1
|
Chowdhury RR, Rose S, Ezan F, Sovadinová I, Babica P, Langouët S. Hepatotoxicity of cyanotoxin microcystin-LR in human: Insights into mechanisms of action in the 3D culture model Hepoid-HepaRG. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123047. [PMID: 38036087 DOI: 10.1016/j.envpol.2023.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells. 14-d-old Hepoid-HepaRG cultures showed increased expression of OATP1B1/1B3 and sensitivity to MC-LR cytotoxicity at concentrations >10 nM (48 h exposure, EC20 = 26 nM). MC-LR induced neither caspase 3/7 activity nor expression of the endoplasmic reticulum stress marker gene BiP/GRP78, but increased release of pro-inflammatory cytokine IL-8, indicating a necrotic type of cell death. Subcytotoxic (10 nM) and cytotoxic (≥100 nM) MC-LR concentrations disrupted hepatocyte functions, such as xenobiotic metabolism phase-I enzyme activities (cytochrome P450 1A/1B) and albumin secretion, along with reduced expression of CYP1A2 and ALB genes. MC-LR also decreased expression of HNF4A gene, a critical regulator of hepatocyte differentiation and function. Genes encoding hepatobiliary membrane transporters (OATP1B1, BSEP, NTCP), hepatocyte gap junctional gene connexin 32 and the epithelial cell marker E-cadherin were also downregulated. Simultaneous upregulation of connexin 43 gene, primarily expressed by liver progenitor and non-parenchymal cells, indicated a disruption of tissue homeostasis. This was associated with a shift in the expression ratio of E-cadherin to N-cadherin towards the mesenchymal cell marker, a process linked to epithelial-mesenchymal transition (EMT) and hepatocarcinogenesis. The effects observed in the human liver cell in vitro model revealed mechanisms that can potentially contribute to the MC-LR-induced promotion and progression of hepatocellular carcinoma (HCC). Hepoid-HepaRG cultures provide a robust, accessible and versatile in vitro model, capable of sensitively detecting hepatotoxic effects at toxicologically relevant concentrations, allowing for assessing hepatotoxicity mechanisms, human health hazards and impacts of environmental hepatotoxins, such as MC-LR.
Collapse
Affiliation(s)
- Riju R Chowdhury
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Rose
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Frédéric Ezan
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Langouët
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
2
|
Gou X, Ran F, Yang J, Ma Y, Wu X. Construction and Evaluation of a Novel Organic Anion Transporter 1/3 CRISPR/Cas9 Double-Knockout Rat Model. Pharmaceutics 2022; 14:2307. [PMID: 36365126 PMCID: PMC9697873 DOI: 10.3390/pharmaceutics14112307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Organic anion transporter 1 (OAT1) and OAT3 have an overlapping spectrum of substrates such that one can exert a compensatory effect when the other is dysfunctional. As a result, the knockout of either OAT1 or OAT3 is not reflected in a change in the excretion of organic anionic substrates. To date, only the mOAT1 and mOAT3 individual knockout mouse models have been available. METHODS In this study, we successfully generated a Slc22a6/Slc22a8 double-knockout (KO) rat model using CRISPR/Cas9 technology and evaluated its biological properties. RESULTS The double-knockout rat model did not expression mRNA for rOAT1 or rOAT3 in the kidneys. Consistently, the renal excretion of p-aminohippuric acid (PAH), the classical substrate of OAT1/OAT3, was substantially decreased in the Slc22a6/Slc22a8 double-knockout rats. The relative mRNA level of Slco4c1 was up-regulated in KO rats. No renal pathological phenotype was evident. The renal elimination of the organic anionic drug furosemide was nearly abolished in the Slc22a6/Slc22a8 knockout rats, but elimination of the organic cationic drug metformin was hardly affected. CONCLUSIONS These results demonstrate that this rat model is a useful tool for investigating the functions of OAT1/OAT3 in metabolic diseases, drug metabolism and pharmacokinetics, and OATs-mediated drug interactions.
Collapse
Affiliation(s)
- Xueyan Gou
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730013, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fenglin Ran
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jinru Yang
- School of First Clinical Medicine, Lanzhou University, Lanzhou 730000, China
| | - Yanrong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730013, China
| | - Xin’an Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730013, China
| |
Collapse
|
3
|
McDuffie D, Barr D, Agarwal A, Thomas E. Physiologically relevant microsystems to study viral infection in the human liver. Front Microbiol 2022; 13:999366. [PMID: 36246284 PMCID: PMC9555087 DOI: 10.3389/fmicb.2022.999366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Viral hepatitis is a leading cause of liver disease and mortality. Infection can occur acutely or chronically, but the mechanisms that govern the clearance of virus or lack thereof are poorly understood and merit further investigation. Though cures for viral hepatitis have been developed, they are expensive, not readily accessible in vulnerable populations and some patients may remain at an increased risk of developing hepatocellular carcinoma (HCC) even after viral clearance. To sustain infection in vitro, hepatocytes must be fully mature and remain in a differentiated state. However, primary hepatocytes rapidly dedifferentiate in conventional 2D in vitro platforms. Physiologically relevant or physiomimetic microsystems, are increasingly popular alternatives to traditional two-dimensional (2D) monocultures for in vitro studies. Physiomimetic systems reconstruct and incorporate elements of the native cellular microenvironment to improve biologic functionality in vitro. Multiple elements contribute to these models including ancillary tissue architecture, cell co-cultures, matrix proteins, chemical gradients and mechanical forces that contribute to increased viability, longevity and physiologic function for the tissue of interest. These microsystems are used in a wide variety of applications to study biological phenomena. Here, we explore the use of physiomimetic microsystems as tools for studying viral hepatitis infection in the liver and how the design of these platforms is tailored for enhanced investigation of the viral lifecycle when compared to conventional 2D cell culture models. Although liver-based physiomimetic microsystems are typically applied in the context of drug studies, the platforms developed for drug discovery purposes offer a solid foundation to support studies on viral hepatitis. Physiomimetic platforms may help prolong hepatocyte functionality in order to sustain chronic viral hepatitis infection in vitro for studying virus-host interactions for prolonged periods.
Collapse
Affiliation(s)
- Dennis McDuffie
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - David Barr
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ashutosh Agarwal
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Ashutosh Agarwal,
| | - Emmanuel Thomas
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami, FL, United States
- Emmanuel Thomas,
| |
Collapse
|
4
|
Three-Dimensional Liver Culture Systems to Maintain Primary Hepatic Properties for Toxicological Analysis In Vitro. Int J Mol Sci 2021; 22:ijms221910214. [PMID: 34638555 PMCID: PMC8508724 DOI: 10.3390/ijms221910214] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Drug-induced liver injury (DILI) is the major reason for failures in drug development and withdrawal of approved drugs from the market. Two-dimensional cultures of hepatocytes often fail to reliably predict DILI: hepatoma cell lines such as HepG2 do not reflect important primary-like hepatic properties and primary human hepatocytes (pHHs) dedifferentiate quickly in vitro and are, therefore, not suitable for long-term toxicity studies. More predictive liver in vitro models are urgently required in drug development and compound safety evaluation. This review discusses available human hepatic cell types for in vitro toxicology analysis and their usage in established and emerging three-dimensional (3D) culture systems. Generally, 3D cultures maintain or improve primary hepatic functions (including expression of drug-metabolizing enzymes) of different liver cells for several weeks of culture, thus allowing long-term and repeated-dose toxicity studies. Spheroid cultures of pHHs have been comprehensively tested, but also other cell types such as HepaRG benefit from 3D culture systems. Emerging 3D culture techniques include usage of induced pluripotent stem-cell-derived hepatocytes and primary-like upcyte cells, as well as advanced culture techniques such as microfluidic liver-on-a-chip models. In-depth characterization of existing and emerging 3D hepatocyte technologies is indispensable for successful implementation of such systems in toxicological analysis.
Collapse
|
5
|
Xu R, Hu P, Li Y, Tian A, Li J, Zhu C. Advances in HBV infection and replication systems in vitro. Virol J 2021; 18:105. [PMID: 34051803 PMCID: PMC8164799 DOI: 10.1186/s12985-021-01580-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/18/2021] [Indexed: 12/17/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a DNA virus belonging to the Hepadnaviridae family that has limited tissue and species specificity. Due to the persistence of HBV covalently closed circular DNA (cccDNA) in host cells after HBV infection, current antiviral drugs cannot eradicate HBV. Therefore, the development of an active cell culture system supporting HBV infection has become the key to studying HBV and developing effective therapeutic drugs. Main body This review summarizes the significant research achievements in HBV cell culture systems in vitro, including embryonic hepatocytes and primary hepatocytes, which support the virus infection process most similar to that in the body and various liver tumor cells. The discovery of the bile-acid pump sodium-taurocholate co-transporting polypeptide (NTCP) as the receptor of HBV has advanced our understanding of HBV biology. Subsequently, various liver cancer cells overexpressing NTCP that support HBV infection have been established, opening a new door for studying HBV infection. The fact that induced pluripotent stem cells that differentiate into hepatocyte-like cells support HBV infection provides a novel idea for the establishment of an HBV cell culture system. Conclusion Because of the host and tissue specificity of HBV, a suitable in vitro HBV infection system is critical for the study of HBV pathogenesis. Nevertheless, recent advances regarding HBV infection in vitro offer hope for better studying the biological characteristics of HBV, the pathogenesis of hepatitis B, the screening of anti-HBV drugs and the mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Ruirui Xu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Pingping Hu
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yuwen Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Anran Tian
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jun Li
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chuanlong Zhu
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| |
Collapse
|
6
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part II: Systems and Applications. Processes (Basel) 2020. [DOI: 10.3390/pr9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this second part of our systematic review on the research area of 3D cell culture in micro-bioreactors we give a detailed description of the published work with regard to the existing micro-bioreactor types and their applications, and highlight important results gathered with the respective systems. As an interesting detail, we found that micro-bioreactors have already been used in SARS-CoV research prior to the SARS-CoV2 pandemic. As our literature research revealed a variety of 3D cell culture configurations in the examined bioreactor systems, we defined in review part one “complexity levels” by means of the corresponding 3D cell culture techniques applied in the systems. The definition of the complexity is thereby based on the knowledge that the spatial distribution of cell-extracellular matrix interactions and the spatial distribution of homologous and heterologous cell–cell contacts play an important role in modulating cell functions. Because at least one of these parameters can be assigned to the 3D cell culture techniques discussed in the present review, we structured the studies according to the complexity levels applied in the MBR systems.
Collapse
|
7
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020. Processes (Basel) 2020. [DOI: 10.3390/pr8121656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. In this systematic review we analyze the literature in the field of eukaryotic 3D cell culture in micro-bioreactors within the last 20 years. For this, we define complexity levels with regard to the cellular 3D microenvironment concerning cell–matrix-contact, cell–cell-contact and the number of different cell types present at the same time. Moreover, we examine the data with regard to the micro-bioreactor design including mode of cell stimulation/nutrient supply and materials used for the micro-bioreactors, the corresponding 3D cell culture techniques and the related cellular microenvironment, the cell types and in vitro models used. As a data source we used the National Library of Medicine and analyzed the studies published from 2000 to 2020.
Collapse
|
8
|
Ma X, Shang X, Qin X, Lu J, Liu M, Wang X. Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease. Acta Pharm Sin B 2020; 10:850-860. [PMID: 32528832 PMCID: PMC7276679 DOI: 10.1016/j.apsb.2019.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.
Collapse
Key Words
- A/G, albumin/globulin ratio
- ADRs, adverse drug reactions
- ALB, albumin
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- AUC, the area under the time–plasma concentration curve
- BUN, blood urea nitrogen
- CL/F, clearance/bioavailability
- CR, reatinine
- CRISPR, clustered regularly interspaced short palindromic repeats
- CRISPR/Cas9
- Chr, chromosome
- Cmax, peak concentration
- DAB, 3,3′-diaminobenzidine
- DBL, direct bilirubin
- DDI, drug–drug interaction
- DMSO, dimethyl sulfoxide
- FDA, the U.S. Food and Drug Administration
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GLB, globulin
- GLU, glucose
- HCG, human chorionic gonadotropin
- HDL-C, high density lipoprotein cholesterol
- HE, haemotoxylin and eosin
- HMG, hydroxymethylglutaryl
- HRP, horseradish peroxidase
- HZ, heterozygous
- IBIL, indirect bilirubin
- IS, internal standard solution
- KO, knockout
- LDL-C, low density lipoprotein cholesterol
- MC, methylcellulose
- MRT, mean residence time
- NC, nitrocellulose
- OATP1B1/3
- OATP1B1/3, organic anion transporting polypeptide 1B1 and 1B3
- OATP1B2
- OATPs, organic anion transporting polypeptides
- PAM, protospacer adjacent motif
- PMSG, pregnant mare serum gonadotropin
- R-GT, γ-glutamyltranspeptidase
- Rat model
- SD, Sprague–Dawley
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- SLC, solute carrier
- SNPs, single nucleotide polymorphisms
- T-CH, total cholesterol
- T7E I, T7 endonuclease I
- TALEN, transcription activator-like effector nuclease
- TBA, total bile acid
- TBL, total bilirubin
- TBST, Tris-buffered saline Tween 20
- TG, triglyceride
- TP, total protein
- Tmax, peak time
- Transporter
- UA, uric acid
- Ugt1a1, UDP glucuronosyltransferase family 1 member A1
- Vd/F, the apparent volume of distribution/bioavailability
- WT, wild type
- ZFN, zinc-finger nucleases
- crRNA, mature CRISPR RNA
- p.o., peroral
- sgRNA, single guide RNA
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Wang
- Corresponding author. Tel.: +86 21 24206564; fax: +86 21 5434 4922.
| |
Collapse
|
9
|
Shen JX, Youhanna S, Zandi Shafagh R, Kele J, Lauschke VM. Organotypic and Microphysiological Models of Liver, Gut, and Kidney for Studies of Drug Metabolism, Pharmacokinetics, and Toxicity. Chem Res Toxicol 2019; 33:38-60. [DOI: 10.1021/acs.chemrestox.9b00245] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Joanne X. Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Julianna Kele
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Zhou Y, Shen JX, Lauschke VM. Comprehensive Evaluation of Organotypic and Microphysiological Liver Models for Prediction of Drug-Induced Liver Injury. Front Pharmacol 2019; 10:1093. [PMID: 31616302 PMCID: PMC6769037 DOI: 10.3389/fphar.2019.01093] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major concern for the pharmaceutical industry and constitutes one of the most important reasons for the termination of promising drug development projects. Reliable prediction of DILI liability in preclinical stages is difficult, as current experimental model systems do not accurately reflect the molecular phenotype and functionality of the human liver. As a result, multiple drugs that passed preclinical safety evaluations failed due to liver toxicity in clinical trials or postmarketing stages in recent years. To improve the selection of molecules that are taken forward into the clinics, the development of more predictive in vitro systems that enable high-throughput screening of hepatotoxic liabilities and allow for investigative studies into DILI mechanisms has gained growing interest. Specifically, it became increasingly clear that the choice of cell types and culture method both constitute important parameters that affect the predictive power of test systems. In this review, we present current 3D culture paradigms for hepatotoxicity tests and critically evaluate their utility and performance for DILI prediction. In addition, we highlight possibilities of these emerging platforms for mechanistic evaluations of selected drug candidates and present current research directions towards the further improvement of preclinical liver safety tests. We conclude that organotypic and microphysiological liver systems have provided an important step towards more reliable DILI prediction. Furthermore, we expect that the increasing availability of comprehensive benchmarking studies will facilitate model dissemination that might eventually result in their regulatory acceptance.
Collapse
Affiliation(s)
| | | | - Volker M. Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Microcystin-LR promotes necroptosis in primary mouse hepatocytes by overproducing reactive oxygen species. Toxicol Appl Pharmacol 2019; 377:114626. [PMID: 31201821 DOI: 10.1016/j.taap.2019.114626] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022]
Abstract
Microcystin-LR (MC-LR) is a type of cyclic heptapeptide toxin produced by cyanobacteria during bloom events. MC-LR-induced cell death is critically involved in its potent specific hepatotoxicity. Many studies have demonstrated that prototypical apoptosis as a form of programmed cell death after MC-LR is associated with liver injury. However, whether another form of programmed cell death exists and the underlying mechanism have not been reported. Here, we demonstrate that MC-LR can induce necroptosis via ROS overactivation in primary mouse hepatocytes. Various potential pathways of programmed cell death induced by MC-LR were evaluated by annexin V/PI dual staining for flow cytometric analysis, image-based PI staining analysis and western blot analysis. Cell viability was determined by the CCK8 assay. Rupture of the plasma membrane was indicated by lactate dehydrogenase release. ROS was evaluated with the carboxy-H2DCFDA fluorescent probe. It was found that in MC-LR-treated cells, as the plasma membrane was damaged, annexin V/PI-stained double-positive cells were significantly induced and PI-stained nuclei were more diffuse. Western blot analysis showed that MC-LR treatment significantly upregulated the expression of necroptotic and apoptotic proteins. Mechanistically, MC-LR induced ROS overproduction by dysregulating the expression and activity of the pro-oxidants SOD1, MAOA, and NOX4 and the antioxidant GPX1. These results indicate the presence of a novel mechanism for MC-LR-mediated liver injury and present a novel target in the treatment of MC-LR-exposed patients.
Collapse
|
12
|
Kvist AJ, Kanebratt KP, Walentinsson A, Palmgren H, O'Hara M, Björkbom A, Andersson LC, Ahlqvist M, Andersson TB. Critical differences in drug metabolic properties of human hepatic cellular models, including primary human hepatocytes, stem cell derived hepatocytes, and hepatoma cell lines. Biochem Pharmacol 2018; 155:124-140. [PMID: 29953844 DOI: 10.1016/j.bcp.2018.06.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
Abstract
Primary human hepatocytes (PHH), HepaRG™, HepG2, and two sources of induced pluripotent stem cell (iPSC) derived hepatocytes were characterized regarding gene expression and function of key hepatic proteins, important for the metabolic fate of drugs. The gene expression PCA analysis showed a distance between the two iPSC derived hepatocytes as well as the HepG2 and HepaRG™ cells to the three PHH donors and PHH pool, which were clustered more closely together. Correlation-based hierarchical analysis clustered HepG2 close to the stem cell derived hepatocytes both when the expression of 91 genes related to liver function or only cytochrome P450 (P450) genes were analyzed indicating the non-liver feature and a similar low P450 profile in these cell models. The specific P450 activities and the metabolic pattern of well-characterized drug substances in the cell models demonstrated that iPSC derived hepatocytes had modest levels of CYP3A and CYP2C9, while CYP1A2, 2B6, 2C8, 2C9, 2C19, and 2D6 were barely detectable. High expression of several extrahepatic P450s such as CYP1A1 and 1B1 detected in the stem cell derived hepatocytes may have significant effects on metabolite profiles. However, one of the iPSC derived hepatocytes demonstrated significant combined P450 and conjugating enzyme activity of certain drugs. HepaRG™ cells showed many metabolic properties similar to PHHs and will in many respects be a good model in studies of metabolic pathways and induction of drug metabolism whereas there is still ground to cover before iPSC derived hepatocytes will be seen as a substitute to PHH in drug metabolism studies.
Collapse
Affiliation(s)
- Alexander J Kvist
- IMED Operations Project Management, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.
| | - Kajsa P Kanebratt
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna Walentinsson
- Translational Sciences, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Henrik Palmgren
- Bioscience Diabetes, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Anders Björkbom
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Linda C Andersson
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marie Ahlqvist
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Tommy B Andersson
- Drug Metabolism and Pharmacokinetics, Cardiovascular and Metabolic Diseases, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden; Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Jones BC, Rollison H, Johansson S, Kanebratt KP, Lambert C, Vishwanathan K, Andersson TB. Managing the Risk of CYP3A Induction in Drug Development: A Strategic Approach. Drug Metab Dispos 2016; 45:35-41. [PMID: 27777246 DOI: 10.1124/dmd.116.072025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022] Open
Abstract
Induction of cytochrome P450 (P450) can impact the efficacy and safety of drug molecules upon multiple dosing with coadministered drugs. This strategy is focused on CYP3A since the majority of clinically relevant cases of P450 induction are related to these enzymes. However, the in vitro evaluation of induction is applicable to other P450 enzymes; however, the in vivo relevance cannot be assessed because the scarcity of relevant clinical data. In the preclinical phase, compounds are screened using pregnane X receptor reporter gene assay, and if necessary structure-activity relationships (SAR) are developed. When projects progress toward the clinical phase, induction studies in a hepatocyte-derived model using HepaRG cells will generate enough robust data to assess the compound's induction liability in vivo. The sensitive CYP3A biomarker 4β-hydroxycholesterol is built into the early clinical phase I studies for all candidates since rare cases of in vivo induction have been found without any induction alerts from the currently used in vitro methods. Using this model, the AstraZeneca induction strategy integrates in vitro assays and in vivo studies to make a comprehensive assessment of the induction potential of new chemical entities. Convincing data that support the validity of both the in vitro models and the use of the biomarker can be found in the scientific literature. However, regulatory authorities recommend the use of primary human hepatocytes and do not advise the use of sensitive biomarkers. Therefore, primary human hepatocytes and midazolam studies will be conducted during the clinical program as required for regulatory submission.
Collapse
Affiliation(s)
- Barry C Jones
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.).
| | - Helen Rollison
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Susanne Johansson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Kajsa P Kanebratt
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Craig Lambert
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Karthick Vishwanathan
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| | - Tommy B Andersson
- Oncology Innovative Medicines and Early Development Biotech Unit (B.C.J.) and Drug Safety and Metabolism (H.R.), AstraZeneca, Cambridge, United Kingdom; Quantitative Clinical Pharmacology (S.J.), and Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit (K.P.K., T.B.A.), AstraZeneca, Mölndal, Sweden; Quantitative Clinical Pharmacology, AstraZeneca, Hertfordshire, United Kingdom (C.L.); Quantitative Clinical Pharmacology, AstraZeneca, Waltham, Massachusetts (K.V.); and Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (T.B.A.)
| |
Collapse
|
14
|
Lauschke VM, Hendriks DFG, Bell CC, Andersson TB, Ingelman-Sundberg M. Novel 3D Culture Systems for Studies of Human Liver Function and Assessments of the Hepatotoxicity of Drugs and Drug Candidates. Chem Res Toxicol 2016; 29:1936-1955. [DOI: 10.1021/acs.chemrestox.6b00150] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Volker M. Lauschke
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Delilah F. G. Hendriks
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Catherine C. Bell
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Tommy B. Andersson
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 431 83, Sweden
| | - Magnus Ingelman-Sundberg
- Section
of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| |
Collapse
|
15
|
Galetin A. Rationalizing underprediction of drug clearance from enzyme and transporter kinetic data: from in vitro tools to mechanistic modeling. Methods Mol Biol 2014; 1113:255-88. [PMID: 24523117 DOI: 10.1007/978-1-62703-758-7_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the years, there has been an increase in the number and quality of available in vitro tools for the assessment of clearance. Complexity of data analysis and modelling of corresponding in vitro data has increased in an analogous manner, in particular for the simultaneous characterization of transporter and metabolism kinetics, together with intracellular binding and passive diffusion. In the current chapter, the impact of different factors on the in vitro-in vivo extrapolation of clearance will be addressed in a stepwise manner, from the selection of the most adequate in vitro system and experimental design/condition to the corresponding modelling of data generated. The application of static or physiologically based pharmacokinetic models in the prediction of clearance will be discussed, highlighting limitations and current challenges of some of the approaches. Particular focus will be on the ability of in vitro and in silico predictive tools to overcome the trend of clearance underprediction. Improvements made as a result of inclusion of extrahepatic metabolism and consideration of transporter-metabolism interplay across different organs will be discussed.
Collapse
Affiliation(s)
- Aleksandra Galetin
- Manchester Pharmacy School, The University of Manchester, Stopford Building, Oxford Road, Manchester, UK
| |
Collapse
|
16
|
Zhou M, Zhao F, Li J, Cheng Z, Tian X, Zhi X, Huang Y, Hu K. Long-term maintenance of human fetal hepatocytes and prolonged susceptibility to HBV infection by co-culture with non-parenchymal cells. J Virol Methods 2013; 195:185-93. [PMID: 24134944 DOI: 10.1016/j.jviromet.2013.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 12/12/2022]
Abstract
Within a few days of being isolated, primary human hepatocytes undergo a rapid dedifferentiation process and lose susceptibility to hepatitis B virus (HBV) infection in vitro. This fact has limited their further application. In this study, a convenient and feasible method of preventing this dedifferentiation was established, by co-culturing human fetal hepatocytes with hepatic non-parenchymal cells to maintain the differentiation features of human fetal hepatocytes. Isolated hepatic cells were seeded at a low density, and cultured in dimethyl sulfoxide-free medium for a month to allow rapid proliferation of non-parenchymal cells. Subsequently, 2% dimethyl sulfoxide was added to induce formation of typical hepatic islands, in which hepatocytic features could be further maintained for up to an additional 3 months. These hepatic islands, formed of piled-up hepatocytes, were surrounded and invaded by non-parenchymal cells. Protein expression profiles showed that the human fetal hepatocytes underwent a rapid maturation process, and the hepatocytic features were well preserved. Most importantly, these human fetal hepatocytes still exhibited susceptibility to HBV infection after long-term maintenance, for as long as 10 weeks. This co-culture method has overcome the pre-existing disadvantages of primary human hepatocytes for virological studies, and provides a valuable approach to long-term maintenance of primary human hepatocytes for studies of HBV infection for prolonged periods.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang J, Chen J, Xia Z. Microcystin-LR Exhibits Immunomodulatory Role in Mouse Primary Hepatocytes Through Activation of the NF-κB and MAPK Signaling Pathways. Toxicol Sci 2013; 136:86-96. [DOI: 10.1093/toxsci/kft180] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
18
|
Ginai M, Elsby R, Hewitt CJ, Surry D, Fenner K, Coopman K. The use of bioreactors as in vitro models in pharmaceutical research. Drug Discov Today 2013; 18:922-35. [PMID: 23748137 DOI: 10.1016/j.drudis.2013.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/24/2013] [Accepted: 05/22/2013] [Indexed: 12/23/2022]
Abstract
Bringing a new drug to market is costly in terms of capital and time investments, and any development issues encountered during late-stage clinical trials can often be the result of in vitro-in vivo extrapolations (IVIVE) not accurately reflecting clinical outcome. In the discipline of drug metabolism and pharmacokinetics (DMPK), current in vitro cellular methods do not provide the 3D structure and function of organs found in vivo; therefore, new dynamic methods need to be established to aid improvement of IVIVE. In this review, we highlight the importance of model progression into dynamic systems for use within drug development, focusing on devices developed currently in the areas of the liver and blood-brain barrier (BBB), and the potential to develop models for other organ systems, such as the kidney. We discuss the development of dynamic 3D bioreactor-based systems as in vitro models for use in DMPK studies.
Collapse
Affiliation(s)
- Maaria Ginai
- Centre for Biological Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | | | | | | | | | | |
Collapse
|