1
|
Zhang B, Chuang GY, Biju A, Biner D, Cheng J, Wang Y, Bao S, Chao CW, Lei H, Liu T, Nazzari AF, Yang Y, Zhou T, Chen SJ, Chen X, Kong WP, Ou L, Parchment DK, Sarfo EK, SiMa H, Todd JP, Wang S, Woodward RA, Cheng C, Rawi R, Mascola JR, Kwong PD. Cholesterol reduction by immunization with a PCSK9 mimic. Cell Rep 2024; 43:114285. [PMID: 38819987 PMCID: PMC11305080 DOI: 10.1016/j.celrep.2024.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively. Immunization of cynomolgus macaques with HIT01-K21Q-R218E, a cleavage-resistant variant, elicits high-titer PCSK9-directed antibody responses and significantly reduces serum levels of cholesterol 2 weeks after each immunization. However, HIT01-K21Q-R218E immunizations also increase serum PCSK9 levels by up to 5-fold, likely due to PCSK9-binding antibodies altering the half-life of PCSK9. While vaccination with a PCSK9 mimic can induce antibodies that block interactions of PCSK9 with the LDL receptor, PCSK9-binding antibodies appear to alter homeostatic levels of PCSK9, thereby confounding its vaccine impact. Our results nevertheless suggest a mechanism for increasing the half-life of soluble regulatory factors by vaccination.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Biju
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Biner
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaxuan Cheng
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saran Bao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haotian Lei
- Research Technologies Branch, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Chen
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danealle K Parchment
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - HaoMin SiMa
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruth A Woodward
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
2
|
Shin D, Kim S, Lee H, Lee HC, Lee J, Park HW, Fukai M, Choi E, Choi S, Koo BJ, Yu JH, No G, Cho S, Kim CW, Han D, Jang HD, Kim HS. PCSK9 stimulates Syk, PKCδ, and NF-κB, leading to atherosclerosis progression independently of LDL receptor. Nat Commun 2024; 15:2789. [PMID: 38555386 PMCID: PMC10981688 DOI: 10.1038/s41467-024-46336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2024] [Indexed: 04/02/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) binds to and degrades low-density lipoprotein (LDL) receptor, leading to increase of LDL cholesterol in blood. Its blockers have emerged as promising therapeutics for cardiovascular diseases. Here we show that PCSK9 itself directly induces inflammation and aggravates atherosclerosis independently of the LDL receptor. PCSK9 exacerbates atherosclerosis in LDL receptor knockout mice. Adenylyl cyclase-associated protein 1 (CAP1) is the main binding partner of PCSK9 and indispensable for the inflammatory action of PCSK9, including induction of cytokines, Toll like receptor 4, and scavenger receptors, enhancing the uptake of oxidized LDL. We find spleen tyrosine kinase (Syk) and protein kinase C delta (PKCδ) to be the key mediators of inflammation after PCSK9-CAP1 binding. In human peripheral blood mononuclear cells, serum PCSK9 levels are positively correlated with Syk, PKCδ, and p65 phosphorylation. The CAP1-fragment crystallizable region (CAP1-Fc) mitigates PCSK9-mediated inflammatory signal transduction more than the PCSK9 blocking antibody evolocumab does.
Collapse
Affiliation(s)
- Dasom Shin
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Soungchan Kim
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hwan Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Chae Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaewon Lee
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Woo Park
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mina Fukai
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - EunByule Choi
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Subin Choi
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bon-Jun Koo
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Hoon Yu
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gyurae No
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sungyoon Cho
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chan Woo Kim
- Department of Preclinical Trial, Laboratory Animal Center, Osong Medical Innovation Foundation (KBIO), Cheongju, Chungbuk, Republic of Korea
| | - Dohyun Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyun-Duk Jang
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Hyo-Soo Kim
- Center of CBT (Cell and BioTherapy), Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
- Program in Stem Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Wang EQ, Kaila N, Plowchalk D, Gibiansky L, Yunis C, Sweeney K. Population PK/PD modeling of low-density lipoprotein cholesterol response in hypercholesterolemic participants following administration of bococizumab, a potent anti-PCSK9 monoclonal antibody. CPT Pharmacometrics Syst Pharmacol 2023; 12:2013-2026. [PMID: 37994400 PMCID: PMC10725275 DOI: 10.1002/psp4.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 11/24/2023] Open
Abstract
We sought to characterize the population pharmacokinetic/pharmacodynamic (PK/PD) relationship of bococizumab (RN316/PF-04950615), a humanized IgG2Δa monoclonal antibody that binds to secreted human proprotein convertase subtilisin kexin type 9 (PCSK9), using data derived from 16 phase I, II, and III clinical studies (36,066 bococizumab observations, 46,790 low-density lipoprotein cholesterol [LDL-C] measurements, 3499 participants). A two-compartment disposition model with parallel linear and Michaelis-Menten elimination and an indirect response model was used to characterize the population PK and LDL-C response of bococizumab. Potential model parameters and covariate relationships were explored, and visual predictive checks were used for model assessment and validation. Key covariates included the effect of anti-drug antibodies (ADAs) on exposure through impact on clearance and bioavailability; impact of statins on bococizumab elimination (maximal rate of metabolism); and impact of statins, Asian race, and male sex on LDL-C efficacy (maximum effect). ADAs and neutralizing ADAs did not have additional effects on LDL-C beyond the influence on bococizumab exposure. In conclusion, the population PK/PD model adequately describes bococizumab concentration and LDL-C efficacy. The covariate effects are consistent with the presumed mechanism of action of PCSK9 inhibitors. With increasing availability of antibody-based therapeutics, improved understanding of the effect of ADAs and statins on bococizumab PK/PD adds to the literature and enhances our pharmacological understanding of how immunogenicity and concomitant medications may impact the PK/PD of biotherapeutics.
Collapse
Affiliation(s)
- Ellen Q. Wang
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.New YorkNew YorkUSA
| | - Nitin Kaila
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.GrotonConnecticutUSA
| | - David Plowchalk
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.GrotonConnecticutUSA
| | | | - Carla Yunis
- Global Product Development, Pfizer Inc.FloridaUSA
| | - Kevin Sweeney
- Clinical Pharmacology & Bioanalytics, Pfizer Inc.GrotonConnecticutUSA
| |
Collapse
|
5
|
Huhtinen O, Salbo R, Lamminmäki U, Prince S. Selection of biophysically favorable antibody variants using a modified Flp-In CHO mammalian display platform. Front Bioeng Biotechnol 2023; 11:1170081. [PMID: 37229492 PMCID: PMC10203562 DOI: 10.3389/fbioe.2023.1170081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Mammalian display enables the selection of biophysically favorable antibodies from a large IgG antibody library displayed on the plasma membrane of mammalian cells. We constructed and validated a novel mammalian display platform utilizing the commercially available Flp-In CHO cell line as a starting point. We introduced a single copy of a landing pad for Bxb1 integrase-driven recombinase-mediated cassette exchange into the FRT site of the Flp-In CHO line to facilitate the efficient single-copy integration of an antibody display cassette into the genome of the cell line. We then proceeded to demonstrate the ability of our platform to select biophysically favorable antibodies from a library of 1 × 106 displayed antibodies designed to improve the biophysical properties of bococizumab via randomization of problematic hydrophobic surface residues of the antibody. Enrichment of bococizumab variants via fluorescence-activated cell sorting selections was followed by next generation sequencing and thorough characterization of biophysical properties of 10 bococizumab variants that subsequently allowed attribution of the mutations to the biophysical properties of the antibody variants. The mammalian displayed variants exhibited reduced aggregation propensity and polyreactivity, while critically retaining its target binding thereby demonstrating the utility of this valuable tool.
Collapse
Affiliation(s)
- Olli Huhtinen
- Protein and Antibody Engineering, Orion Corporation, Turku, Finland
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Rune Salbo
- Protein and Antibody Engineering, Orion Corporation, Turku, Finland
| | - Urpo Lamminmäki
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Stuart Prince
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Arata Y, Motoyama S, Yano M, Ikuno T, Ito S, Matsushita T, Takeiri A, Nishito Y, Yabuki N, Mizuno H, Sampei Z, Mishima M, Honda M, Kiyokawa J, Suzuki H, Chiba S, Tabo M, Kubo C. Rapid in vitro assessment of the immunogenicity potential of engineered antibody therapeutics through detection of CD4 + T cell interleukin-2 secretion. MAbs 2023; 15:2253570. [PMID: 37682072 PMCID: PMC10494738 DOI: 10.1080/19420862.2023.2253570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic antibodies sometimes elicit anti-drug antibodies (ADAs) that can affect efficacy and safety. Engineered antibodies that contain artificial amino acid sequences are potentially highly immunogenic, but this is currently difficult to predict. Therefore, it is important to efficiently assess immunogenicity during the development of complex antibody-based formats. Here, we present an in vitro peripheral blood mononuclear cell-based assay that can be used to assess immunogenicity potential within 3 days. This method involves examining the frequency and function of interleukin (IL)-2-secreting CD4+ T cells induced by therapeutic antibodies. IL-2-secreting CD4+ T cells seem to be functionally relevant to the immunogenic potential due to their proliferative activity and the expression of several cytokines. The rates of the donors responding to low and high immunogenic proteins, mAb1, and keyhole limpet hemocyanin were 1.3% and 93.5%, respectively. Seven antibodies with known rates of immunogenicity (etanercept, emicizumab, abciximab, romosozumab, blosozumab, humanized anti-human A33 antibody, and bococizumab) induced responses in 1.9%, 3.8%, 6.4%, 10.0%, 29.2%, 43.8%, and 89.5% of donors, respectively. These data are comparable with ADA incidences in clinical settings. Our results show that this assay can contribute to the swift assessment and mechanistic understanding of the immunogenicity of therapeutic antibodies.
Collapse
Affiliation(s)
- Yoshiyuki Arata
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shigeki Motoyama
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Mariko Yano
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Tatsuya Ikuno
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shunsuke Ito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Tomochika Matsushita
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Akira Takeiri
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Yukari Nishito
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Nami Yabuki
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Hideaki Mizuno
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Masayuki Mishima
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Masaki Honda
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Jumpei Kiyokawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Hiromi Suzuki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Shuichi Chiba
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Mitsuyasu Tabo
- Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| | - Chiyomi Kubo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan
| |
Collapse
|
7
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
8
|
Cohen T, Halfon M, Carter L, Sharkey B, Jain T, Sivasubramanian A, Schneidman-Duhovny D. Multi-state modeling of antibody-antigen complexes with SAXS profiles and deep-learning models. Methods Enzymol 2022; 678:237-262. [PMID: 36641210 DOI: 10.1016/bs.mie.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibodies are an established class of human therapeutics. Epitope characterization is an important part of therapeutic antibody discovery. However, structural characterization of antibody-antigen complexes remains challenging. On the one hand, X-ray crystallography or cryo-electron microscopy provide atomic resolution characterization of the epitope, but the data collection process is typically long and the success rate is low. On the other hand, computational methods for modeling antibody-antigen structures from the individual components frequently suffer from a high false positive rate, rarely resulting in a unique solution. Recent deep learning models for structure prediction are also successful in predicting protein-protein complexes. However, they do not perform well for antibody-antigen complexes. Small Angle X-ray Scattering (SAXS) is a reliable technique for rapid structural characterization of protein samples in solution albeit at low resolution. Here, we present an integrative approach for modeling antigen-antibody complexes using the antibody sequence, antigen structure, and experimentally determined SAXS profiles of the antibody, antigen, and the complex. The method models antibody structures using a novel deep-learning approach, NanoNet. The structures of the antibodies and antigens are represented using multiple 3D conformations to account for compositional and conformational heterogeneity of the protein samples that are used to collect the SAXS data. The complexes are predicted by integrating the SAXS profiles with scoring functions for protein-protein interfaces that are based on statistical potentials and antibody-specific deep-learning models. We validated the method via application to four Fab:EGFR and one Fab:PCSK9 antibody:antigen complexes with experimentally available SAXS datasets. The integrative approach returns accurate predictions (interface RMSD<4Å) in the top five predictions for four out of five complexes (respective interface RMSD values of 1.95, 2.18, 2.66 and 3.87Å), providing support for the utility of such a computational pipeline for epitope characterization during therapeutic antibody discovery.
Collapse
Affiliation(s)
- Tomer Cohen
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matan Halfon
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lester Carter
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Beth Sharkey
- High-Throughput Expression, Adimab LLC, Lebanon, NH, United States
| | - Tushar Jain
- Computational Biology, Adimab LLC, Palo Alto, CA, United States
| | | | - Dina Schneidman-Duhovny
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Abstract
This article reviews the discovery of PCSK9, its structure-function characteristics, and its presently known and proposed novel biological functions. The major critical function of PCSK9 deduced from human and mouse studies, as well as cellular and structural analyses, is its role in increasing the levels of circulating low-density lipoprotein (LDL)-cholesterol (LDLc), via its ability to enhance the sorting and escort of the cell surface LDL receptor (LDLR) to lysosomes. This implicates the binding of the catalytic domain of PCSK9 to the EGF-A domain of the LDLR. This also requires the presence of the C-terminal Cys/His-rich domain, its binding to the secreted cytosolic cyclase associated protein 1, and possibly another membrane-bound "protein X". Curiously, in PCSK9-deficient mice, an alternative to the downregulation of the surface levels of the LDLR by PCSK9 is taking place in the liver of female mice in a 17β-estradiol-dependent manner by still an unknown mechanism. Recent studies have extended our understanding of the biological functions of PCSK9, namely its implication in septic shock, vascular inflammation, viral infections (Dengue; SARS-CoV-2) or immune checkpoint modulation in cancer via the regulation of the cell surface levels of the T-cell receptor and MHC-I, which govern the antitumoral activity of CD8+ T cells. Because PCSK9 inhibition may be advantageous in these processes, the availability of injectable safe PCSK9 inhibitors that reduces by 50% to 60% LDLc above the effect of statins is highly valuable. Indeed, injectable PCSK9 monoclonal antibody or small interfering RNA could be added to current immunotherapies in cancer/metastasis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), Montreal, QC, Canada
| |
Collapse
|
10
|
Makowski EK, Chen H, Lambert M, Bennett EM, Eschmann NS, Zhang Y, Zupancic JM, Desai AA, Smith MD, Lou W, Fernando A, Tully T, Gallo CJ, Lin L, Tessier PM. Reduction of therapeutic antibody self-association using yeast-display selections and machine learning. MAbs 2022; 14:2146629. [PMID: 36433737 PMCID: PMC9704398 DOI: 10.1080/19420862.2022.2146629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Self-association governs the viscosity and solubility of therapeutic antibodies in high-concentration formulations used for subcutaneous delivery, yet it is difficult to reliably identify candidates with low self-association during antibody discovery and early-stage optimization. Here, we report a high-throughput protein engineering method for rapidly identifying antibody candidates with both low self-association and high affinity. We find that conjugating quantum dots to IgGs that strongly self-associate (pH 7.4, PBS), such as lenzilumab and bococizumab, results in immunoconjugates that are highly sensitive for detecting other high self-association antibodies. Moreover, these conjugates can be used to rapidly enrich yeast-displayed bococizumab sub-libraries for variants with low levels of immunoconjugate binding. Deep sequencing and machine learning analysis of the enriched bococizumab libraries, along with similar library analysis for antibody affinity, enabled identification of extremely rare variants with co-optimized levels of low self-association and high affinity. This analysis revealed that co-optimizing bococizumab is difficult because most high-affinity variants possess positively charged variable domains and most low self-association variants possess negatively charged variable domains. Moreover, negatively charged mutations in the heavy chain CDR2 of bococizumab, adjacent to its paratope, were effective at reducing self-association without reducing affinity. Interestingly, most of the bococizumab variants with reduced self-association also displayed improved folding stability and reduced nonspecific binding, revealing that this approach may be particularly useful for identifying antibody candidates with attractive combinations of drug-like properties.Abbreviations: AC-SINS: affinity-capture self-interaction nanoparticle spectroscopy; CDR: complementarity-determining region; CS-SINS: charge-stabilized self-interaction nanoparticle spectroscopy; FACS: fluorescence-activated cell sorting; Fab: fragment antigen binding; Fv: fragment variable; IgG: immunoglobulin; QD: quantum dot; PBS: phosphate-buffered saline; VH: variable heavy; VL: variable light.
Collapse
Affiliation(s)
- Emily K. Makowski
- Departments of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA
| | - Hongwei Chen
- Departments of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Yulei Zhang
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer M. Zupancic
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew D. Smith
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenjia Lou
- Departments of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Timothy Tully
- Bioprocess Research & Development, Pfizer Inc., St. Louis, MO, USA
| | | | - Laura Lin
- BioMedicine Design, Pfizer Inc, Cambridge, MA, USA
| | - Peter M. Tessier
- Departments of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI48109, USA,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA,CONTACT Peter M. Tessier Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Tucker TJ, Embrey MW, Alleyne C, Amin RP, Bass A, Bhatt B, Bianchi E, Branca D, Bueters T, Buist N, Ha SN, Hafey M, He H, Higgins J, Johns DG, Kerekes AD, Koeplinger KA, Kuethe JT, Li N, Murphy B, Orth P, Salowe S, Shahripour A, Tracy R, Wang W, Wu C, Xiong Y, Zokian HJ, Wood HB, Walji A. A Series of Novel, Highly Potent, and Orally Bioavailable Next-Generation Tricyclic Peptide PCSK9 Inhibitors. J Med Chem 2021; 64:16770-16800. [PMID: 34704436 DOI: 10.1021/acs.jmedchem.1c01599] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proprotein convertase subtilisin-like/kexin type 9 (PCSK9) is a key regulator of plasma LDL-cholesterol (LDL-C) and a clinically validated target for the treatment of hypercholesterolemia and coronary artery disease. Starting from second-generation lead structures such as 2, we were able to refine these structures to obtain extremely potent bi- and tricyclic PCSK9 inhibitor peptides. Optimized molecules such as 44 demonstrated sufficient oral bioavailability to maintain therapeutic levels in rats and cynomolgus monkeys after dosing with an enabled formulation. We demonstrated target engagement and LDL lowering in cynomolgus monkeys essentially identical to those observed with the clinically approved, parenterally dosed antibodies. These molecules represent the first report of highly potent and orally bioavailable macrocyclic peptide PCSK9 inhibitors with overall profiles favorable for potential development as once-daily oral lipid-lowering agents. In this manuscript, we detail the design criteria and multiparameter optimization of this novel series of PCSK9 inhibitors.
Collapse
Affiliation(s)
- Thomas J Tucker
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Mark W Embrey
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Candice Alleyne
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Rupesh P Amin
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Alan Bass
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Bhavana Bhatt
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Elisabetta Bianchi
- Peptides and Small Molecule Research and Development Department, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Danila Branca
- Peptides and Small Molecule Research and Development Department, IRBM S.p.A., Via Pontina km 30600, 00071 Pomezia (RM), Italy
| | - Tjerk Bueters
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Nicole Buist
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Sookhee N Ha
- Department of Modeling and Informatics, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Mike Hafey
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Huaibing He
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - John Higgins
- Department of Discovery Pharmaceutical Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Douglas G Johns
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Angela D Kerekes
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Kenneth A Koeplinger
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Jeffrey T Kuethe
- Department of Process Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Nianyu Li
- Department of Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - BethAnn Murphy
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Peter Orth
- Department of Structural Sciences, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Scott Salowe
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Aurash Shahripour
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Rodger Tracy
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Weixun Wang
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Chengwei Wu
- Department of Medicinal Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486 United States
| | - Yusheng Xiong
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Hratch J Zokian
- Department of Discovery Biology, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Harold B Wood
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| | - Abbas Walji
- Department of Medicinal Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033 United States
| |
Collapse
|
12
|
Efficacy and Safety of PCSK9 Inhibitors in Stroke Prevention. J Stroke Cerebrovasc Dis 2021; 30:106057. [PMID: 34450482 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) interacts with the low-density lipoprotein (LDL) receptor and, by enhancing its degradation, has a pivotal role in the regulation of cholesterol homeostasis. Two fully humanized monoclonal antibodies targeting PCSK9, evolocumab and alirocumab, are available for clinical use. PCSK9 inhibitors reduce LDL-C 30% more than ezetimibe and 60% more than placebo when added to statins. This reduction in LDL-C is accompanied by a decrease in the risk of major cardiovascular and cerebrovascular events. However, questions have been raised in relation to the cost-effectiveness of these medications. In this article, we review the clinical evidence on the use of PCSK9 inhibitors in lowering LDL-C and their effect on cerebrovascular health.
Collapse
|
13
|
Dyson MR, Masters E, Pazeraitis D, Perera RL, Syrjanen JL, Surade S, Thorsteinson N, Parthiban K, Jones PC, Sattar M, Wozniak-Knopp G, Rueker F, Leah R, McCafferty J. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs 2021; 12:1829335. [PMID: 33103593 PMCID: PMC7592150 DOI: 10.1080/19420862.2020.1829335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The early phase of protein drug development has traditionally focused on target binding properties leading to a desired mode of therapeutic action. As more protein therapeutics pass through the development pipeline; however, it is clear that non-optimal biophysical properties can emerge, particularly as proteins are formulated at high concentrations, causing aggregation or polyreactivity. Such late-stage "developability" problems can lead to delay or failure in traversing the development process. Aggregation propensity is also correlated with increased immunogenicity, resulting in expensive, late-stage clinical failures. Using nucleases-directed integration, we have constructed large mammalian display libraries where each cell contains a single antibody gene/cell inserted at a single locus, thereby achieving transcriptional normalization. We show a strong correlation between poor biophysical properties and display level achieved in mammalian cells, which is not replicated by yeast display. Using two well-documented examples of antibodies with poor biophysical characteristics (MEDI-1912 and bococizumab), a library of variants was created based on surface hydrophobic and positive charge patches. Mammalian display was used to select for antibodies that retained target binding and permitted increased display level. The resultant variants exhibited reduced polyreactivity and reduced aggregation propensity. Furthermore, we show in the case of bococizumab that biophysically improved variants are less immunogenic than the parental molecule. Thus, mammalian display helps to address multiple developability issues during the earliest stages of lead discovery, thereby significantly de-risking the future development of protein drugs.
Collapse
Affiliation(s)
| | | | | | | | - Johanna L Syrjanen
- WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory , NY, USA
| | | | | | | | | | | | - Gordana Wozniak-Knopp
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences , Vienna, Austria
| | - Florian Rueker
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences , Vienna, Austria
| | | | | |
Collapse
|
14
|
McMaster M, Mohr K, Page A, Closmore A, Towne F, Brooks BD. Epitope characterization of anti-drug antibodies-a tool for discovery and health: an overview of the necessity of early epitope characterization to avoid anti-drug antibodies and promote patient health. Expert Opin Biol Ther 2021; 21:705-715. [PMID: 33317351 DOI: 10.1080/14712598.2021.1863942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: The market for monoclonal antibody (mAb) therapies is growing rapidly as the pharmaceutical industry expands its development across a broad spectrum of diseases. Unfortunately, as shown in the recent failure of bococizumab by Pfizer, these treatments often stimulate the formation of problematic anti-drug antibodies (ADAs). ADAs can cause side effects and limit efficacy for many patients. To increase efficacy and decrease safety concerns from ADAs, immunogenicity characterization is needed early in the drug development process. Here, we present emerging techniques that hold promise to improve ADA assays and their potential applications to pharmaceutical development and personalized medicine.Areas covered: This manuscript outlines the importance of epitope characterization to better understand immunogenicity and describes a strategy for using this information in treating patients taking mAb therapies.Expert opinion: We propose using high-information assays to characterize epitopes to help mAb therapy engineering and potentially improve individual patient outcomes. To understand this, we will discuss three different aspects of ADAs: (1) the problem of ADAs and what is currently being done about them, (2) the current state of epitope characterization and how it is being utilized, and (3) how early epitope characterization can advance drug discovery and improve outcomes for patients taking mAb therapies.
Collapse
Affiliation(s)
- Matthew McMaster
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO, USA
| | - Kelly Mohr
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO, USA
| | - Austin Page
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT, USA
| | - Adam Closmore
- Department of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Francina Towne
- Department of Biomedical Sciences, Rocky Vista University, Parker, CO, USA
| | - Benjamin D Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT, USA
| |
Collapse
|
15
|
Single-Strand DNA-Like Oligonucleotide Aptamer Against Proprotein Convertase Subtilisin/Kexin 9 Using CE-SELEX: PCSK9 Targeting Selection. Cardiovasc Drugs Ther 2020; 34:475-485. [PMID: 32415571 DOI: 10.1007/s10557-020-06986-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin 9 (PCSK9) serves a key regulatory function in the metabolism of low-density lipoprotein (LDL)-cholesterol (LDL-C) through interaction with the LDL receptor (LDLR) followed by its destruction that results in the elevation of the plasma levels of LDL-C. The aims of the present study were to separate and select a number of single-stranded DNA (ssDNA) aptamers against PCSK9 from a library pool (n > 1012) followed by their characterization. METHODS The aptamers obtained from the DNA-PCSK9 complexes which presented the highest affinity against PCSK9 were separated and selected using capillary electrophoresis evolution of ligands by exponential enrichment (CE-SELEX). The selected aptamers were amplified and cloned into a T/A vector. The plasmids from the positive clones were extracted and sequenced. The Mfold web server was used to predict the secondary structure of the aptamers. RESULTS Following three rounds of CE-SELEX, the identified anti-PCSK9 ssDNA aptamers, namely aptamer 1 (AP-1) and aptamer 2 (AP-2), presented half maximal inhibitory concentrations of 325 and 327 nM, lowest dissociation constants of 294 and 323 nM, and most negative Gibbs free energy values of - 9.17 and - 8.28 kcal/mol, respectively. CONCLUSION The results indicated that the selected aptamers (AP-1 and AP-2) induced potent inhibitory effects against PCSK9. Further in vivo studies demand to find out AP-1 and AP-2 aptamers as suitable candidates, instead of antibodies, for using in therapeutic purposes in patients with hypercholesterolemia and cardiovascular disease.
Collapse
|
16
|
Wang EQ, Bukowski JF, Yunis C, Shear CL, Ridker PM, Schwartz PF, Baltrukonis D. Assessing the Potential Risk of Cross-Reactivity Between Anti-Bococizumab Antibodies and Other Anti-PCSK9 Monoclonal Antibodies. BioDrugs 2020; 33:571-579. [PMID: 31529318 PMCID: PMC6790354 DOI: 10.1007/s40259-019-00375-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Anti-drug antibodies (ADAs) to bococizumab were detected in > 40% of subjects in the SPIRE lipid-lowering trials. The risk of cross-reactivity between anti-bococizumab antibodies and other approved anti-proprotein convertase subtilisin/kexin type-9 (PCSK9) monoclonal antibodies (mAbs) was investigated using a single-assay approach. METHODS Bococizumab immunogenicity was assessed in SPIRE-HR, a 52-week study. The highest ADA titer sample from each ADA-positive subject (n = 155) was tested in vitro for cross-reactivity to alirocumab and evolocumab using a novel ADA assay approach. Additional specificity tiers within the bococizumab ADA assay against each drug were validated using recombinant PCSK9 as a surrogate cross-reactive positive control. If the highest ADA titer sample showed cross-reactivity, additional samples from that subject were analyzed. Cross-reactivity was determined by the ability of alirocumab or evolocumab to inhibit the sample signal greater than or equal to the cross-reactivity cut-points. RESULTS ADAs were detected in 44.0% (155/352) of bococizumab-treated subjects, and 27.0% also developed neutralizing antibodies (NAbs). Median ADA and NAb titers ranged from 276 to 526 and 8 to 12 over the course of the study, respectively. From 155 ADA-positive subjects tested for cross-reactivity, one (0.6%) subject showed weak cross-reactivity to both alirocumab and evolocumab. This cross-reactivity signal was transient (from Days 337 to 373) and undetectable at the last ADA-positive timepoint (Day 407). CONCLUSION A novel, single-assay approach was validated to assess the potential cross-reactivity of anti-bococizumab antibodies to alirocumab and evolocumab. In subjects who developed ADAs to bococizumab, the likelihood of clinically relevant cross-reactivity to marketed anti-PCSK9 mAbs is remote, based on the low frequency of cross-reactivity observed, which was weak in signal inhibition and transient in nature. CLINICAL TRIAL REGISTRATION The SPIRE-HR study is registered on ClinicalTrials.gov under the identifier NCT01968954.
Collapse
Affiliation(s)
- Ellen Q Wang
- Clinical Pharmacology, Global Product Development, Pfizer Inc, New York, NY, USA.
| | | | - Carla Yunis
- Internal Medicine, Global Product Development, Pfizer Inc, New York, NY, USA
| | | | - Paul M Ridker
- Center for Cardiovascular Disease Prevention, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Daniel Baltrukonis
- Clinical Pharmacology, Global Product Development, Pfizer Inc, Groton, CT, USA
| |
Collapse
|
17
|
Abstract
The origins of the various elements in the human antibody repertoire have been and still are subject to considerable uncertainty. Uncertainty in respect of whether the various elements have always served a specific defense function or whether they were co-opted from other organismal roles to form a crude naïve repertoire that then became more complex as combinatorial mechanisms were added. Estimates of the current size of the human antibody naïve repertoire are also widely debated with numbers anywhere from 10 million members, based on experimentally derived numbers, to in excess of one thousand trillion members or more, based on the different sequences derived from theoretical combinatorial calculations. There are questions that are relevant at both ends of this number spectrum. At the lower bound it could be questioned whether this is an insufficient repertoire size to counter all the potential antigen-bearing pathogens. At the upper bound the question is rather simpler: How can any individual interrogate such an astronomical number of antibody-bearing B cells in a timeframe that is meaningful? This review evaluates the evolutionary aspects of the adaptive immune system, the calculations that lead to the large repertoire estimates, some of the experimental evidence pointing to a more restricted repertoire whose variation appears to derive from convergent 'structure and specificity features', and includes a theoretical model that seems to support it. Finally, a solution that may reconcile the size difference anomaly, which is still a hot subject of debate, is suggested.
Collapse
|
18
|
Pharmacokinetics and exploratory efficacy biomarkers of bococizumab, an anti-PCSK9 monoclonal antibody, in hypercholesterolemic Japanese subjects
. Int J Clin Pharmacol Ther 2019; 57:575-589. [PMID: 31549625 PMCID: PMC6862531 DOI: 10.5414/cp203418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: Bococizumab, a monoclonal antibody targeting proprotein convertase subtilisin/kexin type 9, has been shown to reduce low-density lipoprotein cholesterol (LDL-C). Here, we describe the pharmacokinetics and pharmacodynamics of bococizumab and its effect on lipoprotein particle composition and other biomarkers, based on a double-blind, placebo-controlled, randomized, dose-ranging study. Materials and methods: The study consisted of two populations: Japanese subjects with uncontrolled LDL-C (LDL-C ≥ 100 mg/dL) despite treatment with atorvastatin (n = 121) and Japanese subjects naïve to lipid-lowering agents with LDL-C ≥ 130 mg/dL (n = 97). Subjects were randomized to receive either bococizumab 50, 100, or 150 mg or placebo, every 2 weeks. One arm of subjects in the atorvastatin-treated population received ezetimibe 10 mg instead of bococizumab. Results: In both populations, bococizumab exposure increased with increasing dose, and subjects with lower body weights tended to have higher exposures. Bococizumab treatment was associated with a dose-dependent reduction in LDL particles and a small increase in total high-density lipoprotein (HDL) particles. Significant reductions in lipoprotein-associated phospholipase A2 (Lp-PLA2) were observed for bococizumab-treated subjects but not for subjects treated with placebo or ezetimibe. Conclusion: Increased bococizumab dosage resulted in increased exposure. Levels of LDL and HDL particles and biomarkers such as Lp-PLA2 were also altered with bococizumab treatment. (ClinicalTrials.gov identifier: NCT02055976).
Collapse
|
19
|
PCSK9: from biology to clinical applications. Pathology 2019; 51:177-183. [DOI: 10.1016/j.pathol.2018.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 01/07/2023]
|
20
|
Khoshnejad M, Patel A, Wojtak K, Kudchodkar SB, Humeau L, Lyssenko NN, Rader DJ, Muthumani K, Weiner DB. Development of Novel DNA-Encoded PCSK9 Monoclonal Antibodies as Lipid-Lowering Therapeutics. Mol Ther 2019; 27:188-199. [PMID: 30449662 PMCID: PMC6319316 DOI: 10.1016/j.ymthe.2018.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/07/2023] Open
Abstract
Elevated low-density lipoprotein cholesterol (LDL-C) is one of the major contributors to cardiovascular heart disease (CHD), the leading cause of death worldwide. Due to severe side effects of statins, alternative treatment strategies are required for statin-intolerant patients. Monoclonal antibodies (mAbs) targeting proprotein convertase subtilisin/kexin type 9 (PCSK9) have shown great efficacy in LDL-C reduction. Limitations for this approach include the need for multiple injections as well as increased costs associated with patient management. Here, we engineered a DNA-encoded mAb (DMAb) targeting PCSK9 (daPCSK9), as an alternative approach to protein-based lipid-lowering therapeutics, and we characterized its expression and activity. A single intramuscular administration of mouse daPCSK9 generated expression in vivo for over 42 days that corresponded with a substantial decrease of 28.6% in non-high-density lipoprotein cholesterol (non-HDL-C) and 10.3% in total cholesterol by day 7 in wild-type mice. Repeated administrations of the DMAb plasmid led to increasing expression, with DMAb levels of 7.5 μg/mL at day 62. daPCSK9 therapeutics may provide a novel, simple, less frequent, cost-effective approach to reducing LDL-C, either as a stand-alone therapy or in combination with other LDL-lowering therapeutics for synergistic effect.
Collapse
Affiliation(s)
- Makan Khoshnejad
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Krzysztof Wojtak
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Sagar B. Kudchodkar
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Nicholas N. Lyssenko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kar Muthumani
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA,Corresponding author: David B. Weiner, Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Engineering of a GLP-1 analogue peptide/anti-PCSK9 antibody fusion for type 2 diabetes treatment. Sci Rep 2018; 8:17545. [PMID: 30510163 PMCID: PMC6277417 DOI: 10.1038/s41598-018-35869-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes (T2D) is a complex and progressive disease requiring polypharmacy to manage hyperglycaemia and cardiovascular risk factors. However, most patients do not achieve combined treatment goals. To address this therapeutic gap, we have developed MEDI4166, a novel glucagon-like peptide-1 (GLP-1) receptor agonist peptide fused to a proprotein convertase subtilisin/kexin type 9 (PCSK9) neutralising antibody that allows for glycaemic control and low-density lipoprotein cholesterol (LDL-C) lowering in a single molecule. The fusion has been engineered to deliver sustained peptide activity in vivo in combination with reduced potency, to manage GLP-1 driven adverse effects at high dose, and a favourable manufacturability profile. MEDI4166 showed robust and sustained LDL-C lowering in cynomolgus monkeys and exhibited the anticipated GLP-1 effects in T2D mouse models. We believe MEDI4166 is a novel molecule combining long acting agonist peptide and neutralising antibody activities to deliver a unique pharmacology profile for the management of T2D.
Collapse
|
22
|
Cox LA, Olivier M, Spradling-Reeves K, Karere GM, Comuzzie AG, VandeBerg JL. Nonhuman Primates and Translational Research-Cardiovascular Disease. ILAR J 2018; 58:235-250. [PMID: 28985395 DOI: 10.1093/ilar/ilx025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Human epidemiological studies provide challenges for understanding mechanisms that regulate initiation and progression of CVD due to variation in lifestyle, diet, and other environmental factors. Studies describing metabolic and physiologic aspects of CVD, and those investigating genetic and epigenetic mechanisms influencing CVD initiation and progression, have been conducted in multiple Old World nonhuman primate (NHP) species. Major advantages of NHPs as models for understanding CVD are their genetic, metabolic, and physiologic similarities with humans, and the ability to control diet, environment, and breeding. These NHP species are also genetically and phenotypically heterogeneous, providing opportunities to study gene by environment interactions that are not feasible in inbred animal models. Each Old World NHP species included in this review brings unique strengths as models to better understand human CVD. All develop CVD without genetic manipulation providing multiple models to discover genetic variants that influence CVD risk. In addition, as each of these NHP species age, their age-related comorbidities such as dyslipidemia and diabetes are accelerated proportionally 3 to 4 times faster than in humans.In this review, we discuss current CVD-related research in NHPs focusing on selected aspects of CVD for which nonprimate model organism studies have left gaps in our understanding of human disease. We include studies on current knowledge of genetics, epigenetics, calorie restriction, maternal calorie restriction and offspring health, maternal obesity and offspring health, nonalcoholic steatohepatitis and steatosis, Chagas disease, microbiome, stem cells, and prevention of CVD.
Collapse
Affiliation(s)
- Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Genesio M Karere
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - John L VandeBerg
- South Texas Diabetes and Obesity Center, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, Texas
| |
Collapse
|
23
|
Amput P, McSweeney C, Palee S, Phrommintikul A, Chattipakorn SC, Chattipakorn N. The effects of proprotein convertase subtilisin/kexin type 9 inhibitors on lipid metabolism and cardiovascular function. Biomed Pharmacother 2018; 109:1171-1180. [PMID: 30551367 DOI: 10.1016/j.biopha.2018.10.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 01/06/2023] Open
Abstract
Low density lipoprotein cholesterol (LDL-C) is a well-established risk factor for cardiovascular disease. Although there are several developed lipid lowering drugs such as statins and fenofibrates, many patients do not achieve an adequate response. Recently, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have been developed as a new therapeutic strategy for cholesterol regulation. PCSK9 binds to low density lipoprotein receptors (LDLR) and initiates LDLR degradation, elevating LDL-C. Therefore, PCSK9 inhibition could exert beneficial effects on cardiovascular disease outcomes. This review comprehensively summarizes and discusses the effects of PCSK9 inhibitors on lipid metabolism and cardiovascular function comparatively with current lipid lowering drugs. This review also details essential information regarding the cardiovascular benefits of PCSK9 inhibition which could encourage further clinical studies.
Collapse
Affiliation(s)
- Patchareeya Amput
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Christian McSweeney
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, United Kingdom
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Arintaya Phrommintikul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Bass A, Plotka A, Mridha K, Sattler C, Kim AM, Plowchalk DR. Pharmacokinetics, pharmacodynamics, and safety of bococizumab, a monoclonal antibody against proprotein convertase subtilisin/kexin type 9, in healthy subjects when administered in co-mixture with recombinant human hyaluronidase: A phase 1 randomized trial. Health Sci Rep 2018; 1:e61. [PMID: 30623096 PMCID: PMC6266420 DOI: 10.1002/hsr2.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 11/10/2022] Open
Abstract
AIM Prior to the discontinuation of bococizumab's clinical development, it was considered advantageous to develop an infrequent dosing regimen (eg, monthly). Therefore, we conducted a phase 1 study to evaluate the pharmacokinetics, pharmacodynamics, and safety of bococizumab when administered in co-mixture with recombinant human hyaluronidase (rHuPH20). METHOD Healthy subjects (N = 60) were randomized equally among 4 groups that received a single subcutaneous dose of either bococizumab 150, 300, or 450 mg co-mixed with rHuPH20 or bococizumab 300 mg alone. Bioavailability and lipid-lowering effect of bococizumab were evaluated by using ANCOVA models. RESULTS In the groups administered bococizumab co-mixed with rHuPH20, dose-normalized C max and AUCinf were 26.6 to 39.1% and 18.3 to 36.6% greater, respectively, compared with bococizumab 300 mg alone. Despite these increases, mean percent reductions from baseline in low-density lipoprotein cholesterol were smaller in the bococizumab 300 mg + rHuPH20 group than in the bococizumab 300-mg group at Day 21 (52.2% and 59.5%, respectively) and were similar at Day 29 (51.7% and 49.6%, respectively). Compared with the group administered bococizumab 300 mg alone, the bococizumab 300 mg + rHuPH20 group did not show a significantly altered AUEC85 (ratio of adjusted means: 102.5%, 90% confidence interval: 96.1-109.3%) but did show a higher MaxELDL-C (ratio of adjusted means: 125.4%, 90% confidence interval: 103.3-152.2%), indicating diminution of efficacy. The most frequent adverse events were injection-site erythema, injection-site bruising, and nasopharyngitis; all injection-site adverse events were mild. CONCLUSION Co-mixture with rHuPH20 increased the bioavailability of bococizumab without proportional increase in pharmacodynamic effect. TRIAL REGISTRATION ClinicalTrials.gov, NCT02667223.
Collapse
Affiliation(s)
- Almasa Bass
- Pfizer Global Product DevelopmentDurhamNCUSA
| | - Anna Plotka
- Pfizer Worldwide Research & DevelopmentCollegevillePAUSA
| | | | | | - Albert M. Kim
- Pfizer Internal Medicine Research UnitCambridgeMAUSA
| | | |
Collapse
|
25
|
Wang EQ, Plotka A, Salageanu J, Sattler C, Yunis C. Pharmacokinetics and pharmacodynamics of bococizumab, a monoclonal antibody to PCSK9, after single subcutaneous injection at three sites [NCT 02043301]. Cardiovasc Ther 2018. [PMID: 28636184 DOI: 10.1111/1755-5922.12278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIM To characterize the single-dose pharmacokinetics (PK) and pharmacodynamics (PD) of bococizumab, a monoclonal antibody inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9), administered subcutaneously (s.c.) to the abdomen, thigh, or upper arm (NCT02043301). METHODS Seventy-five adults with low-density lipoprotein cholesterol (LDL-C) ≥130 mg/dL and not on background lipid-lowering therapy were randomized (1:1:1) to a single 150-mg s.c. dose of bococizumab administered to the abdomen, thigh, or upper arm. Blood samples for bococizumab and lipids were collected for 12 weeks postdose. RESULTS Plasma bococizumab concentration-time profiles and PK parameters were generally similar across injection sites. Mean maximum observed concentration (Cmax ) ranged from 8.14 to 11.9 μg/mL, and area under the concentration-time curve (AUCinf ) ranged from 160.3 to 198.9 µg∙day/mL. The median time to Cmax (Tmax ) ranged from 4.25 to 6.93 days. Similar LDL-C concentration-time profiles were observed across injection sites, with mean (% coefficient of variation) maximum reductions in LDL-C of -57.5% (15.8), -57.0% (25.9), and -55.0% (24.1) for the abdomen, thigh, and upper arm, respectively. Adverse events (AEs) were mostly mild and generally similar across injection sites. Commonly reported AEs were upper respiratory tract infection (9.3%), headache (6.7%), and injection site reaction (6.7%). One serious AE was reported (ischemic colitis), which was not considered related to study drug. CONCLUSIONS Similar PK profiles and robust LDL-C reductions were observed following a single 150-mg s.c. injection of bococizumab administered to the abdomen, thigh, or upper arm in untreated subjects with LDL-C ≥130 mg/dL. Bococizumab was generally well tolerated following a single 150-mg s.c. administration in this subject population.
Collapse
Affiliation(s)
- Ellen Q Wang
- Clinical Pharmacology, Global Product Development, Pfizer Inc, New York, NY, USA
| | - Anna Plotka
- Global Biometrics and Data Management, Global Product Development, Pfizer Inc, Collegeville, PA, USA
| | - Joanne Salageanu
- Clinical Pharmacology, Global Product Development, Pfizer Inc, Groton, CT, USA
| | - Catherine Sattler
- Clinical Sciences and Operations, Global Product Development, Pfizer Inc, Groton, CT, USA
| | - Carla Yunis
- Global Product Development CVMET Therapeutics, Pfizer Inc, New York, NY, USA
| |
Collapse
|
26
|
Lin XL, Xiao LL, Tang ZH, Jiang ZS, Liu MH. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed Pharmacother 2018; 104:36-44. [PMID: 29758414 DOI: 10.1016/j.biopha.2018.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Elevated plasma low-density lipoprotein cholesterol (LDL-C) is an important risk factor for cardiovascular diseases. Statins are the most widely used therapy for patients with hyperlipidemia. However, a significant residual cardiovascular risk remains in some patients even after maximally tolerated statin therapy. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a new pharmacologically therapeutic target for decreasing LDL-C. PCSK9 reduces LDL intake from circulation by enhancing LDLR degradation and preventing LDLR recirculation to the cell surface. Moreover, PCSK9 inhibitors have been approved for patients with either familial hypercholesterolemia or atherosclerotic cardiovascular disease, who require additional reduction of LDL-C. In addition, PCSK9 inhibition combined with statins has been used as a new approach to help reduce LDL-C levels in patients with either statin intolerance or unattainable LDL goal. This review will discuss the emerging anti-PCSK9 therapies in the regulation of cholesterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Long Lin
- Department of Pathology, Hui Zhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province, 516002, China
| | - Le-Le Xiao
- Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Mi-Hua Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China; Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
27
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
28
|
Wang EQ, Plotka A, Salageanu J, Baltrukonis D, Mridha K, Frederich R, Sullivan BE. Comparative Pharmacokinetics and Pharmacodynamics of Bococizumab Following a Single Subcutaneous Injection Using Drug Substance Manufactured at Two Sites or Administration via Two Different Devices. Clin Pharmacol Drug Dev 2018; 8:40-48. [PMID: 29688615 DOI: 10.1002/cpdd.454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
The pharmacokinetics (PK) and pharmacodynamics (PD) of bococizumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, were compared following a single 150-mg subcutaneous dose administered to healthy subjects (n = 156-158/arm) via: (1) a prefilled syringe (PFS) using drug substance (DS) manufactured by Pfizer, (2) a PFS using DS manufactured by Boehringer Ingelheim Pharma, (3) a prefilled pen using DS manufactured by Pfizer (NCT02458209). Blood samples were collected for 12 weeks postdose. Safety was monitored throughout. Mean maximum plasma concentration (Cmax ) ranged between 11.0 and 11.3 μg/mL, and area under the plasma concentration-time curve (AUCinf ) ranged between 177.6 and 185.0 μg·day/mL across treatments. The 90% confidence intervals for the ratios of adjusted geometric means for Cmax and AUCinf fell within the 80%-125% range for both DS and delivery device comparisons. Comparable low-density lipoprotein cholesterol profiles were observed, with nadir values of 54.3-56.1 mg/dL across treatments. Similar PCSK9 responses were also observed. Safety profiles were similar across treatments, and the majority of adverse events (AEs) were mild. Three subjects reported serious AEs. The most frequently reported AEs were headache, injection-site reaction, and upper respiratory tract infection, with no clear differences across treatments. Comparable PK, PD, and safety were observed following a single bococizumab 150-mg subcutaneous injection regardless of site of DS manufacture or delivery device used.
Collapse
Affiliation(s)
- Ellen Q Wang
- Clinical Pharmacology, Global Product Development, Pfizer Inc., New York, NY, USA
| | - Anna Plotka
- Global Biometrics and Data Management, Global Product Development, Pfizer Inc., Collegeville, PA, USA
| | - Joanne Salageanu
- Clinical Pharmacology, Global Product Development, Pfizer Inc., Groton, CT, USA
| | - Daniel Baltrukonis
- Clinical Pharmacology, Global Product Development, Pfizer Inc., Groton, CT, USA
| | - Khurshid Mridha
- Science Recruitment Group Ltd., Furness Quay, Salford, Manchester, UK
| | - Robert Frederich
- Clinical Development and Operations, Global Product Development, Pfizer Inc., Collegeville, PA, USA
| | - Beth E Sullivan
- Clinical Development and Operations, Global Product Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
29
|
Masuda Y, Yamaguchi S, Suzuki C, Aburatani T, Nagano Y, Miyauchi R, Suzuki E, Yamamura N, Nagatomo K, Ishihara H, Okuno K, Nara F, Matschiner G, Hashimoto R, Takahashi T, Nishizawa T. Generation and Characterization of a Novel Small Biologic Alternative to Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Antibodies, DS-9001a, Albumin Binding Domain–Fused Anticalin Protein. J Pharmacol Exp Ther 2018; 365:368-378. [DOI: 10.1124/jpet.117.246652] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
|
30
|
Fazio S, Robertson DG, Joh T, Wan H, Riel T, Forgues P, Baum CM, Garzone PD, Gumbiner B. Effects of 12 weeks of treatment with intravenously administered bococizumab, a humanized monoclonal antibody blocking proprotein convertase subtilisin/kexin type 9, in hypercholesterolemic subjects on high-dose statin. Cardiovasc Ther 2017; 36. [DOI: 10.1111/1755-5922.12308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/25/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022] Open
Affiliation(s)
- Sergio Fazio
- The Knight Cardiovascular Institute; Oregon Health and Science University; Portland OR USA
| | | | - Tenshang Joh
- Pfizer Inc.; South San Francisco and San Diego CA USA
| | - Hong Wan
- Pfizer Inc.; South San Francisco and San Diego CA USA
| | - Tom Riel
- Pfizer Inc.; South San Francisco and San Diego CA USA
| | | | | | | | | |
Collapse
|
31
|
Gumbiner B, Joh T, Liang H, Wan H, Levisetti M, Vana AM, Shelton DL, Forgues P, Billotte S, Pons J, Baum CM, Garzone PD. The effects of single- and multiple-dose administration of bococizumab (RN316/PF-04950615), a humanized IgG2Δa monoclonal antibody binding proprotein convertase subtilisin/kexin type 9, in hypercholesterolemic subjects treated with and without atorvastatin: Results from four phase I studies. Cardiovasc Ther 2017; 36. [PMID: 29078037 DOI: 10.1111/1755-5922.12309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/05/2017] [Accepted: 10/22/2017] [Indexed: 02/02/2023] Open
Abstract
AIMS Three single-dose and one multiple-dose phase I studies were conducted in subjects with primary hypercholesterolemia to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of bococizumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor. METHODS The dosing schedules for hypercholesterolemic subjects randomized in the four phase I studies were (1) ascending, single, intravenous (IV) bococizumab (0.3, 1, 3, 6, 12, or 18 mg/kg), or placebo (N = 48; baseline low-density lipoprotein cholesterol [LDL-C] ≥130 mg/dL); (2) single, IV bococizumab (0.5 or 4 mg/kg; no placebo) added to ongoing atorvastatin 40 mg/day (N = 24); (3) single, fixed, subcutaneous (SC) bococizumab (100 or 200 mg), or IV bococizumab (200 mg; no placebo; N = 49; baseline LDL-C ≥130 mg/dL); and (4) weekly IV bococizumab (0.25, 0.5, 1, or 1.5 mg/kg) or placebo for 4 weeks (N = 67; baseline LDL-C ≥130 mg/dL). RESULTS Bococizumab pharmacokinetics were well characterized following single IV or SC doses and following multiple IV doses. Exposure to single-dose bococizumab increased slightly greater than dose-proportionally and clearance decreased with increasing dose. In the single-dose studies, maximal mean percent reductions from baseline in LDL-C ranged from 43% (0.3 mg/kg) to 84% (18 mg/kg) in bococizumab-treated subjects, compared with 2% for placebo. For the multiple-dose study, maximal reductions in LDL-C ranged from 55% (0.25 mg/kg) to 66% (1 mg/kg) in bococizumab-treated subjects, compared with 9% for placebo. In all studies, adverse events were infrequent, transient, and not dose-related. CONCLUSIONS Bococizumab was generally safe and well tolerated. Bococizumab lowered LDL-C levels substantially in all four studies.
Collapse
Affiliation(s)
| | - Tenshang Joh
- Pfizer Inc., South San Francisco and San Diego, CA, USA
| | - Hong Liang
- Pfizer Inc., South San Francisco and San Diego, CA, USA
| | - Hong Wan
- Pfizer Inc., South San Francisco and San Diego, CA, USA
| | | | - Alicia M Vana
- Pfizer Inc., South San Francisco and San Diego, CA, USA
| | | | | | | | - Jaume Pons
- Pfizer Inc., South San Francisco and San Diego, CA, USA
| | | | | |
Collapse
|
32
|
Wan H, Gumbiner B, Joh T, Riel T, Udata C, Forgues P, Garzone PD. Effects of Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibition with Bococizumab on Lipoprotein Particles in Hypercholesterolemic Subjects. Clin Ther 2017; 39:2243-2259.e5. [DOI: 10.1016/j.clinthera.2017.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/28/2017] [Accepted: 09/15/2017] [Indexed: 01/08/2023]
|
33
|
Heparan sulfate proteoglycans present PCSK9 to the LDL receptor. Nat Commun 2017; 8:503. [PMID: 28894089 PMCID: PMC5593881 DOI: 10.1038/s41467-017-00568-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/11/2017] [Indexed: 11/08/2022] Open
Abstract
Coronary artery disease is the main cause of death worldwide and accelerated by increased plasma levels of cholesterol-rich low-density lipoprotein particles (LDL). Circulating PCSK9 contributes to coronary artery disease by inducing lysosomal degradation of the LDL receptor (LDLR) in the liver and thereby reducing LDL clearance. Here, we show that liver heparan sulfate proteoglycans are PCSK9 receptors and essential for PCSK9-induced LDLR degradation. The heparan sulfate-binding site is located in the PCSK9 prodomain and formed by surface-exposed basic residues interacting with trisulfated heparan sulfate disaccharide repeats. Accordingly, heparan sulfate mimetics and monoclonal antibodies directed against the heparan sulfate-binding site are potent PCSK9 inhibitors. We propose that heparan sulfate proteoglycans lining the hepatocyte surface capture PCSK9 and facilitates subsequent PCSK9:LDLR complex formation. Our findings provide new insights into LDL biology and show that targeting PCSK9 using heparan sulfate mimetics is a potential therapeutic strategy in coronary artery disease.PCSK9 interacts with LDL receptor, causing its degradation, and consequently reduces the clearance of LDL. Here, Gustafsen et al. show that PCSK9 interacts with heparan sulfate proteoglycans and this binding favors LDLR degradation. Pharmacological inhibition of this binding can be exploited as therapeutic intervention to lower LDL levels.
Collapse
|
34
|
Pucci G, Cicero AF, Borghi C, Schillaci G. Emerging biologic therapies for hypercholesterolaemia. Expert Opin Biol Ther 2017; 17:1077-1087. [DOI: 10.1080/14712598.2017.1341485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Giacomo Pucci
- Dipartimento di Medicina, Università di Perugia, Perugia, Italy
- Struttura Complessa di Medicina Interna, Azienda Ospedaliera “S. Maria” di Terni, Terni, Italy
| | - Arrigo F Cicero
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Claudio Borghi
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Giuseppe Schillaci
- Dipartimento di Medicina, Università di Perugia, Perugia, Italy
- Struttura Complessa di Medicina Interna, Azienda Ospedaliera “S. Maria” di Terni, Terni, Italy
| |
Collapse
|
35
|
Jaworski K, Jankowski P, Kosior DA. PCSK9 inhibitors - from discovery of a single mutation to a groundbreaking therapy of lipid disorders in one decade. Arch Med Sci 2017; 13:914-929. [PMID: 28721159 PMCID: PMC5510512 DOI: 10.5114/aoms.2017.65239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Hypercholesterolemia is one of the main risk factors for coronary heart disease and significantly contributes to the high mortality associated with cardiovascular diseases. Statin therapy represents the gold standard in the reduction of low-density lipoprotein cholesterol concentration. Nevertheless, many patients still cannot achieve the recommended target levels, due to either inadequate effectiveness or intolerance of these drugs. Monoclonal antibodies that inhibit proprotein convertase subtilisin/kexin type 9 (PCSK9) have emerged as a promising option in lipid-lowering treatment. After confirmation of their efficacy and safety in clinical trials, evolocumab and alirocumab received approval from the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) for introduction into clinical practice. In this review, we present a history of the development and mechanisms of action, as well as the results of the most important studies concerning PCSK9 inhibitors.
Collapse
Affiliation(s)
- Krzysztof Jaworski
- 2 Department of Coronary Artery Disease, Institute of Cardiology, Warsaw, Poland
| | - Piotr Jankowski
- Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz A. Kosior
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Yokote K, Kanada S, Matsuoka O, Sekino H, Imai K, Tabira J, Matsuoka N, Chaudhuri S, Teramoto T. Efficacy and Safety of Bococizumab (RN316/PF-04950615), a Monoclonal Antibody Against Proprotein Convertase Subtilisin/Kexin Type 9, in Hypercholesterolemic Japanese Subjects Receiving a Stable Dose of Atorvastatin or Treatment-Naive - Results From a Randomized, Placebo-Controlled, Dose-Ranging Study. Circ J 2017; 81:1496-1505. [PMID: 28539539 DOI: 10.1253/circj.cj-16-1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND A Phase 2, dose-ranging study of bococizumab, a monoclonal anti-proprotein convertase subtilisin/kexin type 9 antibody, was conducted in Japanese subjects to assess its efficacy, safety, and tolerability in this population.Methods and Results:Two different hypercholesterolemic study populations were enrolled concurrently: Japanese subjects with uncontrolled low-density lipoprotein cholesterol (LDL-C) despite atorvastatin treatment (LDL-C ≥100 mg/dL; n=121), and Japanese subjects naive to lipid-lowering agents and with LDL-C ≥130 mg/dL (n=97). Subjects within each study population were randomized to bococizumab 50, 100, or 150 mg, or placebo, q14D for 16 weeks; an open-label ezetimibe 10 mg daily arm was also included for the atorvastatin-treated population. Significant, dose-dependent reductions in fasting LDL-C levels were observed in all bococizumab arms of both study populations at Weeks 12 and 16 (adjusted mean percent changes from baseline: 54.1-76.7% for atorvastatin-treated subjects and 47.7-66.8% for treatment-naive subjects; P<0.001 vs. placebo for all). Bococizumab also caused dose-dependent changes in other lipid parameters in both study populations at Weeks 12 and 16. No serious adverse events (AEs) related to bococizumab treatment occurred and all treatment-emergent AEs were mild or moderate in severity. No dose-dependent relationship between bococizumab treatment and development of anti-drug antibodies was observed. CONCLUSIONS Bococizumab was well tolerated and significantly reduced fasting LDL-C in atorvastatin-treated and treatment-naive hypercholesterolemic Japanese subjects. (Clinicaltrials.gov identifier: NCT02055976.).
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Toth PP, Descamps O, Genest J, Sattar N, Preiss D, Dent R, Djedjos C, Wu Y, Geller M, Uhart M, Somaratne R, Wasserman SM. Pooled Safety Analysis of Evolocumab in Over 6000 Patients From Double-Blind and Open-Label Extension Studies. Circulation 2017; 135:1819-1831. [DOI: 10.1161/circulationaha.116.025233] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
Background:
Evolocumab, a fully human monoclonal antibody to PCSK9 (proprotein convertase subtilisin/kexin type 9), markedly reduces low-density lipoprotein cholesterol across diverse patient populations. The objective of this study was to assess the safety and tolerability of evolocumab in a pooled safety analysis from phase 2 or 3 randomized and placebo or comparator-controlled trials (integrated parent trials) and the first year of open-label extension (OLE) trials that included a standard-of-care control group.
Methods:
This analysis included adverse event (AE) data from 6026 patients in 12 phase 2 and 3 parent trials, with a median exposure of 2.8 months, and, of those patients, from 4465 patients who continued with a median follow-up of 11.1 months in 2 OLE trials. AEs were analyzed separately for the parent and OLE trials. Overall AE rates, serious AEs, laboratory assessments, and AEs of interest were evaluated.
Results:
Overall AE rates were similar between evolocumab and control in the parent trials (51.1% versus 49.6%) and in year 1 of OLE trials (70.0% versus 66.0%), as were those for serious AEs. Elevations of serum transaminases, bilirubin, and creatine kinase were infrequent and similar between groups. Muscle-related AEs were similar between evolocumab and control. Neurocognitive AEs were infrequent and balanced during the double-blind parent studies (5 events [0.1%], evolocumab groups versus 6 events [0.3%], control groups). In the OLE trials, 27 patients (0.9%) in the evolocumab groups and 5 patients (0.3%) in the control groups reported neurocognitive AEs. No neutralizing antievolocumab antibodies were detected.
Conclusions:
Overall, this integrated safety analysis of 6026 patients pooled across phase 2/3 trials and 4465 patients who continued in OLE trials for 1 year supports a favorable benefit-risk profile for evolocumab.
Collapse
Affiliation(s)
- Peter P. Toth
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Olivier Descamps
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Jacques Genest
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Naveed Sattar
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - David Preiss
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Ricardo Dent
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Constantine Djedjos
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Yuna Wu
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Michelle Geller
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Magdalena Uhart
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Ransi Somaratne
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| | - Scott M. Wasserman
- From CGH Medical Center, Sterling, IL, and Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD (P.P.T.); Lipid Clinic, Centres Hospitaliers Jolimont, Haine-Saint-Paul, Belgium (O.D.); The McGill University Health Centre, Montreal, Canada (J.G.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK (N.S.); Medical Research Council Population Health Research Unit, Clinical Trial Service Unit and
| |
Collapse
|
38
|
Udata C, Garzone PD, Gumbiner B, Joh T, Liang H, Liao KH, Williams JH, Meng X. A Mechanism-Based Pharmacokinetic/Pharmacodynamic Model for Bococizumab, a Humanized Monoclonal Antibody Against Proprotein Convertase Subtilisin/Kexin Type 9, and Its Application in Early Clinical Development. J Clin Pharmacol 2017; 57:855-864. [DOI: 10.1002/jcph.867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | - Pamela D. Garzone
- World Wide Research and Development; Pfizer Inc; San Diego California
| | - Barry Gumbiner
- World Wide Research and Development; Pfizer Inc; San Diego California
| | - Tenshang Joh
- World Wide Research and Development; Pfizer Inc; San Diego California
| | - Hong Liang
- World Wide Research and Development; Pfizer Inc; San Diego California
| | - Kai-Hsin Liao
- World Wide Research and Development; Pfizer Inc; San Diego California
| | - Jason H. Williams
- World Wide Research and Development; Pfizer Inc; San Diego California
| | - Xu Meng
- World Wide Research and Development; Pfizer Inc; San Diego California
| |
Collapse
|
39
|
Ferri N, Corsini A, Sirtori CR, Ruscica M. Bococizumab for the treatment of hypercholesterolaemia. Expert Opin Biol Ther 2017; 17:237-243. [DOI: 10.1080/14712598.2017.1279602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Università di Padova, Padua, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Multimedica IRCCS, Milano, Italy
| | - Cesare R. Sirtori
- Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
40
|
Levisetti M, Joh T, Wan H, Liang H, Forgues P, Gumbiner B, Garzone PD. A Phase I Randomized Study of a Specifically Engineered, pH-Sensitive PCSK9 Inhibitor RN317 (PF-05335810) in Hypercholesterolemic Subjects on Statin Therapy. Clin Transl Sci 2017; 10:3-11. [PMID: 27860267 PMCID: PMC5351011 DOI: 10.1111/cts.12430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 10/04/2016] [Indexed: 01/19/2023] Open
Abstract
This phase I study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of RN317 (PF-05335810), a specifically engineered, pH-sensitive, humanized proprotein convertase subtilisin kexin type 9 (PCSK9) monoclonal antibody, in hypercholesterolemic subjects (low-density lipoprotein cholesterol (LDL-C) ≥ 80 mg/dl) 18-70 years old receiving statin therapy. Subjects were randomized to: single-dose placebo, RN317 (subcutaneous (s.c.) 0.3, 1, 3, 6, or intravenous (i.v.) 1, 3, 6 mg/kg), or bococizumab (s.c. 1, 3, or i.v. 1 mg/kg); or multiple-dose RN317 (s.c. 300 mg every 28 days; three doses). Of 133 subjects randomized, 127 completed the study. RN317 demonstrated a longer half-life, greater exposure, and increased bioavailability vs. bococizumab. RN317 was well tolerated, with no subjects discontinuing because of treatment-related adverse events. RN317 lowered LDL-C by up to 52.5% (day 15) following a single s.c. dose of 3.0 mg/kg vs. a maximum of 70% with single-dose bococizumab s.c. 3.0 mg/kg. Multiple dosing of RN317 produced LDL-C reductions of ∼50%, sustained over an 85-day dosing interval.
Collapse
MESH Headings
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/blood
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cholesterol, LDL/blood
- Demography
- Dose-Response Relationship, Drug
- Drug Therapy, Combination
- Female
- Humans
- Hydrogen-Ion Concentration
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Hypercholesterolemia/blood
- Hypercholesterolemia/drug therapy
- Injections, Intravenous
- Injections, Subcutaneous
- Male
- Middle Aged
- PCSK9 Inhibitors
- Proprotein Convertase 9/metabolism
- Protein Engineering
Collapse
Affiliation(s)
| | - T Joh
- PfizerSan DiegoCaliforniaUSA
| | - H Wan
- PfizerSouth San FranciscoCaliforniaUSA
| | - H Liang
- PfizerSouth San FranciscoCaliforniaUSA
| | - P Forgues
- PfizerSouth San FranciscoCaliforniaUSA
| | | | | |
Collapse
|
41
|
Parizo J, Sarraju A, Knowles JW. Novel Therapies for Familial Hypercholesterolemia. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2016; 18:64. [PMID: 27620638 DOI: 10.1007/s11936-016-0486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Both HeFH and HoFH require dietary and lifestyle modification. Pharmacotherapy of adult HeFH patients is largely driven by the American Heart Association (AHA) algorithm. A high-potency statin is started initially with a goal low-density lipoprotein cholesterol (LDL-C) reduction of >50 %. The LDL-C target is adjusted to <100 or <70 mg/dL in subjects with coronary artery disease (CAD) with ezetimibe being second line. If necessary, a third adjunctive therapy, such as a PSCK9 inhibitor (not yet approved in children) or bile acid-binding resin, can be added. Finally, LDL-C apheresis can be considered in patients with LDL-C >300 mg/dL (or >200 mg/dL with significant CAD, although now approved for LDL-C as low as 160 mg/dL with CAD). Due to the early, severe LDL-C elevation in HoFH patients, concerning natural history, rarity of the condition, and nuances of treatment, all HoFH patients should be treated at a pediatric or adult center with HoFH experience. LDL-C apheresis should be considered as early as 5 years of age. However, apheresis availability and tolerability is limited and pharmacotherapy is required. Generally, the AHA algorithm with reference to the European Atherosclerosis Society Consensus Panel recommendations is reasonable with all patients initiated on high-dose, high-potency statin, ezetimibe, and bile acid-binding resins. In most, additional LDL-C lowering is required with PCSK9 inhibitors and/or lomitapide or mipomersen. Liver transplantation can also be considered at experienced centers as a last resort.
Collapse
Affiliation(s)
- Justin Parizo
- Stanford University Medical Center, 300 Pasteur Ave, Stanford, CA, 94305, USA
| | - Ashish Sarraju
- Stanford University Medical Center, 300 Pasteur Ave, Stanford, CA, 94305, USA
| | - Joshua W Knowles
- Stanford University School of Medicine and Cardiovascular Institute, Falk CVRC, 300 Pasteur Drive, MC 5406, Stanford, CA, 94305, USA.
| |
Collapse
|
42
|
Ridker PM, Amarenco P, Brunell R, Glynn RJ, Jukema JW, Kastelein JJP, Koenig W, Nissen S, Revkin J, Santos RD, Schwartz PF, Yunis C, Tardif JC. Evaluating bococizumab, a monoclonal antibody to PCSK9, on lipid levels and clinical events in broad patient groups with and without prior cardiovascular events: Rationale and design of the Studies of PCSK9 Inhibition and the Reduction of vascular Events (SPIRE) Lipid Lowering and SPIRE Cardiovascular Outcomes Trials. Am Heart J 2016; 178:135-44. [PMID: 27502861 DOI: 10.1016/j.ahj.2016.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although statins significantly reduce vascular event rates, residual cholesterol risk remains high in many patient groups, including those with known vascular disease as well as in the setting of high-risk primary prevention. Bococizumab is a humanized monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9), prolongs the half-life of hepatic low-density lipoprotein (LDL) receptors, and reduces circulating atherogenic cholesterol levels. DESIGN The SPIRE program comprises 6 lipid-lowering studies and 2 cardiovascular outcomes trials, each comparing bococizumab (150 mg subcutaneously every 2 weeks) to matching placebo. The 6 SPIRE lipid-lowering studies include 3 parallel 12-month assessments of bococizumab on atherogenic lipids among statin-treated individuals at high residual risk (SPIRE-HR, SPIRE-LDL, SPIRE-LL), one 12-month study of bococizumab among individuals with familial hypercholesterolemia (SPIRE-FH), one 6-month study of bococizumab among those with statin intolerance (SPIRE-SI), and one 3-month study of bococizumab delivery using an auto-injector device (SPIRE-AI). The SPIRE-1 and SPIRE-2 event-driven cardiovascular outcome trials will assess the efficacy and safety of bococizumab in the prevention of incident vascular events in high-risk populations with and without clinically evident cardiovascular disease who have directly measured entry LDL cholesterol levels ≥70 mg/dL (SPIRE-1, n = 17,000) or ≥100 mg/dL (SPIRE-2, n = 11,000). SUMMARY The SPIRE trials, inclusive of more than 30,000 participants worldwide, will ascertain the magnitude of reduction in atherogenic lipids that accrue with bococizumab and determine whether the addition of this PCSK9 inhibitor to standard treatment significantly reduces cardiovascular morbidity and mortality in high-risk patients, including those without a history of clinical cardiovascular events.
Collapse
Affiliation(s)
- Paul M Ridker
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Robert J Glynn
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - John J P Kastelein
- Academic Medical Center of the University of Amsterdam, Amsterdam, Netherlands
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | | | | | - Raul D Santos
- Lipid Clinic Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
43
|
Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med 2016; 8:688-701. [PMID: 27189168 PMCID: PMC4931285 DOI: 10.15252/emmm.201506174] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are leading causes for death worldwide. Genetic disposition jointly with traditional risk factors precipitates their manifestation. Whereas the implications of a positive family history for individual risk have been known for a long time, only in the past few years have genome-wide association studies (GWAS) shed light on the underlying genetic variations. Here, we review these studies designed to increase our understanding of the pathophysiology of cardiovascular diseases, particularly coronary artery disease and myocardial infarction. We focus on the newly established pathways to exemplify the translation from the identification of risk-related genetic variants to new preventive and therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
| | - Baiba Vilne
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany DZHK (German Center for Cardiovascular Research) e.V., partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
44
|
Blom DJ, Dent R, Castro RC, Toth PP. PCSK9 inhibition in the management of hyperlipidemia: focus on evolocumab. Vasc Health Risk Manag 2016; 12:185-97. [PMID: 27274264 PMCID: PMC4868869 DOI: 10.2147/vhrm.s102564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) increases low-density lipoprotein cholesterol (LDL-C) concentrations through interference with normal physiologic hepatic LDL receptor (LDLR) recycling. Inhibiting PCSK9 results in improved LDLR recycling, increased LDLR availability on hepatocyte cell surfaces, and reduced blood LDL-C levels, making PCSK9 inhibition a novel therapeutic strategy for managing hypercholesterolemia. Monoclonal antibodies directed against PCSK9 have been developed for this purpose. A large number of clinical trials have demonstrated that monoclonal antibodies against PCSK9 yield substantial reductions in LDL-C when administered as monotherapy or in combination with statins to patients with nonfamilial and familial forms of hypercholesterolemia. Data from long-term trials demonstrate that the LDL-C-lowering effect of PCSK9 inhibitors is durable. These agents are generally well tolerated, and few patients discontinue treatment due to adverse events. Moreover, PCSK9 inhibitors do not appear to elicit the hepatic and muscle-related side effects associated with statin use. The ultimate value of PCSK9 inhibitors will be measured by their effect on clinical outcomes. Early evidence of a reduction in cardiovascular events after 1 year of treatment was shown in a prospective exploratory analysis of two ongoing long-term open-label extension evolocumab trials. Similarly, cardiovascular events were reduced in another exploratory analysis after >1 year of therapy with alirocumab. For the primary care physician, PCSK9 inhibitors represent a welcome additional option for lowering LDL-C in patients with familial forms of hypercholesterolemia and those with clinical atherosclerotic cardiovascular disease who are on maximally tolerated statin therapy.
Collapse
Affiliation(s)
- Dirk J Blom
- Division of Lipidology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | - Peter P Toth
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA; CGH Medical Center, Sterling, IL, USA
| |
Collapse
|
45
|
Glassman PM, Balthasar JP. Application of a catenary PBPK model to predict the disposition of "catch and release" anti-PCSK9 antibodies. Int J Pharm 2016; 505:69-78. [PMID: 27041125 DOI: 10.1016/j.ijpharm.2016.03.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 03/31/2016] [Indexed: 10/22/2022]
Abstract
The development of 'catch and release', or pH-sensitive, monoclonal antibodies (mAb) has become of interest to groups seeking to reduce the influence of target-mediated elimination on pharmacokinetics and pharmacodynamics. In this work, a catenary physiologically-based pharmacokinetic (PBPK) model is described to predict the pharmacokinetic benefit conferred by engineering mAbs for 'catch and release' binding. Our previously published PBPK model was adapted for consideration of the production and elimination of proprotein convertase subtilisin/kexin type 9 (PCSK9) in mice, and the model was then applied to predict the pharmacokinetics of anti-PCSK9 mAb with pH-stable (J10) and pH-sensitive binding (J17). The model was able to generate reasonable predictions of both J10 and J17 plasma pharmacokinetics. For J10, mean (±standard deviation) predicted vs. observed areas under the plasma concentration curve (AUCinf) were: 217 (77.1) vs. 103nMday (1mg/kg), 1.14×10(3) (858) vs. 769nMday (3mg/kg), and 6.60×10(3) (5.58×10(3)) vs. 2.86×10(3)nMday (10mg/kg), and for J17 the values were: 838 (161) vs. 818nMday (1mg/kg), 2.30×10(3) (441) vs. 2.57×10(3)nMday (3mg/kg), and 8.42×10(3) (1.50×10(3)) vs. 9.17×10(3)nMday (10mg/kg). Further simulations with the model predicted that target turnover and the magnitude of change in the complex dissociation rate constant between pH 7.4 and pH 6.0 are key determinants of the improvements in pharmacokinetics associated with 'catch and release' mAbs. The model described here may be useful for prediction of the pharmacokinetics of 'catch and release' mAbs directed against other targets.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Joseph P Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
46
|
Cole BK, Simmers MB, Feaver R, Qualls CW, Collado MS, Berzin E, Figler RA, Pryor AW, Lawson M, Mackey A, Manka D, Wamhoff BR, Turk JR, Blackman BR. An In Vitro Cynomolgus Vascular Surrogate System for Preclinical Drug Assessment and Human Translation. Arterioscler Thromb Vasc Biol 2015; 35:2185-95. [DOI: 10.1161/atvbaha.115.306245] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/06/2015] [Indexed: 01/29/2023]
Abstract
Objectives—
The predictive value of animal and in vitro systems for drug development is limited, particularly for nonhuman primate studies as it is difficult to deduce the drug mechanism of action. We describe the development of an in vitro cynomolgus macaque vascular system that reflects the in vivo biology of healthy, atheroprone, or advanced inflammatory cardiovascular disease conditions.
Approach and Results—
We compare the responses of the in vitro human and cynomolgus vascular systems to 4 statins. Although statins exert beneficial pleiotropic effects on the human vasculature, the mechanism of action is difficult to investigate at the tissue level. Using RNA sequencing, we quantified the response to statins and report that most statins significantly increased the expression of genes that promote vascular health while suppressing inflammatory cytokine gene expression. Applying computational pathway analytics, we identified statin-regulated biological themes, independent of cholesterol lowering, that provide mechanisms for off-target effects, including thrombosis, cell cycle regulation, glycogen metabolism, and ethanol degradation.
Conclusions—
The cynomolgus vascular system described herein mimics the baseline and inflammatory regional biology of the human vasculature, including statin responsiveness, and provides mechanistic insight not achievable in vivo.
Collapse
Affiliation(s)
- Banumathi K. Cole
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Michael B. Simmers
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Ryan Feaver
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Charles W. Qualls
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - M. Sol Collado
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Erica Berzin
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Robert A. Figler
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Andrew W. Pryor
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Mark Lawson
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Aaron Mackey
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - David Manka
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Brian R. Wamhoff
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - James R. Turk
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| | - Brett R. Blackman
- From the NASH Program (B.K.C., R.F.), Technology and Research Platforms (M.B.S.), Rare Diseases Program (M.S.C.), Vascular Program (E.B., D.M.), Pharmacology (R.A.F.), Cell Culture (A.W.P.), Computational Biology (M.L., A.M.), VP of Research and Development (B.R.W.), and Chief Scientific Officer (B.R.B.), HemoShear Therapeutics LLC, Charlottesville, VA (B.K.C., M.B.S., R.F., M.S.C., E.B., R.A.F., A.W.P., M.L., A.M., D.M., B.R.W, B.R.B.); and Comparative Biology and Safety Sciences (C.W.Q., J.R.T.),
| |
Collapse
|
47
|
Crossey E, Amar MJA, Sampson M, Peabody J, Schiller JT, Chackerian B, Remaley AT. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine 2015; 33:5747-5755. [PMID: 26413878 DOI: 10.1016/j.vaccine.2015.09.044] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/01/2023]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory protein that controls cholesterol homeostasis by enhancing endosomal and lysosomal degradation of the low-density lipoprotein receptor (LDL-R). Mutations that cause increased activity of PCSK9 are associated with hypercholesterolemia, atherosclerosis and early cardiovascular disease (CVD), whereas individuals with loss-of-function mutations in PCSK9 are apparently healthy but are hypocholesterolemic and have a dramatically decreased risk of CVD. In this study, we generated virus-like particle (VLP)-based vaccines targeting PCSK9. Mice and macaques vaccinated with bacteriophage VLPs displaying PCSK9-derived peptides developed high titer IgG antibodies that bound to circulating PCSK9. Vaccination was associated with significant reductions in total cholesterol, free cholesterol, phospholipids, and triglycerides. A vaccine targeting PCSK9 may, therefore, be an attractive alternative to monoclonal antibody-based therapies.
Collapse
Affiliation(s)
- Erin Crossey
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, USA
| | - Marcelo J A Amar
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10 - 2C433, 10 Center Drive, MSC 1666, Bethesda, MD 20892, USA
| | - Maureen Sampson
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10 - 2C433, 10 Center Drive, MSC 1666, Bethesda, MD 20892, USA
| | - Julianne Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, USA
| | - John T Schiller
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico, MSC08-4660, Albuquerque, NM 87131, USA.
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Cardio-Pulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10 - 2C433, 10 Center Drive, MSC 1666, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Liu MH. Antihyperlipidemic therapies targeting PCSK9: Novel therapeutic agents for lowering low-density lipoprotein cholesterol. Int J Cardiol 2015; 195:212-4. [DOI: 10.1016/j.ijcard.2015.05.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
|
49
|
Verbeek R, Stoekenbroek RM, Hovingh GK. PCSK9 inhibitors: Novel therapeutic agents for the treatment of hypercholesterolemia. Eur J Pharmacol 2015; 763:38-47. [DOI: 10.1016/j.ejphar.2015.03.099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/20/2015] [Accepted: 03/24/2015] [Indexed: 12/17/2022]
|
50
|
Kivelä AM, Huusko J, Ylä-Herttuala S. Prospect and progress of gene therapy in treating atherosclerosis. Expert Opin Biol Ther 2015; 15:1699-712. [PMID: 26328616 DOI: 10.1517/14712598.2015.1084282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Despite considerable improvements in therapies, atherosclerotic cardiovascular diseases remain the leading cause of death worldwide. Therefore, in addition to current treatment options, new therapeutic approaches are still needed. AREAS COVERED In this review, novel gene and RNA interference-based therapy approaches and promising target genes for treating atherosclerosis are addressed. In addition, relevant animal models for the demonstration of the efficacy of different gene therapy applications, and current progress toward more efficient, targeted and safer gene transfer vectors are reviewed. EXPERT OPINION Atherosclerosis represents a complex multifactorial disease that is dependent on the interplay between lipoprotein metabolism, cellular reactions and inflammation. Recent advances and novel targets, especially in the field of RNA interference-based therapies, are very promising. However, it should be noted that the modulation of a particular gene is not as clearly associated with a complex polygenic disease as it is in the case of monogenic diseases. A deeper understanding of molecular mechanisms of atherosclerosis, further progress in vector development and the demonstration of treatment efficacy in relevant animal models will be required before gene therapy of atherosclerosis meets its clinical reality.
Collapse
Affiliation(s)
- Annukka M Kivelä
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Jenni Huusko
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ;
| | - Seppo Ylä-Herttuala
- a 1 University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine , Kuopio, Finland +358 403 552 075 ; .,b 2 Science Service Center , Kuopio, Finland.,c 3 Kuopio University Hospital, Gene Therapy Unit , Kuopio, Finland
| |
Collapse
|