1
|
Kusewitt DF, Sharma G, Woods CD, Rosas E, Hathaway HJ, Prossnitz ER. GPER expression prevents estrogen-induced urinary retention in obese mice. J Steroid Biochem Mol Biol 2024; 244:106607. [PMID: 39197539 PMCID: PMC11444091 DOI: 10.1016/j.jsbmb.2024.106607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024]
Abstract
Long-term administration of exogenous estrogen is known to cause urinary retention and marked, often fatal, bladder distention in both male and female mice. Estrogen-treated mice have increased bladder pressure and decreased urine flow, suggesting that urinary retention in estrogen-treated mice is due to infravesicular obstruction to urine outflow. Thus, the condition is commonly referred to as bladder outlet obstruction (BOO). Obesity can also lead to urinary retention. As the effects of estrogen are mediated by multiple receptors, including estrogen receptors ERα and ERβ and the G protein-coupled estrogen receptor (GPER), we sought to determine whether GPER plays a role in estrogen-induced BOO, particularly in the context of obesity. Wild type and GPER knockout (KO) mice fed a high-fat diet were ovariectomized or left ovary-intact (sham surgery) and supplemented with slow-release estrogen or vehicle-only pellets. Supplementing both GPER KO and wild type obese mice with estrogen for 8 weeks resulted in weight loss, splenic enlargement, and thymic atrophy, as expected. However, estrogen-treated obese GPER KO mice developed abdominal distension, debilitation, and ulceration of the skin surrounding the urogenital opening. At necropsy, these mice had prominently distended bladders and hydronephrosis. In contrast, estrogen-treated obese wild type mice only rarely displayed these signs. Our results suggest that, under conditions of obesity, estrogen induces BOO as a result of ERα-driven pathways and that GPER expression is protective against BOO.
Collapse
Affiliation(s)
- Donna F Kusewitt
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| | - Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Christine D Woods
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Emmanuel Rosas
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM, USA; Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM, USA.
| |
Collapse
|
2
|
Pereira DA, Calmasini FB, Costa FF, Burnett AL, Silva FH. Nitric Oxide Resistance in Priapism Associated with Sickle Cell Disease: Mechanisms, Therapeutic Challenges, and Future Directions. J Pharmacol Exp Ther 2024; 390:203-212. [PMID: 38262744 DOI: 10.1124/jpet.123.001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024] Open
Abstract
Patients with sickle cell disease (SCD) display priapism, a prolonged penile erection in the absence of sexual arousal. The current pharmacological treatments for SCD-associated priapism are limited and focused on acute interventions rather than prevention. Thus, there is an urgent need for new drug targets and preventive pharmacological therapies for this condition. This review focuses on the molecular mechanisms linked to the dysfunction of the NO-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) pathway implicated in SCD-associated priapism. In murine models of SCD, reduced nitric oxide (NO)-cGMP bioavailability in the corpus cavernosum is associated with elevated plasma hemoglobin levels, increased reactive oxygen species levels that inactive NO, and testosterone deficiency that leads to endothelial nitric oxide synthase downregulation. We discuss the consequences of the reduced cGMP-dependent PDE5 activity in response to these molecular changes, highlighting it as the primary pathophysiological mechanism leading to excessive corpus cavernosum relaxation, culminating in priapism. We also further discuss the impact of intravascular hemolysis on therapeutic approaches, present current pharmacological strategies targeting the NO-cGMP-PDE5 pathway in the penis, and identify potential pharmacological targets for future priapism therapies. In men with SCD and priapism, PDE5 inhibitor therapy and testosterone replacement have shown promising results. Recent preclinical research reported the beneficial effect of treatment with haptoglobin and NO donors. SIGNIFICANCE STATEMENT: This review discusses the molecular changes that reduce NO-cGMP bioavailability in the penis in SCD and highlights pharmacological targets and therapeutic strategies for the treatment of priapism, including PDE5 inhibitors, hormonal modulators, NO donors, hydroxyurea, soluble guanylate cyclase stimulators, haptoglobin, hemopexin, and antioxidants.
Collapse
Affiliation(s)
- Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fabiano Beraldi Calmasini
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fernando Ferreira Costa
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Arthur L Burnett
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil (D.A.P., F.H.S.); Universidade Federal de São Paulo, Escola Paulista de Medicina, Department of Pharmacology, São Paulo, SP, Brazil (F.B.C.); Hematology and Hemotherapy Center, University of Campinas, Campinas, SP, Brazil (F.F.C.); and The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, Maryland (A.L.B.)
| |
Collapse
|
3
|
Oliveira AL, de Oliveira MG, Mónica FZ, Antunes E. Methylglyoxal and Advanced Glycation End Products (AGEs): Targets for the Prevention and Treatment of Diabetes-Associated Bladder Dysfunction? Biomedicines 2024; 12:939. [PMID: 38790901 PMCID: PMC11118115 DOI: 10.3390/biomedicines12050939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.
Collapse
Affiliation(s)
| | | | | | - Edson Antunes
- Department of Translational Medicine, Pharmacology Area, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, SP, Brazil; (A.L.O.); (M.G.d.O.); (F.Z.M.)
| |
Collapse
|
4
|
Pereira DA, Silveira THR, Calmasini FB, Silva FH. Soluble guanylate cyclase stimulators and activators: new horizons in the treatment of priapism associated with sickle cell disease. Front Pharmacol 2024; 15:1357176. [PMID: 38384294 PMCID: PMC10879333 DOI: 10.3389/fphar.2024.1357176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
Priapism, defined as a prolonged and often painful penile erection occurring without sexual stimulation or desire, is a common complication in sickle cell disease (SCD), affecting up to 48% of male patients. This condition presents significant clinical challenges and can lead to erectile dysfunction if not properly managed. Current pharmacological treatments for SCD-related priapism are primarily reactive rather than preventative, highlighting a gap in effective medical intervention strategies. A critical factor in developing priapism is the reduced basal bioavailability of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) in erectile tissues. New prevention strategies should ideally target the underlying pathophysiology of the disease. Compounds that stimulate and activate soluble guanylate cyclase (sGC) emerge as potential therapeutic candidates since these compounds have the property of inducing cGMP production by sGC. This review explores the potential of sGC stimulators and activators in treating priapism associated with SCD. We discuss the advantages of these agents in the face of the challenging pathophysiology of SCD. Additionally, the review underscores the impact of intravascular hemolysis and oxidative stress on priapism pathophysiology in SCD, areas in which sGC stimulators and activators may also have beneficial therapeutic effects.
Collapse
Affiliation(s)
- Dalila Andrade Pereira
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| | | | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil
| | - Fábio Henrique Silva
- Laboratory of Pharmacology, São Francisco University Medical School, Bragança Paulista, SP, Brazil
| |
Collapse
|
5
|
Yang SD, Hsieh PC, Chang SJ, Chang HH. The differences in the adrenergic receptors of proximal urethra between sexes. Tzu Chi Med J 2023. [PMID: 37545797 PMCID: PMC10399842 DOI: 10.4103/tcmj.tcmj_221_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Objectives The bladder and urethra work as a physiologically functional unit to facilitate continence in the storage and voiding phase. Sex differences have been found in the urethral contraction in response to α-adrenergic receptor activation. This study aimed to investigate the role of adrenergic receptors in the proximal urethra of male and female mice. Materials and Methods Urinary bladder and proximal urethral smooth muscle (USM) samples from male and female C57BL/6 mice were isolated and mounted in an organ bath. Results Acetylcholine-induced contraction of the urinary bladder was compared in male and female mice. Phenylephrine and norepinephrine (NE) induced little contraction at a lower concentration, but a relaxing phase of female proximal USM was observed at a higher concentration. This contraction profile was inhibited by NG-nitro-L-arginine, lidocaine, and capsaicin. In addition, the NE-induced contraction was greater in the incubation of propranolol than that of L-NNA or lidocaine. These results suggested that the β-adrenoceptor may be the dominant receptor of female proximal USM, and the activity of calcitonin gene-related peptide sensory nerves and nitrergic nerves may pose an anti-contraction effect on the proximal urethra in female mice. Conclusion β-adrenoceptor may be the dominant receptor of female proximal USM. The use of β-adrenergic receptor blocker agents might have the potential for the treatment of female voiding dysfunction.
Collapse
|
6
|
Jing G, Xia Z, Lei Q. Co-expression of soluble guanylyl cyclase subunits and PDE5A shRNA to elevate cellular cGMP level: A potential gene therapy for myocardial cell death. Technol Health Care 2022; 31:901-910. [PMID: 36442224 DOI: 10.3233/thc-220333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND: Genetic manipulation on the NO-sGC-cGMP pathway has been rarely achieved, partially due to complexity of the soluble guanylyl cyclase (sGC) enzyme. OBJECTIVE: We aim to develop gene therapy directly targeting the pathway to circumvent cytotoxicity and tolerance after prolonged use of NO-donors and the insufficiency of PDE inhibitors. METHODS: In this study, we constructed lentivirus vectors expressing GUCY1A3 and GUCY1B3 genes, which encoded the α1 and β1 subunits of soluble guanylyl cyclase (sGC), respectively, to enhance cGMP synthesis. We also constructed lentiviral vector harboring PDE5A shRNA to alleviate phosphodiesterase activity and cGMP degradation. RESULTS: Transductions of human HEK293 cells with the constructs were successful, as indicated by the fluorescent signal and altered gene expression produced by each vector. Overexpression of GUCY1A3 and GUCY1B3 resulted in increased sGC enzyme activity and elevated cGMP level in the cells. Expression of PDE5A shRNA resulted in decreased PDE5A expression and elevated cGMP level. Co-transduction of the three lentiviral vectors resulted in a more significant elevation of cGMP in HEK293 cells without obvious cytotoxicity. CONCLUSION: To the best of our knowledge, this is the first study to show that co-expression of exogenous subunits of the soluble guanylyl cyclase could form functional enzyme and increase cellular cGMP level in mammalian cells. Simultaneous expression of PDE5A shRNA could alleviate feedback up-regulation on PDE5A caused by cGMP elevation. Further studies are required to evaluate the effects of these constructs in vivo.
Collapse
Affiliation(s)
- Gao Jing
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
- Family Medicine Clinic, Tianjin United Family Healthcare, Tianjin, China
| | - Zhang Xia
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Quan Lei
- Tianjin Key Laboratory of Exercise Physiology and Sport Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, China
| |
Collapse
|
7
|
Gotoh D, Saito T, Karnup S, Morizawa Y, Hori S, Nakai Y, Miyake M, Torimoto K, Fujimoto K, Yoshimura N. Therapeutic effects of a soluble guanylate cyclase activator, BAY 60-2770, on lower urinary tract dysfunction in mice with spinal cord injury. Am J Physiol Renal Physiol 2022; 323:F447-F454. [PMID: 35952343 PMCID: PMC9485004 DOI: 10.1152/ajprenal.00105.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
We aimed to evaluate the effects of a soluble guanylate cyclase (sGC) activator, BAY 60-2770, on neurogenic lower urinary tract dysfunction in mice with spinal cord injury (SCI). Mice were divided into the following three groups: spinal cord intact (group A), SCI + vehicle (group B), and SCI + BAY 60-2770 (group C). SCI mice underwent Th8-Th9 spinal cord transection and treatment with BAY 60-2770 (10 mg/kg/day) once daily for 2-4 wk after SCI. We evaluated urodynamic parameters using awake cystometry and external urethral sphincter electromyograms (EMG); mRNA levels of mechanosensory channels, nitric oxide (NO)-, ischemia-, and inflammation-related markers in L6-S1 dorsal root ganglia, the urethra, and bladder tissues; and protein levels of cGMP in the urethra at 4 wk after SCI. With awake cystometry, nonvoiding contractions, postvoid residual, and bladder capacity were significantly larger in group B than in group C. Voiding efficiency (VE) was significantly higher in group C than in group B. In external urethral sphincter EMGs, the duration of notch-like reductions in intravesical pressure and reduced EMG activity time were significantly longer in group C than in group B. mRNA expression levels of transient receptor potential ankyrin 1, transient receptor potential vanilloid 1, acid-sensing ion channel (ASIC)1, ASIC2, ASIC3, and Piezo2 in the dorsal root ganglia, and hypoxia-inducible factor-1α, VEGF, and transforming growth factor-β1 in the bladder were significantly higher in group B than in groups A and C. mRNA levels of neuronal NO synthase, endothelial NO synthase, and sGCα1 and protein levels of cGMP in the urethra were significantly lower in group B than in groups A and C. sGC modulation might be useful for the treatment of SCI-related neurogenic lower urinary tract dysfunction.NEW & NOTEWORTHY This is the first report to evaluate the effects of a soluble guanylate cyclase activator, BAY 60-2770, on neurogenic lower urinary tract dysfunction in mice with spinal cord injury.
Collapse
Affiliation(s)
- Daisuke Gotoh
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sergei Karnup
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Yasushi Nakai
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Japan
| | | | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Gotoh D, Cao N, Alexandre EC, Saito T, Morizawa Y, Hori S, Miyake M, Torimoto K, Fujimoto K, Yoshimura N. Effects of low-dose insulin or a soluble guanylate cyclase activator on lower urinary tract dysfunction in streptozotocin-induced diabetic rats. Life Sci 2021; 286:120001. [PMID: 34614417 DOI: 10.1016/j.lfs.2021.120001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022]
Abstract
AIMS To examine the effects of low-dose insulin or a soluble guanylate cyclase activator (sGC) on lower urinary tract dysfunction (LUTD) in rats with diabetes mellitus (DM). MAIN METHODS Female Sprague-Dawley rats were divided into non-DM control (N), DM induced by streptozotocin (65 mg/kg), with low-dose insulin (DI), DM with vehicle (D), and DM with sGC (GC) groups. In GC group, BAY 60-2770 (1 mg/kg/day) was orally administered in 6-8 weeks after DM. Voiding assay at 2, 4, and 8 weeks after DM, cystometry, and urethral pressure recordings at 8 weeks of DM were performed. mRNA levels of NO-related markers and cGMP protein levels in the urethra, and ischemia and inflammation markers in the bladder were evaluated by RT-PCR. KEY FINDINGS Moderate levels of high blood glucose were maintained in Group DI versus Group D. The 24-h voided volume was significantly higher in Group D versus Groups N and DI. Non-voiding contractions were significantly greater, and voiding efficiency and urethral pressure reduction were significantly lower in Group D versus Groups N, DI, and GC. Urethral cGMP levels were significantly lower in Group D versus Groups N and GC. mRNA levels of PDE5 in the urethra and ischemia and inflammation markers in the bladder increased in Group D versus Group N or DI was reduced after sGC treatment. SIGNIFICANCE DI rats with a lesser degree of bladder and urethral dysfunction might be useful as a slow-progressive DM model. sGC activation could be an effective treatment of LUTD in DM.
Collapse
Affiliation(s)
- Daisuke Gotoh
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America; Department of Urology, Nara Medical University, Kashihara, Japan
| | - Nailong Cao
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America
| | - Eduardo C Alexandre
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America
| | - Yosuke Morizawa
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Shunta Hori
- Department of Urology, Nara Medical University, Kashihara, Japan
| | - Makito Miyake
- Department of Urology, Nara Medical University, Kashihara, Japan
| | | | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh, Pittsburgh, School of Medicine, PA, United States of America.
| |
Collapse
|
9
|
Bee Bread Ameliorates Vascular Inflammation and Impaired Vasorelaxation in Obesity-Induced Vascular Damage Rat Model: The Role of eNOS/NO/cGMP-Signaling Pathway. Int J Mol Sci 2021; 22:ijms22084225. [PMID: 33921777 PMCID: PMC8072722 DOI: 10.3390/ijms22084225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/29/2022] Open
Abstract
Obesity and hyperlipidemia are major risk factors for developing vascular diseases. Bee bread (BB) has been reported to exhibit some biological actions, including anti-obesity and anti-hyperlipidemic. This study aims to investigate whether bee bread can ameliorate vascular inflammation and impaired vasorelaxation activity through eNOS/NO/cGMP pathway in obese rats. Forty male Sprague-Dawley rats were randomly divided into four groups (n = 10/group), namely: control (normal group), obese rats (OB group), obese rats treated with bee bread (0.5 g/kg/day, OB/BB group) and obese rats treated with orlistat (10 mg/kg/day, OB/OR group). The latter three groups were given a high-fat diet (HFD) for 6 weeks to induced obesity before being administered with their respective treatments for another 6 weeks. After 12 weeks of the total experimental period, rats in the OB group demonstrated significantly higher Lee obesity index, lipid profile (total cholesterol, triglyceride, low-density lipoprotein), aortic proinflammatory markers (tumor necrosis factor-α, nuclear factor-κβ), aortic structural damage and impairment in vasorelaxation response to acetylcholine (ACh). Bee bread significantly ameliorated the obesity-induced vascular damage manifested by improvements in the lipid profile, aortic inflammatory markers, and the impaired vasorelaxation activity by significantly enhancing nitric oxide release, promoting endothelial nitric oxide synthase (eNOS) and cyclic guanosine monophosphate (cGMP) immunoexpression. These findings suggest that the administration of bee bread ameliorates the impaired vasorelaxation response to ACh by improving eNOS/NO/cGMP-signaling pathway in obese rats, suggesting its vascular therapeutic role.
Collapse
|
10
|
Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 2021; 296:100336. [PMID: 33508317 PMCID: PMC7949132 DOI: 10.1016/j.jbc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 11/22/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a heme-containing heterodimeric enzyme that generates many molecules of cGMP in response to its ligand nitric oxide (NO); sGC thereby acts as an amplifier in NO-driven biological signaling cascades. Because sGC helps regulate the cardiovascular, neuronal, and gastrointestinal systems through its cGMP production, boosting sGC activity and preventing or reversing sGC inactivation are important therapeutic and pharmacologic goals. Work over the last two decades is uncovering the processes by which sGC matures to become functional, how sGC is inactivated, and how sGC is rescued from damage. A diverse group of small molecules and proteins have been implicated in these processes, including NO itself, reactive oxygen species, cellular heme, cell chaperone Hsp90, and various redox enzymes as well as pharmacologic sGC agonists. This review highlights their participation and provides an update on the processes that enable sGC maturation, drive its inactivation, or assist in its recovery in various settings within the cell, in hopes of reaching a better understanding of how sGC function is regulated in health and disease.
Collapse
|
11
|
Oshiro T, Kimura R, Izumi K, Ashikari A, Saito S, Miyazato M. Changes in urethral smooth muscle and external urethral sphincter function with age in rats. Physiol Rep 2021; 8:e14643. [PMID: 33356016 PMCID: PMC7757673 DOI: 10.14814/phy2.14643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/03/2020] [Accepted: 10/20/2020] [Indexed: 01/09/2023] Open
Abstract
To confirm changes in urethral activity with age, both intravesical pressure and urethral perfusion pressure (UPP) were recorded and external urethral sphincter electromyography (EUS-EMG) was performed. A total of 33 female Sprague Dawley rats aged 3 months (young rats), 12 months (middle-aged rats), and 24 months (aged rats) were used. Bladder activity was evaluated using continuous cystometry. Urethral activity was evaluated by simultaneously recording intravesical pressure and UPP in isovolumetric conditions under urethane anesthesia in each group. Additionally, EUS-EMG activity was monitored under the same conditions. In continuous cystometry, the amplitude of bladder contractions was not different among the three groups; nevertheless, residual urine volume was significantly increased in middle-aged and aged rats, as compared in young rats. With respect to UPP, the change in UPP was significantly smaller in aged rats (60%) and middle-aged rats (64%) than in young rats. Furthermore, the mean amplitude of high-frequency oscillations of the EUS was significantly lower in aged (61%) and middle-aged rats (70%) than in young rats. EUS-EMG revealed EUS bursting activity during voiding with clear active and silent phases in young rats but unclear active and silent phases in aged rats. Masson's trichrome staining of the urethra showed EUS atrophy in aged rats compared to young and middle-aged rats. The results indicate that aging induces two urethral dysfunctions in the urethral smooth muscle and EUS, which may lead to dyscoordination between the urinary bladder and urethra.
Collapse
Affiliation(s)
- Takuma Oshiro
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Ryu Kimura
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Keiichiro Izumi
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Asuka Ashikari
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Seiichi Saito
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Minoru Miyazato
- Department of Systems PhysiologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| |
Collapse
|
12
|
Activation of PKG and Akt Is Required for Cardioprotection by Ramelteon-Induced Preconditioning and Is Located Upstream of mKCa-Channels. Int J Mol Sci 2020; 21:ijms21072585. [PMID: 32276406 PMCID: PMC7177737 DOI: 10.3390/ijms21072585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Ramelteon is a Melatonin 1 (MT1)—and Melatonin 2 (MT2)—receptor agonist conferring cardioprotection by pharmacologic preconditioning. While activation of mitochondrial calcium-sensitive potassium (mKCa)-channels is involved in this protective mechanism, the specific upstream signaling pathway of Ramelteon-induced cardioprotection is unknown. In the present study, we (1) investigated whether Ramelteon-induced cardioprotection involves activation of protein kinase G (PKG) and/or protein kinase B (Akt) and (2) determined the precise sequence of PKG and Akt in the signal transduction pathway of Ramelteon-induced preconditioning. Hearts of male Wistar rats were randomized and placed on a Langendorff system, perfused with Krebs–Henseleit buffer at a constant pressure of 80 mmHg. All hearts were subjected to 33 min of global ischemia and 60 min of reperfusion. Before ischemia, hearts were perfused with Ramelteon (Ram) with or without the PKG or Akt inhibitor KT5823 and MK2206, respectively (KT5823 + Ram, KT5823, MK2206 + Ram, MK2206). To determine the precise signaling sequence, subsequent experiments were conducted with the guanylate cyclase activator BAY60-2770 and the mKCa-channel activator NS1619. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Ramelteon-induced infarct size reduction was completely blocked by KT5823 (p = 0.0012) and MK2206 (p = 0.0005). MK2206 with Ramelteon combined with BAY60-2770 reduced infarct size significantly (p = 0.0014) indicating that PKG activation takes place after Akt. Ramelteon and KT5823 (p = 0.0063) or MK2206 (p = 0.006) respectively combined with NS1619 also significantly reduced infarct size, indicating that PKG and Akt are located upstream of mKCa-channels. This study shows for the first time that Ramelteon-induced preconditioning (1) involves activation of PKG and Akt; (2) PKG is located downstream of Akt and (3) both enzymes are located upstream of mKCa-channels in the signal transduction pathway.
Collapse
|
13
|
Alexandre EC, Cao N, Mizoguchi S, Saito T, Kurobe M, Gotoh D, Okorie M, Igarashi T, Antunes E, Yoshimura N. Urethral dysfunction in a rat model of chemically induced prostatic inflammation: potential involvement of the MRP5 pump. Am J Physiol Renal Physiol 2020; 318:F754-F762. [PMID: 32036697 DOI: 10.1152/ajprenal.00566.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Prostate inflammation (PI) is a clinical condition associated with infection and/or inflammation of the prostate. It is a common disease frequently associated to lower urinary tract (LUT) symptoms. The urethra is an understudied structure in the LUT and plays a fundamental role in the urinary cycle. Here, we proposed to evaluate the effect of PI on the urethra tissue. Male Sprague-Dawley rats were used, and PI was induced by formalin injection into the ventral lobes of the prostate. The pelvic urethra at the prostatic level was harvested for histological analysis, contraction (electrical field stimulation and phenylephrine), and relaxation (sodium nitroprusside/MK-571) experiments. Various gene targets [cytochrome c oxidase subunit 2, transforming growth factor-β1, interleukin-1β, hypoxia-inducible factor-1α, α1A-adrenoceptor, inositol 1,4,5-trisphosphate receptor type 1, voltage-gated Ca2+ channel subunit-α1D, neuronal nitric oxide synthase, soluble guanylyl cyclase, phosphodiesterase 5A, protein kinase CGMP-dependent 1, and multidrug resistance-associated protein 5 (MRP5; ATP-binding cassette subfamily C member 5)] were quantified, and cGMP levels were measured. No histological changes were detected, and functional assays revealed decreased contraction and increased relaxation of urethras from the PI group. The addition of MK-571 to functional assays increased urethral relaxation. Genes associated with inflammation were upregulated in urethras from the PI group, such as cytochrome oxidase c subunit 2, transforming growth factor-β1, interleukin-1β, and hypoxia-inducible factor-1α. We also found increased expression of L-type Ca2+ channels and the neuronal nitric oxide synthase enzyme and decreased expression of the MRP5 pump. Finally, cGMP production was enhanced in urethral tissue of PI animals. The results indicate that PI is associated with proinflammatory gene expression in the urethra without histologically evident inflammation and that PI produces a dysfunctional urethra and MRP5 pump downregulation, which results in cGMP accumulation inside the cell. These findings would help to better understand LUT dysfunctions associated with PI and the role of MRP pumps in the control of LUT function.
Collapse
Affiliation(s)
- Eduardo C Alexandre
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Nailong Cao
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Shinsuke Mizoguchi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tetsuichi Saito
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Masahiro Kurobe
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daisuke Gotoh
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Meri Okorie
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Taro Igarashi
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Ruviaro AR, Barbosa PDPM, Alexandre EC, Justo AFO, Antunes E, Macedo GA. Aglycone-rich extracts from citrus by-products induced endothelium-independent relaxation in isolated arteries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
do Vale GT, Sousa AH, Gonzaga NA, de Oliveira MG, Justo AF, Alexandre EC, Tanus-Santos JE, Antunes E, Tirapelli CR. Chronic ethanol consumption induces micturition dysfunction and alters the oxidative state of the urinary bladder. Can J Physiol Pharmacol 2019; 97:1103-1114. [DOI: 10.1139/cjpp-2019-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Oxidative stress is pointed out as a major mechanism by which ethanol induces functional and structural changes in distinctive tissues. We evaluated whether ethanol consumption would increase oxidative stress and cause micturition dysfunction. Male C57BL/6J mice were treated with 20% ethanol (v/v) for 10 weeks. Our findings showed that chronic ethanol consumption reduced micturition spots and urinary volume in conscious mice, whereas in anaesthetized animals cystometric analysis revealed reduced basal pressure and increased capacity, threshold pressure, and maximum voiding. Treatment with ethanol reduced the contraction induced by carbachol in isolated bladders. Chronic ethanol consumption increased the levels of oxidant molecules and thiobarbituric acid reactive species in the mouse bladder. Upregulation of Nox2 was detected in the bladder of ethanol-treated mice. Increased activity of both superoxide dismutase and catalase were detected in the mouse bladder after treatment with ethanol. Conversely, decreased levels of reduced glutathione were detected in the bladder of ethanol-treated mice. The present study first demonstrated that chronic ethanol consumption induced micturition dysfunction and that this response was accompanied by increased levels of oxidant molecules in the mousebladder. These findings suggest that ethanol consumption is a risk factor for vesical dysfunction.
Collapse
Affiliation(s)
- Gabriel T. do Vale
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Arthur H. Sousa
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Natália A. Gonzaga
- Laboratório de Farmacologia, DEPCH, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Mariana G. de Oliveira
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alberto F.O. Justo
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Eduardo C. Alexandre
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Jose E. Tanus-Santos
- Programa de Pós-graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Edson Antunes
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos R. Tirapelli
- Escola de Enfermagem de Ribeirão Preto - DEPCH / Faculdade de Ciências Farmacêuticas de Ribeirão Preto - DFQ, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
16
|
Musicki B, Anele UA, Campbell JD, Karakus S, Shiva S, Silva FH, Burnett AL. Dysregulated NO/PDE5 signaling in the sickle cell mouse lower urinary tract: Reversal by oral nitrate therapy. Life Sci 2019; 238:116922. [PMID: 31634463 DOI: 10.1016/j.lfs.2019.116922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 01/12/2023]
Abstract
AIMS Nitric oxide (NO) has a critical, but not well understood, influence in the physiology of the lower urinary tract. We evaluated the effect of NO/phosphodiesterase (PDE)5 signaling in voiding dysfunction in the sickle cell disease (SCD) mouse, characterized by low NO bioavailability. MAIN METHODS Adult SCD (Sickle) and wild-type (WT) male mice were treated daily with sodium nitrate (10 mM) or vehicle. After 18 days, blood was obtained for nitrite measurement, urethra was collected for organ bath study, and bladder and urethra were collected for Western blot analysis of PDE5 phosphorylation (Ser-92) (activated form). Non-anesthetized mice underwent evaluation of urine volume by void spot assay. eNOS phosphorylation (Ser-1177) and nNOS phosphorylation (Ser-1412) (positive regulatory sites) were evaluated in the bladder and urethra of untreated mice. KEY FINDINGS Sickle mice exhibited decreased eNOS, nNOS, and PDE5 phosphorylation in the bladder and urethra, decreased plasma nitrite levels, increased relaxation of phenylephrine-contracted urethral tissue to an NO donor sodium nitroprusside, and increased total urine volume, compared with WT mice. Nitrate treatment normalized plasma nitrite levels, relaxation of urethra to sodium nitroprusside, PDE5 phosphorylation in the urethra and bladder, and urine volume in Sickle mice. SIGNIFICANCE Derangement in PDE5 activity associated with basally low NO bioavailability in the bladder and urethra contributes to the molecular basis for voiding abnormalities in Sickle mice. Inorganic nitrate supplementation normalized voiding in Sickle mice through mechanisms likely involving upregulation of PDE5 activity. These findings suggest that interventions targeting dysregulatory NO/PDE5 signaling may ameliorate overactive bladder in SCD.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Uzoma A Anele
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey D Campbell
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Serkan Karakus
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sruti Shiva
- Department of Pharmacology & Chemical Biology, Vascular Medicine Institute, University of Pittsburgh, USA
| | - Fabio H Silva
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Abstract
INTRODUCTION In men, lower urinary tract symptoms (LUTS) are primarily attributed to benign prostatic hyperplasia (BPH). Therapeutic options are targeted to relax prostate smooth muscle and/or reduce prostate enlargement. Areas covered: This article reviews the major preclinical and clinical data on PDE5 inhibitors with a specific focus on tadalafil. It includes details of the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) - PDE5 pathway in the LUT organs (bladder and prostate) in addition to the available data on tadalafil in patients with LUTS secondary to BPH with or without erectile dysfunction (ED). Expert opinion: Preclinical and clinical data have clearly demonstrated that PDE5 inhibitors induce bladder and prostate relaxation, which contributes to the improvement seen in storage symptoms in both animal models of bladder and prostate hypercontractility. Tadalafil is effective both as a monotherapy and add-on therapy in patients with LUTS secondary to BPH. Furthermore, as LUTS-BPH and ED are urological disorders that commonly coexist in aging men, tadalafil is more advantageous than α1-adrenoceptors and should be used as the first option. Tadalafil is a safe and tolerable therapy and unlike α1- adrenoceptors and 5-alpha reductase inhibitors, which can cause sexual dysfunctions, tadalafil improves sexual function.
Collapse
Affiliation(s)
- Fabiola Zakia Mónica
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| | - Gilberto De Nucci
- a Department of Pharmacology, Faculty of Medical Sciences , University of Campinas , Campinas , Sao Paulo , Brazil
| |
Collapse
|
18
|
Comparative Studies of the Dynamics Effects of BAY60-2770 and BAY58-2667 Binding with Human and Bacterial H-NOX Domains. Molecules 2018; 23:molecules23092141. [PMID: 30149624 PMCID: PMC6225106 DOI: 10.3390/molecules23092141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/11/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Soluble guanylate cyclase (sGC) is a key enzyme implicated in various physiological processes such as vasodilation, thrombosis and platelet aggregation. The enzyme’s Heme-Nitric oxide/Oxygen (H-NOX) binding domain is the only sensor of nitric oxide (NO) in humans, which on binding with NO activates sGC to produce the second messenger cGMP. H-NOX is thus a hot target for drug design programs. BAY60-2770 and BAY58-2667 are two widely studied activators of sGC. Here we present comparative molecular dynamics studies to understand the molecular details characterizing the binding of BAY60-2770 and BAY58-2667 with the human H-NOX (hH-NOX) and bacterial H-NOX (bH-NOX) domains. HartreeFock method was used for parametrization of both the activators. A 50 ns molecular dynamics (MD) simulation was run to identify the functionally critical regions of the H-NOX domains. The CPPTRAJ module was used for analysis. BAY60-2770 on binding with bH-NOX, triggered rotational movement in signaling helix F and significant dynamicity in loops α and β, but in hH-NOX domain the compound showed relatively lesser aforementioned structural fluctuations. Conversely, hH-NOX ligated BAY58-2667 experienced highest transitions in its helix F due to electrostatic interactions with D84, T85 and R88 residues which are not conserved in bH-NOX. These conformational transformations might be essential to communicate with downstream PAS, CC and cyclase domains of sGC. Comparative MD studies revealed that BAY bound bHNOX dynamics varied from that of hH-NOX, plausibly due to some key residues such as R40, F74 and Y112 which are not conserved in bacteria. These findings will help to the design of novel drug leads to cure diseases associated to human sGC.
Collapse
|
19
|
Bertollotto GM, de Oliveira MG, Alexandre EC, Calmasini FB, Passos GR, Antunes E, Mónica FZ. Inhibition of Multidrug Resistance Proteins by MK 571 Enhances Bladder, Prostate, and Urethra Relaxation through cAMP or cGMP Accumulation. J Pharmacol Exp Ther 2018; 367:138-146. [PMID: 30108158 DOI: 10.1124/jpet.118.250076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
The biologic effect of cAMP and cGMP is terminated by phosphodiesterases and multidrug resistance proteins MRP4 and MRP5, which pump cyclic nucleotides out of the cell. Therefore, this study aimed to characterize the role of MRP inhibitor, MK 571 (3-[[[3-[(1E)-2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]propanoic acid), in the bladder, prostate, and urethra of male mice by means of functional assays, protein expression, and cyclic nucleotide quantification. The cumulative addition of MK 571 (1-30 µM) produced only small relaxation responses (approximately 25%) in all studied tissues. In the bladder, isoprenaline/fenoterol and forskolin concentration-dependently relaxed and MK 571 (20 µM) increased the maximal response values by 37% and 24%, respectively. When MK 571 was coincubated with fenoterol or forskolin, intracellular levels of cAMP and protein expression of phospho-vasodilator-stimulated phosphoprotein (p-VASP) Ser157 were significantly greater compared with bladders stimulated with fenoterol or forskolin alone. In the prostate and urethra, sodium nitroprusside concentration-dependently relaxed and MK 571 (20 µM) significantly increased relaxation responses by 70% and 56%, respectively, accompanied by greater intracellular levels of cGMP and protein expression of p-VASP Ser239 in the prostate. Tadalafil and BAY 41-2272 (5-cyclopropyl-2-[1-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-4-pyrimidinamine) also relaxed the prostate and urethra, respectively, and MK 571 markedly enhanced this response. The stable analog of cGMP (8-Br-cGMP) induced concentration-dependent relaxation responses in the prostate and urethra, and MK 571 significantly increased the relaxation response. In conclusion, to our knowledge, this is the first study to show that efflux transporters are physiologically active in the bladder, prostate, and urethra to control intracellular levels of cAMP or cGMP.
Collapse
Affiliation(s)
- Gabriela Maria Bertollotto
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Eduardo Costa Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiano Beraldi Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Gabriela Reolon Passos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
Alexandre EC, Calmasini FB, Sponton ACDS, de Oliveira MG, André DM, Silva FH, Delbin MA, Mónica FZ, Antunes E. Influence of the periprostatic adipose tissue in obesity-associated mouse urethral dysfunction and oxidative stress: Effect of resveratrol treatment. Eur J Pharmacol 2018; 836:25-33. [PMID: 30102890 DOI: 10.1016/j.ejphar.2018.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/15/2022]
Abstract
Obese mice display overactive bladder (OAB) associated with impaired urethra smooth muscle (USM) function. In this study, we evaluated the role of the adipose tissue surrounding the urethra and prostate in obese mice (here referred as periprostatic adipose tissue; PPAT) to the USM dysfunction. Male C57BL6/JUnib mice fed with either a standard-chow or high-fat diet to induce obesity were used. In PPAT, histological analysis, and qPCR analysis for gp91phox, tumor necrosis factor-α (TNF-α) and superoxide dismutase (SOD) were conducted. In USM, concentration-response curves to contractile and relaxing agents, as well as measurements of reactive-oxygen species and nitric oxide (NO) levels were performed. The higher PPAT area in obese mice was accompanied by augmented gp91phox (NOX2) and TNF-α expressions, together with decreased SOD1 expression. In USM of obese group, the contractile responses to phenylephrine and vasopressin were increased, whereas the relaxations induced with glyceryl trinitrate were reduced. The reactive-oxygen species and NO levels in USM of obese mice were increased and decreased, respectively. A higher SOD expression was also detected in obese group whilst no changes in the gp91phox levels were observed. We next evaluated the effects of the antioxidant resveratrol (100 mg/kg/day, two-weeks, PO) in the functional alterations and NO levels of obese mice. Resveratrol treatment in obese mice reversed both the functional USM dysfunction and the reduced NO production. Our data show that PPAT exerts a local inflammatory response and increases oxidative stress that lead to urethral dysfunction. Resveratrol could be an auxiliary option to prevent obesity-associated urethral dysfunction.
Collapse
Affiliation(s)
- Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil.
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Amanda C da S Sponton
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Diana M André
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Fábio H Silva
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-878, Brazil
| | - Maria Andréia Delbin
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| |
Collapse
|
21
|
Horst BG, Marletta MA. Physiological activation and deactivation of soluble guanylate cyclase. Nitric Oxide 2018; 77:65-74. [PMID: 29704567 PMCID: PMC6919197 DOI: 10.1016/j.niox.2018.04.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 01/24/2023]
Abstract
Soluble guanylate cyclase (sGC) is responsible for transducing the gaseous signaling molecule nitric oxide (NO) into the ubiquitous secondary signaling messenger cyclic guanosine monophosphate in eukaryotic organisms. sGC is exquisitely tuned to respond to low levels of NO, allowing cells to respond to non-toxic levels of NO. In this review, the structure of sGC is discussed in the context of sGC activation and deactivation. The sequence of events in the activation pathway are described into a comprehensive model of in vivo sGC activation as elucidated both from studies with purified enzyme and those done in cells. This model is then used to discuss the deactivation of sGC, as well as the molecular mechanisms of pathophysiological deactivation.
Collapse
Affiliation(s)
- Benjamin G Horst
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Michael A Marletta
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
22
|
Shi W, Deng H, Zhang J, Zhang Y, Zhang X, Cui G. Mitochondria-Targeting Small Molecules Effectively Prevent Cardiotoxicity Induced by Doxorubicin. Molecules 2018; 23:E1486. [PMID: 29921817 PMCID: PMC6099719 DOI: 10.3390/molecules23061486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Doxorubicin (Dox) is a chemotherapeutic agent widely used for the treatment of numerous cancers. However, the clinical use of Dox is limited by its unwanted cardiotoxicity. Mitochondrial dysfunction has been associated with Dox-induced cardiotoxicity. To mitigate Dox-related cardiotoxicity, considerable successful examples of a variety of small molecules that target mitochondria to modulate Dox-induced cardiotoxicity have appeared in recent years. Here, we review the related literatures and discuss the evidence showing that mitochondria-targeting small molecules are promising cardioprotective agents against Dox-induced cardiac events.
Collapse
Affiliation(s)
- Wei Shi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Jianyong Zhang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, China.
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Xiufang Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255000, China.
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
23
|
Mendes-Silverio CB, Lescano CH, Zaminelli T, Sollon C, Anhê GF, Antunes E, Mónica FZ. Activation of soluble guanylyl cyclase with inhibition of multidrug resistance protein inhibitor-4 (MRP4) as a new antiplatelet therapy. Biochem Pharmacol 2018; 152:165-173. [PMID: 29605625 DOI: 10.1016/j.bcp.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
The intracellular levels of cyclic GMP are controlled by its rate of formation through nitric oxide-mediated stimulation of soluble guanylate cyclase (sGC) and its degradation by phosphodiesterases. Multidrug resistance protein 4 (MRP4) expressed in human platelets pumps cyclic nucleotides out of cells. In search for new antiplatelet strategies, we tested the hypothesis that sGC activation concomitant with MRP4 inhibition confers higher antiplatelet efficacy compared with monotherapy alone. This study was undertaken to investigate the pharmacological association of the sGC activator BAY 60-2770 with the MRP4 inhibitor MK571 on human washed platelets. Collagen- and thrombin-induced platelet aggregation and ATP-release reaction assays were performed. BAY 60-2770 (0.001-10 µM) produced significant inhibitions of agonist-induced platelet aggregation accompanied by reduced ATP-release. Pre-incubation with 10 µM MK571 alone had no significant effect on platelet aggregation and ATP release, but it produced a left displacement by about of 10-100-fold in the concentration-response curves to BAY 60-2770. Pre-incubation with MK571increased and decreased, respectively, the intracellular and extracellular levels of cGMP to BAY 60-2770, whereas the cAMP levels remained unchanged. The increased VASP-serine 239 phosphorylation in BAY 60-2770-treated platelets was enhanced by MK571. In Fluo-4-loaded platelets, BAY 60-2770 reduced the intracellular Ca2+ levels, an effect significantly potentiated by MK571. Flow cytometry assays showed that BAY 60-2770 reduces the αIIbβ3 integrin activation, which was further reduced by MK571 association. Blocking the MRP4-mediated efflux of cGMP may be a potential mechanism to enhance the antiplatelet efficacy of sGC activators.
Collapse
Affiliation(s)
- Camila B Mendes-Silverio
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Caroline H Lescano
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Tiago Zaminelli
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Carolina Sollon
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Gabriel F Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Sao Paulo, Brazil.
| |
Collapse
|
24
|
Kimura R, Miyazato M, Ashikari A, Oshiro T, Saito S. Age‐associated urethral dysfunction in urethane‐anesthetized rats. Neurourol Urodyn 2018; 37:1313-1319. [DOI: 10.1002/nau.23481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ryu Kimura
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Minoru Miyazato
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Asuka Ashikari
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Takuma Oshiro
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| | - Seiichi Saito
- Department of UrologyGraduate School of MedicineUniversity of the RyukyusOkinawaJapan
| |
Collapse
|
25
|
Mónica FZ, Antunes E. Stimulators and activators of soluble guanylate cyclase for urogenital disorders. Nat Rev Urol 2017; 15:42-54. [DOI: 10.1038/nrurol.2017.181] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Lee KH, Lee SR, Cho H, Woo JS, Kang JH, Jeong YM, Cheng XW, Kim WS, Kim W. Cardioprotective effects of PKG activation by soluble GC activator, BAY 60-2770, in ischemia-reperfusion-injured rat hearts. PLoS One 2017; 12:e0180207. [PMID: 28671970 PMCID: PMC5495340 DOI: 10.1371/journal.pone.0180207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/12/2017] [Indexed: 11/19/2022] Open
Abstract
Soluble guanylate cyclase (sGC) has been suggested as a therapeutic target for cardiac ischemia-reperfusion (IR) injury. Until now, the molecular mechanism of BAY 60-2770, a sGC activator, in cardiac IR injury has not been assessed. To identify the cardioprotective effects of BAY 60-2770 in IR-injured rat hearts, IR injury was established by occlusion of LAD for 40 min and reperfusion for 7 days, and the effects of BAY 60-2770 on myocardial protection were assessed by echocardiography and TTC staining. 5 nM and 5 μM of BAY 60-2770 were perfused into isolated rat hearts in a Langendorff system. After 10- or 30-min reperfusion with BAY 60-2770, cGMP and cAMP concentrations and PKG activation status were examined. Hearts were also perfused with 1 μM KT5823 or 100 μM 5-HD in conjunction with 5 nM Bay 60-2770 to evaluate the protective role of PKG. Mitochondrial oxidative stress was investigated under hypoxia-reoxygenation in H9c2 cells. In IR-injured rat hearts, BAY 60-2770 oral administration reduced infarct size by TTC staining and improved left ventricular function by echocardiography. Tissue samples from BAY 60-2770-perfused hearts had approximately two-fold higher cGMP levels. BAY 60-2770 increased PKG activity in the myocardium, and the reduced infarct area by BAY 60-2770 was abrogated by KT-5823 in isolated myocardium. In H9c2 cardiac myoblasts, hypoxia-reoxygenation-mediated mitochondrial ROS generation was diminished with BAY 60-2770 treatment, but was recovered by pretreatment with KT-5823. BAY 60-2770 demonstrated a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. BAY 60-2770 has a protective effect against cardiac IR injury via mitoKATP opening and decreased mitoROS by PKG activation. These results demonstrated that BAY 60-2770 may be used as a therapeutic agent for cardiac IR injury.
Collapse
Affiliation(s)
- Kyung Hye Lee
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ra Lee
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Haneul Cho
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jong Shin Woo
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Jung Hee Kang
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Yun-Mi Jeong
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Xian Wu Cheng
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Shik Kim
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
| | - Weon Kim
- Department of Cardiovascular of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
27
|
Alexandre EC, de Oliveira MG, Campos R, Kiguti LR, Calmasini FB, Silva FH, Grant AD, Yoshimura N, Antunes E. How important is the α 1-adrenoceptor in primate and rodent proximal urethra? Sex differences in the contribution of α 1-adrenoceptor to urethral contractility. Am J Physiol Renal Physiol 2017; 312:F1026-F1034. [PMID: 28298357 DOI: 10.1152/ajprenal.00013.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 12/28/2022] Open
Abstract
Urethral smooth muscle (USM) contributes to urinary continence by contracting during the urine storage phase, which is mainly mediated by activation of postjunctional α1-adrenoceptors. Males and females show differences in the functioning of the lower urinary tract and the most common urinary tract symptoms (LUTS). LUTS in men typically occur in association with bladder outlet obstruction, whereas in women urinary urge-incontinence symptoms are more common. Therefore, this study aimed to evaluate sex differences in α1-adrenoceptor subtype expression and their importance in proximal urethra contraction in the mouse (C57BL6/J) and marmoset (Callithrix jacchus). Contractile responses to phenylephrine, norepinephrine, potassium chloride (KCl), and electrical-field stimulation (EFS) were evaluated. Phenylephrine, norepinephrine, KCl, and EFS produced markedly greater contractions in male mice and marmoset USM compared with females. The sex differences remained unchanged by Nω-nitro-l-arginine (l-NAME; nitric oxide synthase inhibitor), atropine (muscarinic receptor antagonist), and PPADS (P2X1-purinoceptor antagonist). Additionally, selective α1A (but not α1B- and α1D-)-adrenoceptor antagonists significantly reduced phenylephrine-induced USM contractions. qRT-PCR for α1A-, B-, and D-adrenoceptor subtypes revealed a marked presence of the α1A-adrenoceptor subtype in male USM, but not females. Male mouse urethra also exhibited a higher tyrosine hydroxylase mRNA expression. Histomorphometric analysis showed a greater USM area in male than female mice. In conclusion, male mouse and marmoset proximal USM shows strong α1A- adrenoceptor-induced contractions and abundant α1A-adrenoceptor expression, whereas α1A-adrenoceptor-mediated mechanisms are much less important in females. The differential expression of α1-adrenoceptors in the proximal urethra may contribute to the higher incidence of urinary incontinence in women and obstructed voiding in men.
Collapse
Affiliation(s)
- Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil;
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Rafael Campos
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz R Kiguti
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fábio H Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Andrew D Grant
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom; and
| | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
28
|
Tawa M, Kinoshita T, Asai T, Suzuki T, Imamura T, Okamura T. Impact of type 2 diabetes on vascular reactivity to cGMP generators in human internal thoracic arteries. Vascul Pharmacol 2017; 91:36-41. [PMID: 28302516 DOI: 10.1016/j.vph.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/08/2017] [Accepted: 03/11/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The balance between nitric oxide (NO)-sensitive and -insensitive forms of soluble guanylate cyclase (sGC) has been demonstrated to be disrupted in certain lifestyle-related diseases. However, it remains unclear whether type 2 diabetes results in a shift of sGC to the NO-insensitive form. This study addressed this issue in the human blood vessel. METHODS Internal thoracic arteries were obtained from patients undergoing coronary artery bypass grafting. Helically cut strips of the arteries were suspended in organ chambers, and relaxant responses to nitroglycerin (NO-sensitive sGC stimulant) and BAY 60-2770 (NO-insensitive sGC stimulant) were assessed. RESULTS The patients were divided into two groups according to the presence of type 2 diabetes (HbA1c: 7.0±0.3%) or its absence (HbA1c: 5.6±0.1%). Nitroglycerin-induced relaxation was not different in the arteries obtained from type 2 diabetic and non-diabetic patients. In addition, the relaxant response to BAY 60-2770 in type 2 diabetics was comparable to that observed in non-diabetics. Although the patients enrolled often had vascular risk factors other than type 2 diabetes, the relaxant responses were still in the same range in a comparison based on the number of risk factors. However, in separate experiments, the relaxant response to nitroglycerin was attenuated by pre-incubation of the arteries with ODQ (sGC imbalance inducer), whereas the relaxant response to BAY-60-2770 was augmented. CONCLUSIONS These findings suggest that type 2 diabetes does not affect the balance between NO-sensitive and -insensitive sGC in human internal thoracic artery grafts.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | - Takeshi Kinoshita
- Division of Cardiovascular Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tohru Asai
- Division of Cardiovascular Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomoaki Suzuki
- Division of Cardiovascular Surgery, Department of Surgery, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takeshi Imamura
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Tomio Okamura
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
29
|
Daneshgari F, Liu G, Hanna-Mitchell AT. Path of translational discovery of urological complications of obesity and diabetes. Am J Physiol Renal Physiol 2017; 312:F887-F896. [PMID: 28052873 DOI: 10.1152/ajprenal.00489.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/15/2016] [Accepted: 01/01/2017] [Indexed: 01/07/2023] Open
Abstract
Diabetes mellitus (DM) is a prevalent chronic disease. Type 1 DM (T1DM) is a metabolic disorder that is characterized by hyperglycemia in the context of absolute lack of insulin, whereas type 2 DM (T2DM) is due to insulin resistance-related relative insulin deficiency. In comparison with T1DM, T2DM is more complex. The natural history of T2DM in most patients typically involves a course of obesity to impaired glucose tolerance, to insulin resistance, to hyperinsulinemia, to hyperglycemia, and finally to insulin deficiency. Obesity is a risk factor of T2DM. Diabetes causes some serious microvascular and macrovascular complications, such as retinopathy, nephropathy, neuropathy, angiopathy and stroke. Urological complications of obesity and diabetes (UCOD) affect quality of life, but are not well investigated. The urological complications in T1DM and T2DM are different. In addition, obesity itself affects the lower urinary tract. The aim of this perspective is to review the available data, combined with the experience of our research teams, who have spent a good part of last decade on studies of association between DM and lower urinary tract symptoms (LUTS) with the aim of bringing more focus to the future scientific exploration of UCOD. We focus on the most commonly seen urological complications, urinary incontinence, bladder dysfunction, and LUTS, in obesity and diabetes. Knowledge of these associations will lead to a better understanding of the pathophysiology underlying UCOD and hopefully assist urologists in the clinical management of obese or diabetic patients with LUTS.
Collapse
Affiliation(s)
- Firouz Daneshgari
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Ann T Hanna-Mitchell
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
30
|
Calmasini FB, Alexandre EC, Silva FH, De Nucci G, Antunes E, D'Ancona CA, Mónica FZ. Soluble Guanylate Cyclase Modulators, BAY 41-2272 and BAY 60-2770, Inhibit Human and Rabbit Prostate Contractility. Urology 2016; 94:312.e9-312.e15. [DOI: 10.1016/j.urology.2016.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/11/2016] [Accepted: 04/09/2016] [Indexed: 12/18/2022]
|
31
|
Alexandre EC, Calmasini FB, de Oliveira MG, Silva FH, da Silva CPV, André DM, Leonardo FC, Delbin MA, Antunes E. Chronic treatment with resveratrol improves overactive bladder in obese mice via antioxidant activity. Eur J Pharmacol 2016; 788:29-36. [PMID: 27316789 DOI: 10.1016/j.ejphar.2016.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/04/2016] [Accepted: 06/13/2016] [Indexed: 01/24/2023]
Abstract
The objective of the present work was to evaluate whether oral intake with resveratrol ameliorates overactive bladder in high-fat fed mice. Male C57BL6 mice fed with standard chow or high-fat diet to induce obesity received a two-week therapy with resveratrol (100mg/kg, given as a daily gavage). Weight and metabolic profile, together with cystometry and in vitro bladder contractions were evaluated. Measurements of gp91phox and SOD1 mRNA expressions and reactive-oxygen species (ROS) in bladder tissues, and serum TBARS were performed. Obese mice exhibited increases in body weight and epididymal fat mass, which were significantly reduced by oral treatment with resveratrol. Cystometric study in obese mice showed increases in non-voiding contractions, post-voiding pressure and voiding frequency that were reversed by resveratrol treatment. Likewise, the in vitro bladder overactivity in response to electrical-field stimulation (80V, 1-32Hz) or carbachol (1nM to 10mM) were normalized by resveratrol. The gp91phox and SOD1 mRNA expressions in bladder tissues were markedly higher in obese mice compared with lean group. In addition, ROS levels in bladder tissues and serum lipid peroxidation (TBARS assay) were markedly higher in obese compared with lean mice, all of which were reduced by resveratrol treatment. In lean group, resveratrol had no effect in any parameter evaluated. Our results show that two-week therapy of obese mice with resveratrol reduces the systemic and bladder oxidative stress, and greatly ameliorated the cystometry alterations and in vitro bladder overactivity. Resveratrol treatment could be an option to prevent obesity-associated overactive bladder.
Collapse
Affiliation(s)
- Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Fábio H Silva
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-878, Brazil
| | - Carmem P V da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Diana M André
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil
| | - Flávia C Leonardo
- Hematology and Hemotherapy Center, University of Campinas (UNICAMP), Campinas 13083-878, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-862, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas 13084-971, Brazil.
| |
Collapse
|
32
|
Sotolongo A, Zakia Mónica F, Kots A, Xiao H, Liu J, Seto E, Bian K, Murad F. Epigenetic regulation of soluble guanylate cyclase (sGC) β1 in breast cancer cells. FASEB J 2016; 30:3171-80. [DOI: 10.1096/fj.201600339r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Alex Sotolongo
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Fabiola Zakia Mónica
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
- Department of PharmacologyFaculty of Medical SciencesState University of Campinas Campinas Sao Paulo Brazil
| | - Alex Kots
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Haijie Xiao
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Jun Liu
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Edward Seto
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
- Department of PharmacologyFaculty of Medical SciencesState University of Campinas Campinas Sao Paulo Brazil
| | - Ka Bian
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| | - Ferid Murad
- Department of Biochemistry and Molecular MedicineCancer CenterGeorge Washington University Washington District of Columbia USA
| |
Collapse
|
33
|
de Oliveira MG, Calmasini FB, Alexandre EC, De Nucci G, Mónica FZ, Antunes E. Activation of soluble guanylyl cyclase by BAY 58-2667 improves bladder function in cyclophosphamide-induced cystitis in mice. Am J Physiol Renal Physiol 2016; 311:F85-93. [PMID: 27122537 DOI: 10.1152/ajprenal.00041.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/19/2016] [Indexed: 01/15/2023] Open
Abstract
Activators of soluble guanylyl cyclase (sGC) interact directly with its prosthetic heme group, enhancing the enzyme responsiveness in pathological conditions. This study aimed to evaluate the effects of the sGC activator BAY 58-2667 on voiding dysfunction, protein expressions of α1 and β1 sGC subunits and cGMP levels in the bladder tissues after cyclophosphamide (CYP) exposure. Female C57BL/6 mice (20-25 g) were injected with CYP (300 mg/kg ip) to induce cystitis. Mice were pretreated or not with BAY 58-2667 (1 mg/kg, gavage), given 1 h before CYP injection. The micturition patterns and in vitro bladder contractions were evaluated at 24 h. In freely moving mice, the CYP injection produced reduced the micturition volume and increased the number of urine spots. Cystometric recordings in CYP-injected mice revealed significant increases in basal pressure, voiding frequency, and nonvoiding contractions (NVCs), along with decreases in bladder capacity, intercontraction interval, and compliance. BAY 58-2667 significantly prevented the micturition alterations observed in both freely moving mice and cystometry and normalized the reduced in vitro carbachol-induced contractions in the CYP group. Reduced protein expressions of α1 and β1 sGC subunits and of cGMP levels were observed in the CYP group, all of which were prevented by BAY 58-2667. CYP exposure significantly increased reactive-oxygen species (ROS) generation in both detrusor and urothelium, and this was normalized by BAY 58-2667. The increased myeloperoxidase and cyclooxygenase-2 activities in the bladders of the CYP group remained unchanged by BAY 58-2667. Activators of sGC may constitute a novel and promising therapeutic approach for management of interstitial cystitis.
Collapse
Affiliation(s)
- Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabiano B Calmasini
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Eduardo C Alexandre
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Fabíola Z Mónica
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| |
Collapse
|
34
|
Alexandre EC, Kiguti LR, Calmasini FB, Silva FH, da Silva KP, Ferreira R, Ribeiro CA, Mónica FZ, Pupo AS, Antunes E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3 -adrenoceptor activation and α1 -adrenoceptor blockade. Br J Pharmacol 2016; 173:415-28. [PMID: 26493129 DOI: 10.1111/bph.13367] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 01/14/2023] Open
Abstract
LINKED ARTICLE This article is commented on by Michel, M. C., pp. 429-430 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.13379. BACKGROUND AND PURPOSE Mirabegron is the first β3 -adrenoceptor agonist approved for treatment of overactive bladder syndrome. This study aimed to investigate the effects of β3 -adrenoceptor agonist mirabegron in mouse urethra. The possibility that mirabegron also exerts α1 -adrenoceptor antagonism was also tested in rat smooth muscle preparations presenting α1A - (vas deferens and prostate), α1D - (aorta) and α1B -adrenoceptors (spleen). EXPERIMENTAL APPROACH Functional assays were carried out in mouse and rat isolated tissues. Competition assays for the specific binding of [(3) H]prazosin to membrane preparations of HEK-293 cells expressing each of the human α1 -adrenoceptors, as well as β-adrenoceptor mRNA expression and cyclic AMP measurements in mouse urethra, were performed. KEY RESULTS Mirabegron produced concentration-dependent urethral relaxations that were shifted to the right by the selective β3 -adrenoceptor antagonist L-748,337 but unaffected by β1 - and β2 -adrenoceptor antagonists (atenolol and ICI-118,551 respectively). Mirabegron-induced relaxations were enhanced by the PDE4 inhibitor rolipram, and the agonist stimulated cAMP synthesis. Mirabegron also produced rightward shifts in urethral contractions induced by the α1 -adrenoceptor agonist phenylephrine. Schild regression analysis revealed that mirabegron behaves as a competitive antagonist of α1 -adrenoceptors in urethra, vas deferens and prostate (α1A -adrenoceptor, pA2 ≅ 5.6) and aorta (α1D -adrenoceptor, pA2 ≅ 5.4) but not in spleen (α1B -adrenoceptor). The affinities estimated for mirabegron in functional assays were consistent with those estimated in radioligand binding with human recombinant α1A - and α1D -adrenoceptors (pKi ≅ 6.0). CONCLUSION AND IMPLICATIONS The effects of mirabegron in urethral smooth muscle are the result of β3 -adrenoceptor agonism together with α1A and α1D -adrenoceptor antagonism.
Collapse
Affiliation(s)
- E C Alexandre
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - L R Kiguti
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - F B Calmasini
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - F H Silva
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - K P da Silva
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - R Ferreira
- Hematology and Hemotherapy Center, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - C A Ribeiro
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - F Z Mónica
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| | - A S Pupo
- Department of Pharmacology, Institute of Biosciences, University of São Paulo State (UNESP), Botucatu, São Paulo, Brazil
| | - E Antunes
- Department of Pharmacology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
35
|
Wobst J, Rumpf PM, Dang TA, Segura-Puimedon M, Erdmann J, Schunkert H. Molecular variants of soluble guanylyl cyclase affecting cardiovascular risk. Circ J 2015; 79:463-9. [PMID: 25746521 DOI: 10.1253/circj.cj-15-0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soluble guanylyl cyclase (sGC) is the physiological receptor for nitric oxide (NO) and NO-releasing drugs, and is a key enzyme in several cardiovascular signaling pathways. Its activation induces the synthesis of the second messenger cGMP. cGMP regulates the activity of various downstream proteins, including cGMP-dependent protein kinase G, cGMP-dependent phosphodiesterases and cyclic nucleotide gated ion channels leading to vascular relaxation, inhibition of platelet aggregation, and modified neurotransmission. Diminished sGC function contributes to a number of disorders, including cardiovascular diseases. Knowledge of its regulation is a prerequisite for understanding the pathophysiology of deficient sGC signaling. In this review we consolidate the available information on sGC signaling, including the molecular biology and genetics of sGC transcription, translation and function, including the effect of rare variants, and present possible new targets for the development of personalized medicine in vascular diseases.
Collapse
Affiliation(s)
- Jana Wobst
- Department of Cardiovascular Diseases, German Heart Center Munich, Technical University Munich
| | | | | | | | | | | |
Collapse
|
36
|
Silva FH, Leiria LO, Alexandre EC, Davel APC, Mónica FZ, De Nucci G, Antunes E. Prolonged therapy with the soluble guanylyl cyclase activator BAY 60-2770 restores the erectile function in obese mice. J Sex Med 2014; 11:2661-70. [PMID: 25196910 DOI: 10.1111/jsm.12682] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Cardiovascular and endocrine-metabolic diseases associated with increased oxidative stress such as obesity lead to erectile dysfunction (ED). Activators of soluble guanylyl cyclase (sGC) such as BAY 60-2770 reactivate the heme-oxidized sGC in vascular diseases. AIM This study aimed to evaluate the effects of 2-week oral intake with BAY 60-2270 on a murine model of obesity-associated ED. METHODS C57BL/6 male mice were fed for 12 weeks with standard chow or high-fat diet. Lean and obese mice were treated with BAY 60-2770 (1 mg/kg/day, 2 weeks). MAIN OUTCOME MEASURES Measurements of intracavernosal pressure (ICP), along with acetylcholine (10(-9) to 10(-5) M) and electrical field stimulation (EFS; 4-10 Hz)-induced corpus cavernosum relaxations in vitro, were obtained. Levels of cyclic guanosine monophosphate (cGMP), reactive oxygen species (ROS), and sGC protein expressions in cavernosal tissues were measured. RESULTS Cavernous nerve stimulation caused frequency-dependent ICP increases, which were significantly lower in obese compared with lean mice (P < 0.05). Two-week therapy with BAY 60-2770 fully reversed the decreased ICP in obese group. Acetylcholine-induced cavernosal relaxations were 45% lower (P < 0.001) in obese mice, which were fully restored by BAY 60-2770 treatment. Likewise, the EFS-induced relaxations in obese mice were restored by BAY 60-2770. Basal cGMP content in erectile tissue was 68% lower (P < 0.05) in obese mice, an effect normalized by BAY 60-2770. Levels of ROS were 52% higher (P < 0.05) whereas protein expression of α1 sGC subunit was reduced in cavernosal tissue of obese mice, both of which were normalized by BAY 60-2770. In lean group, BAY 60-2770 did not significantly affect any functional, biochemical, or molecular parameter analyzed. CONCLUSIONS Two-week therapy with BAY 60-2770 restores the erectile function in obese mice that is associated with reduced ROS levels, up-regulation of α1 sGC subunit, and increased cGMP levels in the erectile tissue.
Collapse
Affiliation(s)
- Fábio H Silva
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | |
Collapse
|