1
|
Touarin P, Serrano B, Courbois A, Bornet O, Chen Q, Scott LG, Williamson JR, Sebban-Kreuzer C, Mancini SJC, Elantak L. Pre-B cell receptor acts as a selectivity switch for galectin-1 at the pre-B cell surface. Cell Rep 2024; 43:114541. [PMID: 39058594 DOI: 10.1016/j.celrep.2024.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Galectins are glycan-binding proteins translating the sugar-encoded information of cellular glycoconjugates into physiological activities, including immunity, cell migration, and signaling. Galectins also interact with non-glycosylated partners in the extracellular milieu, among which the pre-B cell receptor (pre-BCR) during B cell development. How these interactions might interplay with the glycan-decoding function of galectins is unknown. Here, we perform NMR experiments on native membranes to monitor Gal-1 binding to physiological cell surface ligands. We show that pre-BCR interaction changes Gal-1 binding to glycosylated pre-B cell surface receptors. At the molecular and cellular levels, we identify α2,3-sialylated motifs as key targeted epitopes. This targeting occurs through a selectivity switch increasing Gal-1 contacts with α2,3-sialylated poly-N-acetyllactosamine upon pre-BCR interaction. Importantly, we observe that this switch is involved in the regulation of pre-BCR activation. Altogether, this study demonstrates that interactions to non-glycosylated proteins regulate the glycan-decoding functions of galectins at the cell surface.
Collapse
Affiliation(s)
- Pauline Touarin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Bastien Serrano
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Audrey Courbois
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Olivier Bornet
- NMR platform, Institut de Microbiologie de la Méditerranée (IMM FR3479), Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Qian Chen
- Cassia, 3030 Bunker Hill Street, Suite 214, San Diego, CA 92109, USA
| | - Lincoln G Scott
- Cassia, 3030 Bunker Hill Street, Suite 214, San Diego, CA 92109, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corinne Sebban-Kreuzer
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | | | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France.
| |
Collapse
|
2
|
Cao Y, Yi W, Zhu Q. Glycosylation in the tumor immune response: the bitter side of sweetness. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1184-1198. [PMID: 38946426 PMCID: PMC11399423 DOI: 10.3724/abbs.2024107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
Glycosylation is the most structurally diverse form of post-translational modification (PTM) of proteins that affects a myriad of cellular processes. As a pivotal regulator of protein homeostasis, glycosylation notably impacts the function of proteins, spanning from protein localization and stability to protein-protein interactions. Aberrant glycosylation is a hallmark of cancer, and extensive studies have revealed the multifaceted roles of glycosylation in tumor growth, migration, invasion and immune escape Over the past decade, glycosylation has emerged as an immune regulator in the tumor microenvironment (TME). Here, we summarize the intricate interplay between glycosylation and the immune system documented in recent literature, which orchestrates the regulation of the tumor immune response through endogenous lectins, immune checkpoints and the extracellular matrix (ECM) in the TME. In addition, we discuss the latest progress in glycan-based cancer immunotherapy. This review provides a basic understanding of glycosylation in the tumor immune response and a theoretical framework for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuting Cao
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wen Yi
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| | - Qiang Zhu
- />Department of BiochemistryCollege of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
3
|
Yaylim İ, Aru M, Farooqi AA, Hakan MT, Buttari B, Arese M, Saso L. Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:8. [PMID: 38434765 PMCID: PMC10905161 DOI: 10.20517/cdr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.
Collapse
Affiliation(s)
- İlhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Melek Aru
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
- Department of Medical Education, Istinye University Faculty of Medicine, Istanbul 34396, Turkiye
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome 00161, Italy
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, Rome 00185, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome 00185, Italy
| |
Collapse
|
4
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
5
|
Liu D, Zhu H, Li C. Galectins and galectin-mediated autophagy regulation: new insights into targeted cancer therapy. Biomark Res 2023; 11:22. [PMID: 36814341 PMCID: PMC9945697 DOI: 10.1186/s40364-023-00466-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Galectins are animal lectins with specific affinity for galactosides via the conserved carbohydrate recognition domains. Increasing studies recently have identified critical roles of galectin family members in tumor progression. Abnormal expression of galectins contributes to the proliferation, metastasis, epithelial-mesenchymal transformation (EMT), immunosuppression, radio-resistance and chemoresistance in various cancers, which has attracted cumulative clinical interest in galectin-based cancer treatment. Galectin family members have been reported to participate in autophagy regulation under physiological conditions and in non-tumoral diseases, and implication of galectins in multiple processes of carcinogenesis also involves regulation of autophagy, however, the relationship between galectins, autophagy and cancer remains largely unclear. In this review, we introduce the structure and function of galectins at the molecular level, summarize their engagements in autophagy and cancer progression, and also highlight the regulation of autophagy by galectins in cancer as well as the therapeutic potentials of galectin and autophagy-based strategies. Elaborating on the mechanism of galectin-regulated autophagy in cancers will accelerate the exploitation of galectins-autophagy targeted therapies in treatment for cancer.
Collapse
Affiliation(s)
- Dan Liu
- grid.33199.310000 0004 0368 7223Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- grid.412793.a0000 0004 1799 5032Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanzhou Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
7
|
Laderach DJ, Compagno D. Inhibition of galectins in cancer: Biological challenges for their clinical application. Front Immunol 2023; 13:1104625. [PMID: 36703969 PMCID: PMC9872792 DOI: 10.3389/fimmu.2022.1104625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Galectins play relevant roles in tumor development, progression and metastasis. Accordingly, galectins are certainly enticing targets for medical intervention in cancer. To date, however, clinical trials based on galectin inhibitors reported inconclusive results. This review summarizes the galectin inhibitors currently being evaluated and discusses some of the biological challenges that need to be addressed to improve these strategies for the benefit of cancer patients.
Collapse
Affiliation(s)
- Diego José Laderach
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina,Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Argentina,*Correspondence: Diego José Laderach,
| | - Daniel Compagno
- Molecular and Functional Glyco-Oncology Laboratory, Instituto de Química Biológica de la Facutad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Buenos Aires, Argentina,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
9
|
Glycobiology of cellular expiry: Decrypting the role of glycan-lectin regulatory complex and therapeutic strategies focusing on cancer. Biochem Pharmacol 2023; 207:115367. [PMID: 36481348 DOI: 10.1016/j.bcp.2022.115367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Often the outer leaflets of living cells bear a coat of glycosylated proteins, which primarily regulates cellular processes. Glycosylation of such proteins occurs as part of their post-translational modification. Within the endoplasmic reticulum, glycosylation enables the attachment of specific oligosaccharide moieties such as, 'glycan' to the transmembrane receptor proteins which confers precise biological information for governing the cell fate. The nature and degree of glycosylation of cell surface receptors are regulated by a bunch of glycosyl transferases and glycosidases which fine-tune attachment or detachment of glycan moieties. In classical death receptors, upregulation of glycosylation by glycosyl transferases is capable of inducing cell death in T cells, tumor cells, etc. Thus, any deregulated alternation at surface glycosylation of these death receptors can result in life-threatening disorder like cancer. In addition, transmembrane glycoproteins and lectin receptors can transduce intracellular signals for cell death execution. Exogenous interaction of lectins with glycan containing death receptors signals for cell death initiation by modulating downstream signalings. Subsequently, endogenous glycan-lectin interplay aids in the customization and implementation of the cell death program. Lastly, the glycan-lectin recognition system dictates the removal of apoptotic cells by sending accurate signals to the extracellular milieu. Since glycosylation has proven to be a biomarker of cellular death and disease progression; glycans serve as specific therapeutic targets of cancers. In this context, we are reviewing the molecular mechanisms of the glycan-lectin regulatory network as an integral part of cell death machinery in cancer to target them for successful therapeutic and clinical approaches.
Collapse
|
10
|
Biscaia SMP, Pires C, Lívero FAR, Bellan DL, Bini I, Bustos SO, Vasconcelos RO, Acco A, Iacomini M, Carbonero ER, Amstalden MK, Kubata FR, Cummings RD, Dias-Baruffi M, Simas FF, Oliveira CC, Freitas RA, Franco CRC, Chammas R, Trindade ES. MG-Pe: A Novel Galectin-3 Ligand with Antimelanoma Properties and Adjuvant Effects to Dacarbazine. Int J Mol Sci 2022; 23:ijms23147635. [PMID: 35886983 PMCID: PMC9317553 DOI: 10.3390/ijms23147635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Melanoma is a highly metastatic and rapidly progressing cancer, a leading cause of mortality among skin cancers. The melanoma microenvironment, formed from the activity of malignant cells on the extracellular matrix and the recruitment of immune cells, plays an active role in the development of drug resistance and tumor recurrence, which are clinical challenges in cancer treatment. These tumoral metabolic processes are affected by proteins, including Galectin-3 (Gal-3), which is extensively involved in cancer development. Previously, we characterized a partially methylated mannogalactan (MG-Pe) with antimelanoma activities. In vivo models of melanoma were used to observe MG-Pe effects in survival, spontaneous, and experimental metastases and in tissue oxidative stress. Analytical assays for the molecular interaction of MG-Pe and Gal-3 were performed using a quartz crystal microbalance, atomic force microscopy, and contact angle tensiometer. MG-Pe exhibits an additive effect when administered together with the chemotherapeutic agent dacarbazine, leading to increased survival of treated mice, metastases reduction, and the modulation of oxidative stress. MG-Pe binds to galectin-3. Furthermore, MG-Pe antitumor effects were substantially reduced in Gal-3/KO mice. Our results showed that the novel Gal-3 ligand, MG-Pe, has both antitumor and antimetastatic effects, alone or in combination with chemotherapy.
Collapse
Affiliation(s)
- Stellee M. P. Biscaia
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Cassiano Pires
- Department of Chemistry, Biopol, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (C.P.); (R.A.F.)
| | - Francislaine A. R. Lívero
- Post-Graduate Program in Medicinal Plants and Phytotherapics in Basic Attention, Parana University (UNIPAR), Umuarama 87502-210, Brazil;
| | - Daniel L. Bellan
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Israel Bini
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Silvina O. Bustos
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
| | - Renata O. Vasconcelos
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil;
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil;
| | - Elaine R. Carbonero
- Institute of Chemistry, Federal University of Catalão (UFCAT), Catalão 75704-020, Brazil;
| | - Martin K. Amstalden
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Fábio R. Kubata
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Richard D. Cummings
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Marcelo Dias-Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-903, Brazil; (M.K.A.); (F.R.K.); (M.D.-B.)
| | - Fernanda F. Simas
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Carolina C. Oliveira
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Rilton A. Freitas
- Department of Chemistry, Biopol, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (C.P.); (R.A.F.)
| | - Célia Regina Cavichiolo Franco
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
| | - Roger Chammas
- Department of Radiology and Oncology, Faculty of Medicine, Center for Translational Research in Oncology (CTO), Cancer Institute of the State of São Paulo, University of São Paulo (USP), São Paulo 01246-000, Brazil; (S.O.B.); (R.O.V.)
- Correspondence: (R.C.); (E.S.T.)
| | - Edvaldo S. Trindade
- Department of Cellular Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil; (S.M.P.B.); (D.L.B.); (I.B.); (F.F.S.); (C.C.O.); (C.R.C.F.)
- Correspondence: (R.C.); (E.S.T.)
| |
Collapse
|
11
|
Chemokines modulate glycan binding and the immunoregulatory activity of galectins. Commun Biol 2021; 4:1415. [PMID: 34931005 PMCID: PMC8688422 DOI: 10.1038/s42003-021-02922-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
Galectins are versatile glycan-binding proteins involved in immunomodulation. Evidence suggests that galectins can control the immunoregulatory function of cytokines and chemokines through direct binding. Here, we report on an inverse mechanism in which chemokines control the immunomodulatory functions of galectins. We show the existence of several specific galectin-chemokine binding pairs, including galectin-1/CXCL4. NMR analyses show that CXCL4 binding induces changes in the galectin-1 carbohydrate binding site. Consequently, CXCL4 alters the glycan-binding affinity and specificity of galectin-1. Regarding immunomodulation, CXCL4 significantly increases the apoptotic activity of galectin-1 on activated CD8+ T cells, while no effect is observed in CD4+ T cells. The opposite is found for another galectin-chemokine pair, i.e., galectin-9/CCL5. This heterodimer significantly reduces the galectin-9 induced apoptosis of CD4+ T cells and not of CD8+ T cells. Collectively, the current study describes an immunomodulatory mechanism in which specific galectin-chemokine interactions control the glycan-binding activity and immunoregulatory function of galectins.
Collapse
|
12
|
Unraveling How Tumor-Derived Galectins Contribute to Anti-Cancer Immunity Failure. Cancers (Basel) 2021; 13:cancers13184529. [PMID: 34572756 PMCID: PMC8469970 DOI: 10.3390/cancers13184529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary This review compiles our current knowledge of one of the main pathways activated by tumors to escape immune attack. Indeed, it integrates the current understanding of how tumor-derived circulating galectins affect the elicitation of effective anti-tumor immunity. It focuses on several relevant topics: which are the main galectins produced by tumors, how soluble galectins circulate throughout biological liquids (taking a body-settled gradient concentration into account), the conditions required for the galectins’ functions to be accomplished at the tumor and tumor-distant sites, and how the physicochemical properties of the microenvironment in each tissue determine their functions. These are no mere semantic definitions as they define which functions can be performed in said tissues instead. Finally, we discuss the promising future of galectins as targets in cancer immunotherapy and some outstanding questions in the field. Abstract Current data indicates that anti-tumor T cell-mediated immunity correlates with a better prognosis in cancer patients. However, it has widely been demonstrated that tumor cells negatively manage immune attack by activating several immune-suppressive mechanisms. It is, therefore, essential to fully understand how lymphocytes are activated in a tumor microenvironment and, above all, how to prevent these cells from becoming dysfunctional. Tumors produce galectins-1, -3, -7, -8, and -9 as one of the major molecular mechanisms to evade immune control of tumor development. These galectins impact different steps in the establishment of the anti-tumor immune responses. Here, we carry out a critical dissection on the mechanisms through which tumor-derived galectins can influence the production and the functionality of anti-tumor T lymphocytes. This knowledge may help us design more effective immunotherapies to treat human cancers.
Collapse
|
13
|
Non-carbohydrate strategies to inhibit lectin proteins with special emphasis on galectins. Eur J Med Chem 2021; 222:113561. [PMID: 34146913 DOI: 10.1016/j.ejmech.2021.113561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 12/29/2022]
Abstract
Lectins are a family of glycan-binding proteins, many of which have been established as key targets for therapeutic intervention. They play a central role in many physiological and cellular processes. With the advances in protein crystallography, NMR spectroscopy and computational power over the past couple of decades, the carbohydrate-receptor interactions are now well understood and characterized. Nevertheless, designing efficient carbohydrate inhibitors is a laborious endeavour. They are known to have weak affinities, unsuitable pharmacokinetic properties and highly cumbersome/complex synthetic routes. To circumvent these issues many non-carbohydrate strategies have been reported. Galectins are a sub-family of lectin proteins which have been recognized as crucial targets for a wide variety of diseases. Many candidates targeting galectins are currently in advanced stages of clinical trials. There have been a few reports of non-carbohydrate inhibitors targeting galectins which comprise of peptide-based inhibitors and a recent flourish of heterocyclic inhibitors. In this review, we have briefly highlighted the strategies like fragment-based drug-design and high-throughput screens utilized to identify non-carbohydrate based antagonists for proteins wherein the presence of a sugar was believed to be essential. Additionally, we have described the literature pertaining to non-carbohydrate inhibitors of galectins and how previous reports on rational substitution of a sugar motif could aid in design of heterocyclics that inhibit lectins/galectins. We have concluded with remarks on challenges, gap in our understanding and future perspectives concerned with rational design of non-carbohydrate molecules targeting lectins/galectins.
Collapse
|
14
|
Sethi A, Sanam S, Alvala R, Alvala M. An updated patent review of galectin-1 and galectin-3 inhibitors and their potential therapeutic applications (2016-present). Expert Opin Ther Pat 2021; 31:709-721. [PMID: 33749494 DOI: 10.1080/13543776.2021.1903430] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Galectins are ubiquitous in nature. They have established themselves as a protein family of high therapeutic potential and play a role in a wide variety of diseases like cancer, fibrosis, and Alzheimer's. Within the galectin family, galectin- 1 and galectin- 3 have been widely studied and their roles and functions have now been well established. AREAS COVERED In this review, we discuss the important advancements in the development of galectin-1 & 3 inhibitors. All patents filed detailing the divergent strategies to inhibit galectin-1 & 3 from 2016 to present have been covered and discussed. EXPERT OPINION Over the past couple of decades, distinct galectin inhibitors have been synthesized, reported and studied. Among all, the mono and disaccharide-based antagonists have been found to be considerably successful. However, the cumbersome synthetic route followed to develop this class of inhibitors, in addition to complexity involved in making selective modifications within these molecules has posed a significant challenge. Recently, there have been numerous reports on heterocyclic-based galectin inhibitors. If these are established as potent galectin inhibitors, their ease of synthesis and tunability could overcome the potential drawbacks of carbohydrate-based inhibitors and could thus be exploited to develop efficient and highly specific galectin inhibitors.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India
| | - Swetha Sanam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India
| | - Ravi Alvala
- G Pulla Reddy College of Pharmacy, Mehdipatnam, Hyderabad, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Hyderabad, Balanagar, India.,Assistant Professor, School of Pharmacy and Technology Management, NMIMS (Deemed to be University), Hyderabad, India
| |
Collapse
|
15
|
López de Los Santos Y, Bernard DN, Egesborg P, Létourneau M, Lafortune C, Cuneo MJ, Urvoas A, Chatenet D, Mahy JP, St-Pierre Y, Ricoux R, Doucet N. Binding of a Soluble meso-Tetraarylporphyrin to Human Galectin-7 Induces Oligomerization and Modulates Its Pro-Apoptotic Activity. Biochemistry 2020; 59:4591-4600. [PMID: 33231438 DOI: 10.1021/acs.biochem.0c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The selective targeting of protein-protein interactions remains a significant determinant for the proper modulation and regulation of cell apoptosis. Prototypic galectins such as human galectin-7 (GAL-7) are characterized by their ability to form homodimers that control the molecular fate of a cell by mediating subtle yet critical glycan-dependent interactions between pro- and anti-apoptotic molecular partners. Altering the structural architecture of GAL-7 can therefore result in resistance to apoptosis in various human cancer cells, further illustrating its importance in cell survival. In this study, we used a combination of biophysical and cellular assays to illustrate that binding of a water-soluble meso-tetraarylporphyrin molecule to GAL-7 induces protein oligomerization and modulation of GAL-7-induced apoptosis in human Jurkat T cells. Our results suggest that the integrity of the GAL-7 homodimer architecture is essential for its molecular function, in addition to providing an interesting porphyrin binding modulator for controlling apoptosis in mammalian cells.
Collapse
Affiliation(s)
- Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Philippe Egesborg
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Clara Lafortune
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Matthew J Cuneo
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Agathe Urvoas
- Institut de biologie intégrative de la cellule (I2BC), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - David Chatenet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Jean-Pierre Mahy
- Laboratoire de chimie bioorganique et bioinorganique, Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - Yves St-Pierre
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada
| | - Rémy Ricoux
- Laboratoire de chimie bioorganique et bioinorganique, Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91190 Orsay, France
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, QC H7V 1B7, Canada.,PROTEO, the Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
16
|
Design, synthesis and evaluation of calix[4]arene-based carbonyl amide derivatives with antitumor activities. Eur J Med Chem 2020; 210:112984. [PMID: 33183867 DOI: 10.1016/j.ejmech.2020.112984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 11/23/2022]
Abstract
Calixarenes, with potential functionalization on the upper and lower rim, have been explored in recent years for the design and construction of anticancer agents in the field of drugs and pharmaceuticals. Herein, optimization of bis [N-(2-hydroxyethyl) aminocarbonylmethoxyl substituted calix [4] arene (CLX-4) using structure-based drug design and traditional medicinal chemistry led to the discovery of series of calix [4]arene carbonyl amide derivatives 5a-5t. Evaluation of the cytotoxicity of 5a-5t employing MTT assay in MCF-7, MDA-MB-231 (human breast cancer cells), HT29 (human colon carcinoma cells), HepG2 (human hepatocellular carcinoma cells), A549 (human lung adenocarcinoma cells) and HUVEC (Human Umbilical Vein Endothelial) cells demonstrated that the most promising compound 5h displayed the most superior inhibitory effect against A549 and MDA-MB-231 cells, which were 3.2 times and 6.8 times of CLX-4, respectively. In addition, the cell inhibition rate (at 10 μM) against normal HUVEC cells in vitro was only 9.6%, indicating the safty of compound 5h. Moreover, compound 5h could inhibit the migration of MDA-MB-231 cell in wound healing assay. Further mechanism studies significantly indicated that compound 5h could block MDA-MB-231 cell cycle arrest in G0/G1 phase by down regulating cyclin D1 and CDK4, and induce apoptosis by up-regulation of Bax, down-regulation of Caspase-3, PARP and Bcl-2 proteins, resulting in the reduction of DNA synthesis and cell division arrest. This work provides worthy of further exploration for the promising calixarene-based anticancer drugs.
Collapse
|
17
|
Bertuzzi S, Quintana JI, Ardá A, Gimeno A, Jiménez-Barbero J. Targeting Galectins With Glycomimetics. Front Chem 2020; 8:593. [PMID: 32850631 PMCID: PMC7426508 DOI: 10.3389/fchem.2020.00593] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/08/2020] [Indexed: 01/06/2023] Open
Abstract
Among glycan-binding proteins, galectins, β-galactoside-binding lectins, exhibit relevant biological roles and are implicated in many diseases, such as cancer and inflammation. Their involvement in crucial pathologies makes them interesting targets for drug discovery. In this review, we gather the last approaches toward the specific design of glycomimetics as potential drugs against galectins. Different approaches, either using specific glycomimetic molecules decorated with key functional groups or employing multivalent presentations of lactose and N-acetyl lactosamine analogs, have provided promising results for binding and modulating different galectins. The review highlights the results obtained with these approximations, from the employment of S-glycosyl compounds to peptidomimetics and multivalent glycopolymers, mostly employed to recognize and/or detect hGal-1 and hGal-3.
Collapse
Affiliation(s)
- Sara Bertuzzi
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Jon I Quintana
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Ana Gimeno
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.,Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country - UPV-EHU, Leioa, Spain
| |
Collapse
|
18
|
Navarro P, Martínez-Bosch N, Blidner AG, Rabinovich GA. Impact of Galectins in Resistance to Anticancer Therapies. Clin Cancer Res 2020; 26:6086-6101. [DOI: 10.1158/1078-0432.ccr-18-3870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
|
19
|
Shimada C, Xu R, Al-Alem L, Stasenko M, Spriggs DR, Rueda BR. Galectins and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061421. [PMID: 32486344 PMCID: PMC7352943 DOI: 10.3390/cancers12061421] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is known for its aggressive pathological features, including the capacity to undergo epithelial to mesenchymal transition, promoting angiogenesis, metastatic potential, chemoresistance, inhibiting apoptosis, immunosuppression and promoting stem-like features. Galectins, a family of glycan-binding proteins defined by a conserved carbohydrate recognition domain, can modulate many of these processes, enabling them to contribute to the pathology of ovarian cancer. Our goal herein was to review specific galectin members identified in the context of ovarian cancer, with emphasis on their association with clinical and pathological features, implied functions, diagnostic or prognostic potential and strategies being developed to disrupt their negative actions.
Collapse
Affiliation(s)
- Chisa Shimada
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Xu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linah Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Stasenko
- Gynecology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York City, NY 10065, USA;
| | - David R. Spriggs
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
20
|
Goud NS, Soukya PSL, Ghouse M, Komal D, Alvala R, Alvala M. Human Galectin-1 and Its Inhibitors: Privileged Target for Cancer and HIV. Mini Rev Med Chem 2019; 19:1369-1378. [PMID: 30834831 DOI: 10.2174/1389557519666190304120821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/07/2018] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
Abstract
Galectin 1(Gal-1), a β-galactoside binding mammalian lectin of 14KDa, is implicated in many signalling pathways, immune responses associated with cancer progression and immune disorders. Inhibition of human Gal-1 has been regarded as one of the potential therapeutic approaches for the treatment of cancer, as it plays a major role in tumour development and metastasis by modulating various biological functions viz. apoptosis, angiogenesis, migration, cell immune escape. Gal-1 is considered as a biomarker in diagnosis, prognosis and treatment condition. The overexpression of Gal-1 is well established and seen in many types of cancer progression like osteosarcoma, breast, lung, prostate, melanoma, etc. Gal-1 greatly accelerates the binding kinetics of HIV-1 to susceptible cells, leading to faster viral entry and a more robust viral replication by specific binding of CD4 cells. Hence, the Gal-1 is considered a promising molecular target for the development of new therapeutic drugs for cancer and HIV. The present review laid emphasis on structural insights and functional role of Gal-1 in the disease, current Gal-1 inhibitors and future prospects in the design of specific Gal-1 inhibitors.
Collapse
Affiliation(s)
- Narella Sridhar Goud
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - P S Lakshmi Soukya
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Mahammad Ghouse
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Daipule Komal
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| | - Ravi Alvala
- G. Pulla Reddy College of pharmacy, Hyderabad, 500028, India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of pharmaceutical Education and Research (NIPER) - Hyderabad, Balanagar, 500037, India
| |
Collapse
|
21
|
Pasmatzi E, Monastirli A, Badavanis G, Tsambaos D. Galectin 1 in dermatology: current knowledge and perspectives. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2019. [DOI: 10.15570/actaapa.2019.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Martinez-Bosch N, Barranco LE, Orozco CA, Moreno M, Visa L, Iglesias M, Oldfield L, Neoptolemos JP, Greenhalf W, Earl J, Carrato A, Costello E, Navarro P. Increased plasma levels of galectin-1 in pancreatic cancer: potential use as biomarker. Oncotarget 2018; 9:32984-32996. [PMID: 30250644 PMCID: PMC6152472 DOI: 10.18632/oncotarget.26034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the most frequent type of pancreatic cancer and one of the deadliest diseases overall. New biomarkers are urgently needed to allow early diagnosis, one of the only factors that currently improves prognosis. Here we analyzed whether the detection of circulating galectin-1 (Gal-1), a soluble carbohydrate-binding protein overexpressed in PDA tissue samples, can be used as a biomarker for PDA. Gal-1 levels were determined by ELISA in plasma from healthy controls and patients diagnosed with PDA, using three independent cohorts. Patients with chronic pancreatitis (CP) were also included in the study to analyze the potential of Gal-1 to discriminate between cancer and inflammatory process. Plasma Gal-1 levels were significantly increased in patients with PDA as compared to controls in all three cohorts. Gal-1 sensitivity and specificity values were similar to that of the CA19-9 biomarker (the only FDA-approved blood test biomarker for PDA), and the combination of Gal-1 and CA19-9 significantly improved their individual discriminatory powers. Moreover, high levels of Gal-1 were associated with lower survival in patients with non-resected tumors. Collectively, our data indicate a strong potential of using circulating Gal-1 levels as a biomarker for detection and prognostics of patients with PDA.
Collapse
Affiliation(s)
- Neus Martinez-Bosch
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
| | - Luis E Barranco
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
- Department of Gastroenterology, Universidad Autonoma de Barcelona, Hospital del Mar, Barcelona, Spain
| | - Carlos A Orozco
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
| | - Mireia Moreno
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
| | - Laura Visa
- Department of Medical Oncology, Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, Universidad Autonoma de Barcelona, Hospital del Mar, CIBERONC, Barcelona, Spain
| | - Lucy Oldfield
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Julie Earl
- Department of Medical Oncology, Ramon y Cajal University Hospital, CIBERONC, IRYCIS, Alcala University, Madrid, Spain
| | - Alfredo Carrato
- Department of Medical Oncology, Ramon y Cajal University Hospital, CIBERONC, IRYCIS, Alcala University, Madrid, Spain
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Pilar Navarro
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona, Spain
| |
Collapse
|
23
|
Dings RPM, Miller MC, Griffin RJ, Mayo KH. Galectins as Molecular Targets for Therapeutic Intervention. Int J Mol Sci 2018; 19:ijms19030905. [PMID: 29562695 PMCID: PMC5877766 DOI: 10.3390/ijms19030905] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Galectins are a family of small, highly conserved, molecular effectors that mediate various biological processes, including chemotaxis and angiogenesis, and that function by interacting with various cell surface glycoconjugates, usually targeting β-galactoside epitopes. Because of their significant involvement in various biological functions and pathologies, galectins have become a focus of therapeutic discovery for clinical intervention against cancer, among other pathological disorders. In this review, we focus on understanding galectin structure-function relationships, their mechanisms of action on the molecular level, and targeting them for therapeutic intervention against cancer.
Collapse
Affiliation(s)
- Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Michelle C Miller
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
24
|
Galectin Targeted Therapy in Oncology: Current Knowledge and Perspectives. Int J Mol Sci 2018; 19:ijms19010210. [PMID: 29320431 PMCID: PMC5796159 DOI: 10.3390/ijms19010210] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022] Open
Abstract
The incidence and mortality of cancer have increased over the past decades. Significant progress has been made in understanding the underpinnings of this disease and developing therapies. Despite this, cancer still remains a major therapeutic challenge. Current therapeutic research has targeted several aspects of the disease such as cancer development, growth, angiogenesis and metastases. Many molecular and cellular mechanisms remain unknown and current therapies have so far failed to meet their intended potential. Recent studies show that glycans, especially oligosaccharide chains, may play a role in carcinogenesis as recognition patterns for galectins. Galectins are members of the lectin family, which show high affinity for β-galactosides. The galectin–glycan conjugate plays a fundamental role in metastasis, angiogenesis, tumor immunity, proliferation and apoptosis. Galectins’ action is mediated by a structure containing at least one carbohydrate recognition domain (CRD). The potential prognostic value of galectins has been described in several neoplasms and helps clinicians predict disease outcome and determine therapeutic interventions. Currently, new therapeutic strategies involve the use of inhibitors such as competitive carbohydrates, small non-carbohydrate binding molecules and antibodies. This review outlines our current knowledge regarding the mechanism of action and potential therapy implications of galectins in cancer.
Collapse
|
25
|
Jenkins SV, Nima ZA, Vang KB, Kannarpady G, Nedosekin DA, Zharov VP, Griffin RJ, Biris AS, Dings RPM. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ Precis Oncol 2017; 1:27. [PMID: 29872709 PMCID: PMC5871908 DOI: 10.1038/s41698-017-0030-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/29/2017] [Accepted: 07/19/2017] [Indexed: 11/16/2022] Open
Abstract
An ongoing need for new cancer therapeutics exists, especially ones that specifically home and target triple-negative breast cancer. Because triple-negative breast cancer express low or are devoid of estrogen, progesterone, or Her2/Neu receptors, another target must be used for advanced drug delivery strategies. Here, we engineered a nanodrug delivery system consisting of silver-coated gold nanorods (AuNR/Ag) targeting epithelial cell adhesion/activating molecule (EpCAM) and loaded with doxorubicin. This nanodrug system, AuNR/Ag/Dox-EpCAM, was found to specifically target EpCAM-expressing tumors compared to low EpCAM-expressing tumors. Namely, the nanodrug had an effective dose (ED50) of 3 μM in inhibiting 4T1 cell viability and an ED50 of 110 μM for MDA-MD-231 cells. Flow cytometry data indicated that 4T1 cells, on average, express two orders of magnitude more EpCAM than MDA-MD-231 cells, which correlates with our ED50 findings. Moreover, due to the silver coating, the AuNR/Ag can be detected simultaneously by surface-enhanced Raman spectroscopy and photoacoustic microscopy. Analysis by these imaging detection techniques as well as by inductively coupled plasma mass spectrometry showed that the targeted nanodrug system was taken up by EpCAM-expressing cells and tumors at significantly higher rates than untargeted nanoparticles (p < 0.05). Thus, this approach establishes a plasmonically active nanodrug theranostic for triple-negative breast cancer and, potentially, a delivery platform with improved multimodal imaging capability for other clinically relevant chemotherapeutics with dose-limiting toxicities, such as platinum-based or taxane-based therapies. Silver-coated gold nanorods deliver drugs to a difficult-to-treat breast cancer by targeting an over-expressed antigen on its surface. Ruud Dings and colleagues at the University of Arkansas in the USA loaded the chemotherapeutic drug doxorubicin onto silver-coated gold nanorods that were conjugated with an antibody that specifically targets an over-expressed antigen on many types of ‘triple-negative breast cancers’ (TNBCs). Unlike other breast cancers, TNBCs lack certain receptors, making them difficult to target with cancer therapies. The team found that one of the two TNBC cell lines studied over-expressed the epithelial antigen EpCAM 100 times more than the other. Their drug-loaded silver-coated gold nanorods specifically targeted the EpCAM over-expressing cells over the low-expressing ones. The nanorods’ coatings also allowed them to be easily detected by two different imaging techniques: surfaced-enhanced Raman spectroscopy and photoacoustic microscopy.
Collapse
Affiliation(s)
- Samir V Jenkins
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Zeid A Nima
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Kieng B Vang
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Ganesh Kannarpady
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Dmitry A Nedosekin
- 3The Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Vladimir P Zharov
- 3The Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Robert J Griffin
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Alexandru S Biris
- 2Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR USA
| | - Ruud P M Dings
- 1Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR USA
| |
Collapse
|
26
|
Posada IM, Lectez B, Sharma M, Oetken-Lindholm C, Yetukuri L, Zhou Y, Aittokallio T, Abankwa D. Rapalogs can promote cancer cell stemness in vitro in a Galectin-1 and H-ras-dependent manner. Oncotarget 2017; 8:44550-44566. [PMID: 28562352 PMCID: PMC5546501 DOI: 10.18632/oncotarget.17819] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/22/2017] [Indexed: 01/05/2023] Open
Abstract
Currently several combination treatments of mTor- and Ras-pathway inhibitors are being tested in cancer therapy. While multiple feedback loops render these central signaling pathways robust, they complicate drug targeting.Here, we describe a novel H-ras specific feedback, which leads to an inadvertent rapalog induced activation of tumorigenicity in Ras transformed cells. We find that rapalogs specifically increase nanoscale clustering (nanoclustering) of oncogenic H-ras but not K-ras on the plasma membrane. This increases H-ras signaling output, promotes mammosphere numbers in a H-ras-dependent manner and tumor growth in ovo. Surprisingly, also other FKBP12 binders, but not mTor-inhibitors, robustly decrease FKBP12 levels after prolonged (>2 days) exposure. This leads to an upregulation of the nanocluster scaffold galectin-1 (Gal-1), which is responsible for the rapamycin-induced increase in H-ras nanoclustering and signaling output. We provide evidence that Gal-1 promotes stemness features in tumorigenic cells. Therefore, it may be necessary to block inadvertent induction of stemness traits in H-ras transformed cells by specific Gal-1 inhibitors that abrogate its effect on H-ras nanocluster. On a more general level, our findings may add an important mechanistic explanation to the pleiotropic physiological effects that are observed with rapalogs.
Collapse
Affiliation(s)
- Itziar M.D. Posada
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - Benoit Lectez
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | - Mukund Sharma
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| | | | - Laxman Yetukuri
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Daniel Abankwa
- Turku Center for Biotechnology, Åbo Akademi University, Tykistökatu 6B, Turku, Finland
| |
Collapse
|
27
|
Varinska L, Kubatka P, Mojzis J, Zulli A, Gazdikova K, Zubor P, Büsselberg D, Caprnda M, Opatrilova R, Gasparova I, Klabusay M, Pec M, Fibach E, Adamek M, Kruzliak P. Angiomodulators in cancer therapy: New perspectives. Biomed Pharmacother 2017; 89:578-590. [PMID: 28258040 DOI: 10.1016/j.biopha.2017.02.071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/03/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023] Open
Abstract
The formation of new blood vessels plays a crucial for the development and progression of pathophysiological changes associated with a variety of disorders, including carcinogenesis. Angiogenesis inhibitors (anti-angiogenics) are an important part of treatment for some types of cancer. Some natural products isolated from marine invertebrates have revealed antiangiogenic activities, which are diverse in structure and mechanisms of action. Many preclinical studies have generated new models for further modification and optimization of anti-angiogenic substances, and new information for mechanistic studies and new anti-cancer drug candidates for clinical practice. Moreover, in the last decade it has become apparent that galectins are important regulators of tumor angiogenesis, as well as microRNA. MicroRNAs have been validated to modulate endothelial cell migration or endothelial tube organization. In the present review we summarize the current knowledge regarding the role of marine-derived natural products, galectins and microRNAs in tumor angiogenesis.
Collapse
Affiliation(s)
- Lenka Varinska
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia.
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Anthony Zulli
- The Centre for Chronic Disease, College of Health & Biomedicine, Victoria University, Melbourne, Werribee Campus, Victoria, Australia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovak Republic; Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak Republic.
| | - Pavol Zubor
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia; Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, Doha, Qatar
| | - Martin Caprnda
- 2nd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Radka Opatrilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1/1946, 612 42 Brno, Czechia
| | - Iveta Gasparova
- Institute of Biology, Genetics and Medical Genetics, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovak Republic
| | - Martin Klabusay
- Department of Haemato-Oncology and Department of Internal Medicine - Cardiology, Faculty of Medicine, Palacky University, Olomouc, Czechia
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Mariusz Adamek
- Department of Thoracic Surgery, Faculty of Medicine and Dentistry, Medical University of Silesia, Katowice, Poland
| | - Peter Kruzliak
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho tr. 1/1946, 612 42 Brno, Czechia.
| |
Collapse
|
28
|
Rabinovich GA, Conejo-García JR. Shaping the Immune Landscape in Cancer by Galectin-Driven Regulatory Pathways. J Mol Biol 2016; 428:3266-3281. [PMID: 27038510 DOI: 10.1016/j.jmb.2016.03.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022]
|
29
|
Stegmayr J, Lepur A, Kahl-Knutson B, Aguilar-Moncayo M, Klyosov AA, Field RA, Oredsson S, Nilsson UJ, Leffler H. Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans. J Biol Chem 2016; 291:13318-34. [PMID: 27129206 PMCID: PMC4933242 DOI: 10.1074/jbc.m116.721464] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 12/17/2022] Open
Abstract
Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC50 values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC50 values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site.
Collapse
Affiliation(s)
- John Stegmayr
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden, the Department of Biology and
| | - Adriana Lepur
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Barbro Kahl-Knutson
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Matilde Aguilar-Moncayo
- the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom, and
| | | | - Robert A Field
- the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom, and
| | | | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Lund, Sweden
| | - Hakon Leffler
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden,
| |
Collapse
|
30
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
31
|
Blanchard H, Bum-Erdene K, Bohari MH, Yu X. Galectin-1 inhibitors and their potential therapeutic applications: a patent review. Expert Opin Ther Pat 2016; 26:537-54. [PMID: 26950805 DOI: 10.1517/13543776.2016.1163338] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Galectins have affinity for β-galactosides. Human galectin-1 is ubiquitously expressed in the body and its expression level can be a marker in disease. Targeted inhibition of galectin-1 gives potential for treatment of inflammatory disorders and anti-cancer therapeutics. AREAS COVERED This review discusses progress in galectin-1 inhibitor discovery and development. Patent applications pertaining to galectin-1 inhibitors are categorised as monovalent- and multivalent-carbohydrate-based inhibitors, peptides- and peptidomimetics. Furthermore, the potential of galectin-1 protein as a therapeutic is discussed along with consideration of the unique challenges that galectin-1 presents, including its monomer-dimer equilibrium and oxidized and reduced forms, with regard to delivering an intact protein to a pathologically relevant site. EXPERT OPINION Significant evidence implicates galectin-1's involvement in cancer progression, inflammation, and host-pathogen interactions. Conserved sequence similarity of the carbohydrate-binding sites of different galectins makes design of specific antagonists (blocking agents/inhibitors of function) difficult. Key challenges pertaining to the therapeutic use of galectin-1 are its monomer-dimer equilibrium, its redox state, and delivery of intact galectin-1 to the desired site. Developing modified forms of galectin-1 has resulted in increased stability and functional potency. Gene and protein therapy approaches that deliver the protein toward the target are under exploration as is exploitation of different inhibitor scaffolds.
Collapse
Affiliation(s)
- Helen Blanchard
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | - Khuchtumur Bum-Erdene
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| | | | - Xing Yu
- a Institute for Glycomics , Griffith University , Gold Coast Campus , Queensland , Australia
| |
Collapse
|
32
|
Blanchard H, Bum-Erdene K, Hugo MW. Inhibitors of Galectins and Implications for Structure-Based Design of Galectin-Specific Therapeutics. Aust J Chem 2014. [DOI: 10.1071/ch14362] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Galectins are a family of galactoside-specific lectins that are involved in a myriad of metabolic and disease processes. Due to roles in cancer and inflammatory and heart diseases, galectins are attractive targets for drug development. Over the last two decades, various strategies have been used to inhibit galectins, including polysaccharide-based therapeutics, multivalent display of saccharides, peptides, peptidomimetics, and saccharide-modifications. Primarily due to galectin carbohydrate binding sites having high sequence identities, the design and development of selective inhibitors targeting particular galectins, thereby addressing specific disease states, is challenging. Furthermore, the use of different inhibition assays by research groups has hindered systematic assessment of the relative selectivity and affinity of inhibitors. This review summarises the status of current inhibitors, strategies, and novel scaffolds that exploit subtle differences in galectin structures that, in conjunction with increasing available data on multiple galectins, is enabling the feasible design of effective and specific inhibitors of galectins.
Collapse
|
33
|
Barrientos G, Freitag N, Tirado-González I, Unverdorben L, Jeschke U, Thijssen VL, Blois SM. Involvement of galectin-1 in reproduction: past, present and future. Hum Reprod Update 2013; 20:175-93. [DOI: 10.1093/humupd/dmt040] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
34
|
Thijssen VL, Rabinovich GA, Griffioen AW. Vascular galectins: regulators of tumor progression and targets for cancer therapy. Cytokine Growth Factor Rev 2013; 24:547-58. [PMID: 23942184 DOI: 10.1016/j.cytogfr.2013.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 12/14/2022]
Abstract
Galectins are a family of carbohydrate binding proteins with a broad range of cytokine and growth factor-like functions in multiple steps of cancer progression. They contribute to tumor cell transformation, promote tumor angiogenesis, hamper the anti-tumor immune response, and facilitate tumor metastasis. Consequently, galectins are considered as multifunctional targets for cancer therapy. Interestingly, many of the functions related to tumor progression can be linked to galectins expressed by endothelial cells in the tumor vascular bed. Since the tumor vasculature is an easily accessible target for cancer therapy, understanding how galectins in the tumor endothelium influence cancer progression is important for the translational development of galectin-targeting therapies.
Collapse
Affiliation(s)
- Victor L Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
35
|
Astorgues-Xerri L, Riveiro ME, Tijeras-Raballand A, Serova M, Neuzillet C, Albert S, Raymond E, Faivre S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat Rev 2013; 40:307-19. [PMID: 23953240 DOI: 10.1016/j.ctrv.2013.07.007] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022]
Abstract
Galectins belong to a family of carbohydrate-binding proteins with an affinity for β-galactosides. Galectin-1 is differentially expressed by various normal and pathologic tissues and displays a wide range of biological activities. In oncology, galectin-1 plays a pivotal role in tumor growth and in the multistep process of invasion, angiogenesis, and metastasis. Evidence indicates that galectin-1 exerts a variety of functions at different steps of tumor progression. Moreover, it has been demonstrated that galectin-1 cellular localization and galectin-1 binding partners depend on tumor localization and stage. Recently, galectin-1 overexpression has been extensively documented in several tumor types and/or in the stroma of cancer cells. Its expression is thought to reflect tumor aggressiveness in several tumor types. Galectin-1 has been identified as a promising drug target using synthetic and natural inhibitors. Preclinical data suggest that galectin-1 inhibition may lead to direct antiproliferative effects in cancer cells as well as antiangiogenic effects in tumors. We provide an up-to-date overview of available data on the role of galectin-1 in different molecular and biochemical pathways involved in human malignancies. One of the major challenges faced in targeting galectin-1 is the translation of current knowledge into the design and development of effective galectin-1 inhibitors in cancer therapy.
Collapse
|
36
|
Abstract
Many secreted polypeptide regulators of angiogenesis are devoid of signal peptides. These proteins are released through nonclassical pathways independent of endoplasmic reticulum and Golgi. In most cases, the nonclassical protein export is induced by stress. It usually serves to stimulate repair or inflammation in damaged tissues. We review the secreted signal peptide-less regulators of angiogenesis and discuss the mechanisms and biological significance of their unconventional export.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|