1
|
Espinoza KS, Snider AJ. Therapeutic Potential for Sphingolipids in Inflammatory Bowel Disease and Colorectal Cancer. Cancers (Basel) 2024; 16:789. [PMID: 38398179 PMCID: PMC10887199 DOI: 10.3390/cancers16040789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized by chronic inflammation in the intestinal tract, increases the risk for the development of colorectal cancer (CRC). Sphingolipids, which have been implicated in IBD and CRC, are a class of bioactive lipids that regulate cell signaling, differentiation, apoptosis, inflammation, and survival. The balance between ceramide (Cer), the central sphingolipid involved in apoptosis and differentiation, and sphingosine-1-phosphate (S1P), a potent signaling molecule involved in proliferation and inflammation, is vital for the maintenance of normal cellular function. Altered sphingolipid metabolism has been implicated in IBD and CRC, with many studies highlighting the importance of S1P in inflammatory signaling and pro-survival pathways. A myriad of sphingolipid analogues, inhibitors, and modulators have been developed to target the sphingolipid metabolic pathway. In this review, the efficacy and therapeutic potential for modulation of sphingolipid metabolism in IBD and CRC will be discussed.
Collapse
Affiliation(s)
- Keila S. Espinoza
- Department of Physiology, University of Arizona, Tucson, AZ 85721, USA;
| | - Ashley J. Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85721, USA
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Mansour N, Mehanna S, Bodman-Smith K, Daher CF, Khnayzer RS. A Ru(II)-Strained Complex with 2,9-Diphenyl-1,10-phenanthroline Ligand Induces Selective Photoactivatable Chemotherapeutic Activity on Human Alveolar Carcinoma Cells via Apoptosis. Pharmaceuticals (Basel) 2023; 17:50. [PMID: 38256884 PMCID: PMC10819265 DOI: 10.3390/ph17010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/24/2024] Open
Abstract
[Ru(bipy)2(dpphen)]Cl2 (where bipy = 2,2'-bipyridine and dpphen = 2,9-diphenyl-1,10-phenanthroline) (complex 1) is a sterically strained compound that exhibits promising in vitro photocytotoxicity on an array of cell lines. Since lung adenocarcinoma cancer remains the most common lung cancer and the leading cause of cancer deaths, the current study aims to evaluate the plausible effect and uptake of complex 1 on human alveolar carcinoma cells (A549) and mesenchymal stem cells (MSC), and assess its cytotoxicity in vitro while considering its effect on cell morphology, membrane integrity and DNA damage. MSC and A549 cells showed similar rates of complex 1 uptake with a plateau at 12 h. Upon photoactivation, complex 1 exhibited selective, potent anticancer activity against A549 cells with phototoxicity index (PI) values of 16, 25 and 39 at 24, 48 and 72 h, respectively. This effect was accompanied by a significant increase in A549-cell rounding and detachment, loss of membrane integrity and DNA damage. Flow cytometry experiments confirmed that A549 cells undergo apoptosis when treated with complex 1 followed by photoactivation. In conclusion, this present study suggests that complex 1 might be a promising candidate for photochemotherapy with photoproducts that possess selective anticancer effects in vitro. These results are encouraging to probe the potential activity of this complex in vivo.
Collapse
Affiliation(s)
- Najwa Mansour
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Stephanie Mehanna
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Kikki Bodman-Smith
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| | - Costantine F. Daher
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| | - Rony S. Khnayzer
- Department of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801, Lebanon; (N.M.); (S.M.); (C.F.D.)
| |
Collapse
|
3
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
4
|
Kong X, Patel NA, Chalfant CE, Cooper DR. Ceramide synthesis regulates biogenesis and packaging of exosomal MALAT1 from adipose derived stem cells, increases dermal fibroblast migration and mitochondrial function. Cell Commun Signal 2023; 21:221. [PMID: 37620957 PMCID: PMC10463839 DOI: 10.1186/s12964-022-00900-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/17/2022] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND The function of exosomes, small extracellular vesicles (sEV) secreted from human adipose-derived stem cells (ADSC), is becoming increasingly recognized as a means of transferring the regenerative power of stem cells to injured cells in wound healing. Exosomes are rich in ceramides and long noncoding RNA (lncRNA) like metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). We identified putative ceramide responsive cis-elements (CRCE) in MALAT1. We hypothesized that CRCE respond to cellular ceramide levels to regulate sEV MALAT1 packaging. MALAT1 levels by many cells exceed those of protein coding genes and it's expression is equally high in exosomes. Ceramide also regulates exosome synthesis, however, the contents of exosome cargo via sphingomyelinase and ceramide synthase pathways has not been demonstrated. METHODS ADSC were treated with an inhibitor of sphingomyelinase, GW4869, and stimulators of ceramide synthesis, C2- and C6-short chain ceramides, prior to collection of conditioned media (CM). sEV were isolated from CM, and then used to treat human dermal fibroblast (HDF) cultures in cell migration scratch assays, and mitochondrial stress tests to evaluate oxygen consumption rates (OCR). RESULTS Inhibition of sphingomyelinase by treatment of ADSC with GW4869 lowered levels of MALAT1 in small EVs. Stimulation of ceramide synthesis using C2- and C6- ceramides increased cellular, EVs levels of MALAT1. The functional role of sEV MALAT1 was evaluated in HDF by applying EVs to HDF. Control sEV increased migration of HDF, and significantly increased ATP production, basal and maximal respiration OCR. sEV from GW4869-treated ADSC inhibited cell migration and maximal respiration. However, sEV from C2- and C6-treated cells, respectively, increased both functions but not significantly above control EV except for maximal respiration. sEV were exosomes except when ADSC were treated with GW4869 and C6-ceramide, then they were larger and considered microvesicles. CONCLUSIONS Ceramide synthesis regulates MALAT1 EV content. Sphingomyelinase inhibition blocked MALAT1 from being secreted from ADSC EVs. Our report is consistent with those of MALAT1 increasing cell migration and mitochondrial MALAT1 altering maximal respiration in cells. Since MALAT1 is important for exosome function, it stands that increased exosomal MALAT1 should be beneficial for wound healing as shown with these assays. Video Abstract.
Collapse
Affiliation(s)
- Xaioyuan Kong
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
| | - Niketa A. Patel
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| | - Charles E. Chalfant
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Cellular Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33612 USA
| | - Denise R. Cooper
- Department of Veterans Affairs, J.A. Haley Veterans Hospital, Research Service 151, Tampa, Fl 33711 USA
- Department of Molecular Medicine, Morsani College of Medicine, Tampa, USA
| |
Collapse
|
5
|
de Castro Alves CE, Koidan G, Hurieva AN, de Freitas Gomes A, Costa de Oliveira R, Guimarães Costa A, Ribeiro Boechat AL, Correa de Oliveira A, Zahorulko S, Kostyuk A, Soares Pontes G. Cytotoxic and immunomodulatory potential of a novel [2-(4-(2,5-dimethyl-1H-pyrrol-1-yl)-1H-pyrazol-3-yl)pyridine] in myeloid leukemia. Biomed Pharmacother 2023; 162:114701. [PMID: 37062222 DOI: 10.1016/j.biopha.2023.114701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Cancer ranks among the leading causes of mortality worldwide. However, the efficacy of commercially available anticancer drugs is compromised by the emerging challenge of drug resistance. This study aimed to investigate the anticancer and immunomodulatory potential of a recently developed a novel [2-(4-(2,5-dimethyl-1 H-pyrrol-1-yl)- 1 H-pyrazol-3-yl) pyridine]. The cytotoxic potential of the compound was assessed using the MTT assay on both cancerous HL60 (acute myeloid leukemia) and K562 (chronic myeloid leukemia) cell lines, as well as non-cancerous Vero cells and human peripheral blood mononuclear cells (PBMCs). A clonogenic assay was employed to evaluate the anticancer efficacy of the compound, while flow cytometry was utilized to investigate its effect on cell cycle arrest. Furthermore, the immunomodulatory potential of the compound was assessed by quantifying inflammatory and anti-inflammatory biomarkers in the supernatant of PBMCs previously treated with the compound. Our study revealed that the novel pyridine ensemble exhibits selective cytotoxicity against HL60 (IC50 = 25.93 µg/mL) and K562 (IC50 = 10.42 µg/mL) cell lines, while displaying no significant cytotoxic effect on non-cancerous cells. In addition, the compound induced a decrease of 18% and 19% in the overall activity of COX-1 and COX-2, respectively. Concurrently, it upregulated the expression of cytokines including IL4, IL6, IL10, and IL12/23p40, while downregulating INFγ expression. These findings suggest that the compound has the potential to serve as a promising candidate for the treatment of acute and chronic myeloid leukemias due to its effective antiproliferative and immunomodulatory activities, without causing cytotoxicity in non-cancerous cells.
Collapse
Affiliation(s)
- Carlos Eduardo de Castro Alves
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Georgyi Koidan
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Anastasiia N Hurieva
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Alice de Freitas Gomes
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Regiane Costa de Oliveira
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Allyson Guimarães Costa
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil
| | - Antônio Luiz Ribeiro Boechat
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil
| | - André Correa de Oliveira
- Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil
| | - Serhii Zahorulko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Aleksandr Kostyuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska 5, 02660 Kyiv 94, Ukraine
| | - Gemilson Soares Pontes
- Post-Graduate Program in Basic and Applied Immunology, Institute of Biological Science, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; Laboratory of Virology and Immunology, National Institute of Amazonian Research (INPA), Manaus 69067-375, AM, Brazil; Post-Graduate Program in Hematology, The State University of Amazon, Foundation of Hematology and Hemotherapy of Amazonas, Manaus 69050-010, AM, Brazil.
| |
Collapse
|
6
|
A Brief Review of FT-IR Spectroscopy Studies of Sphingolipids in Human Cells. BIOPHYSICA 2023. [DOI: 10.3390/biophysica3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In recent years, sphingolipids have attracted significant attention due to their pivotal role in cellular functions and physiological diseases. A valuable tool for investigating the characteristics of sphingolipids can be represented via FT-IR spectroscopy, generally recognized as a very powerful technique that provides detailed biochemical information on the examined sample with the unique properties of sensitivity and accuracy. In the present paper, some fundamental aspects of sphingolipid components of human cells are summarized, and the most relevant articles devoted to the FT-IR spectroscopic studies of sphingolipids are revised. A short description of different FT-IR experimental approaches adopted for investigating sphingolipids is also given, with details about the most commonly used data analysis procedures. The present overview of FT-IR investigations, although not exhaustive, attests to the relevant role this vibrational technique has played in giving significant insight into many aspects of this fascinating class of lipids.
Collapse
|
7
|
Vos M, Klein C, Hicks AA. Role of Ceramides and Sphingolipids in Parkinson's Disease. J Mol Biol 2023:168000. [PMID: 36764358 DOI: 10.1016/j.jmb.2023.168000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Sphingolipids, including the basic ceramide, are a subset of bioactive lipids that consist of many different species. Sphingolipids are indispensable for proper neuronal function, and an increasing number of studies have emerged on the complexity and importance of these lipids in (almost) all biological processes. These include regulation of mitochondrial function, autophagy, and endosomal trafficking, which are affected in Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by the loss of dopaminergic neurons. Currently, PD cannot be cured due to the lack of knowledge of the exact pathogenesis. Nonetheless, important advances have identified molecular changes in mitochondrial function, autophagy, and endosomal function. Furthermore, recent studies have identified ceramide alterations in patients suffering from PD, and in PD models, suggesting a critical interaction between sphingolipids and related cellular processes in PD. For instance, autosomal recessive forms of PD cause mitochondrial dysfunction, including energy production or mitochondrial clearance, that is directly influenced by manipulating sphingolipids. Additionally, endo-lysosomal recycling is affected by genes that cause autosomal dominant forms of the disease, such as VPS35 and SNCA. Furthermore, endo-lysosomal recycling is crucial for transporting sphingolipids to different cellular compartments where they will execute their functions. This review will discuss mitochondrial dysfunction, defects in autophagy, and abnormal endosomal activity in PD and the role sphingolipids play in these vital molecular processes.
Collapse
Affiliation(s)
- Melissa Vos
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany.
| | - Christine Klein
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Andrew A Hicks
- Institute for Biomedicine (affiliated to the University of Luebeck, Luebeck, Germany), Eurac Research, 39100 Bolzano, Italy. https://twitter.com/andrewhicks
| |
Collapse
|
8
|
Yanagaki M, Shirai Y, Shimada Y, Hamura R, Taniai T, Horiuchi T, Takada N, Haruki K, Furukawa K, Uwagawa T, Kobayashi H, Ikegami T. Inhibition of lysosomal acid β-glucosidase induces cell apoptosis via impairing mitochondrial clearance in pancreatic cancer. Carcinogenesis 2022; 43:826-837. [PMID: 35781559 DOI: 10.1093/carcin/bgac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/12/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipid metabolism plays an important role in the formation of cellular membranes and is associated with malignant potential and chemosensitivity of cancer cells. Sphingolipid degradation depends on multiple lysosomal glucosidases. We focused on acid β-glucosidase (GBA), a lysosomal enzyme the deficiency of which is related to mitochondrial dysfunction. We analyzed the function of GBA in pancreatic ductal adenocarcinoma (PDAC). Human PDAC cell lines (PANC-1, BxPC-3 and AsPC-1) were examined under conditions of GBA knockdown via the short interfering RNA (siRNA) method. We assessed the morphological changes, GBA enzyme activity, GBA protein expression, cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) and mitophagy flux of PDAC cells. The GBA protein level and enzyme activity differed among cell lines. GBA knockdown suppressed cell proliferation and induced apoptosis, especially in PANC-1 and BxPC-3 cells, with low GBA enzyme activity. GBA knockdown also decreased the MMP and impaired mitochondrial clearance. This impaired mitochondrial clearance further induced dysfunctional mitochondria accumulation and ROS generation in PDAC cells, inducing apoptosis. The antiproliferative effects of the combination of GBA suppression and gemcitabine were higher than those of gemcitabine alone. These results showed that GBA suppression exerts a significant antitumor effect and may have therapeutic potential in the clinical treatment of PDAC.
Collapse
Affiliation(s)
- Mitsuru Yanagaki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoga Hamura
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takada
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Tarasiuk J, Kostrzewa-Nowak D, Żwierełło W. Antitumour Effects of Selected Pyridinium Salts on Sensitive Leukaemia HL60 Cells and Their Multidrug Resistant Topoisomerase II-Defective HL60/MX2 Counterparts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165138. [PMID: 36014378 PMCID: PMC9415637 DOI: 10.3390/molecules27165138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/30/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Multidrug resistance (MDR), having a multifactorial nature, is one of the major clinical problems causing the failure of anticancer therapy. The aim of this study was to examine the antitumour effects of selected pyridinium salts, 1-methyl-3-nitropyridine chloride (MNP) and 3,3,6,6,10-pentamethyl-3,4,6,7-tetrahydro-[1,8(2H,5H)-dion]acridine chloride (MDION), on sensitive leukaemia HL60 cells and resistant topoisomerase II-defective HL60/MX2 cells. Cell growth was determined by the MTT test. Intracellular ROS level was measured with the aid of 2′,7′-DCF-DA. The cell cycle distribution was investigated by performing PI staining. DSB formation was examined using the γ-H2AX histone phosphorylation assay. The activity of caspase-3 and caspase-8 was measured with the use of the FLICA test. The assays for examining the lysosome membrane permeabilization were carried out with the aid of LysoTracker Green DND-26. Both studied compounds exerted very similar cytotoxic activities towards sensitive HL60 cells and their MDR counterparts. They modulated the cellular ROS level in a dose-dependent and time-dependent manner and significantly increased the percentage of sensitive HL60 and resistant HL60/MX2 cells with sub-diploid DNA (sub-G1 fraction). However, the induction of DSB formation was not a significant mechanism of action of these pyridinium salts in studied cells. Both examined compounds triggered caspase-3/caspase-8-dependent apoptosis of sensitive HL60 cells and their MDR counterparts. Additionally, the findings of the study indicate that lysosomes may also participate in the programmed death of HL60 as well as HL60/MX2 cells induced by MDION. The data obtained in this work showed that both examined pyridinium salts, MNP and MDION, are able to retain high antileukaemic effects against multidrug resistant topoisomerase II-defective HL60/MX2 cells.
Collapse
|
10
|
Adisa RA, Sulaimon LA, Okeke EG, Ariyo OC, Abdulkareem FB. Mitoquinol mesylate (MITOQ) attenuates diethyl nitrosamine-induced hepatocellular carcinoma through modulation of mitochondrial antioxidant defense systems. Toxicol Res 2022; 38:275-291. [PMID: 35874502 PMCID: PMC9247134 DOI: 10.1007/s43188-021-00105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Diethyl nitrosamine (DEN) induced cirrhosis-hepatocellular carcinoma (HCC) model associates cancer progression with oxidative stress and mitochondrial dysfunction. This study investigated the effects of mitoquinol mesylate (MitoQ), a mitochondrial-targeted antioxidant on DEN-induced oxidative damage in HCC Wistar rats. Fifty male Wistar rats were randomly divided into five groups. Healthy control, DEN, and MitoQ groups were orally administered exactly 10 mg/kg of distilled water, DEN, and MitoQ, respectively for 16 weeks. Animals in the MitoQ + DEN group were pre-treated with MitoQ for a week followed by co-administration of 10 mg/kg each of MitoQ and DEN. DEN + MitoQ group received DEN for 8 weeks, then co-administration of 10 mg/kg each of DEN and MitoQ till the end of 16th week. Survival index, tumour incidence, hematological profile, liver function indices, lipid profile, mitochondrial membrane composition, mitochondrial respiratory enzymes, and antioxidant defense status in both mitochondrial and post-mitochondrial fractions plus expression of antioxidant genes were assessed. In MitoQ + DEN and DEN + MitoQ groups, 80% survival occurred while tumour incidence decreased by 60% and 40% respectively, compared to the DEN-only treated group. Similarly, MitoQ-administered groups showed a significant (p < 0.05) decrease in the activities of liver function enzymes while hemoglobin concentration, red blood cell count, and packed cell volume were significantly elevated compared to the DEN-only treated group. Administration of MitoQ to the DEN-intoxicated groups successfully enhanced the activities of mitochondrial F1F0-ATPase and succinate dehydrogenase; and up-regulated the expression and activities of SOD2, CAT, and GPx1. Macroscopic and microscopic features indicated a reversal of DEN-induced hepatocellular degeneration in the MitoQ + DEN and DEN + MitoQ groups. These data revealed that MitoQ intervention attenuated DEN-induced oxidative stress through modulation of mitochondrial antioxidant defense systems and alleviated the burden of HCC as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Rahmat Adetutu Adisa
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Lateef Adegboyega Sulaimon
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Ebele Geraldine Okeke
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Olubukola Christianah Ariyo
- Laboratories for Bio-membranes and Cancer Research, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine of University of Lagos, Idi-araba, Lagos, P.M.B. 12003 Nigeria
| | - Fatimah B. Abdulkareem
- Department of Anatomic and Molecular Pathology, Faculty of Basic Medical Sciences,, College of Medicine of University of Lagos, Idi-araba, P.M.B. 12003 Lagos, Nigeria
| |
Collapse
|
11
|
Abstract
Autophagy is an important life phenomenon in eukaryotic cells. Its main role is to remove and degrade its damaged organelles and excess biological macromolecules, and use degradation products to provide energy and rebuild the cell structure, playing an important role in maintaining cell homeostasis and cell life activities. Mitophagy is a form of macroautophagy. It has the beneficial effect of eliminating damaged mitochondria, thereby maintaining the integrity of the mitochondrial pool. Autophagy and mitophagy have a dual role in the development of cancer. On one hand, autophagy and mitophagy can maintain the normal physiological function of cells. On the other hand, excessive autophagy and mitophagy can lead to diseases. The present review introduces the mechanisms of autophagy and mitophagy, and the main related proteins, and introduce the correlation with cancers, providing a basis for the treatment of cancers through the understanding of these proteins.
Collapse
Affiliation(s)
- Hong-Ming Xu
- Department of Orthopaedic Surgery, Affiliated Cixi Hospital of Wenzhou Medical University, Cixi, Ningbo, People's Republic of China
| | - Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
12
|
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME. Targeting Sphingolipids for Cancer Therapy. Front Oncol 2021; 11:745092. [PMID: 34737957 PMCID: PMC8560795 DOI: 10.3389/fonc.2021.745092] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are an extensive class of lipids with different functions in the cell, ranging from proliferation to cell death. Sphingolipids are modified in multiple cancers and are responsible for tumor proliferation, progression, and metastasis. Several inhibitors or activators of sphingolipid signaling, such as fenretinide, safingol, ABC294640, ceramide nanoliposomes (CNLs), SKI-II, α-galactosylceramide, fingolimod, and sonepcizumab, have been described. The objective of this review was to analyze the results from preclinical and clinical trials of these drugs for the treatment of cancer. Sphingolipid-targeting drugs have been tested alone or in combination with chemotherapy, exhibiting antitumor activity alone and in synergism with chemotherapy in vitro and in vivo. As a consequence of treatments, the most frequent mechanism of cell death is apoptosis, followed by autophagy. Aslthough all these drugs have produced good results in preclinical studies of multiple cancers, the outcomes of clinical trials have not been similar. The most effective drugs are fenretinide and α-galactosylceramide (α-GalCer). In contrast, minor adverse effects restricted to a few subjects and hepatic toxicity have been observed in clinical trials of ABC294640 and safingol, respectively. In the case of CNLs, SKI-II, fingolimod and sonepcizumab there are some limitations and absence of enough clinical studies to demonstrate a benefit. The effectiveness or lack of a major therapeutic effect of sphingolipid modulation by some drugs as a cancer therapy and other aspects related to their mechanism of action are discussed in this review.
Collapse
Affiliation(s)
- Osmel Companioni
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Spanish Biomedical Research Network Center in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
13
|
Gao F, Chen X, Lu J, Hu S, Xu H, Shi Y, Feng M, Ding J, Liu H, Luo C, Xie Z, Wang J. Discovery of novel ceramide analogs with favorable pharmacokinetic properties and combination with AKT inhibitor against colon cancer. Eur J Med Chem 2021; 215:113274. [PMID: 33592537 DOI: 10.1016/j.ejmech.2021.113274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Ceramides have emerged as potential therapeutic option with novel mechanism to affect the proliferation, differentiation, senescence, and apoptosis of cancer cells through regulation of multiple signal transduction. Aiming at the improvement of the apoptosis activity and pharmacokinetic profiles of ceramides, a novel series of ceramide analogs were developed through structure simplification and conformation restriction. Among them, compound 12 bearing an alkoxyl naphthyl motif, with favorable rat pharmacokinetic properties, showed better anti-proliferative activity against various colon cancer cells (IC50 ∼20 μM) than other ceramide analogues, as well as the synergistic effect combined with AKT inhibitor MK2206. Additionally, we demonstrated that this combination therapy promoted caspase 3-dependent apoptotic pathway and intensified cell cycle arrest in the G0/G1 phase. Furthermore, the combination of compound 12 and MK2206 displayed synergistic anti-tumor effect in vivo.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxu Chen
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Junyan Lu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shulei Hu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Xu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuqiang Shi
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingshun Feng
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Jian Ding
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Hong Liu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Cheng Luo
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zuoquan Xie
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiang Wang
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Abstract
Mechanistic details for the roles of sphingolipids and their downstream targets in the regulation of tumor growth, response to chemo/radiotherapy, and metastasis have been investigated in recent studies using innovative molecular, genetic and pharmacologic tools in various cancer models. Induction of ceramide generation in response to cellular stress by chemotherapy, radiation, or exogenous ceramide analog drugs mediates cell death via apoptosis, necroptosis, or mitophagy. In this chapter, distinct functions and mechanisms of action of endogenous ceramides with different fatty acyl chain lengths in the regulation of cancer cell death versus survival will be discussed. In addition, importance of ceramide subcellular localization, trafficking, and lipid-protein binding between ceramide and various target proteins in cancer cells will be reviewed. Moreover, clinical trials from structure-function-based studies to restore antiproliferative ceramide signaling by activating ceramide synthesis will also be analyzed. Future studies are important to understand the mechanistic involvement of ceramide-mediated cell death in anticancer therapy, including immunotherapy.
Collapse
Affiliation(s)
- Rose Nganga
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
15
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Karaayvaz M, Cristea S, Gillespie SM, Patel AP, Mylvaganam R, Luo CC, Specht MC, Bernstein BE, Michor F, Ellisen LW. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat Commun 2018; 9:3588. [PMID: 30181541 PMCID: PMC6123496 DOI: 10.1038/s41467-018-06052-0] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by extensive intratumoral heterogeneity. To investigate the underlying biology, we conducted single-cell RNA-sequencing (scRNA-seq) of >1500 cells from six primary TNBC. Here, we show that intercellular heterogeneity of gene expression programs within each tumor is variable and largely correlates with clonality of inferred genomic copy number changes, suggesting that genotype drives the gene expression phenotype of individual subpopulations. Clustering of gene expression profiles identified distinct subgroups of malignant cells shared by multiple tumors, including a single subpopulation associated with multiple signatures of treatment resistance and metastasis, and characterized functionally by activation of glycosphingolipid metabolism and associated innate immunity pathways. A novel signature defining this subpopulation predicts long-term outcomes for TNBC patients in a large cohort. Collectively, this analysis reveals the functional heterogeneity and its association with genomic evolution in TNBC, and uncovers unanticipated biological principles dictating poor outcomes in this disease.
Collapse
Affiliation(s)
- Mihriban Karaayvaz
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Simona Cristea
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Shawn M Gillespie
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anoop P Patel
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ravindra Mylvaganam
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Christina C Luo
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Michelle C Specht
- Department of Surgical Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA
- The Ludwig Center at Harvard, Boston, MA, 02215, USA
| | - Franziska Michor
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, 02215, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, 02139, USA.
- The Ludwig Center at Harvard, Boston, MA, 02215, USA.
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
| | - Leif W Ellisen
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
17
|
Boyle KA, Van Wickle J, Hill RB, Marchese A, Kalyanaraman B, Dwinell MB. Mitochondria-targeted drugs stimulate mitophagy and abrogate colon cancer cell proliferation. J Biol Chem 2018; 293:14891-14904. [PMID: 30087121 DOI: 10.1074/jbc.ra117.001469] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Mutations in the KRAS proto-oncogene are present in 50% of all colorectal cancers and are increasingly associated with chemotherapeutic resistance to frontline biologic drugs. Accumulating evidence indicates key roles for overactive KRAS mutations in the metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis in cancer cells. Here, we sought to exploit the more negative membrane potential of cancer cell mitochondria as an untapped avenue for interfering with energy metabolism in KRAS variant-containing and KRAS WT colorectal cancer cells. Mitochondrial function, intracellular ATP levels, cellular uptake, energy sensor signaling, and functional effects on cancer cell proliferation were assayed. 3-Carboxyl proxyl nitroxide (Mito-CP) and Mito-Metformin, two mitochondria-targeted compounds, depleted intracellular ATP levels and persistently inhibited ATP-linked oxygen consumption in both KRAS WT and KRAS variant-containing colon cancer cells and had only limited effects on nontransformed intestinal epithelial cells. These anti-proliferative effects reflected the activation of AMP-activated protein kinase (AMPK) and the phosphorylation-mediated suppression of the mTOR target ribosomal protein S6 kinase B1 (RPS6KB1 or p70S6K). Moreover, Mito-CP and Mito-Metformin released Unc-51-like autophagy-activating kinase 1 (ULK1) from mTOR-mediated inhibition, affected mitochondrial morphology, and decreased mitochondrial membrane potential, all indicators of mitophagy. Pharmacological inhibition of the AMPK signaling cascade mitigated the anti-proliferative effects of Mito-CP and Mito-Metformin. This is the first demonstration that drugs selectively targeting mitochondria induce mitophagy in cancer cells. Targeting bioenergetic metabolism with mitochondria-targeted drugs to stimulate mitophagy provides an attractive approach for therapeutic intervention in KRAS WT and overactive mutant-expressing colon cancer.
Collapse
Affiliation(s)
- Kathleen A Boyle
- From the Department of Microbiology & Immunology.,MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - R Blake Hill
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Biochemistry
| | - Adriano Marchese
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Biochemistry
| | - Balaraman Kalyanaraman
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Biophysics
| | - Michael B Dwinell
- From the Department of Microbiology & Immunology, .,MCW Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.,Department of Surgery, and
| |
Collapse
|
18
|
Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era. Adv Cancer Res 2018; 140:327-366. [PMID: 30060815 DOI: 10.1016/bs.acr.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids are bioactive lipids that participate in a wide variety of biological mechanisms, including cell death and proliferation. The myriad of pro-death and pro-survival cellular pathways involving sphingolipids provide a plethora of opportunities for dysregulation in cancers. In recent years, modulation of these sphingolipid metabolic pathways has been in the forefront of drug discovery for cancer therapeutics. About two decades ago, researchers first showed that standard of care treatments, e.g., chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival. To this end, many inhibitors of sphingolipid metabolism have been developed to further define not only our understanding of these pathways but also to potentially serve as therapeutic interventions. Therefore, understanding how to better use these new drugs that target sphingolipid metabolism, either alone or in combination with current cancer treatments, holds great potential for cancer control. While sphingolipids in cancer have been reviewed previously (Hannun & Obeid, 2018; Lee & Kolesnick, 2017; Morad & Cabot, 2013; Newton, Lima, Maceyka, & Spiegel, 2015; Ogretmen, 2018; Ryland, Fox, Liu, Loughran, & Kester, 2011) in this chapter, we present a comprehensive review on how standard of care therapeutics affects sphingolipid metabolism, the current landscape of sphingolipid inhibitors, and the clinical utility of sphingolipid-based cancer therapeutics.
Collapse
Affiliation(s)
- Jeremy Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Pedro Costa-Pinheiro
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Logan Patterson
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
19
|
Parlar S, Erzurumlu Y, Ilhan R, Ballar Kırmızıbayrak P, Alptüzün V, Erciyas E. Synthesis and evaluation of pyridinium-hydrazone derivatives as potential antitumoral agents. Chem Biol Drug Des 2018; 92:1198-1205. [DOI: 10.1111/cbdd.13177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/17/2017] [Accepted: 01/20/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sülünay Parlar
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Yalçın Erzurumlu
- Department of Biochemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Recep Ilhan
- Department of Biochemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | | | - Vildan Alptüzün
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Ercin Erciyas
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| |
Collapse
|
20
|
Abstract
Sphingolipids, including the two central bioactive lipids ceramide and sphingosine-1-phosphate (S1P), have opposing roles in regulating cancer cell death and survival, respectively, and there have been exciting developments in understanding how sphingolipid metabolism and signalling regulate these processes in response to anticancer therapy. Recent studies have provided mechanistic details of the roles of sphingolipids and their downstream targets in the regulation of tumour growth and response to chemotherapy, radiotherapy and/or immunotherapy using innovative molecular, genetic and pharmacological tools to target sphingolipid signalling nodes in cancer cells. For example, structure-function-based studies have provided innovative opportunities to develop mechanism-based anticancer therapeutic strategies to restore anti-proliferative ceramide signalling and/or inhibit pro-survival S1P-S1P receptor (S1PR) signalling. This Review summarizes how ceramide-induced cellular stress mediates cancer cell death through various mechanisms involving the induction of apoptosis, necroptosis and/or mitophagy. Moreover, the metabolism of ceramide for S1P biosynthesis, which is mediated by sphingosine kinase 1 and 2, and its role in influencing cancer cell growth, drug resistance and tumour metastasis through S1PR-dependent or receptor-independent signalling are highlighted. Finally, studies targeting enzymes involved in sphingolipid metabolism and/or signalling and their clinical implications for improving cancer therapeutics are also presented.
Collapse
Affiliation(s)
- Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, MSC 957, Charleston, South Carolina 29425, USA
| |
Collapse
|
21
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 961] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
22
|
Dany M. Sphingosine metabolism as a therapeutic target in cutaneous melanoma. Transl Res 2017; 185:1-12. [PMID: 28528915 DOI: 10.1016/j.trsl.2017.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/26/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
Abstract
Melanoma is by far the most aggressive type of skin cancer with a poor prognosis in its advanced stages. Understanding the mechanisms involved in melanoma pathogenesis, response, and resistance to treatment has gained a lot of attention worldwide. Recently, the role of sphingolipid metabolism has been studied in cutaneous melanoma. Sphingolipids are bioactive lipid effector molecules involved in the regulation of various cellular signaling pathways such as inflammation, cancer cell proliferation, death, senescence, and metastasis. Recent studies suggest that sphingolipid metabolism impacts melanoma pathogenesis and is a potential therapeutic target. This review focuses on defining the role of sphingolipid metabolism in melanoma carcinogenesis, discussing sphingolipid-based therapeutic approaches, and highlighting the areas that require more extensive research.
Collapse
Affiliation(s)
- Mohammed Dany
- College of Medicine, Medical University of South Carolina, Charleston, SC.
| |
Collapse
|
23
|
Sun C, Liu X, Di C, Wang Z, Mi X, Liu Y, Zhao Q, Mao A, Chen W, Gan L, Zhang H. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential. Autophagy 2017; 13:730-738. [PMID: 28121478 DOI: 10.1080/15548627.2017.1280219] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is adsorbed to the inner mitochondrial membrane; however, the cationic moiety of MitoQ remains in the intermembrane space. We found that the positive charges in MitoQ inhibited the activity of respiratory chain complexes I, III, and IV, reduced proton production, and decreased oxygen consumption. Therefore, a pseudo-MMP (PMMP) was formed via maintenance of exogenous positive charges. Proton backflow was severely impaired, leading to a decrease in ATP production and an increase in AMP production. Excess AMP activates AMP kinase, which inhibits the MTOR (mechanistic target of rapamycin) pathway and induces macroautophagy/autophagy. Therefore, we conclude that MitoQ increases PMMP via proton displacement with exogenous positive charges. In addition, PMMP triggered autophagy in hepatocellular carcinoma HepG2 cells via modification of mitochondrial bioenergetics pathways.
Collapse
Affiliation(s)
- Chao Sun
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Xiongxiong Liu
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Cuixia Di
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Zhenhua Wang
- d College of Life Sciences , Yantai University , Yantai , China
| | - Xiangquan Mi
- e College of Life Sciences , Lanzhou University , Lanzhou , China
| | - Yang Liu
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Qiuyue Zhao
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Aihong Mao
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Weiqiang Chen
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Lu Gan
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China
| | - Hong Zhang
- a Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences , Lanzhou , China.,c Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province , Lanzhou , China.,f Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Suzhou , China
| |
Collapse
|
24
|
Abstract
The sphingolipid family of lipids modulate several cellular processes, including proliferation, cell cycle regulation, inflammatory signaling pathways, and cell death. Several members of the sphingolipid pathway have opposing functions and thus imbalances in sphingolipid metabolism result in deregulated cellular processes, which cause or contribute to diseases and disorders in humans. A key cellular process regulated by sphingolipids is apoptosis, or programmed cell death. Sphingolipids play an important role in both extrinsic and intrinsic apoptotic pathways depending on the stimuli, cell type and cellular response to the stress. During mitochondrial-mediated apoptosis, multiple pathways converge on mitochondria and induce mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of intermembrane space proteins such as cytochrome c and Apaf1 into the cytosol where they activate the caspases and DNases that execute cell death. The precise molecular components of the pore(s) responsible for MOMP are unknown, but sphingolipids are thought to play a role. Here, we review evidence for a role of sphingolipids in the induction of mitochondrial-mediated apoptosis with a focus on potential underlying molecular mechanisms by which altered sphingolipid metabolism indirectly or directly induce MOMP. Data available on these mechanisms is reviewed, and the focus and limitations of previous and current studies are discussed to present important unanswered questions and potential future directions.
Collapse
Affiliation(s)
- Gauri A Patwardhan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Levi J Beverly
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.,Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.,James Graham Brown Cancer Center, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 203, Louisville, KY, 40202, USA
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA. .,James Graham Brown Cancer Center, University of Louisville, 505 South Hancock Street, Clinical and Translational Research Building, Room 203, Louisville, KY, 40202, USA.
| |
Collapse
|
25
|
Foroozesh M, Goyal N, Jackson T, Do C, Booker S, Hill T, Liu J. OPTIMIZATION OF SCALE-UP SYNTHESIS OF ANTI-CANCER CERAMIDE ANALOG 315. JOURNAL OF UNDERGRADUATE CHEMISTRY RESEARCH 2017; 16:89-90. [PMID: 30220887 PMCID: PMC6138050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ceramides, serve as central mediators in sphingolipid metabolism and signaling pathways. They function in signaling events which induce apoptosis, cell cycle arrest, and autophagic responses. In cancer cells, ceramide levels are often suppressed by the up-regulation of ceramide-metabolizing enzymes or the down-regulation of ceramide-generating enzymes, resulting in increased cancer cell survival. Chemotherapeutic drugs and radiation therapy have been shown to increase intracellular ceramide levels leading to anti-cancer effects. Anti-cancer effects have also been seen in cancer cells with the use of exogenous short-chain ceramides. Our laboratory has synthesized a library of ceramide analogs and tested their effects on breast cancer cell lines. Analog 315 has been shown to be the most effective ceramide analog in our library. Here, we are reporting a large-scale synthesis of that analog is reported.
Collapse
Affiliation(s)
- Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Taylor Jackson
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Camilla Do
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Sydney Booker
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Tarius Hill
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, LA, 70125
| |
Collapse
|
26
|
Pokrzywinski KL, Biel TG, Kryndushkin D, Rao VA. Therapeutic Targeting of the Mitochondria Initiates Excessive Superoxide Production and Mitochondrial Depolarization Causing Decreased mtDNA Integrity. PLoS One 2016; 11:e0168283. [PMID: 28030582 PMCID: PMC5193408 DOI: 10.1371/journal.pone.0168283] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/29/2016] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial dysregulation is closely associated with excessive reactive oxygen species (ROS) production. Altered redox homeostasis has been implicated in the onset of several diseases including cancer. Mitochondrial DNA (mtDNA) and proteins are particularly sensitive to ROS as they are in close proximity to the respiratory chain (RC). Mitoquinone (MitoQ), a mitochondria-targeted redox agent, selectively damages breast cancer cells possibly through damage induced via enhanced ROS production. However, the effects of MitoQ and other triphenylphosphonium (TPP+) conjugated agents on cancer mitochondrial homeostasis remain unknown. The primary objective of this study was to determine the impact of mitochondria-targeted agent [(MTAs) conjugated to TPP+: mitoTEMPOL, mitoquinone and mitochromanol-acetate] on mitochondrial physiology and mtDNA integrity in breast (MDA-MB-231) and lung (H23) cancer cells. The integrity of the mtDNA was assessed by quantifying the degree of mtDNA fragmentation and copy number, as well as by measuring mitochondrial proteins essential to mtDNA stability and maintenance (TFAM, SSBP1, TWINKLE, POLG and POLRMT). Mitochondrial status was evaluated by measuring superoxide production, mitochondrial membrane depolarization, oxygen consumption, extracellular acidification and mRNA or protein levels of the RC complexes along with TCA cycle activity. In this study, we demonstrated that all investigated MTAs impair mitochondrial health and decrease mtDNA integrity in MDA-MB-231 and H23 cells. However, differences in the degree of mitochondrial damage and mtDNA degradation suggest unique properties among each MTA that may be cell line, dose and time dependent. Collectively, our study indicates the potential for TPP+ conjugated molecules to impair breast and lung cancer cells by targeting mitochondrial homeostasis.
Collapse
Affiliation(s)
- Kaytee L. Pokrzywinski
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Thomas G. Biel
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Dmitry Kryndushkin
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - V. Ashutosh Rao
- Laboratory of Applied Biochemistry, Division of Biotechnology Research and Review III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
27
|
Durand N, Storz P. Targeting reactive oxygen species in development and progression of pancreatic cancer. Expert Rev Anticancer Ther 2016; 17:19-31. [PMID: 27841037 DOI: 10.1080/14737140.2017.1261017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDA) is characterized by expression of oncogenic KRas which drives all aspects of tumorigenesis. Oncogenic KRas induces the formation of reactive oxygen species (ROS) which have been implicated in initiation and progression of PDA. To facilitate tumor promoting levels and to avoid oncogene-induced senescence or cytotoxicity, ROS homeostasis in PDA cells is balanced by additional up-regulation of antioxidant systems. Areas covered: We examine the sources of ROS in PDA, the mechanisms by which ROS homeostasis is maintained, and the biological consequences of ROS in PDA. Additionally, we discuss the potential mechanisms for targeting ROS homoeostasis as a point of therapeutic intervention. An extensive review of the relevant literature as it relates to the topic was conducted using PubMed. Expert commentary: Even though oncogenic mutations in the KRAS gene have been detected in over 95% of human pancreatic adenocarcinoma, targeting its gene product, KRas, has been difficult. The dependency of PDA cells on balancing ROS homeostasis could be an angle for new prevention or treatment strategies. These include use of antioxidants to prevent formation or progression of precancerous lesions, or methods to increase ROS in tumor cells to toxic levels.
Collapse
Affiliation(s)
- Nisha Durand
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| | - Peter Storz
- a Department of Cancer Biology , Mayo Clinic , Jacksonville , FL , USA
| |
Collapse
|
28
|
Coulter DW, McGuire TR, Sharp JG, McIntyre EM, Dong Y, Wang X, Gray S, Alexander GR, Chatuverdi NK, Joshi SS, Chen X, Vennerstrom JL. Treatment of a chemoresistant neuroblastoma cell line with the antimalarial ozonide OZ513. BMC Cancer 2016; 16:867. [PMID: 27821095 PMCID: PMC5100253 DOI: 10.1186/s12885-016-2872-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/21/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Evaluate the anti-tumor activity of ozonide antimalarials using a chemoresistant neuroblastoma cell line, BE (2)-c. METHODS The activity of 12 ozonides, artemisinin, and two semisynthetic artemisinins were tested for activity against two neuroblastoma cell-lines (BE (2)-c and IMR-32) and the Ewing's Sarcoma cell line A673 in an MTT viability assay. Time course data indicated that peak effect was seen 18 h after the start of treatment thus 18 h pre-treatment was used for all subsequent experiments. The most active ozonide (OZ513) was assessed in a propidium iodide cell cycle flow cytometry analysis which measured cell cycle transit and apoptosis. Metabolic effects of OZ513 in BE (2)-c cells was evaluated. Western blots for the apoptotic proteins cleaved capase-3 and cleaved PARP, the highly amplified oncogene MYCN, and the cell cycle regulator CyclinD1, were performed. These in-vitro experiments were followed by an in-vivo experiment in which NOD-scid gamma immunodeficient mice were injected subcutaneously with 1 × 106 BE (2)-c cells followed by immediate treatment with 50-100 mg/kg/day doses of OZ513 administered IP three times per week out to 23 days after injection of tumor. Incidence of tumor development, time to tumor development, and rate of tumor growth were assessed in DMSO treated controls (N = 6), and OZ513 treated mice (N = 5). RESULTS It was confirmed that five commonly used chemotherapy drugs had no cytotoxic activity in BE (2)-c cells. Six of 12 ozonides tested were active in-vitro at concentrations achievable in vivo with OZ513 being most active (IC50 = 0.5 mcg/ml). OZ513 activity was confirmed in IMR-32 and A673 cells. The Ao peak on cell-cycle analysis was increased after treatment with OZ513 in a concentration dependent fashion which when coupled with results from western blot analysis which showed an increase in cleaved capase-3 and cleaved PARP supported an increase in apoptosis. There was a concentration dependent decline in the MYCN and a cyclinD1 protein indicative of anti-proliferative activity and cell cycle disruption. OXPHOS metabolism was unaffected by OZ513 treatment while glycolysis was increased. There was a significant delay in time to tumor development in mice treated with OZ513 and a decline in the rate of tumor growth. CONCLUSIONS The antimalarial ozonide OZ513 has effective in-vitro and in-vivo activity against a pleiotropic drug resistant neuroblastoma cell-line. Treatment with OZ513 increased apoptotic markers and glycolysis with a decline in the MYCN oncogene and the cell cycle regulator cyclinD1. These effects suggest adaptation to cellular stress by mechanism which remain unclear.
Collapse
Affiliation(s)
- Don W Coulter
- College of Medicine, Division of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Timothy R McGuire
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| | - John G Sharp
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Erin M McIntyre
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yuxiang Dong
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaofang Wang
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shawn Gray
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Gracey R Alexander
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagendra K Chatuverdi
- College of Medicine, Division of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiaoyu Chen
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jonathan L Vennerstrom
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
29
|
Targeting FLT3-ITD signaling mediates ceramide-dependent mitophagy and attenuates drug resistance in AML. Blood 2016; 128:1944-1958. [PMID: 27540013 DOI: 10.1182/blood-2016-04-708750] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/09/2016] [Indexed: 11/20/2022] Open
Abstract
Signaling pathways regulated by mutant Fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD), which mediate resistance to acute myeloid leukemia (AML) cell death, are poorly understood. Here, we reveal that pro-cell death lipid ceramide generation is suppressed by FLT3-ITD signaling. Molecular or pharmacologic inhibition of FLT3-ITD reactivated ceramide synthesis, selectively inducing mitophagy and AML cell death. Mechanistically, FLT3-ITD targeting induced ceramide accumulation on the outer mitochondrial membrane, which then directly bound autophagy-inducing light chain 3 (LC3), involving its I35 and F52 residues, to recruit autophagosomes for execution of lethal mitophagy. Short hairpin RNA (shRNA)-mediated knockdown of LC3 prevented AML cell death in response to FLT3-ITD inhibition by crenolanib, which was restored by wild-type (WT)-LC3, but not mutants of LC3 with altered ceramide binding (I35A-LC3 or F52A-LC3). Mitochondrial ceramide accumulation and lethal mitophagy induction in response to FLT3-ITD targeting was mediated by dynamin-related protein 1 (Drp1) activation via inhibition of protein kinase A-regulated S637 phosphorylation, resulting in mitochondrial fission. Inhibition of Drp1 prevented ceramide-dependent lethal mitophagy, and reconstitution of WT-Drp1 or phospho-null S637A-Drp1 but not its inactive phospho-mimic mutant (S637D-Drp1), restored mitochondrial fission and mitophagy in response to crenolanib in FLT3-ITD+ AML cells expressing stable shRNA against endogenous Drp1. Moreover, activating FLT3-ITD signaling in crenolanib-resistant AML cells suppressed ceramide-dependent mitophagy and prevented cell death. FLT3-ITD+ AML drug resistance is attenuated by LCL-461, a mitochondria-targeted ceramide analog drug, in vivo, which also induced lethal mitophagy in human AML blasts with clinically relevant FLT3 mutations. Thus, these data reveal a novel mechanism which regulates AML cell death by ceramide-dependent mitophagy in response to FLT3-ITD targeting.
Collapse
|
30
|
Ma YY, Mou XZ, Ding YH, Zou H, Huang DS. Delivery systems of ceramide in targeted cancer therapy: ceramide alone or in combination with other anti-tumor agents. Expert Opin Drug Deliv 2016; 13:1397-406. [PMID: 27168034 DOI: 10.1080/17425247.2016.1188803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ying-Yu Ma
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Medical School and Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Dong-Sheng Huang
- Clinical Research Institute, Zhejiang Provincial People’s Hospital, Hangzhou, China
- Department of Hepatobiliary Surgery, Zhejiang Provincial People’s Hospital, Hangzhou, China
| |
Collapse
|
31
|
Cheng G, Zielonka J, Ouari O, Lopez M, McAllister D, Boyle K, Barrios CS, Weber JJ, Johnson BD, Hardy M, Dwinell MB, Kalyanaraman B. Mitochondria-Targeted Analogues of Metformin Exhibit Enhanced Antiproliferative and Radiosensitizing Effects in Pancreatic Cancer Cells. Cancer Res 2016; 76:3904-15. [PMID: 27216187 DOI: 10.1158/0008-5472.can-15-2534] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/31/2016] [Indexed: 12/12/2022]
Abstract
Metformin (Met) is an approved antidiabetic drug currently being explored for repurposing in cancer treatment based on recent evidence of its apparent chemopreventive properties. Met is weakly cationic and targets the mitochondria to induce cytotoxic effects in tumor cells, albeit not very effectively. We hypothesized that increasing its mitochondria-targeting potential by attaching a positively charged lipophilic substituent would enhance the antitumor activity of Met. In pursuit of this question, we synthesized a set of mitochondria-targeted Met analogues (Mito-Mets) with varying alkyl chain lengths containing a triphenylphosphonium cation (TPP(+)). In particular, the analogue Mito-Met10, synthesized by attaching TPP(+) to Met via a 10-carbon aliphatic side chain, was nearly 1,000 times more efficacious than Met at inhibiting cell proliferation in pancreatic ductal adenocarcinoma (PDAC). Notably, in PDAC cells, Mito-Met10 potently inhibited mitochondrial complex I, stimulating superoxide and AMPK activation, but had no effect in nontransformed control cells. Moreover, Mito-Met10 potently triggered G1 cell-cycle phase arrest in PDAC cells, enhanced their radiosensitivity, and more potently abrogated PDAC growth in preclinical mouse models, compared with Met. Collectively, our findings show how improving the mitochondrial targeting of Met enhances its anticancer activities, including aggressive cancers like PDAC in great need of more effective therapeutic options. Cancer Res; 76(13); 3904-15. ©2016 AACR.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Olivier Ouari
- Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, France
| | - Marcos Lopez
- Biomedical Translational Research Group, Biotechnology Laboratories, Fundación Cardiovascular de Colombia, Floridablanca, Santander, Colombia. Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Donna McAllister
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin. Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kathleen Boyle
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Christy S Barrios
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James J Weber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bryon D Johnson
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Micael Hardy
- Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, France
| | - Michael B Dwinell
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
32
|
Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016; 37:8471-86. [PMID: 27059734 DOI: 10.1007/s13277-016-5035-9] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Collapse
|
33
|
|
34
|
Abstract
MALDI MS imaging (MALDI-MSI) offers a capability to not only evaluate the distribution, localization and metabolism of drugs within tissues but also allow correlative tissue measurement of the effect of the drug on biomolecules in the targeted pathway. Particularly for MALDI-MSI, lipid molecules are readily detectable within tissues. Case study examples are provided for two different drugs targeting the sphingosine-1-phosphate/ceramide nexus in tumor xenograft tissues. A workflow combining high-resolution MALDI-MSI with on-tissue confirmation of targeted compounds using a structural library and on-tissue enzymatic digestion strategy is described. Representative images of drug metabolite distribution that correlate to an increase or decrease in sphingosine-1-phosphate or ceramide species are provided.
Collapse
|
35
|
Mouli S, Nanayakkara G, AlAlasmari A, Eldoumani H, Fu X, Berlin A, Lohani M, Nie B, Arnold RD, Kavazis A, Smith F, Beyers R, Denney T, Dhanasekaran M, Zhong J, Quindry J, Amin R. The role of frataxin in doxorubicin-mediated cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2015; 309:H844-59. [PMID: 26209053 DOI: 10.1152/ajpheart.00182.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a highly effective anti-neoplastic agent; however, its cumulative dosing schedules are clinically limited by the development of cardiotoxicity. Previous studies have attributed the cause of DOX-mediated cardiotoxicity to mitochondrial iron accumulation and the ensuing reactive oxygen species (ROS) formation. The present study investigates the role of frataxin (FXN), a mitochondrial iron-sulfur biogenesis protein, and its role in development of DOX-mediated mitochondrial dysfunction. Athymic mice treated with DOX (5 mg/kg, 1 dose/wk with treatments, followed by 2-wk recovery) displayed left ventricular hypertrophy, as observed by impaired cardiac hemodynamic performance parameters. Furthermore, we also observed significant reduction in FXN expression in DOX-treated animals and H9C2 cardiomyoblast cell lines, resulting in increased mitochondrial iron accumulation and the ensuing ROS formation. This observation was paralleled in DOX-treated H9C2 cells by a significant reduction in the mitochondrial bioenergetics, as observed by the reduction of myocardial energy regulation. Surprisingly, similar results were observed in our FXN knockdown stable cell lines constructed by lentiviral technology using short hairpin RNA. To better understand the cardioprotective role of FXN against DOX, we constructed FXN overexpressing cardiomyoblasts, which displayed cardioprotection against mitochondrial iron accumulation, ROS formation, and reduction of mitochondrial bioenergetics. Lastly, our FXN overexpressing cardiomyoblasts were protected from DOX-mediated cardiac hypertrophy. Together, our findings reveal novel insights into the development of DOX-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Shravanthi Mouli
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Gayani Nanayakkara
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Abdullah AlAlasmari
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Haitham Eldoumani
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Xiaoyu Fu
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Avery Berlin
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Madhukar Lohani
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Ben Nie
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Robert D Arnold
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | | | - Forrest Smith
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Ronald Beyers
- Auburn University MRI Research Center, Auburn, Alabama; and
| | - Thomas Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama; Auburn University MRI Research Center, Auburn, Alabama; and
| | - Muralikrishnan Dhanasekaran
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - John Quindry
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Rajesh Amin
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama;
| |
Collapse
|
36
|
Dany M, Ogretmen B. Ceramide induced mitophagy and tumor suppression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2834-45. [PMID: 25634657 DOI: 10.1016/j.bbamcr.2014.12.039] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/11/2022]
Abstract
Sphingolipids are bioactive lipid effectors, which are involved in the regulation of various cellular signaling pathways. Sphingolipids play essential roles in controlling cell inflammation, proliferation, death, migration, senescence, metastasis and autophagy. Alterations in sphingolipid metabolism have been also implicated in many human cancers. Macroautophagy (referred to here as autophagy) is a form of nonselective sequestering of cytosolic materials by double membrane structures, autophagosomes, which can be either protective or lethal for cells. Ceramide, a central molecule of sphingolipid metabolism is involved in the regulation of autophagy at various levels, including the induction of lethal mitophagy, a selective autophagy process to target and eliminate damaged mitochondria. In this review, we focused on recent studies with regard to the regulation of autophagy, in particular lethal mitophagy, by ceramide, and aimed at providing discussion points for various context-dependent roles and mechanisms of action of ceramide in controlling mitophagy.
Collapse
Affiliation(s)
- Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
37
|
Jones EE, Dworski S, Canals D, Casas J, Fabrias G, Schoenling D, Levade T, Denlinger C, Hannun YA, Medin JA, Drake RR. On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging. Anal Chem 2014; 86:8303-11. [PMID: 25072097 PMCID: PMC4139181 DOI: 10.1021/ac501937d] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
A novel MALDI-FTICR imaging mass
spectrometry (MALDI-IMS) workflow
is described for on-tissue detection, spatial localization, and structural
confirmation of low abundance bioactive ceramides and other sphingolipids.
Increasingly, altered or elevated levels of sphingolipids, sphingolipid
metabolites, and sphingolipid metabolizing enzymes have been associated
with a variety of disorders such as diabetes, obesity, lysosomal storage
disorders, and cancer. Ceramide, which serves as a metabolic hub in
sphingolipid metabolism, has been linked to cancer signaling pathways
and to metabolic regulation with involvement in autophagy, cell-cycle
arrest, senescence, and apoptosis. Using kidney tissues from a new
Farber disease mouse model in which ceramides of all acyl chain lengths
and other sphingolipid metabolites accumulate in tissues, specific
ceramides and sphingomyelins were identified by on-tissue isolation
and fragmentation, coupled with an on-tissue digestion by ceramidase
or sphingomyelinase. Multiple glycosphingolipid species were also
detected. The newly generated library of sphingolipid ions was then
applied to MALDI-IMS of human lung cancer tissues. Multiple tumor
specific ceramide and sphingomyelin species were detected and confirmed
by on-tissue enzyme digests and structural confirmation. High-resolution
MALDI-IMS in combination with novel on-tissue ceramidase and sphingomyelinase
enzyme digestions makes it now possible to rapidly visualize the distribution
of bioactive ceramides and sphingomyelin in tissues.
Collapse
Affiliation(s)
- E Ellen Jones
- Department of Cell and Molecular Pharmacology and MUSC Proteomics Center, Medical University of South Carolina , 173 Ashley Avenue, Charleston, South Carolina 29425, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Ceramide serves as a central mediator in sphingolipid metabolism and signaling pathways, regulating many fundamental cellular responses. It is referred to as a 'tumor suppressor lipid', since it powerfully potentiates signaling events that drive apoptosis, cell cycle arrest, and autophagic responses. In the typical cancer cell, ceramide levels and signaling are usually suppressed by overexpression of ceramide-metabolizing enzymes or downregulation of ceramide-generating enzymes. However, chemotherapeutic drugs as well as radiotherapy increase intracellular ceramide levels, while exogenously treating cancer cells with short-chain ceramides leads to anticancer effects. All evidence currently points to the fact that the upregulation of ceramide levels is a promising anticancer strategy. In this review, we exhibit many anticancer ceramide analogs as downstream receptor agonists and ceramide-metabolizing enzyme inhibitors.
Collapse
|
39
|
Ponnapakam AP, Liu J, Bhinge KN, Drew BA, Wang TL, Antoon JW, Nguyen TT, Dupart PS, Wang Y, Zhao M, Liu YY, Foroozesh M, Beckman BS. 3-Ketone-4,6-diene ceramide analogs exclusively induce apoptosis in chemo-resistant cancer cells. Bioorg Med Chem 2014; 22:1412-20. [PMID: 24457089 DOI: 10.1016/j.bmc.2013.12.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/16/2013] [Accepted: 12/26/2013] [Indexed: 02/07/2023]
Abstract
Multidrug-resistance is a major cause of cancer chemotherapy failure in clinical treatment. Evidence shows that multidrug-resistant cancer cells are as sensitive as corresponding regular cancer cells under the exposure to anticancer ceramide analogs. In this work we designed five new ceramide analogs with different backbones, in order to test the hypothesis that extending the conjugated system in ceramide analogs would lead to an increase of their anticancer activity and selectivity towards resistant cancer cells. The analogs with the 3-ketone-4,6-diene backbone show the highest apoptosis-inducing efficacy. The most potent compound, analog 406, possesses higher pro-apoptotic activity in chemo-resistant cell lines MCF-7TN-R and NCI/ADR-RES than the corresponding chemo-sensitive cell lines MCF-7 and OVCAR-8, respectively. However, this compound shows the same potency in inhibiting the growth of another pair of chemo-sensitive and chemo-resistant cancer cells, MCF-7 and MCF-7/Dox. Mechanism investigations indicate that analog 406 can induce apoptosis in chemo-resistant cancer cells through the mitochondrial pathway. Cellular glucosylceramide synthase assay shows that analog 406 does not interrupt glucosylceramide synthase in chemo-resistant cancer cell NCI/ADR-RES. These findings suggest that due to certain intrinsic properties, ceramide analogs' pro-apoptotic activity is not disrupted by the normal drug-resistance mechanisms, leading to their potential use for overcoming cancer multidrug-resistance.
Collapse
Affiliation(s)
- Adharsh P Ponnapakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Kaustubh N Bhinge
- College of Pharmacy Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 1800 Bienville, Monroe, LA 71209, United States
| | - Barbara A Drew
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Tony L Wang
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - James W Antoon
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| | - Thong T Nguyen
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Patrick S Dupart
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States
| | - Yuji Wang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Ming Zhao
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yong-Yu Liu
- College of Pharmacy Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 1800 Bienville, Monroe, LA 71209, United States
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, United States.
| | - Barbara S Beckman
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, United States
| |
Collapse
|
40
|
Kogot-Levin A, Saada A. Ceramide and the mitochondrial respiratory chain. Biochimie 2013; 100:88-94. [PMID: 23933096 DOI: 10.1016/j.biochi.2013.07.027] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/26/2013] [Indexed: 01/01/2023]
Abstract
Ceramide is a group of sphingolipids found in cell membranes, composed of a sphingoid base linked to a fatty acid of varying chain length. Initially regarded as purely structural components, this group of molecules is now recognized as a key signaling and regulatory elements in cell biology. Ceramide species differing in acyl chain length, with distinct biophysical properties, execute distinct functions and effects. Some of these modulate mitochondrial function and oxidative phosphorylation (OXPHOS). Certain ceramides were associated with decreased mitochondrial respiratory chain (MRC) activity, increased reactive oxygen species (ROS) production and oxidative stress, mitochondrial outer membrane permeabilization (MOMP), reduced mitochondrial membrane potential, mitophagy and apoptosis. In this review we aim to summarize the most relevant findings linking ceramide to mitochondria. The physiological significance of synthetic short and naturally occurring long chain ceramides in modulating mitochondrial function with emphasis on the MRC will be discussed.
Collapse
Affiliation(s)
- Aviram Kogot-Levin
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
41
|
Korbelik M, Zhang W, Saw KM, Szulc ZM, Bielawska A, Separovic D. Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:72-7. [PMID: 23911762 DOI: 10.1016/j.jphotobiol.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/01/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is known to alter the expression of various genes in treated cells. This prompted us to examine the activity of genes encoding two important enzymes in sphingolipid (SL) metabolism, dihydroceramide desaturase (DES) and sphingosine kinase (SPHK), in mouse SCCVII tumor cells treated by PDT using either the porphyrin-based photosensitizer Photofrin or silicon phthalocyanine Pc4. The results revealed that PDT induced an upregulation in the expression of two major isoforms of both genes (DES1 and DES2 as well as SPHK1 and SPHK2). While the changes were generally moderate (2-3-fold gains), the increase in DES2 expression was more pronounced and it was much greater with Photofrin-PDT than with Pc4-PDT (over 23-fold vs. less than 5-fold). Combining either Photofrin-PDT or Pc4-PDT with the cationic C16-ceramide LCL30 (20mg/kg i.p.) for treatment of subcutaneously growing SCCVII tumors rendered important differences in the therapy outcome. Photofrin-PDT, used at a dose that attained good initial response but no tumor cures, produced 50% cures when combined with a single LCL30 treatment. In contrast, the same LCL30 treatment combined with Pc4-PDT had no significant effect on tumor response. The optimal timing of LCL30 injection was immediately after Photofrin-PDT. The therapeutic benefit was lost when LCL30 was given in two 20mg/kg injections encompassing intervals before and after PDT. LCL85, the cationic B13 ceramide analogue and SL-modulating agent, also increased cure rates of Photofrin-PDT treated tumors, but the therapeutic benefit was less pronounced than with LCL30. These results with LCL30 and LCL85, and our previous findings for LCL29 (another SL analogue), assert the potential of SLs for use as adjuvants to augment the efficacy of PDT-mediated tumor destruction.
Collapse
|
42
|
Cheng G, Zielonka J, McAllister DM, Mackinnon AC, Joseph J, Dwinell MB, Kalyanaraman B. Mitochondria-targeted vitamin E analogs inhibit breast cancer cell energy metabolism and promote cell death. BMC Cancer 2013; 13:285. [PMID: 23764021 PMCID: PMC3686663 DOI: 10.1186/1471-2407-13-285] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/07/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent research has revealed that targeting mitochondrial bioenergetic metabolism is a promising chemotherapeutic strategy. Key to successful implementation of this chemotherapeutic strategy is the use of new and improved mitochondria-targeted cationic agents that selectively inhibit energy metabolism in breast cancer cells, while exerting little or no long-term cytotoxic effect in normal cells. METHODS In this study, we investigated the cytotoxicity and alterations in bioenergetic metabolism induced by mitochondria-targeted vitamin E analog (Mito-chromanol, Mito-ChM) and its acetylated ester analog (Mito-ChMAc). Assays of cell death, colony formation, mitochondrial bioenergetic function, intracellular ATP levels, intracellular and tissue concentrations of tested compounds, and in vivo tumor growth were performed. RESULTS Both Mito-ChM and Mito-ChMAc selectively depleted intracellular ATP and caused prolonged inhibition of ATP-linked oxygen consumption rate in breast cancer cells, but not in non-cancerous cells. These effects were significantly augmented by inhibition of glycolysis. Mito-ChM and Mito-ChMAc exhibited anti-proliferative effects and cytotoxicity in several breast cancer cells with different genetic background. Furthermore, Mito-ChM selectively accumulated in tumor tissue and inhibited tumor growth in a xenograft model of human breast cancer. CONCLUSIONS We conclude that mitochondria-targeted small molecular weight chromanols exhibit selective anti-proliferative effects and cytotoxicity in multiple breast cancer cells, and that esterification of the hydroxyl group in mito-chromanols is not a critical requirement for its anti-proliferative and cytotoxic effect.
Collapse
Affiliation(s)
- Gang Cheng
- Free Radical Research Center and Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | | | | | | | | |
Collapse
|