1
|
Wu X, Zhang Z, Qiu Z, Wu X, Chen J, Liu L, Liu X, Zhao S, Yang Y, Zhao Y. TNIK in disease: from molecular insights to therapeutic prospects. Apoptosis 2024:10.1007/s10495-024-01987-w. [PMID: 38853204 DOI: 10.1007/s10495-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
TRAF2 and NCK interacting kinase (TNIK), a critical interacting protein kinase, is currently receiving wide attention. TNIK is found in various human body organs and tissues and participates in cell motility, proliferation, and differentiation. On the one hand, its aberrant expression is related to the onset and progression of numerous malignant tumors. On the other hand, TNIK is important in neuronal growth, proliferation, differentiation, and synaptic formation. Thus, the novel therapeutic strategies for targeting TNIK offer a promising direction for cancer, neurological or psychotic disorders. Here, we briefly summarized the biological information of TNIK, reviewed the role and regulatory mechanism in cancer and neuropsychiatric diseases, and introduced the research progress of inhibitors targeting TNIK. Taken together, this review hopes to contribute to the in-depth understanding of the function and regulatory mechanism of TNIK, which is of great significance for revealing the role of TNIK in the occurrence and treatment of diseases.
Collapse
Affiliation(s)
- Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Zhe Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Zhenye Qiu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Lu Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Xiaoyi Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Shiyan Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
- Department of Cardiology, Faculty of Life Sciences and Medicine, Northwest University First Hospital, Northwest University, Xi'an, 710069, China.
| | - Ye Zhao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Tsuboi D, Nagai T, Yoshimoto J, Kaibuchi K. Neuromodulator regulation and emotions: insights from the crosstalk of cell signaling. Front Mol Neurosci 2024; 17:1376762. [PMID: 38516040 PMCID: PMC10954900 DOI: 10.3389/fnmol.2024.1376762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.
Collapse
Affiliation(s)
- Daisuke Tsuboi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
3
|
Chau KM, Dominic A, Davis EL, Kotla S, Berrios ET, Fahim A, Arunesh A, Li S, Zhao D, Chen K, Davis AR, Nguyen MTH, Wang Y, Evans SE, Wang G, Cooke JP, Abe JI, Huston DP, Le NT. TNIK regulation of interferon signaling and endothelial cell response to virus infection. Front Cardiovasc Med 2024; 10:1213428. [PMID: 38264262 PMCID: PMC10803426 DOI: 10.3389/fcvm.2023.1213428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 01/25/2024] Open
Abstract
Background Traf2 and Nck-interacting kinase (TNIK) is known for its regulatory role in various processes within cancer cells. However, its role within endothelial cells (ECs) has remained relatively unexplored. Methods Leveraging RNA-seq data and Ingenuity Pathway Analysis (IPA), we probed the potential impact of TNIK depletion on ECs. Results Examination of RNA-seq data uncovered more than 450 Differentially Expressed Genes (DEGs) in TNIK-depleted ECs, displaying a fold change exceeding 2 with a false discovery rate (FDR) below 0.05. IPA analysis unveiled that TNIK depletion leads to the inhibition of the interferon (IFN) pathway [-log (p-value) >11], downregulation of IFN-related genes, and inhibition of Hypercytokinemia/Hyperchemokinemia [-log (p-value) >8]. The validation process encompassed qRT-PCR to evaluate mRNA expression of crucial IFN-related genes, immunoblotting to gauge STAT1 and STAT2 protein levels, and ELISA for the quantification of IFN and cytokine secretion in siTNIK-depleted ECs. These assessments consistently revealed substantial reductions upon TNIK depletion. When transducing HUVECs with replication incompetent E1-E4 deleted adenovirus expressing green fluorescent protein (Ad-GFP), it was demonstrated that TNIK depletion did not affect the uptake of Ad-GFP. Nonetheless, TNIK depletion induced cytopathic effects (CPE) in ECs transduced with wild-type human adenovirus serotype 5 (Ad-WT). Summary Our findings suggest that TNIK plays a crucial role in regulating the EC response to virus infections through modulation of the IFN pathway.
Collapse
Affiliation(s)
- Khanh M. Chau
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Abishai Dominic
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
- Department of Molecular and Cellular Medicine, College of Medicine Texas A&M University, College Station, TX, United States
| | - Eleanor L. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Estefani Turcios Berrios
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Arsany Fahim
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
| | - Ashwin Arunesh
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
| | - Shengyu Li
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Dongyu Zhao
- Department of Molecular and Cellular Medicine, College of Medicine Texas A&M University, College Station, TX, United States
| | - Kaifu Chen
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Alan R. Davis
- Center for Cell and Gene Therapy, Baylor College of Medicine, College Station, TX, United States
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Yongxing Wang
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David P. Huston
- Department of Microbial Pathogenesis and Immunology, College of Medicine Texas A&M University, College Station, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Center for Cardiovascular Sciences, Academic Institute, Houston Methodist Research Institute, Weill Cornell Medical College, Houston, TX, United States
| |
Collapse
|
4
|
Liu ML, Ma S, Tai W, Zhong X, Ni H, Zou Y, Wang J, Zhang CL. Screens in aging-relevant human ALS-motor neurons identify MAP4Ks as therapeutic targets for the disease. Cell Death Dis 2024; 15:4. [PMID: 38177100 PMCID: PMC10766628 DOI: 10.1038/s41419-023-06395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Effective therapeutics is much needed for amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease mainly affecting motor neurons. By screening chemical compounds in human patient-derived and aging-relevant motor neurons, we identify a neuroprotective compound and show that MAP4Ks may serve as therapeutic targets for treating ALS. The lead compound broadly improves survival and function of motor neurons directly converted from human ALS patients. Mechanistically, it works as an inhibitor of MAP4Ks, regulates the MAP4Ks-HDAC6-TUBA4A-RANGAP1 pathway, and normalizes subcellular distribution of RANGAP1 and TDP-43. Finally, in an ALS mouse model we show that inhibiting MAP4Ks preserves motor neurons and significantly extends animal lifespan.
Collapse
Affiliation(s)
- Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Haoqi Ni
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jingcheng Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Ribeiro E. Silva A, Diallo MA, Sausset A, Robert T, Bach S, Bussière FI, Laurent F, Lacroix-Lamandé S, Silvestre A. Overexpression of Eimeria tenella Rhoptry Kinase 2 Induces Early Production of Schizonts. Microbiol Spectr 2023; 11:e0013723. [PMID: 37260371 PMCID: PMC10434272 DOI: 10.1128/spectrum.00137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Eimeria tenella is an obligate intracellular parasite responsible for avian coccidiosis. Like other apicomplexan parasites, such as Toxoplasma gondii, cell invasion and intracellular development rely on apical organelle content discharge, named micronemes and rhoptries. Some rhoptry (ROP) kinases (ROPK) are key virulence factors in T. gondii. To date, among the 28 ropk genes carried by E. tenella, only two to four were confirmed by proteomic analysis or immunostaining to be expressed at the sporozoite stage. We have previously shown that EtROP1 is implicated in the inhibition of host cell apoptosis by interacting with the cellular p53. This work functionally described the second ROP kinase expressed at the sporozoite stage in E. tenella. EtROP2 is an active kinase that phosphorylates cell substrates of approximately 50 kDa. Its overexpression leads to the shortening of the prepatent period and to the early development of first-generation schizonts. Conduction of RNA sequencing analysis and reverse transcriptase quantitative PCR (RT-qPCR) on the host cell allowed us to identify the mitogen-activated protein kinase (MAPK) pathway and the transcription factor cFos to be upregulated by EtROP2. We also showed by immunofluorescence assay that the active kinase EtROP2 is implicated in the p38 MAPK pathway activation. We established here that EtROP2 activates the p38 MAPK pathway through a direct or indirect phosphorylation, leading to the overexpression of the master transcription factor cFos known to be implicated in E. tenella development. IMPORTANCE Rhoptries are specialized secretory organelles found in zoite stages of apicomplexan parasites. In addition to well-conserved rhoptry neck proteins, their protein consists mostly of kinase proteins, highly divergent from eukaryotic kinases. Some of those kinases are described as major virulence factors in Toxoplasma gondii, secreted into the host cell to hijack signaling pathways. Most of those kinases remain to be characterized in Eimeria tenella. Deciphering their cellular function is a prerequisite to supporting their relevance as a druggable target in development of new means of Eimeria tenella control. Secreted divergent kinases that interact with host cell partners to modulate pathways are good candidates, as they coevolve with their host targets to ensure their function within the host and are less prone to mutations that would lead to drug resistance. The absence of any orthologous kinase in host cells makes these parasite kinases a promising drug target candidate.
Collapse
Affiliation(s)
| | | | - Alix Sausset
- ISP, INRAE, Université de Tours, Nouzilly, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Roscoff, France
- Sorbonne Université, CNRS, FR 2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Roscoff, France
- Sorbonne Université, CNRS, FR 2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | | | | | | |
Collapse
|
6
|
Liu ML, Ma S, Tai W, Zhong X, Ni H, Zou Y, Wang J, Zhang CL. Chemical screens in aging-relevant human motor neurons identify MAP4Ks as therapeutic targets for amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538014. [PMID: 37162962 PMCID: PMC10168247 DOI: 10.1101/2023.04.24.538014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Effective therapeutics is much needed for amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease mainly affecting motor neurons. By screening chemical compounds in human patient-derived and aging-relevant motor neurons, we identify a neuroprotective compound and show that MAP4Ks may serve as therapeutic targets for treating ALS. The lead compound broadly improves survival and function of motor neurons directly converted from human ALS patients. Mechanistically, it works as an inhibitor of MAP4Ks, regulates the MAP4Ks-HDAC6-TUBA4A-RANGAP1 pathway, and normalizes subcellular distribution of RANGAP1 and TDP-43. Finally, in an ALS mouse model we show that inhibiting MAP4Ks preserves motor neurons and significantly extends animal lifespan.
Collapse
Affiliation(s)
- Meng-Lu Liu
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shuaipeng Ma
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenjiao Tai
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoling Zhong
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haoqi Ni
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuhua Zou
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jingcheng Wang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Kukimoto-Niino M, Shirouzu M, Yamada T. Structural Insight into TNIK Inhibition. Int J Mol Sci 2022; 23:13010. [PMID: 36361804 PMCID: PMC9656744 DOI: 10.3390/ijms232113010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 10/21/2024] Open
Abstract
TRAF2- and NCK-interacting kinase (TNIK) has emerged as a promising therapeutic target for colorectal cancer because of its essential role in regulating the Wnt/β-catenin signaling pathway. Colorectal cancers contain many mutations in the Wnt/β-catenin signaling pathway genes upstream of TNIK, such as the adenomatous polyposis coli (APC) tumor suppressor gene. TNIK is a regulatory component of the transcriptional complex composed of β-catenin and T-cell factor 4 (TCF4). Inhibition of TNIK is expected to block the aberrant Wnt/β-catenin signaling caused by colorectal cancer mutations. Here we present structural insights into TNIK inhibitors targeting the ATP-binding site. We will discuss the effects of the binding of different chemical scaffolds of nanomolar inhibitors on the structure and function of TNIK.
Collapse
Affiliation(s)
- Mutsuko Kukimoto-Niino
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tesshi Yamada
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
8
|
Vinogradov AA, Zhang Y, Hamada K, Chang JS, Okada C, Nishimura H, Terasaka N, Goto Y, Ogata K, Sengoku T, Onaka H, Suga H. De Novo Discovery of Thiopeptide Pseudo-natural Products Acting as Potent and Selective TNIK Kinase Inhibitors. J Am Chem Soc 2022; 144:20332-20341. [DOI: 10.1021/jacs.2c07937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alexander A. Vinogradov
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yue Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Jun Shi Chang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chikako Okada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hirotaka Nishimura
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Hiroyasu Onaka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Daulat AM, Wagner MS, Audebert S, Kowalczewska M, Ariey-Bonnet J, Finetti P, Bertucci F, Camoin L, Borg JP. The serine/threonine kinase MINK1 directly regulates the function of promigratory proteins. J Cell Sci 2022; 135:276338. [PMID: 35971817 DOI: 10.1242/jcs.259347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Upregulation of the developmental Wnt/planar cell polarity pathway is observed in many cancers and is associated with cancer development. We recently showed that PRICKLE1, a core Wnt/PCP component, is a poor-prognosis marker in triple negative breast cancer (TNBC). PRICKLE1 is phosphorylated by the serine/threonine kinase MINK1 and contributes to TNBC cell motility and invasiveness. However, the identity of MINK1 substrates and the role of MINK1 enzymatic activity in this process remain to be addressed. We performed a phosphoproteomic strategy and identified MINK1 substrates including LL5β. LL5β anchors microtubules at the cell cortex through its association with CLASPs to trigger focal adhesion disassembly. LL5β is phosphorylated by MINK1 promoting its interaction with CLASPs. Using a kinase inhibitor, we demonstrate that the enzymatic activity of MINK1 is involved in the protein complex assembly and localization, and cell migration. Analysis of gene expression data show that the concomitant up-regulation of PRICKLE1 and LL5β mRNA levels encoding MINK1 substrates is associated with a poor metastasis-free survival in TNBC patients. Altogether, our results suggest that MINK1 may represent a potential target in TNBC.
Collapse
Affiliation(s)
- Avais M Daulat
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Mônica S Wagner
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Malgorzata Kowalczewska
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jeremy Ariey-Bonnet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Biologie Structurale et Chimie-Biologie Intégrée, Marseille, France
| | - Pascal Finetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - François Bertucci
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.,Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France.,Institut universitaire de France, France
| |
Collapse
|
10
|
Fass DM, Lewis MC, Ahmad R, Szucs MJ, Zhang Q, Fleishman M, Wang D, Kim MJ, Biag J, Carr SA, Scolnick EM, Premont RT, Haggarty SJ. Brain-specific deletion of GIT1 impairs cognition and alters phosphorylation of synaptic protein networks implicated in schizophrenia susceptibility. Mol Psychiatry 2022; 27:3272-3285. [PMID: 35505090 PMCID: PMC9630168 DOI: 10.1038/s41380-022-01557-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Despite tremendous effort, the molecular and cellular basis of cognitive deficits in schizophrenia remain poorly understood. Recent progress in elucidating the genetic architecture of schizophrenia has highlighted the association of multiple loci and rare variants that may impact susceptibility. One key example, given their potential etiopathogenic and therapeutic relevance, is a set of genes that encode proteins that regulate excitatory glutamatergic synapses in brain. A critical next step is to delineate specifically how such genetic variation impacts synaptic plasticity and to determine if and how the encoded proteins interact biochemically with one another to control cognitive function in a convergent manner. Towards this goal, here we study the roles of GPCR-kinase interacting protein 1 (GIT1), a synaptic scaffolding and signaling protein with damaging coding variants found in schizophrenia patients, as well as copy number variants found in patients with neurodevelopmental disorders. We generated conditional neural-selective GIT1 knockout mice and found that these mice have deficits in fear conditioning memory recall and spatial memory, as well as reduced cortical neuron dendritic spine density. Using global quantitative phospho-proteomics, we revealed that GIT1 deletion in brain perturbs specific networks of GIT1-interacting synaptic proteins. Importantly, several schizophrenia and neurodevelopmental disorder risk genes are present within these networks. We propose that GIT1 regulates the phosphorylation of a network of synaptic proteins and other critical regulators of neuroplasticity, and that perturbation of these networks may contribute specifically to cognitive deficits observed in schizophrenia and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniel M. Fass
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Michael C. Lewis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Sage Therapeutics, Cambridge, MA, USA
| | - Rushdy Ahmad
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Wyss Institute at Harvard University, Boston, MA, USA
| | - Matthew J. Szucs
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA,Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Qiangge Zhang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Morgan Fleishman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dongqing Wang
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Myung Jong Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jonathan Biag
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Novartis Pharmaceuticals, Cambridge, MA, USA
| | - Steven A. Carr
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Edward M. Scolnick
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Richard T. Premont
- Harrington Discovery Institute, Cleveland, OH, 44106, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Stephen J. Haggarty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, Massachusetts 02142, USA,Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology & Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
11
|
Luo X, Yang R, Li Y, Zhang L, Yang S, Li L. Discovery of benzo[d]oxazol-2(3H)-one derivatives as a new class of TNIK inhibitors for the treatment of colorectal cancer. Bioorg Med Chem Lett 2022; 67:128745. [PMID: 35447345 DOI: 10.1016/j.bmcl.2022.128745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancer types and Traf2- and Nck-interacting kinase (TNIK) has been thought as a potential target for CRC treatment. Herein we report the discovery and structure-activity relationship (SAR) of benzo[d]oxazol-2(3H)-one derivatives as a new class of TNIK inhibitors. The most potent compound 8g showed an IC50 value of 0.050 μM against TNIK. It effectively suppressed proliferation and migration of colorectal cancer cells. Western blot analysis indicated that 8g could inhibit aberrant transcription activation of Wnt signaling. Collectively, this study provides a potential lead compound for subsequent drug discovery targeting TNIK.
Collapse
Affiliation(s)
- Xinling Luo
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Ruicheng Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Liting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
12
|
Buchl SC, Hanquier Z, Haak AJ, Thomason YM, Huebert RC, Shah VH, Maiers JL. Traf2 and NCK Interacting Kinase Is a Critical Regulator of Procollagen I Trafficking and Hepatic Fibrogenesis in Mice. Hepatol Commun 2022; 6:593-609. [PMID: 34677004 PMCID: PMC8870049 DOI: 10.1002/hep4.1835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatic fibrosis is driven by deposition of matrix proteins following liver injury. Hepatic stellate cells (HSCs) drive fibrogenesis, producing matrix proteins, including procollagen I, which matures into collagen I following secretion. Disrupting intracellular procollagen processing and trafficking causes endoplasmic reticulum stress and stress-induced HSC apoptosis and thus is an attractive antifibrotic strategy. We designed an immunofluorescence-based small interfering RNA (siRNA) screen to identify procollagen I trafficking regulators, hypothesizing that these proteins could serve as antifibrotic targets. A targeted siRNA screen was performed using immunofluorescence to detect changes in intracellular procollagen I. Tumor necrosis factor receptor associated factor 2 and noncatalytic region of tyrosine kinase-interacting kinase (TNIK) was identified and interrogated in vitro and in vivo using the TNIK kinase inhibitor NCB-0846 or RNA interference-mediated knockdown. Our siRNA screen identified nine genes whose knockdown promoted procollagen I retention, including the serine/threonine kinase TNIK. Genetic deletion or pharmacologic inhibition of TNIK through the small molecule inhibitor NCB-0846 disrupted procollagen I trafficking and secretion without impacting procollagen I expression. To investigate the role of TNIK in liver fibrogenesis, we analyzed human and murine livers, finding elevated TNIK expression in human cirrhotic livers and increased TNIK expression and kinase activity in both fibrotic mouse livers and activated primary human HSCs. Finally, we tested whether inhibition of TNIK kinase activity could limit fibrogenesis in vivo. Mice receiving NCB-0846 displayed reduced CCl4 -induced fibrogenesis compared to CCl4 alone, although α-smooth muscle actin levels were unaltered. Conclusions: Our siRNA screen effectively identified TNIK as a key kinase involved in procollagen I trafficking in vitro and hepatic fibrogenesis in vivo.
Collapse
Affiliation(s)
- Samuel C Buchl
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Zachary Hanquier
- Department of Medical and Molecular GeneticsIndiana University School of MedicineIndianapolisINUSA
| | - Andrew J Haak
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Yvonne M Thomason
- Division of GastroenterologyIndiana University School of MedicineIndianapolisINUSA
| | - Robert C Huebert
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Vijay H Shah
- Division of Gastroenterology and HepatologyMayo ClinicRochesterMNUSA
| | - Jessica L Maiers
- Division of GastroenterologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
13
|
Li Y, Zhang L, Yang R, Qiao Z, Wu M, Huang C, Tian C, Luo X, Yang W, Zhang Y, Li L, Yang S. Discovery of 3,4-Dihydrobenzo[ f][1,4]oxazepin-5(2 H)-one Derivatives as a New Class of Selective TNIK Inhibitors and Evaluation of Their Anti-Colorectal Cancer Effects. J Med Chem 2022; 65:1786-1807. [PMID: 34985886 DOI: 10.1021/acs.jmedchem.1c00672] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Traf2- and Nck-interacting protein kinase (TNIK) is a downstream signal protein of the Wnt/β-catenin pathway and has been thought of as a potential target for the treatment of colorectal cancer (CRC) that is often associated with dysregulation of Wnt/β-catenin signaling pathway. Herein, we report the discovery of a series of 3,4-dihydrobenzo[f][1,4]oxazepin-5(2H)-one derivatives as a new class of TNIK inhibitors. Structure-activity relationship (SAR) analyses led to the identification of a number of potent TNIK inhibitors with compound 21k being the most active one (IC50: 0.026 ± 0.008 μM). This compound also displayed excellent selectivity for TNIK against 406 other kinases. Compound 21k could efficiently suppress CRC cell proliferation and migration in in vitro assays and exhibited considerable antitumor activity in the HCT116 xenograft mouse model. It also showed favorable pharmacokinetic properties. Overall, 21k could be a promising lead compound for drug discovery targeting TNIK and deserves further studies.
Collapse
Affiliation(s)
- Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liting Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruicheng Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zeen Qiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chong Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Tian
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xinling Luo
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yun Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
14
|
Yuan R, Li Y, Fu Y, Ning A, Wang D, Zhang R, Yu S, Xu Q. TNIK influence the effects of antipsychotics on Wnt/β-catenin signaling pathway. Psychopharmacology (Berl) 2021; 238:3283-3292. [PMID: 34350475 DOI: 10.1007/s00213-021-05943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
RationaleTraf2- and Nck-interacting kinase (TNIK), a member of germinal center kinase (GCK) family, has been implicated as a risk factor in schizophrenia and bipolar disorder as well as the action of antipsychotics. TNIK is an essential activator of Wnt/β-catenin signaling pathway which has been identified involved in the mechanism underlying the effects of antipsychotics. Thus, the effects of TNIK on antipsychotics may be achieved by influencing Wnt/β-catenin signaling pathway proteins.Objectives and methodsIn the current study, the effects of up- or downregulated TNIK on β-catenin, T-cell factor 4 (TCF-4), glycogen synthase kinase-3β (GSK3β), and phosphorylated GSK3β (p-GSK3β) were examined in the human glioma U251 cells. Then, we observed the effects of antipsychotics (clozapine and risperidone) on the above proteins and evaluated the role of differentially expressed TNIK on antipsychotic-treated cell groups.ResultsThe result showed that clozapine treatment decreased β-catenin and TCF-4 levels in U251 cells, and risperidone had the similar effects on β-catenin and p-GSK3β. The downregulated TNIK using siRNA impeded the regulation of antipsychotics on Wnt pathway proteins via increasing the expression levels of TCF-4, β-catenin, or p-GSK3β, whereas the upregulated TNIK made no significant change.ConclusionsThe influence of TNIK on the effects of antipsychotics may be partly through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ruixue Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaojing Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingmei Fu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ailing Ning
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxiang Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ran Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingqing Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Walczyk-Mooradally A, Holborn J, Singh K, Tyler M, Patnaik D, Wesseling H, Brandon NJ, Steen J, Graether SP, Haggarty SJ, Lalonde J. Phosphorylation-dependent control of Activity-regulated cytoskeleton-associated protein (Arc) protein by TNIK. J Neurochem 2021. [PMID: 34077555 DOI: 10.1111/jnc.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene product that support neuroplastic changes important for cognitive function and memory formation. As a protein with homology to the retroviral Gag protein, a particular characteristic of Arc is its capacity to self-assemble into virus-like capsids that can package mRNAs and transfer those transcripts to other cells. Although a lot has been uncovered about the contributions of Arc to neuron biology and behavior, very little is known about how different functions of Arc are coordinately regulated both temporally and spatially in neurons. The answer to this question we hypothesized must involve the occurrence of different protein post-translational modifications acting to confer specificity. In this study, we used mass spectrometry and sequence prediction strategies to map novel Arc phosphorylation sites. Our approach led us to recognize serine 67 (S67) and threonine 278 (T278) as residues that can be modified by TNIK, which is a kinase abundantly expressed in neurons that shares many functional overlaps with Arc and has, along with its interacting proteins such as the NMDA receptor, and been implicated as a risk factor for psychiatric disorders. Furthermore, characterization of each residue using site-directed mutagenesis to create S67 and T278 mutant variants revealed that TNIK action at those amino acids can strongly influence Arc's subcellular distribution and self-assembly as capsids. Together, our findings reveal an unsuspected connection between Arc and TNIK. Better understanding of the interplay between these two proteins in neuronal cells could lead to new insights about apparition and progression of psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15077.
Collapse
Affiliation(s)
| | - Jennifer Holborn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Karamjeet Singh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Marshall Tyler
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Debasis Patnaik
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca Boston, Waltham, MA, USA
| | - Judith Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Stephen J Haggarty
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
16
|
Walczyk-Mooradally A, Holborn J, Singh K, Tyler M, Patnaik D, Wesseling H, Brandon NJ, Steen J, Graether SP, Haggarty SJ, Lalonde J. Phosphorylation-dependent control of Activity-regulated cytoskeleton-associated protein (Arc) protein by TNIK. J Neurochem 2021; 158:1058-1073. [PMID: 34077555 DOI: 10.1111/jnc.15440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is an immediate early gene product that support neuroplastic changes important for cognitive function and memory formation. As a protein with homology to the retroviral Gag protein, a particular characteristic of Arc is its capacity to self-assemble into virus-like capsids that can package mRNAs and transfer those transcripts to other cells. Although a lot has been uncovered about the contributions of Arc to neuron biology and behavior, very little is known about how different functions of Arc are coordinately regulated both temporally and spatially in neurons. The answer to this question we hypothesized must involve the occurrence of different protein post-translational modifications acting to confer specificity. In this study, we used mass spectrometry and sequence prediction strategies to map novel Arc phosphorylation sites. Our approach led us to recognize serine 67 (S67) and threonine 278 (T278) as residues that can be modified by TNIK, which is a kinase abundantly expressed in neurons that shares many functional overlaps with Arc and has, along with its interacting proteins such as the NMDA receptor, and been implicated as a risk factor for psychiatric disorders. Furthermore, characterization of each residue using site-directed mutagenesis to create S67 and T278 mutant variants revealed that TNIK action at those amino acids can strongly influence Arc's subcellular distribution and self-assembly as capsids. Together, our findings reveal an unsuspected connection between Arc and TNIK. Better understanding of the interplay between these two proteins in neuronal cells could lead to new insights about apparition and progression of psychiatric disorders.
Collapse
Affiliation(s)
| | - Jennifer Holborn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Karamjeet Singh
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Marshall Tyler
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Debasis Patnaik
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Hendrik Wesseling
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Nicholas J Brandon
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca Boston, Waltham, MA, USA
| | - Judith Steen
- Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Stephen J Haggarty
- Massachusetts General Hospital, Centre for Genomic Medicine, Boston, MA, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
17
|
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:661612. [PMID: 34054432 PMCID: PMC8149604 DOI: 10.3389/fncel.2021.661612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Classical Rho GTPases, including RhoA, Rac1, and Cdc42, are members of the Ras small GTPase superfamily and play essential roles in a variety of cellular functions. Rho GTPase signaling can be turned on and off by specific GEFs and GAPs, respectively. These features empower Rho GTPases and their upstream and downstream modulators as targets for scientific research and therapeutic intervention. Specifically, significant therapeutic potential exists for targeting Rho GTPases in neurodegenerative diseases due to their widespread cellular activity and alterations in neural tissues. This study will explore the roles of Rho GTPases in neurodegenerative diseases with focus on the applications of pharmacological modulators in recent discoveries. There have been exciting developments of small molecules, nonsteroidal anti-inflammatory drugs (NSAIDs), and natural products and toxins for each classical Rho GTPase category. A brief overview of each category followed by examples in their applications will be provided. The literature on their roles in various diseases [e.g., Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Frontotemporal dementia (FTD), and Multiple sclerosis (MS)] highlights the unique and broad implications targeting Rho GTPases for potential therapeutic intervention. Clearly, there is increasing knowledge of therapeutic promise from the discovery of pharmacological modulators of Rho GTPases for managing and treating these conditions. The progress is also accompanied by the recognition of complex Rho GTPase modulation where targeting its signaling can improve some aspects of pathogenesis while exacerbating others in the same disease model. Future directions should emphasize the importance of elucidating how different Rho GTPases work in concert and how they produce such widespread yet different cellular responses during neurodegenerative disease progression.
Collapse
Affiliation(s)
| | | | | | - Qun Lu
- Department of Anatomy and Cell Biology, The Harriet and John Wooten Laboratory for Alzheimer’s and Neurogenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
18
|
Hassani Nia F, Woike D, Martens V, Klüssendorf M, Hönck HH, Harder S, Kreienkamp HJ. Targeting of δ-catenin to postsynaptic sites through interaction with the Shank3 N-terminus. Mol Autism 2020; 11:85. [PMID: 33115499 PMCID: PMC7592556 DOI: 10.1186/s13229-020-00385-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders such as autism spectrum disorder (ASD) may be caused by alterations in genes encoding proteins that are involved in synapse formation and function. This includes scaffold proteins such as Shank3, and synaptic adhesion proteins such as Neurexins or Neuroligins. An important question is whether the products of individual risk genes cooperate functionally (exemplified in the interaction of Neurexin with Neuroligin isoforms). This might suggest a common pathway in pathogenesis. For the SHANK3 gene, heterozygous loss of function, as well as missense mutations have been observed in ASD cases. Several missense mutations affect the N-terminal part of Shank3 which contains the highly conserved Shank/ProSAP N-terminal (SPN) and Ankyrin repeat (Ank) domains. The role of these domains and the relevance of these mutations for synaptic function of Shank3 are widely unknown. METHODS We used purification from a synaptic protein fraction, as well as a variety of biochemical and cell biological approaches to identify proteins which associate with the Shank3 N-terminus at postsynaptic sites. RESULTS We report here that δ-catenin, which is encoded by CTNND2, an autism candidate gene, directly interacts with the Ank domain of Shank3 at postsynaptic sites through its Armadillo-repeat domain. The interaction is not affected by well-known posttranslational modifications of δ-catenin, i.e. by phosphorylation or palmitoylation. However, an ASD-associated mutation in the SPN domain of Shank3, L68P, significantly increases the interaction of Shank3 with δ-catenin. By analysis of postsynaptic fractions from mice, we show that the lack of SPN-Ank containing, large isoforms of Shank3 results in the loss of postsynaptic δ-catenin. Further, expression of Shank3 variants containing the N-terminal domains in primary cultured neurons significantly increased the presence of coexpressed δ-catenin at postsynaptic sites. LIMITATIONS Work in model organisms such as mice, and in primary cultured neurons may not reproduce faithfully the situation in human brain neurons. Work in primary cultured neurons was also hampered by lack of a specific antibody for endogenous δ-catenin. CONCLUSIONS Our data show that the interaction between Shank3 N-terminus and δ-catenin is required for the postsynaptic targeting of δ-catenin. Failure of proper targeting of δ-catenin to postsynaptic sites may contribute to the pathogenesis of autism spectrum disorder.
Collapse
Affiliation(s)
- Fatemeh Hassani Nia
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Daniel Woike
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Victoria Martens
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Malte Klüssendorf
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institut für Osteologie Und Biomechanik, Zellbiologie seltener Erkrankungen, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Hinrich Hönck
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sönke Harder
- Massenspektrometrische Proteomanalytik, Institut für Klinische Chemie Und Laboratoriumsmedizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institut für Humangenetik, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
19
|
Disease-associated synaptic scaffold protein CNK2 modulates PSD size and influences localisation of the regulatory kinase TNIK. Sci Rep 2020; 10:5709. [PMID: 32235845 PMCID: PMC7109135 DOI: 10.1038/s41598-020-62207-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/05/2020] [Indexed: 01/13/2023] Open
Abstract
Scaffold proteins are responsible for structural organisation within cells; they form complexes with other proteins to facilitate signalling pathways and catalytic reactions. The scaffold protein connector enhancer of kinase suppressor of Ras 2 (CNK2) is predominantly expressed in neural tissues and was recently implicated in X-linked intellectual disability (ID). We have investigated the role of CNK2 in neurons in order to contribute to our understanding of how CNK2 alterations might cause developmental defects, and we have elucidated a functional role for CNK2 in the molecular processes that govern morphology of the postsynaptic density (PSD). We have also identified novel CNK2 interaction partners and explored their functional interdependency with CNK2. We focussed on the novel interaction partner TRAF2- and NCK-interacting kinase TNIK, which is also associated with ID. Both CNK2 and TNIK are expressed in neuronal dendrites and concentrated in dendritic spines, and staining with synaptic markers indicates a clear postsynaptic localisation. Importantly, our data highlight that CNK2 plays a role in directing TNIK subcellular localisation, and in neurons, CNK2 participates in ensuring that this multifunctional kinase is present in the correct place at desirable levels. In summary, our data indicate that CNK2 expression is critical for modulating PSD morphology; moreover, our study highlights that CNK2 functions as a scaffold with the potential to direct the localisation of regulatory proteins within the cell. Importantly, we describe a novel link between CNK2 and the regulatory kinase TNIK, and provide evidence supporting the idea that alterations in CNK2 localisation and expression have the potential to influence the behaviour of TNIK and other important regulatory molecules in neurons.
Collapse
|
20
|
Li Q, Nirala NK, Chen HJ, Nie Y, Wang W, Zhang B, Czech MP, Wang Q, Xu L, Mao J, Tony Ip Y. The Misshapen subfamily of Ste20 kinases regulate proliferation in the aging mammalian intestinal epithelium. J Cell Physiol 2019; 234:21925-21936. [PMID: 31042012 PMCID: PMC6711781 DOI: 10.1002/jcp.28756] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/01/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
The intestinal epithelium has a high rate of cell turn over and is an excellent system to study stem cell-mediated tissue homeostasis. The Misshapen subfamily of the Ste20 kinases in mammals consists of misshapen like kinase 1 (MINK1), mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), and TRAF2 and NCK interacting kinase (TNIK). Recent reports suggest that this subfamily has a novel function equal to the Hippo/MST subfamily as upstream kinases for Warts/Large tumor suppressor kinase (LATS) to suppress tissue growth. To study the in vivo functions of Mink1, Map4k4, and Tnik, we generated a compound knockout of these three genes in the mouse intestinal epithelium. The intestinal epithelia of the mutant animals were phenotypically normal up to approximately 12 months. The older animals then exhibited mildly increased proliferation throughout the lower GI tract. We also observed that the normally spatially organized Paneth cells in the crypt base became dispersed. The expression of one of the YAP pathway target genes Sox9 was increased while other target genes including CTGF did not show a significant change. Therefore, the Misshapen and Hippo subfamilies may have highly redundant functions to regulate growth in the intestinal epithelium, as illustrated in recent tissue culture models.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K. Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Wei Wang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
| | - Biliang Zhang
- Guangzhou RiboBio Co., Ltd., Guangzhou 510663, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y. Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
21
|
An T, Zhang J, Ma Y, Lian J, Wu YX, Lv BH, Ma MH, Meng JH, Zhou YT, Zhang ZY, Liu Q, Gao SH, Jiang GJ. Relationships of Non-coding RNA with diabetes and depression. Sci Rep 2019; 9:10707. [PMID: 31341180 PMCID: PMC6656886 DOI: 10.1038/s41598-019-47077-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/07/2019] [Indexed: 01/12/2023] Open
Abstract
In order to study the molecular differences between type 2 diabetes mellitus (T2DM) and T2DM with depression (DD), we aimed to screen the differential expression of lncRNA, mRNA, and circRNA in the blood of patients with T2DM and DD. Based on the self-rating depression scale (SDS), patient health questionnaire 9 (PHQ9), blood glucose and HbA1c, we divided the patients into T2DM and DD group. Peripheral blood was collected from the two groups of patients to perform lncRNA, mRNA, and circRNA expression profiling and screening DD-related specific molecules. Subsequently, bioinformatics analysis was performed to investigate the functions of differentially expressed genes (DEgenes). Finally, RT-PCR and lncRNA-mRNA regulatory network was performed to verify the expressions of lncRNAs and mRNAs related to the occurrence and development of DD. 28 lncRNAs, 107 circRNAs, and 89 mRNAs were identified in DD differential expression profiles. GO and pathway analysis found that 20 biological process (BP) related entities and 20 pathways associated with DD. The analysis shows that the genes that are differentially expressed in the DD group involved in the development of the neuropsychiatric system, immunity, and inflammation. Then, we screening for the important DElncRNA and mRNA associated with DD were verified by RT-PCR experiments and the results of RT-PCR were consistent with the sequencing results. LncRNA, circRNA, and mRNA differential expression profiles exist in DD patients compared with T2DM. The lncRNA-mRNA regulatory network analysis confirmed the crosslinking and complex regulation patterns of lncRNA and mRNA expression and verified the authenticity of the regulatory network.
Collapse
Affiliation(s)
- Tian An
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jing Zhang
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Yue Ma
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Juan Lian
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan-Xiang Wu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bo-Han Lv
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Meng-Hua Ma
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Jun-Hua Meng
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Yun-Tao Zhou
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Zhi-Yong Zhang
- Department of Endocrinology, Tangshan Workers Hospital, Tangshan, 063000, China
| | - Qing Liu
- Beijing Medicine and Food Co., Ltd., Beijing, 100029, China
| | - Si-Hua Gao
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Guang-Jian Jiang
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
22
|
Read J, Collie IT, Nguyen-McCarty M, Lucaj C, Robinson J, Conway L, Mukherjee J, McCall E, Donohoe G, Flavell E, Peciak K, Warwicker J, Dix C, Van den Hoven BG, Madin A, Brown DG, Moss S, Haggarty SJ, Brandon NJ, Bürli RW. Tool inhibitors and assays to interrogate the biology of the TRAF2 and NCK interacting kinase. Bioorg Med Chem Lett 2019; 29:1962-1967. [PMID: 31153805 DOI: 10.1016/j.bmcl.2019.05.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/21/2023]
Abstract
The TRAF2 and NCK interacting kinase (TNIK) has been proposed to play a role in cytoskeletal organization and synaptic plasticity and has been linked, among others, to neurological disorders. However, target validation efforts for TNIK have been hampered by the limited kinase selectivity of small molecule probes and possible functional compensation in mouse models. Both issues are at least in part due to its close homology to the kinases MINK1 (or MAP4K6) and MAP4K4 (or HGK). As part of our interest in validating TNIK as a therapeutic target for neurological diseases, we set up a panel of biochemical and cellular assays, which are described herein. We then examined the activity of known amino-pyridine-based TNIK inhibitors (1, 3) and prepared structurally very close analogs that lack the ability to inhibit the target. We also developed a structurally orthogonal, naphthyridine-based TNIK inhibitor (9) and an inactive control molecule of the same chemical series. These validated small-molecule probes will enable dissection of the function of TNIK family in the context of human disease biology.
Collapse
Affiliation(s)
- Jon Read
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Iain T Collie
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Michelle Nguyen-McCarty
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher Lucaj
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - James Robinson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Leslie Conway
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Jayanta Mukherjee
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Eileen McCall
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Gerard Donohoe
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Elizabeth Flavell
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Karolina Peciak
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Juli Warwicker
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, SK10 4TG, UK
| | - Carly Dix
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | | | - Andrew Madin
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0WG, UK
| | - Dean G Brown
- Discovery Sciences, IMED Biotech Unit, AstraZeneca Boston, Waltham, MA 02451, USA
| | - Stephen Moss
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA
| | - Stephen J Haggarty
- Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nicholas J Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca Boston, Waltham, MA 02451, USA.
| | - Roland W Bürli
- Neuroscience, IMED Biotech Unit, AstraZeneca, Cambridge CB21 6GH, UK.
| |
Collapse
|
23
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
24
|
Baltussen LL, Rosianu F, Ultanir SK. Kinases in synaptic development and neurological diseases. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:343-352. [PMID: 29241837 DOI: 10.1016/j.pnpbp.2017.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
Abstract
Neuronal morphogenesis and synapse development is essential for building a functioning nervous system, and defects in these processes are associated with neurological disorders. Our understanding of molecular components and signalling events that contribute to neuronal development and pathogenesis is limited. Genes associated with neurodevelopmental and neurodegenerative diseases provide entry points for elucidating molecular events that contribute to these conditions. Several protein kinases, enzymes that regulate protein function by phosphorylating their substrates, are genetically linked to neurological disorders. Identifying substrates of these kinases is key to discovering their function and providing insight for possible therapies. In this review, we describe how various methods for kinase-substrate identification helped elucidate kinase signalling pathways important for neuronal development and function. We describe recent advances on roles of kinases TAOK2, TNIK and CDKL5 in neuronal development and the converging pathways of LRRK2, PINK1 and GAK in Parkinson's Disease.
Collapse
Affiliation(s)
- Lucas L Baltussen
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Flavia Rosianu
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.
| |
Collapse
|
25
|
Li Q, Nirala NK, Nie Y, Chen HJ, Ostroff G, Mao J, Wang Q, Xu L, Ip YT. Ingestion of Food Particles Regulates the Mechanosensing Misshapen-Yorkie Pathway in Drosophila Intestinal Growth. Dev Cell 2018; 45:433-449.e6. [PMID: 29754801 DOI: 10.1016/j.devcel.2018.04.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/04/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
The intestinal epithelium has a high cell turnover rate and is an excellent system to study stem cell-mediated adaptive growth. In the Drosophila midgut, the Ste20 kinase Misshapen, which is distally related to Hippo, has a niche function to restrict intestinal stem cell activity. We show here that, under low growth conditions, Misshapen is localized near the cytoplasmic membrane, is phosphorylated at the threonine 194 by the upstream kinase Tao, and is more active toward Warts, which in turn inhibits Yorkie. Ingestion of yeast particles causes a midgut distention and a reduction of Misshapen membrane association and activity. Moreover, Misshapen phosphorylation is regulated by the stiffness of cell culture substrate, changing of actin cytoskeleton, and ingestion of inert particles. These results together suggest that dynamic membrane association and Tao phosphorylation of Misshapen are steps that link the mechanosensing of intestinal stretching after food particle ingestion to control adaptive growth.
Collapse
Affiliation(s)
- Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Niraj K Nirala
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Hsi-Ju Chen
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gary Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Junhao Mao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Wang
- Neuroscience Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Lan Xu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
26
|
Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 2017; 51:1357-1369. [PMID: 29048660 PMCID: PMC5642388 DOI: 10.3892/ijo.2017.4129] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
27
|
Yamada T, Masuda M. Emergence of TNIK inhibitors in cancer therapeutics. Cancer Sci 2017; 108:818-823. [PMID: 28208209 PMCID: PMC5448614 DOI: 10.1111/cas.13203] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/03/2017] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
The outcome of patients with metastatic colorectal cancer remains unsatisfactory. To improve patient prognosis, it will be necessary to identify new drug targets based on molecules that are essential for colorectal carcinogenesis, and to develop therapeutics that target such molecules. The great majority of colorectal cancers (>90%) have mutations in at least one Wnt signaling pathway gene. Aberrant activation of Wnt signaling is a major force driving colorectal carcinogenesis. Several therapeutics targeting Wnt pathway molecules, including porcupine, frizzled receptors and tankyrases, have been developed, but none of them have yet been incorporated into clinical practice. Wnt signaling is most frequently activated by loss of function of the adenomatous polyposis coli (APC) tumor suppressor gene. Restoration of APC gene function does not seem to be a realistic therapeutic approach, and, therefore, only Wnt signaling molecules downstream of the APC gene product can be considered as targets for pharmacological intervention. Traf2 and Nck‐interacting protein kinase (TNIK) was identified as a regulatory component of the β‐catenin and T‐cell factor‐4 (TCF‐4) transcriptional complex. Several small‐molecule compounds targeting this protein kinase have been shown to have anti‐tumor effects against various cancers. An anthelmintic agent, mebendazole, was recently identified as a selective inhibitor of TNIK and is under clinical evaluation. TNIK regulates Wnt signaling in the most downstream part of the pathway, and its pharmacological inhibition seems to be a promising therapeutic approach. We demonstrated the feasibility of this approach by developing a small‐molecule TNIK inhibitor, NCB‐0846.
Collapse
Affiliation(s)
- Tesshi Yamada
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Mari Masuda
- Division of Chemotherapy and Clinical Research, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
28
|
Masuda M, Yamada T. The emergence of TNIK as a therapeutic target for colorectal cancer. Expert Opin Ther Targets 2017; 21:353-355. [DOI: 10.1080/14728222.2017.1297799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Mari Masuda
- National Cancer Center Research Institute, Division of Chemotherapy and Clinical Research, Tokyo, Japan
| | - Tesshi Yamada
- National Cancer Center Research Institute, Division of Chemotherapy and Clinical Research, Tokyo, Japan
| |
Collapse
|