1
|
Huang Y, Gao Y, Pi X, Zhao S, Liu W. In Vitro Hepatoprotective and Human Gut Microbiota Modulation of Polysaccharide-Peptides in Pleurotus citrinopileatus. Front Cell Infect Microbiol 2022; 12:892049. [PMID: 35669115 PMCID: PMC9165600 DOI: 10.3389/fcimb.2022.892049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Pleurotus citrinopileatus, a golden oyster mushroom, is popular in Asia and has pharmacological functions. However, the effects of polysaccharide-peptides extracted from Pleurotus citrinopileatus and underlying mechanism on digestive systme have not yet been clarified. Here, we determined the composition of two polysaccharide-peptides (PSI and PSII) from P. citrinopileatus and investigated the protective effects of on hepatoprotective and gut microbiota. The results showed that PSI and PSII were made up of similar monosaccharide moieties, except for the varying ratios. Furthermore, PSI and PSII showed that they have the hepatoprotective effects and significantly increased the viabilities and cellular total superoxide dismutase activities increased significantly in HepG2 cells. Intracellular triglyceride content and extracellular alanine aminotransferase and aspartate transaminase contents markedly decreased following treatment with 40 and 50 μg/mL PSI and PSII, respectively. Moreover, PSI and PSII activated the adiponectin pathway and reduced lipid accumulation in liver cells. PSI and PSII elevated short-chain fatty acid concentrations, especially butyric and acetic acids. 16S rRNA gene sequencing analysis showed that PSI promoted the relative abundances of Bifidobacteria, Lactobacillus, Faecalibacterium, as well as Prevotella generas in the gut. PSII markedly suppressed the relative abundances of Escherichia-Shigella and Bacteroides generas. We speculate that the PSI and PSII play a role through liver-gut axis system. Polysaccharide-peptides metabolize by gut microbiota to produce short-chain fatty acids (SCFAs) and in turn influence liver functions.
Collapse
Affiliation(s)
- Yihua Huang
- Disinfection Supply Center, Lishui Second People's Hospital, Lishui, China
| | - Yi Gao
- Department of Stomatology, Beijing Xicheng District Health Care Center for Mothers and Children, Beijing, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
The Nuclear Receptor PXR in Chronic Liver Disease. Cells 2021; 11:cells11010061. [PMID: 35011625 PMCID: PMC8750019 DOI: 10.3390/cells11010061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR), a nuclear receptor known for modulating the transcription of drug metabolizing enzymes and transporters (DMETs), such as cytochrome P450 3A4 and P-glycoprotein, is functionally involved in chronic liver diseases of different etiologies. Furthermore, PXR activity relates to that of other NRs, such as constitutive androstane receptor (CAR), through a crosstalk that in turn orchestrates a complex network of responses. Thus, besides regulating DMETs, PXR signaling is involved in both liver damage progression and repair and in the neoplastic transition to hepatocellular carcinoma. We here summarize the present knowledge about PXR expression and function in chronic liver diseases characterized by different etiologies and clinical outcome, focusing on the molecular pathways involved in PXR activity. Although many molecular details of these finely tuned networks still need to be fully understood, we conclude that PXR and its modulation could represent a promising pharmacological target for the identification of novel therapeutical approaches to chronic liver diseases.
Collapse
|
3
|
Bao S, Zhang Y, Ye J, Zhu Y, Li R, Xu X, Zhang Q. Self-assembled micelles enhance the oral delivery of curcumin for the management of alcohol-induced tissue injury. Pharm Dev Technol 2021; 26:880-889. [PMID: 34238120 DOI: 10.1080/10837450.2021.1950185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Curcumin (CUR) shows great potential in the management of alcohol-use disorders. However, the hydrophobicity and poor oral bioavailability result in the limited therapeutic efficacy of CUR against alcohol-induced tissue injury. Here, self-assembled Soluplus® micelles (Ms) were developed for the enhanced oral delivery of CUR. CUR-loaded Soluplus® micelles (CUR-Ms) were prepared using a thin-film hydration method and these micelles displayed nearly spherical shape with an average size of 62.80 ± 1.29 nm. CUR in micelles showed the greater stability, solubility and dissolution than free CUR. With the increased water solubility of CUR-Ms and P glycoprotein inhibition of Soluplus®, the absorption rate constant (Ka) and apparent permeability coefficient (Papp) of CUR-Ms in intestines was respectively 3.50 and 4.10 times higher than that of free CUR. Pharmacokinetic studies showed that CUR-Ms significantly improved the oral bioavailability of CUR. Specifically, the AUC0-∞ and Cmax of CUR-Ms were increased by 9.45 and 47.38 folds compared to free CUR, respectively. In mice with alcohol-induced tissue injury, the oral administration of CUR-Ms greatly reduced oxidative stress, and significantly defended liver and gastric mucosa from alcoholic damages. The results demonstrated CUR-Ms with good oral bioavailability could represent a promising strategy for the management of alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Sha Bao
- School of Pharmacy, Institute of Materia Medica, Chengdu Medical College, Chengdu, China
| | | | - Jing Ye
- School of Pharmacy, Institute of Materia Medica, Chengdu Medical College, Chengdu, China
| | - Yujin Zhu
- School of Pharmacy, Institute of Materia Medica, Chengdu Medical College, Chengdu, China
| | - Rui Li
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Chengdu Phyto Cosmos Biological Technology Co., Ltd., Chengdu, China
| | - Xiaohong Xu
- School of Pharmacy, Institute of Materia Medica, Chengdu Medical College, Chengdu, China
| | - Quan Zhang
- School of Pharmacy, Institute of Materia Medica, Chengdu Medical College, Chengdu, China.,Department of Pathology, Department of Anatomy and Histology and Embryology, Development and Regeneration Key Lab of Sichuan Province, Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
Barretto SA, Lasserre F, Huillet M, Régnier M, Polizzi A, Lippi Y, Fougerat A, Person E, Bruel S, Bétoulières C, Naylies C, Lukowicz C, Smati S, Guzylack L, Olier M, Théodorou V, Mselli-Lakhal L, Zalko D, Wahli W, Loiseau N, Gamet-Payrastre L, Guillou H, Ellero-Simatos S. The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice. MICROBIOME 2021; 9:93. [PMID: 33879258 PMCID: PMC8059225 DOI: 10.1186/s40168-021-01050-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. RESULTS By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr+/+ vs Pxr-/- C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr+/+ but not Pxr-/- male mice. CONCLUSIONS These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract.
Collapse
Affiliation(s)
- Sharon Ann Barretto
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marion Régnier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Elodie Person
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Bruel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Colette Bétoulières
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarra Smati
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Guzylack
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Ye J, Bao S, Zhao S, Zhu Y, Ren Q, Li R, Xu X, Zhang Q. Self-Assembled Micelles Improve the Oral Bioavailability of Dihydromyricetin and Anti-Acute Alcoholism Activity. AAPS PharmSciTech 2021; 22:111. [PMID: 33748928 DOI: 10.1208/s12249-021-01983-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Dihydromyricetin (DMY) is highly effective in counteracting acute alcohol intoxication. However, its poor aqueous solubility and permeability lead to the low oral bioavailability and limit its clinic application. The aim of this work is to use Solutol®HS15 (HS 15) as surfactant to develop novel micelle to enhance the oral bioavailability of DMY by improving its solubility and permeability. The DMY-loaded Solutol®HS15 micelles (DMY-Ms) were prepared by the thin-film hydration method. The particle size of DMY-Ms was 13.97 ± 0.82 nm with an acceptable polydispersity index of 0.197 ± 0.015. Upon entrapped in micelles, the solubility of DMY in water was increased more than 25-fold. The DMY-Ms had better sustained release property than that of pure DMY. In single-pass intestinal perfusion models, the absorption rate constant (Ka) and permeability coefficient (Papp) of DMY-Ms were 5.5-fold and 3.0-fold than that of pure DMY, respectively. The relative bioavailability of the DMY-Ms (AUC0-∞) was 205% compared with that of pure DMY (AUC0-∞), indicating potential for clinical application. After administering DMY-Ms, there was much lower blood alcohol level and shorter duration of the loss of righting relax (LORR) in drunk animals compared with that treated by pure DMY. In addition, the oral administration of DMY-Ms greatly reduced oxidative stress, and significantly defended liver and gastric mucosa from alcoholic damages in mice with alcohol-induced tissue injury. Taken together, HS 15-based micelle system greatly improves the bioavailability of DMY and represents a promising strategy for the management of acute alcoholism. Graphical abstract.
Collapse
|
6
|
Beato S, Toledo-Solís FJ, Fernández I. Vitamin K in Vertebrates' Reproduction: Further Puzzling Pieces of Evidence from Teleost Fish Species. Biomolecules 2020; 10:E1303. [PMID: 32917043 PMCID: PMC7564532 DOI: 10.3390/biom10091303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin K (VK) is a fat-soluble vitamin that vertebrates have to acquire from the diet, since they are not able to de novo synthesize it. VK has been historically known to be required for the control of blood coagulation, and more recently, bone development and homeostasis. Our understanding of the VK metabolism and the VK-related molecular pathways has been also increased, and the two main VK-related pathways-the pregnane X receptor (PXR) transactivation and the co-factor role on the γ-glutamyl carboxylation of the VK dependent proteins-have been thoroughly investigated during the last decades. Although several studies evidenced how VK may have a broader VK biological function than previously thought, including the reproduction, little is known about the specific molecular pathways. In vertebrates, sex differentiation and gametogenesis are tightly regulated processes through a highly complex molecular, cellular and tissue crosstalk. Here, VK metabolism and related pathways, as well as how gametogenesis might be impacted by VK nutritional status, will be reviewed. Critical knowledge gaps and future perspectives on how the different VK-related pathways come into play on vertebrate's reproduction will be identified and proposed. The present review will pave the research progress to warrant a successful reproductive status through VK nutritional interventions as well as towards the establishment of reliable biomarkers for determining proper nutritional VK status in vertebrates.
Collapse
Affiliation(s)
- Silvia Beato
- Campus de Vegazana, s/n, Universidad de León (ULE), 24071 León, Spain;
| | - Francisco Javier Toledo-Solís
- Consejo Nacional de Ciencia y Tecnología (CONACYT, México), Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, C.P. 03940 Ciudad de Mexico, Mexico;
- Department of Biology and Geology, University of Almería, 04120 Almería, Spain
| | - Ignacio Fernández
- Center for Aquaculture Research, Agrarian Technological Institute of Castile and Leon, Ctra. Arévalo, s/n, 40196 Zamarramala, Segovia, Spain
| |
Collapse
|
7
|
Penaloza CG, Cruz M, Germain G, Jabeen S, Javdan M, Lockshin RA, Zakeri Z. Higher sensitivity of female cells to ethanol: methylation of DNA lowers Cyp2e1, generating more ROS. Cell Commun Signal 2020; 18:111. [PMID: 32653010 PMCID: PMC7353761 DOI: 10.1186/s12964-020-00616-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/27/2020] [Indexed: 01/21/2023] Open
Abstract
Background Cells taken from mouse embryos before sex differentiation respond to insults according to their chromosomal sex, a difference traceable to differential methylation. We evaluated the mechanism for this difference in the controlled situation of their response to ethanol. Methods We evaluated the expression of mRNA for alcohol dehydrogenase (ADH), aldehyde dehyrogenases (ALDH), and a cytochrome P450 isoenzyme (Cyp2e1) in male and female mice, comparing the expressions to toxicity under several experimental conditions evaluating redox and other states. Results Females are more sensitive to ethanol. Disulfiram, which inhibits alcohol dehydrogenase (ADH), increases cell death in males, eliminating the sex dimorphism. The expressions ADH Class 1 to 4 and ALDH Class 1 and 2 do not differ by sex. However, females express approximately 8X more message for Cyp2e1, an enzyme in the non-canonical pathway. Female cells produce approximately 15% more ROS (reactive oxygen species) than male cells, but male cells contain approximately double the concentration of GSH, a ROS scavenger. Scavenging ROS with N-acetyl cysteine reduces cell death and eliminates sex dimorphism. Finally, since many of the differences in gene expression derive from methylation of DNA, we exposed cells to the methyltransferase inhibitor 5-aza- 2-deoxycytidine; blocking methylation eliminates both the difference in expression of Cyp2e1 and cell death. Conclusion We conclude that the sex-differential cell death caused by ethanol derives from sex dimorphic methylation of Cyp2e1 gene, resulting in generation of more ROS.
Collapse
Affiliation(s)
- Carlos G Penaloza
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA.,Present Address: Chancellor's Office, Leeward Community College, Pearl City, HI, USA
| | - Mayra Cruz
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Gabrielle Germain
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Sidra Jabeen
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Mohammad Javdan
- Queensborough Community College, City College of New York, Bayside, NY, USA
| | - Richard A Lockshin
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, 65-30 Kissena Blvd, NSB E143, Flushing, NY, 11367, USA.
| |
Collapse
|
8
|
Niture S, Gyamfi MA, Lin M, Chimeh U, Dong X, Zheng W, Moore J, Kumar D. TNFAIP8 regulates autophagy, cell steatosis, and promotes hepatocellular carcinoma cell proliferation. Cell Death Dis 2020; 11:178. [PMID: 32152268 PMCID: PMC7062894 DOI: 10.1038/s41419-020-2369-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α-induced protein 8 (TNFAIP8) expression has been linked to tumor progression in various cancer types, but the detailed mechanisms of TNFAIP8 are not fully elucidated. Here we define the role of TNFAIP8 in early events associated with development of hepatocellular carcinoma (HCC). Increased TNFAIP8 levels in HCC cells enhanced cell survival by blocking apoptosis, rendering HCC cells more resistant to the anticancer drugs, sorafenib and regorafenib. TNFAIP8 also induced autophagy and steatosis in liver cancer cells. Consistent with these observations, TNFAIP8 blocked AKT/mTOR signaling and showed direct interaction with ATG3-ATG7 proteins. TNFAIP8 also exhibited binding with fatty acids and modulated expression of lipid/fatty-acid metabolizing enzymes. Chronic feeding of mice with alcohol increased hepatic levels of TNFAIP8, autophagy, and steatosis but not in high-fat-fed obese mice. Similarly, higher TNFAIP8 expression was associated with steatotic livers of human patients with a history of alcohol use but not in steatotic patients with no history of alcohol use. Our data indicate a novel role of TNFAIP8 in modulation of drug resistance, autophagy, and hepatic steatosis, all key early events in HCC progression.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Minghui Lin
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
- Ningxia Medical University, Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Uchechukwu Chimeh
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Xialan Dong
- Department of Pharmaceutical Sciences, Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Weifan Zheng
- Department of Pharmaceutical Sciences, Bio-manufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University Durham, Durham, NC, 27707, USA
| | - John Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, Durham, NC, 27707, USA.
- Department of Pharmaceutical Sciences, North Carolina Central University Durham, Durham, NC, 27707, USA.
| |
Collapse
|
9
|
Salanga MC, Brun NR, Francolini RD, Stegeman JJ, Goldstone JV. CRISPR-Cas9-Mutated Pregnane X Receptor (pxr) Retains Pregnenolone-induced Expression of cyp3a65 in Zebrafish (Danio rerio) Larvae. Toxicol Sci 2020; 174:51-62. [PMID: 31868891 PMCID: PMC7043230 DOI: 10.1093/toxsci/kfz246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR; NR1I2) is a nuclear receptor that regulates transcriptional responses to drug or xenobiotic exposure, including induction of CYP3A transcription, in many vertebrate species. PXR is activated by a wide range of ligands that differ across species, making functional studies on its role in the chemical defensome most relevant when approached in a species-specific manner. Knockout studies in mammals have shown a requirement for PXR in ligand-dependent activation of CYP3A expression or reporter gene activity. Morpholino knockdown of Pxr in zebrafish indicated a similar requirement. Here, we report on the generation of 2 zebrafish lines each carrying a heritable deletion in the pxr coding region, predicted to result in loss of a functional gene product. To our surprise, larvae homozygous for either of the pxr mutant alleles retain their ability to induce cyp3a65 mRNA expression following exposure to the established zebrafish Pxr ligand, pregnenolone. Thus, zebrafish carrying pxr alleles with deletions in either the DNA binding or the ligand-binding domains did not yield a loss-of-function phenotype, suggesting that a compensatory mechanism is responsible for cyp3a65 induction. Alternative possibilities are that Pxr is not required for the induction of selected genes, or that truncated yet functional mutant Pxr is sufficient for the downstream transcriptional effects. It is crucial that we develop a better understanding for the role of Pxr in this important biomedical test species. This study highlights the potential for compensatory mechanisms to avoid deleterious effects arising from gene mutations.
Collapse
Affiliation(s)
- Matthew C Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Nadja R Brun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Rene D Francolini
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - John J Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| | - Jared V Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
| |
Collapse
|
10
|
Wahlang B, Hardesty JE, Head KZ, Jin J, Falkner KC, Prough RA, Cave MC, Beier JI. Hepatic Injury Caused by the Environmental Toxicant Vinyl Chloride is Sex-Dependent in Mice. Toxicol Sci 2020; 174:79-91. [PMID: 31774537 DOI: 10.1093/toxsci/kfz236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vinyl chloride (VC), a common industrial chemical, has been associated with hemangiosarcoma and toxicant-associated steatohepatitis (TASH) in men working at rubber-production plants. Our group previously demonstrated that chronic VC inhalation at environmentally relevant levels (< 1 ppm) in male mice exacerbated hepatic injury caused by high-fat diet (HFD) feeding. Because VC studies on TASH have only been performed in male models, the objective of this study is to examine VC inhalation in female mice in the context of TASH mechanisms. Male and female C57Bl/6 mice were fed either a low-fat diet or HFD and exposed to VC or room air using an inhalation chamber, for 12 weeks (6 h, 5 days/week); and plasma and liver samples were collected after euthanasia. Compared with males, females were less susceptible to HFD+VC-induced obesogenic effects demonstrated by lower body weight and fat composition. Histological analysis revealed that whereas VC exacerbated HFD-induced steatosis in males, this effect was absent in females. In addition, females were more resistant to VC-induced hepatic inflammation whereas males had increased liver weights and higher hepatic Tnfα mRNA levels. Systemic markers of hepatic injury, namely alanine aminotransaminase and thrombin/antithrombin levels were increased by HFD+VC co-exposures only in males. In addition, females did not show significant cell death as previously reported in males. Taken together, the results suggested that VC inhalation led to sex-dependent liver and metabolic toxicity. This study implicated the importance of assessing sex differences in environmental basic science and epidemiologic studies to better identify at-risk populations in both men and women.
Collapse
Affiliation(s)
- Banrida Wahlang
- UofL Superfund Research Center; University of Louisville, Louisville, KY 40202, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Josiah E Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kimberly Z Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jian Jin
- Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Keith C Falkner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Russell A Prough
- Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Matthew C Cave
- UofL Superfund Research Center; University of Louisville, Louisville, KY 40202, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Department of Pharmacology & Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Department of Biochemistry & Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY 40202, USA.,Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA
| | - Juliane I Beier
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
11
|
Barretto SA, Lasserre F, Fougerat A, Smith L, Fougeray T, Lukowicz C, Polizzi A, Smati S, Régnier M, Naylies C, Bétoulières C, Lippi Y, Guillou H, Loiseau N, Gamet-Payrastre L, Mselli-Lakhal L, Ellero-Simatos S. Gene Expression Profiling Reveals that PXR Activation Inhibits Hepatic PPARα Activity and Decreases FGF21 Secretion in Male C57Bl6/J Mice. Int J Mol Sci 2019; 20:ijms20153767. [PMID: 31374856 PMCID: PMC6696478 DOI: 10.3390/ijms20153767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/25/2023] Open
Abstract
The pregnane X receptor (PXR) is the main nuclear receptor regulating the expression of xenobiotic-metabolizing enzymes and is highly expressed in the liver and intestine. Recent studies have highlighted its additional role in lipid homeostasis, however, the mechanisms of these regulations are not fully elucidated. We investigated the transcriptomic signature of PXR activation in the liver of adult wild-type vs. Pxr-/- C57Bl6/J male mice treated with the rodent specific ligand pregnenolone 16α-carbonitrile (PCN). PXR activation increased liver triglyceride accumulation and significantly regulated the expression of 1215 genes, mostly xenobiotic-metabolizing enzymes. Among the down-regulated genes, we identified a strong peroxisome proliferator-activated receptor α (PPARα) signature. Comparison of this signature with a list of fasting-induced PPARα target genes confirmed that PXR activation decreased the expression of more than 25 PPARα target genes, among which was the hepatokine fibroblast growth factor 21 (Fgf21). PXR activation abolished plasmatic levels of FGF21. We provide a comprehensive signature of PXR activation in the liver and identify new PXR target genes that might be involved in the steatogenic effect of PXR. Moreover, we show that PXR activation down-regulates hepatic PPARα activity and FGF21 circulation, which could participate in the pleiotropic role of PXR in energy homeostasis.
Collapse
Affiliation(s)
- Sharon Ann Barretto
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Frédéric Lasserre
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Anne Fougerat
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Lorraine Smith
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Tiffany Fougeray
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Céline Lukowicz
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Arnaud Polizzi
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Sarra Smati
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Marion Régnier
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Claire Naylies
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Colette Bétoulières
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Yannick Lippi
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Laurence Gamet-Payrastre
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Laila Mselli-Lakhal
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France
| | - Sandrine Ellero-Simatos
- Institut National de la Recherche Agronomique (INRA), UMR1331 Toxalim, F31-027 Toulouse CEDEX 3, France.
| |
Collapse
|
12
|
Choi S, Gyamfi AA, Neequaye P, Addo S, Gonzalez FJ, Gyamfi MA. Role of the pregnane X receptor in binge ethanol-induced steatosis and hepatotoxicity. J Pharmacol Exp Ther 2018; 365:165-178. [PMID: 29431616 DOI: 10.1124/jpet.117.244665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that defends against toxic agents. We have shown that PXR promotes chronic ethanol (EtOH)-induced steatosis. Therefore, we examined the role of PXR in binge EtOH-induced hepatotoxicity. Male wild type (WT) and Pxr-null mice were orally administered three binge doses of EtOH (4.5 g/kg, every 12 hours) and euthanized four hours after the final dose. Pxr-null mice displayed higher basal mRNA levels of hepatic lipogenic transcription factor sterol regulatory element binding protein 1c (Srebp-1c) and its target stearoyl-CoA desaturase 1 (Scd1) and the lipid peroxide detoxifying aldo-keto reductase 1b7 (Akr1b7) and higher protein levels of EtOH-metabolizing alcohol dehydrogenase 1 (ADH1). In both genotypes, binge EtOH-induced triglyceride accumulation was associated with inhibition of fatty acid β-oxidation and upregulation of Srebp-1c- regulated lipogenic genes and hepatic CYP2E1 protein. Unexpectedly, gene expression of Cyp2b10, a constitutive androstane receptor target gene, implicated in EtOH hepatotoxicity, was PXR-dependent upregulated by binge EtOH. Also, PXR-dependent was the binge EtOH-induced inhibition of hepatic Akr1b8 mRNA, and protein levels of aldehyde dehydrogenase (ALDH) 1A1 and anti-apoptotic Bcl-2, but increased pro-apoptotic Bax protein expression, leading to increases in residual EtOH concentration and the cellular oxidative stress marker, malondialdehyde. In contrast, Pxr-null mice displayed increased Akr1b7 gene and ADH1 protein expression and hypertriglyceridemia following binge EtOH exposure. Taken together, this study demonstrates that PXR ablation prevents EtOH induced upregulation of Cyp2b10 and that PXR potentiates binge EtOH-induced oxidative stress and inhibition of EtOH catabolism, but protects against alcoholic hyperlipidemia.
Collapse
|
13
|
Choi S, Neequaye P, French SW, Gonzalez FJ, Gyamfi MA. Pregnane X receptor promotes ethanol-induced hepatosteatosis in mice. J Biol Chem 2017; 293:1-17. [PMID: 29123032 DOI: 10.1074/jbc.m117.815217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a xenobiotic-sensing nuclear receptor that modulates the metabolic response to drugs and toxic agents. Both PXR activation and deficiency promote hepatic triglyceride accumulation, a hallmark feature of alcoholic liver disease. However, the molecular mechanism of PXR-mediated activation of ethanol (EtOH)-induced steatosis is unclear. Here, using male wildtype (WT) and Pxr-null mice, we examined PXR-mediated regulation of chronic EtOH-induced hepatic lipid accumulation and hepatotoxicity. EtOH ingestion for 8 weeks significantly (1.8-fold) up-regulated Pxr mRNA levels in WT mice. The EtOH exposure also increased mRNAs encoding hepatic constitutive androstane receptor (3-fold) and its target, Cyp2b10 (220-fold), in a PXR-dependent manner. Furthermore, WT mice had higher serum EtOH levels and developed hepatic steatosis characterized by micro- and macrovesicular lipid accumulation. Consistent with the development of steatosis, lipogenic gene induction was significantly increased in WT mice, including sterol regulatory element-binding protein 1c target gene fatty-acid synthase (3.0-fold), early growth response-1 (3.2-fold), and TNFα (3.0-fold), whereas the expression of peroxisome proliferator-activated receptor α target genes was suppressed. Of note, PXR deficiency suppressed these changes and steatosis. Protein levels, but not mRNAs levels, of EtOH-metabolizing enzymes, including alcohol dehydrogenase 1, aldehyde dehydrogenase 1A1, and catalase, as well as the microsomal triglyceride transfer protein, involved in regulating lipid output were higher in Pxr-null than in WT mice. These findings establish that PXR signaling contributes to ALD development and suggest that PXR antagonists may provide a new approach for ALD therapy.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, California 90509
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707.
| |
Collapse
|