation (68 ± 25%). Taken together, these data demonstrate that GlyRα3 subunits are not modulated by ethanol. Residue A254 in TM2, the α3L splice cassette, and the C-terminal domain of α3GlyRs are determinants for low ethanol sensitivity and form the molecular basis of subtype-selective modulation of GlyRs by alcohol.
Collapse
Affiliation(s)
- Andrea Sánchez
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Aguayo LG, Castro P, Mariqueo T, Muñoz B, Xiong W, Zhang L, Lovinger DM, Homanics GE. Altered sedative effects of ethanol in mice with α1 glycine receptor subunits that are insensitive to Gβγ modulation. Neuropsychopharmacology 2014; 39:2538-48. [PMID: 24801766 PMCID: PMC4207329 DOI: 10.1038/npp.2014.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 12/17/2022]
Abstract
Alcohol abuse and alcoholism are major health problems and one of the leading preventable causes of death. Before achieving better treatments for alcoholism, it is necessary to understand the critical actions of alcohol on membrane proteins that regulate fundamental functions in the central nervous system. After generating a genetically modified knock-in (KI) mouse having a glycine receptor (GlyR) with phenotypical silent mutations at KK385/386AA, we studied its cellular and in vivo ethanol sensitivity. Analyses with western blotting and immunocytochemistry indicated that the expression of α1 GlyRs in nervous tissues and spinal cord neurons (SCNs) were similar between WT and KI mice. The analysis of synaptic currents recorded from KI mice showed that the glycinergic synaptic transmission had normal properties, but the sensitivity to ethanol was significantly reduced. Furthermore, the glycine-evoked current in SCNs from KI was resistant to ethanol and G-protein activation by GTP-γ-S. In behavioral studies, KI mice did not display the foot-clasping behavior upon lifting by the tail and lacked an enhanced startle reflex response that are characteristic of other glycine KI mouse lines with markedly impaired glycine receptor function. The most notable characteristic of the KI mice was their significant lower sensitivity to ethanol (∼40%), expressed by shorter times in loss of righting reflex (LORR) in response to a sedative dose of ethanol (3.5 g/Kg). These data provide the first evidence to link a molecular site in the GlyR with the sedative effects produced by intoxicating doses of ethanol.
Collapse
Affiliation(s)
- Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile,Department of Physiology, University of Concepcion, PO BOX 160C, Concepcion 4030001, Chile. E-mail:
| | - Patricio Castro
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile
| | - Trinidad Mariqueo
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile
| | - Braulio Muñoz
- Laboratory of Neurophysiology, Department of Physiology, University of Concepcion, Concepcion, Chile
| | - Wei Xiong
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gregg E Homanics
- Departments of Anesthesiology and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA,Departments of Anesthesiology and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA. E-mail:
| |
Collapse
|
14
|
Schaefer N, Langlhofer G, Kluck CJ, Villmann C. Glycine receptor mouse mutants: model systems for human hyperekplexia. Br J Pharmacol 2014; 170:933-52. [PMID: 23941355 DOI: 10.1111/bph.12335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/19/2013] [Accepted: 08/02/2013] [Indexed: 11/30/2022] Open
Abstract
Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
15
|
Trudell JR, Messing RO, Mayfield J, Harris RA. Alcohol dependence: molecular and behavioral evidence. Trends Pharmacol Sci 2014; 35:317-23. [PMID: 24865944 PMCID: PMC4089033 DOI: 10.1016/j.tips.2014.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Alcohol dependence is a complex condition with clear genetic factors. Some of the leading candidate genes code for subunits of the inhibitory GABAA and glycine receptors. These and related ion channels are also targets for the acute actions of alcohol, and there is considerable progress in understanding interactions of alcohol with these proteins at the molecular and even atomic levels. X-ray structures of open and closed states of ion channels combined with structural modeling and site-directed mutagenesis have elucidated direct actions of alcohol. Alcohol also alters channel function by translational and post-translational mechanisms, including phosphorylation and protein trafficking. Construction of mutant mice with either deletion of key proteins or introduction of alcohol-resistant channels has further linked specific proteins with discrete behavioral effects of alcohol. A combination of approaches, including genome wide association studies in humans, continues to advance the molecular basis of alcohol action on receptor structure and function.
Collapse
Affiliation(s)
- James R Trudell
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jody Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
16
|
Crystallographic studies of pharmacological sites in pentameric ligand-gated ion channels. Biochim Biophys Acta Gen Subj 2014; 1850:511-23. [PMID: 24836522 DOI: 10.1016/j.bbagen.2014.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical transmission of nerve signals in the central and peripheral nervous system. On the functional side, these molecules respond to the binding of a neurotransmitter (glycine, GABA, acetylcholine or 5HT3) in the extracellular domain (ECD) by opening their ionotropic pore in the transmembrane domain (TMD). The response to the neurotransmitter binding can be modulated by several chemical compounds acting at topographically distinct sites, as documented by a large body of literature. Notably, these receptors are the target of several classes of world-wide prescribed drugs, including general anesthetics, smoking cessation aids, anxiolytics, anticonvulsants, muscle relaxants, hypnotics and anti-emetics. On the structural side recent progress has been made on the crystallization of pLGICs in its different allosteric states, especially pLGICs of bacterial origin. Therefore, structure-function relationships can now be discussed at the atomic level for pLGICs. SCOPE OF REVIEW This review focuses on the crystallographic structure of complexes of pLGICs with a number of ligands of pharmacological interest. First, we review structural data on two key functional aspects of these receptors: the agonist-induced activation and ion transport itself. The molecular understanding of both these functional aspects is important, as they are those that most pharmacological compounds target. Next, we describe modulation sites that have recently been documented by X-ray crystallography. Finally, we propose a simple geometric classification of all these pharmacological sites in pLGICs, based on icosahedrons. MAJOR CONCLUSIONS This review illustrates the wealth of structural insight gained by comparing all available structures of members of the pLGIC family to rationalize the pharmacology of structurally diverse drugs acting at topographically distinct sites. It will be highlighted how sites that had been described earlier using biochemical techniques can be rationalized using structural data. Surprisingly, the use of icosahedral symmetry allows to link together several modulation sites, in a way that was totally unanticipated. GENERAL SIGNIFICANCE Overall, understanding the interplay between the different modulation sites at the structural level should help the design of future drugs targeting pLGICs. This article is part of a Special Issue entitled structural biochemistry and biophysics of membrane proteins.
Collapse
|
17
|
Mariqueo TA, Agurto A, Muñoz B, San Martin L, Coronado C, Fernández-Pérez EJ, Murath P, Sánchez A, Homanics GE, Aguayo LG. Effects of ethanol on glycinergic synaptic currents in mouse spinal cord neurons. J Neurophysiol 2014; 111:1940-8. [PMID: 24572089 DOI: 10.1152/jn.00789.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ethanol increased the frequency of miniature glycinergic currents [miniature inhibitory postsynaptic currents (mIPSCs)] in cultured spinal neurons. This effect was dependent on intracellular calcium augmentation, since preincubation with BAPTA (an intracellular calcium chelator) or thapsigargin [a sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump inhibitor] significantly attenuated this effect. Similarly, U73122 (a phospholipase C inhibitor) or 2-aminoethoxydiphenyl borate [2-APB, an inositol 1,4,5-trisphosphate (IP₃) receptor (IP3R) inhibitor] reduced this effect. Block of ethanol action was also achieved after preincubation with Rp-cAMPS, inhibitor of the adenylate cyclase (AC)/PKA signaling pathway. These data suggest that there is a convergence at the level of IP₃R that accounts for presynaptic ethanol effects. At the postsynaptic level, ethanol increased the decay time constant of mIPSCs in a group of neurons (30 ± 10% above control, n = 13/26 cells). On the other hand, the currents activated by exogenously applied glycine were consistently potentiated (55 ± 10% above control, n = 11/12 cells), which suggests that ethanol modulates synaptic and nonsynaptic glycine receptors (GlyRs) in a different fashion. Supporting the role of G protein modulation on ethanol responses, we found that a nonhydrolyzable GTP analog [guanosine 5'-O-(3-thiotriphosphate) (GTPγS)] increased the decay time constant in ∼50% of the neurons (28 ± 12%, n = 11/19 cells) but potentiated the glycine-activated Cl(-) current in most of the neurons examined (83 ± 29%, n = 7/9 cells). In addition, confocal microscopy showed that α1-containing GlyRs colocalized with Gβ and Piccolo (a presynaptic cytomatrix protein) in ∼40% of synaptic receptor clusters, suggesting that colocalization of Gβγ and GlyRs might account for the difference in ethanol sensitivity at the postsynaptic level.
Collapse
Affiliation(s)
- Trinidad A Mariqueo
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile; PhD Program in Pharmacology, University of Chile, Santiago, Chile; and
| | - Adolfo Agurto
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile
| | - Braulio Muñoz
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile
| | - Loreto San Martin
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile
| | - Cesar Coronado
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile
| | | | - Pablo Murath
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile
| | - Andrea Sánchez
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile
| | - Gregg E Homanics
- Department of Anesthesiology and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Luis G Aguayo
- Department of Physiology-Laboratory of Neurophysiology, University of Concepción, Concepción, Chile;
| |
Collapse
|
18
|
Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev 2014; 66:396-412. [PMID: 24515646 PMCID: PMC3973611 DOI: 10.1124/pr.113.007468] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Collapse
Affiliation(s)
- Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866.
| | | | | |
Collapse
|
19
|
Presynaptic glycine receptors as a potential therapeutic target for hyperekplexia disease. Nat Neurosci 2014; 17:232-9. [PMID: 24390226 DOI: 10.1038/nn.3615] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 12/03/2013] [Indexed: 11/08/2022]
Abstract
Although postsynaptic glycine receptors (GlyRs) as αβ heteromers attract considerable research attention, little is known about the role of presynaptic GlyRs, likely α homomers, in diseases. Here, we demonstrate that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, can rescue GlyR functional deficiency and exaggerated acoustic and tactile startle responses in mice bearing point mutations in α1 GlyRs that are responsible for a hereditary startle-hyperekplexia disease. The GlyRs expressed as α1 homomers either in HEK-293 cells or at presynaptic terminals of the calyceal synapses in the auditory brainstem are more vulnerable than heteromers to hyperekplexia mutation-induced impairment. Homomeric mutants are more sensitive to DH-CBD than are heteromers, suggesting presynaptic GlyRs as a primary target. Consistent with this idea, DH-CBD selectively rescues impaired presynaptic GlyR activity and diminished glycine release in the brainstem and spinal cord of hyperekplexic mutant mice. Thus, presynaptic α1 GlyRs emerge as a potential therapeutic target for dominant hyperekplexia disease and other diseases with GlyR deficiency.
Collapse
|
20
|
Kessler A, Sahin-Nadeem H, Lummis SCR, Weigel I, Pischetsrieder M, Buettner A, Villmann C. GABA(A) receptor modulation by terpenoids from Sideritis extracts. Mol Nutr Food Res 2013; 58:851-62. [PMID: 24273211 PMCID: PMC4384808 DOI: 10.1002/mnfr.201300420] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/12/2013] [Accepted: 09/15/2013] [Indexed: 11/10/2022]
Abstract
SCOPE GABAA receptors are modulated by Sideritis extracts. The aim of this study was to identify single substances from Sideritis extracts responsible for GABAA receptor modulation. METHODS AND RESULTS Single volatile substances identified by GC have been tested in two expression systems, Xenopus oocytes and human embryonic kidney cells. Some of these substances, especially carvacrol, were highly potent on GABAA receptors composed of α1β2 and α1β2γ2 subunits. All effects measured were independent from the presence of the γ2 subunit. As Sideritis extracts contain a high amount of terpenes, 13 terpenes with similar structure elements were tested in the same way. Following a prescreening on α1β2 GABAA receptors, a high-throughput method was used for identification of the most effective terpenoid substances on GABA-affinity of α1β2γ2 receptors expressed in transfected cell lines. Isopulegol, pinocarveol, verbenol, and myrtenol were the most potent modifiers of GABAA receptor function. CONCLUSION Comparing the chemical structures, the action of terpenes on GABAA receptors is most probably due to the presence of hydroxyl groups and a bicyclic character of the substances tested. We propose an allosteric modulation independent from the γ2 subunit and similar to the action of alcohols and anesthetics.
Collapse
Affiliation(s)
- Artur Kessler
- Department of Chemistry and Pharmacy, Food Chemistry Division, University of Erlangen-Nuernberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
21
|
Structural basis for potentiation by alcohols and anaesthetics in a ligand-gated ion channel. Nat Commun 2013; 4:1697. [PMID: 23591864 DOI: 10.1038/ncomms2682] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/28/2013] [Indexed: 01/28/2023] Open
Abstract
Ethanol alters nerve signalling by interacting with proteins in the central nervous system, particularly pentameric ligand-gated ion channels. A recent series of mutagenesis experiments on Gloeobacter violaceus ligand-gated ion channel, a prokaryotic member of this family, identified a single-site variant that is potentiated by pharmacologically relevant concentrations of ethanol. Here we determine crystal structures of the ethanol-sensitized variant in the absence and presence of ethanol and related modulators, which bind in a transmembrane cavity between channel subunits and may stabilize the open form of the channel. Structural and mutagenesis studies defined overlapping mechanisms of potentiation by alcohols and anaesthetics via the inter-subunit cavity. Furthermore, homology modelling show this cavity to be conserved in human ethanol-sensitive glycine and GABA(A) receptors, and to involve residues previously shown to influence alcohol and anaesthetic action on these proteins. These results suggest a common structural basis for ethanol potentiation of an important class of targets for neurological actions of ethanol.
Collapse
|
22
|
McCracken LM, Blednov YA, Trudell JR, Benavidez JM, Betz H, Harris RA. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo. J Pharmacol Exp Ther 2012; 344:489-500. [PMID: 23230213 DOI: 10.1124/jpet.112.197707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.
Collapse
Affiliation(s)
- Lindsay M McCracken
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | |
Collapse
|
23
|
Mutations M287L and Q266I in the glycine receptor α1 subunit change sensitivity to volatile anesthetics in oocytes and neurons, but not the minimal alveolar concentration in knockin mice. Anesthesiology 2012; 117:765-71. [PMID: 22885675 DOI: 10.1097/aln.0b013e31826a0d93] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Volatile anesthetics (VAs) alter the function of key central nervous system proteins but it is not clear which, if any, of these targets mediates the immobility produced by VAs in the face of noxious stimulation. A leading candidate is the glycine receptor, a ligand-gated ion channel important for spinal physiology. VAs variously enhance such function, and blockade of spinal glycine receptors with strychnine affects the minimal alveolar concentration (an anesthetic EC50) in proportion to the degree of enhancement. METHODS We produced single amino acid mutations into the glycine receptor α1 subunit that increased (M287L, third transmembrane region) or decreased (Q266I, second transmembrane region) sensitivity to isoflurane in recombinant receptors, and introduced such receptors into mice. The resulting knockin mice presented impaired glycinergic transmission, but heterozygous animals survived to adulthood, and we determined the effect of isoflurane on glycine-evoked responses of brainstem neurons from the knockin mice, and the minimal alveolar concentration for isoflurane and other VAs in the immature and mature knockin mice. RESULTS Studies of glycine-evoked currents in brainstem neurons from knockin mice confirmed the changes seen with recombinant receptors. No increases in the minimal alveolar concentration were found in knockin mice, but the minimal alveolar concentration for isoflurane and enflurane (but not halothane) decreased in 2-week-old Q266I mice. This change is opposite to the one expected for a mutation that decreases the sensitivity to volatile anesthetics. CONCLUSION Taken together, these results indicate that glycine receptors containing the α1 subunit are not likely to be crucial for the action of isoflurane and other VAs.
Collapse
|
24
|
Schaefer N, Vogel N, Villmann C. Glycine receptor mutants of the mouse: what are possible routes of inhibitory compensation? Front Mol Neurosci 2012; 5:98. [PMID: 23118727 PMCID: PMC3484359 DOI: 10.3389/fnmol.2012.00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/11/2012] [Indexed: 12/02/2022] Open
Abstract
Defects in glycinergic inhibition result in a complex neuromotor disorder in humans known as hyperekplexia (OMIM 149400) with similar phenotypes in rodents characterized by an exaggerated startle reflex and hypertonia. Analogous to genetic defects in humans single point mutations, microdeletions, or insertions in the Glra1 gene but also in the Glrb gene underlie the pathology in mice. The mutations either localized in the α (spasmodic, oscillator, cincinnati, Nmf11) or the β (spastic) subunit of the glycine receptor (GlyR) are much less tolerated in mice than in humans, leaving the question for the existence of different regulatory elements of the pathomechanisms in humans and rodents. In addition to the spontaneous mutations, new insights into understanding of the regulatory pathways in hyperekplexia or glycine encephalopathy arose from the constantly increasing number of knock-out as well as knock-in mutants of GlyRs. Over the last five years, various efforts using in vivo whole cell recordings provided a detailed analysis of the kinetic parameters underlying glycinergic dysfunction. Presynaptic compensation as well as postsynaptic compensatory mechanisms in these mice by other GlyR subunits or GABAA receptors, and the role of extra-synaptic GlyRs is still a matter of debate. A recent study on the mouse mutant oscillator displayed a novel aspect for compensation of functionality by complementation of receptor domains that fold independently. This review focuses on defects in glycinergic neurotransmission in mice discussed with the background of human hyperekplexia en route to strategies of compensation.
Collapse
Affiliation(s)
- Natascha Schaefer
- Emil Fischer Center, Institute of Biochemistry, University Erlangen-Nuernberg Erlangen, Germany ; Institute for Clinical Neurobiology, University of Wuerzburg Wuerzburg, Germany
| | | | | |
Collapse
|
25
|
Blednov YA, Benavidez JM, Homanics GE, Harris RA. Behavioral characterization of knockin mice with mutations M287L and Q266I in the glycine receptor α1 subunit. J Pharmacol Exp Ther 2011; 340:317-29. [PMID: 22037202 DOI: 10.1124/jpet.111.185124] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We used behavioral pharmacology to characterize heterozygous knockin mice with mutations (Q266I or M287L) in the α1 subunit of the glycine receptor (GlyR) (J Pharmacol Exp Ther 340:304-316, 2012). These mutations were designed to reduce (M287L) or eliminate (Q266I) ethanol potentiation of GlyR function. We asked which behavioral effects of ethanol would be reduced more in the Q266I mutant than the M287L and found rotarod ataxia to be the behavior that fulfilled this criterion. Compared with controls, the mutant mice also differed in ethanol consumption, ethanol-stimulated startle response, signs of acute physical dependence, and duration of loss of righting response produced by ethanol, butanol, ketamine, pentobarbital, and flurazepam. Some of these behavioral changes were mimicked in wild-type mice by acute injections of low, subconvulsive doses of strychnine. Both mutants showed increased acoustic startle response and increased sensitivity to strychnine seizures. Thus, in addition to reducing ethanol action on the GlyRs, these mutations reduced glycinergic inhibition, which may also alter sensitivity to GABAergic drugs.
Collapse
Affiliation(s)
- Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas, Austin, TX 78712-0159, USA
| | | | | | | |
Collapse
|