1
|
Zhang C, Su K, Jiang X, Tian Y, Li K. Advances in research on potential therapeutic approaches for Niemann-Pick C1 disease. Front Pharmacol 2024; 15:1465872. [PMID: 39263569 PMCID: PMC11387184 DOI: 10.3389/fphar.2024.1465872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
Niemann-Pick disease type C1 (NP-C1) is a rare and devastating recessive inherited lysosomal lipid and cholesterol storage disorder caused by mutations in the NPC1 or NPC2 gene. These two proteins bind to cholesterol and cooperate in endosomal cholesterol transport. Characteristic clinical manifestations of NP-C1 include hepatosplenomegaly, progressive neurodegeneration, and ataxia. While the rarity of NP-C1 presents a significant obstacle to progress, researchers have developed numerous potential therapeutic approaches over the past two decades to address this condition. Various methods have been proposed and continuously improved to slow the progression of NP-C1, although they are currently at an animal or clinical experimental stage. This overview of NP-C1 therapy will delve into different theoretical treatment strategies, such as small molecule therapies, cell-based approaches, and gene therapy, highlighting the complex therapeutic challenges associated with this disorder.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Keke Su
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuping Tian
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Stern S, Crisamore K, Schuck R, Pacanowski M. Evaluation of the landscape of pharmacodynamic biomarkers in Niemann-Pick Disease Type C (NPC). Orphanet J Rare Dis 2024; 19:280. [PMID: 39061081 PMCID: PMC11282650 DOI: 10.1186/s13023-024-03233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive, progressive disorder resulting from variants in NPC1 or NPC2 that leads to the accumulation of cholesterol and other lipids in late endosomes and lysosomes. The clinical manifestations of the disease vary by age of onset, and severity is often characterized by neurological involvement. To date, no disease-modifying therapy has been approved by the United States Food and Drug Administration (FDA) and treatment is typically supportive. The lack of robust biomarkers contributes to challenges associated with disease monitoring and quantifying treatment response. In recent years, advancements in detection methods have facilitated the identification of biomarkers in plasma and cerebral spinal fluid from patients with NPC, namely calbindin D, neurofilament light chain, 24(S)hydroxycholesterol, cholestane-triol, trihydroxycholanic acid glycinate, amyloid-β, total and phosphorylated tau, and N-palmitoyl-O-phosphocholine-serine. These biomarkers have been used to support several clinical trials as pharmacodynamic endpoints. Despite the significant advancements in laboratory techniques, translation of those advancements has lagged, and it remains unclear which biomarkers correlate with disease severity and progression, or which biomarkers could inform treatment response. In this review, we assess the landscape of biomarkers currently proposed to guide disease monitoring or indicate treatment response in patients with NPC.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Karryn Crisamore
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
3
|
De Marchi F, Munitic I, Vidatic L, Papić E, Rački V, Nimac J, Jurak I, Novotni G, Rogelj B, Vuletic V, Liscic RM, Cannon JR, Buratti E, Mazzini L, Hecimovic S. Overlapping Neuroimmune Mechanisms and Therapeutic Targets in Neurodegenerative Disorders. Biomedicines 2023; 11:2793. [PMID: 37893165 PMCID: PMC10604382 DOI: 10.3390/biomedicines11102793] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Many potential immune therapeutic targets are similarly affected in adult-onset neurodegenerative diseases, such as Alzheimer's (AD) disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), as well as in a seemingly distinct Niemann-Pick type C disease with primarily juvenile onset. This strongly argues for an overlap in pathogenic mechanisms. The commonly researched immune targets include various immune cell subsets, such as microglia, peripheral macrophages, and regulatory T cells (Tregs); the complement system; and other soluble factors. In this review, we compare these neurodegenerative diseases from a clinical point of view and highlight common pathways and mechanisms of protein aggregation, neurodegeneration, and/or neuroinflammation that could potentially lead to shared treatment strategies for overlapping immune dysfunctions in these diseases. These approaches include but are not limited to immunisation, complement cascade blockade, microbiome regulation, inhibition of signal transduction, Treg boosting, and stem cell transplantation.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Igor Jurak
- Molecular Virology Laboratory, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Gabriela Novotni
- Department of Cognitive Neurology and Neurodegenerative Diseases, University Clinic of Neurology, Medical Faculty, University Ss. Cyril and Methodius, 91701 Skoplje, North Macedonia;
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vladimira Vuletic
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Rajka M. Liscic
- Department of Neurology, Sachsenklinik GmbH, Muldentalweg 1, 04828 Bennewitz, Germany;
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy;
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
4
|
Yang M, Zhao Y, Li X, Li H, Cheng F, Liu Y, Jia Z, He Y, Lin J, Guan L. Conditioned medium of human menstrual blood-derived endometrial stem cells protects against cell inflammation and apoptosis of Npc1 KO N2a cells. Metab Brain Dis 2023; 38:2301-2313. [PMID: 37261632 DOI: 10.1007/s11011-023-01243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Niemann-Pick disease type C1 (NPC1) is a hereditary neurodegenerative disorder caused by a mutation in the NPC1 gene. This gene encodes a transmembrane protein found in lysosomes. This disease characterized by hepatosplenomegaly, neurological impairments and premature death. Recent preclinical studies have shown promising results in using mesenchymal stem cells (MSCs) to alleviate the symptoms of NPC1. One type of MSCs, known as human menstrual blood-derived endometrial stem cells (MenSCs), has attracted attention due to its accessibility, abundant supply, and strong proliferation and regeneration capabilities. However, it remains uncertain whether the conditioned medium of MenSCs (MenSCs-CM) can effectively relieve the symptoms of NPC1. To investigate this further, we employed the CRISPR-Cas9 technique to successfully create a Npc1 gene knockout N2a cell line (Npc1KO N2a). Sanger sequencing confirmed the occurrence of Npc1 gene mutation in these cells, while western blotting revealed a lack of NPC1 protein expression. Filipin staining provided visual evidence of unesterified cholesterol accumulation in Npc1KO N2a cells. Moreover, Npc1KO N2a cells exhibited significantly decreased viability, increased inflammation, and heightened cell apoptosis. Notably, our study demonstrated that the viability of Npc1KO N2a cells was most significantly improved after being cultured by 36 h-collected MenSCs-CM for 0.5 days. Additionally, MenSCs-CM exhibited the ability to effectively reduce inflammation, counteract cell apoptosis, and ameliorate unesterified cholesterol accumulation in Npc1KO N2a cells. This groundbreaking finding establishes, for the first time, the protective effect of MenSCs-CM on N2a cells with Npc1 gene deletion. These findings suggest that the potential of MenSCs-CM as a beneficial therapeutic approach for NPC1 and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanchun Zhao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Fangfang Cheng
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang, Henan, 453003, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
5
|
Li W, Pergande MR, Crutchfield CA, Searle BC, Backlund PS, Picache JA, Burkert K, Yanjanin-Farhat NM, Blank PS, Toth CL, Wassif CA, Porter FD, Cologna SM. A differential proteomics study of cerebrospinal fluid from individuals with Niemann-Pick disease, Type C1. Proteomics 2023; 23:e2200378. [PMID: 36638187 PMCID: PMC10918788 DOI: 10.1002/pmic.202200378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Niemann-Pick, type C1 (NPC1) is a fatal, neurodegenerative disease, which belongs to the family of lysosomal diseases. In NPC1, endo/lysosomal accumulation of unesterified cholesterol and sphingolipids arise from improper intracellular trafficking resulting in multi-organ dysfunction. With the proximity between the brain and cerebrospinal fluid (CSF), performing differential proteomics provides a means to shed light to changes occurring in the brain. In this study, CSF samples obtained from NPC1 individuals and unaffected controls were used for protein biomarker identification. A subset of these individuals with NPC1 are being treated with miglustat, a glycosphingolipid synthesis inhibitor. Of the 300 identified proteins, 71 proteins were altered in individuals with NPC1 compared to controls including cathepsin D, and members of the complement family. Included are a report of 10 potential markers for monitoring therapeutic treatment. We observed that pro-neuropeptide Y (NPY) was significantly increased in NPC1 individuals relative to healthy controls; however, individuals treated with miglustat displayed levels comparable to healthy controls. In further investigation, NPY levels in a NPC1 mouse model corroborated our findings. We posit that NPY could be a potential therapeutic target for NPC1 due to its multiple roles in the central nervous system such as attenuating neuroinflammation and reducing excitotoxicity.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois Chicago
| | | | - Christopher A. Crutchfield
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Brian C. Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center
| | - Peter S. Backlund
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Jaqueline A. Picache
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Kathryn Burkert
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Nicole M. Yanjanin-Farhat
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Paul S. Blank
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Cynthia L. Toth
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Christopher A. Wassif
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D. Porter
- Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health
| | | |
Collapse
|
6
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
7
|
Campbell K, Cawley NX, Luke R, Scott KEJ, Johnson N, Farhat NY, Alexander D, Wassif CA, Li W, Cologna SM, Berry-Kravis E, Do AD, Dale RK, Porter FD. Identification of cerebral spinal fluid protein biomarkers in Niemann-Pick disease, type C1. Biomark Res 2023; 11:14. [PMID: 36721240 PMCID: PMC9887810 DOI: 10.1186/s40364-023-00448-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive, lethal, lysosomal disease characterized by progressive cerebellar ataxia and cognitive impairment. Although the NPC1 phenotype is heterogeneous with variable age of onset, classical NPC1 is a pediatric disorder. Currently there are no therapies approved by the FDA and therapeutics trials for NPC1 are complicated by disease rarity, heterogeneity, and the relatively slow rate of neurological decline. Thus, identification of disease relevant biomarkers is necessary to provide tools that can support drug development efforts for this devastating neurological disease. METHODS Proximal extension assays (O-link® Explore 1536) were used to compare cerebrospinal fluid (CSF) samples from individuals with NPC1 enrolled in a natural history study and non-NPC1 comparison samples. Relative expression levels of 1467 proteins were determined, and candidate protein biomarkers were identified by evaluating fold-change and adjusted Kruskal-Wallis test p-values. Selected proteins were orthogonally confirmed using ELISA. To gain insight into disease progression and severity we evaluated the altered protein expression with respect to clinically relevant phenotypic aspects: NPC Neurological Severity Score (NPC1 NSS), Annual Severity Increment Score (ASIS) and age of neurological onset. RESULTS This study identified multiple proteins with altered levels in CSF from individuals with NPC1 compared to non-NPC1 samples. These included proteins previously shown to be elevated in NPC1 (NEFL, MAPT, CHIT1, CALB1) and additional proteins confirmed by orthogonal assays (PARK7, CALB2/calretinin, CHI3L1/YKL-40, MIF, CCL18 and ENO2). Correlations with clinically relevant phenotypic parameters demonstrated moderate negative (p = 0.0210, r = -0.41) and possible moderate positive (p = 0.0631, r = 0.33) correlation of CSF CALB2 levels with age of neurological onset and ASIS, respectively. CSF CHI3L1 levels showed a moderate positive (p = 0.0183, r = 0.40) correlation with the concurrent NPC1 NSS. A strong negative correlation (p = 0.0016, r = -0.648) was observed between CSF CCL18 and age of neurological onset for childhood/adolescent cases. CSF CCL18 levels also showed a strong positive correlation (p = 0.0017, r = 0.61) with ASIS. CONCLUSION Our study identified and validated multiple proteins in CSF from individuals with NPC1 that are candidates for further investigation in a larger cohort. These analytes may prove to be useful as supportive data in therapeutic trials. TRIAL REGISTRATIONS NCT00344331, NCT00001721, NCT02931682.
Collapse
Affiliation(s)
- Kiersten Campbell
- grid.420089.70000 0000 9635 8082Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10CRC, Rm. 1-3330, 10 Center Dr., Bethesda, MD 20879 USA
| | - Niamh X. Cawley
- grid.420089.70000 0000 9635 8082Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Rachel Luke
- grid.420089.70000 0000 9635 8082Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Katelin E. J. Scott
- grid.420089.70000 0000 9635 8082Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Nicholas Johnson
- grid.420089.70000 0000 9635 8082Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10CRC, Rm. 1-3330, 10 Center Dr., Bethesda, MD 20879 USA
| | - Nicole Y. Farhat
- grid.420089.70000 0000 9635 8082Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Derek Alexander
- grid.420089.70000 0000 9635 8082Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Christopher A. Wassif
- grid.420089.70000 0000 9635 8082Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Wenping Li
- grid.185648.60000 0001 2175 0319Department of Chemistry and Laboratory of Integrative Neuroscience, University of Illinois Chicago, Chicago, IL USA
| | - Stephanie M. Cologna
- grid.185648.60000 0001 2175 0319Department of Chemistry and Laboratory of Integrative Neuroscience, University of Illinois Chicago, Chicago, IL USA
| | | | - An Dang Do
- grid.420089.70000 0000 9635 8082Unit On Cellular Stress in Development and Diseases, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Ryan K. Dale
- grid.420089.70000 0000 9635 8082Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10CRC, Rm. 1-3330, 10 Center Dr., Bethesda, MD 20879 USA
| | - Forbes D. Porter
- grid.420089.70000 0000 9635 8082Section On Molecular Dysmorphology, Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
8
|
Ishitsuka Y, Irie T, Matsuo M. Cyclodextrins applied to the treatment of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 191:114617. [PMID: 36356931 DOI: 10.1016/j.addr.2022.114617] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide, is a pharmaceutical additive that improves the solubility of hydrophobic compounds. Recent research has focused on the potential active pharmaceutical abilities of CD. Lysosomal storage diseases are inherited metabolic diseases characterized by lysosomal dysfunction and abnormal lipid storage. Niemann-Pick disease type C (NPC) is caused by mutations in cholesterol transporter genes (NPC1, NPC2) and is characterized by cholesterol accumulation in lysosomes. A biocompatible cholesterol solubilizer 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was recently used in NPC patients for compassionate use and in clinical trials. HP-β-CD is an attractive drug candidate for NPC; however, its adverse effects, such as ototoxicity, should be solved. In this review, we discuss the current use of HP-β-CD in basic and clinical research and discuss alternative CD derivatives that may outperform HP-β-CD, which should be considered for clinical use. The potential of CD therapy for the treatment of other lysosomal storage diseases is also discussed.
Collapse
Affiliation(s)
- Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Packaging Technology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Muneaki Matsuo
- Department of Pediatrics, Faculty of Medicine, Saga University, 5-1-1, Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
9
|
Li W, Cologna SM. Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders. Mol Omics 2022; 18:256-278. [PMID: 35343995 PMCID: PMC9098683 DOI: 10.1039/d2mo00004k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major function of the lysosome is to degrade unwanted materials such as lipids, proteins, and nucleic acids; therefore, deficits of the lysosomal system can result in improper degradation and trafficking of these biomolecules. Diseases associated with lysosomal failure can be lethal and are termed lysosomal storage disorders (LSDs), which affect 1 in 5000 live births collectively. LSDs are inherited metabolic diseases caused by mutations in single lysosomal and non-lysosomal proteins and resulting in the subsequent accumulation of macromolecules within. Most LSD patients present with neurodegenerative clinical symptoms, as well as damage in other organs. The discovery of new biomarkers is necessary to understand and monitor these diseases and to track therapeutic progress. Over the past ten years, mass spectrometry (MS)-based proteomics has flourished in the biomarker studies in many diseases, including neurodegenerative, and more specifically, LSDs. In this review, biomarkers of disease pathophysiology and monitoring of LSDs revealed by MS-based proteomics are discussed, including examples from Niemann-Pick disease type C, Fabry disease, neuronal ceroid-lipofuscinoses, mucopolysaccharidosis, Krabbe disease, mucolipidosis, and Gaucher disease.
Collapse
Affiliation(s)
- Wenping Li
- Department of Chemistry, University of Illinois at Chicago, USA.
| | | |
Collapse
|
10
|
Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23042378. [PMID: 35216492 PMCID: PMC8878351 DOI: 10.3390/ijms23042378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
A major hallmark of Parkinson’s disease (PD) is the fatal destruction of dopaminergic neurons within the substantia nigra pars compacta. This event is preceded by the formation of Lewy bodies, which are cytoplasmic inclusions composed of α-synuclein protein aggregates. A triad contribution of α-synuclein aggregation, iron accumulation, and mitochondrial dysfunction plague nigral neurons, yet the events underlying iron accumulation are poorly understood. Elevated intracellular iron concentrations up-regulate ferritin expression, an iron storage protein that provides cytoprotection against redox stress. The lysosomal degradation pathway, autophagy, can release iron from ferritin stores to facilitate its trafficking in a process termed ferritinophagy. Aggregated α-synuclein inhibits SNARE protein complexes and destabilizes microtubules to halt vesicular trafficking systems, including that of autophagy effectively. The scope of this review is to describe the physiological and pathological relationship between iron regulation and α-synuclein, providing a detailed understanding of iron metabolism within nigral neurons. The underlying mechanisms of autophagy and ferritinophagy are explored in the context of PD, identifying potential therapeutic targets for future investigation.
Collapse
|
11
|
Jiang X, Ory DS. Advancing Diagnosis and Treatment of Niemann-Pick C disease through Biomarker Discovery. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:146-158. [PMID: 35356760 PMCID: PMC8963791 DOI: 10.37349/ent.2021.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 05/30/2023]
Abstract
Niemann-Pick C is a rare neurodegenerative, lysosomal storage disease caused by accumulation of unesterified cholesterol. Diagnosis of the disease is often delayed due to its rarity, the heterogeneous presentation and the early non-specific symptoms. The discovery of disease-specific biomarkers - cholestane-3β,5α,6β-triol (C-triol), trihydroxycholanic acid glycinate (TCG) and N-palmitoyl-O-phosphocholineserine (PPCS, initially referred to as lysoSM-509) - has led to development of non-invasive, blood-based diagnostics. Dissemination of these rapid, sensitive, and specific clinical assays has accelerated diagnosis. Moreover, the superior receiver operating characteristic of the TCG bile acid biomarker and its detection in dried blood spots has also facilitated development of a newborn screen for NPC, which is currently being piloted in New York state. The C-triol, TCG and PPCS biomarkers have also proven useful for monitoring treatment response in peripheral tissues, but are uninformative with respect to treatment efficacy in the central nervous system (CNS). A major gap for the field is the lack of a validated, non-invasive biomarker to monitor the course of disease and CNS response to therapy.
Collapse
Affiliation(s)
- Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
12
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight. Summary: This Review discusses work in different model systems and humans, examining the impact of altered protein secretion in the neuronal ceroid lipofuscinoses group of diseases to provide novel therapeutic insights.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Life & Health Sciences Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
13
|
Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson CD, Carlson SR, Incao AA, Wallom KL, Farhat NY, Platt FM, Dale RK, Porter FD, Pavan WJ. Transcriptome of HPβCD-treated Niemann-pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet 2021; 30:2456-2468. [PMID: 34296265 DOI: 10.1093/hmg/ddab194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a compound currently under investigation in clinical trials. A total of 485 HPβCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of serum from Npc1m1N null mice treated with HPβCD and adeno-associated virus (AAV) gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPβCD treatment.
Collapse
Affiliation(s)
- Jorge L Rodriguez-Gil
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health.,Medical Scientist Training Program, University of Wisconsin-Madison School of Medicine and Public Health
| | - Laura L Baxter
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Dawn E Watkins-Chow
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Nicholas L Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Cristin D Davidson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Steven R Carlson
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | - Arturo A Incao
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| | | | | | - Nicole Y Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | | | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health
| | - William J Pavan
- Genomics, Development and Disease Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health
| |
Collapse
|
14
|
Cariati I, Masuelli L, Bei R, Tancredi V, Frank C, D’Arcangelo G. Neurodegeneration in Niemann-Pick Type C Disease: An Updated Review on Pharmacological and Non-Pharmacological Approaches to Counteract Brain and Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22126600. [PMID: 34202978 PMCID: PMC8234817 DOI: 10.3390/ijms22126600] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023] Open
Abstract
Niemann–Pick type C (NPC) disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol in the late endo-lysosomal system of cells. Progressive neurological deterioration and the onset of symptoms, such as ataxia, seizures, cognitive decline, and severe dementia, are pathognomonic features of the disease. In addition, different pathological similarities, including degeneration of hippocampal and cortical neurons, hyperphosphorylated tau, and neurofibrillary tangle formation, have been identified between NPC disease and other neurodegenerative pathologies. However, the underlying pathophysiological mechanisms are not yet well understood, and even a real cure to counteract neurodegeneration has not been identified. Therefore, the combination of current pharmacological therapies, represented by miglustat and cyclodextrin, and non-pharmacological approaches, such as physical exercise and appropriate diet, could represent a strategy to improve the quality of life of NPC patients. Based on this evidence, in our review we focused on the neurodegenerative aspects of NPC disease, summarizing the current knowledge on the molecular and biochemical mechanisms responsible for cognitive impairment, and suggesting physical exercise and nutritional treatments as additional non-pharmacologic approaches to reduce the progression and neurodegenerative course of NPC disease.
Collapse
Affiliation(s)
- Ida Cariati
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Virginia Tancredi
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Giovanna D’Arcangelo
- Department of Systems Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
- Centre of Space Bio-Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
15
|
Vardi A, Pri-Or A, Wigoda N, Grishchuk Y, Futerman AH. Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways. Orphanet J Rare Dis 2021; 16:39. [PMID: 33478506 PMCID: PMC7818904 DOI: 10.1186/s13023-021-01679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1−/− mouse. Results A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1−/− mouse by RNAseq, the results were remarkably similar. Finally, analysis of proteins in human and mouse CSF suggest that calbindin 1 and calbindin 2 might be useful as biomarkers to help chart the course of disease development. Conclusions Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.
Collapse
Affiliation(s)
- Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Amir Pri-Or
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noa Wigoda
- The Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, 02114, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
16
|
Gowrishankar S, Cologna SM, Givogri MI, Bongarzone ER. Deregulation of signalling in genetic conditions affecting the lysosomal metabolism of cholesterol and galactosyl-sphingolipids. Neurobiol Dis 2020; 146:105142. [PMID: 33080336 PMCID: PMC8862610 DOI: 10.1016/j.nbd.2020.105142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The role of lipids in neuroglial function is gaining momentum in part due to a better understanding of how many lipid species contribute to key cellular signalling pathways at the membrane level. The description of lipid rafts as membrane domains composed by defined classes of lipids such as cholesterol and sphingolipids has greatly helped in our understanding of how cellular signalling can be regulated and compartmentalized in neurons and glial cells. Genetic conditions affecting the metabolism of these lipids greatly impact on how some of these signalling pathways work, providing a context to understand the biological function of the lipid. Expectedly, abnormal metabolism of several lipids such as cholesterol and galactosyl-sphingolipids observed in several metabolic conditions involving lysosomal dysfunction are often accompanied by neuronal and myelin dysfunction. This review will discuss the role of lysosomal biology in the context of deficiencies in the metabolism of cholesterol and galactosyl-sphingolipids and their impact on neural function in three genetic disorders: Niemann-Pick type C, Metachromatic leukodystrophy and Krabbe's disease.
Collapse
Affiliation(s)
- S Gowrishankar
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - S M Cologna
- Department of Chemistry, University of Illinois, Chicago, IL, USA.
| | - M I Givogri
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| | - E R Bongarzone
- Department of Anatomy and Cell Biology, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
17
|
Sidhu R, Kell P, Dietzen DJ, Farhat NY, Do AND, Porter FD, Berry-Kravis E, Reunert J, Marquardt T, Giugliani R, Lourenço CM, Wang RY, Movsesyan N, Plummer E, Schaffer JE, Ory DS, Jiang X. Application of a glycinated bile acid biomarker for diagnosis and assessment of response to treatment in Niemann-pick disease type C1. Mol Genet Metab 2020; 131:405-417. [PMID: 33257258 PMCID: PMC8139135 DOI: 10.1016/j.ymgme.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 01/05/2023]
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative disease in which mutation of NPC1 or NPC2 gene leads to lysosomal accumulation of unesterified cholesterol and sphingolipids. Diagnosis of NPC disease is challenging due to non-specific early symptoms. Biomarker and genetic tests are used as first-line diagnostic tests for NPC. In this study, we developed a plasma test based on N-(3β,5α,6β-trihydroxy-cholan-24-oyl)glycine (TCG) that was markedly increased in the plasma of human NPC1 subjects. The test showed sensitivity of 0.9945 and specificity of 0.9982 to differentiate individuals with NPC1 from NPC1 carriers and controls. Compared to other commonly used biomarkers, cholestane-3β,5α,6β-triol (C-triol) and N-palmitoyl-O-phosphocholine (PPCS, also referred to as lysoSM-509), TCG was equally sensitive for identifying NPC1 but more specific. Unlike C-triol and PPCS, TCG showed excellent stability and no spurious generation of marker in the sample preparation or aging of samples. TCG was also elevated in lysosomal acid lipase deficiency (LALD) and acid sphingomyelinase deficiency (ASMD). Plasma TCG was significantly reduced after intravenous (IV) 2-hydroxypropyl-β-cyclodextrin (HPβCD) treatment. These results demonstrate that plasma TCG was superior to C-triol and PPCS as NPC1 diagnostic biomarker and was able to evaluate the peripheral treatment efficacy of IV HPβCD treatment.
Collapse
Affiliation(s)
- Rohini Sidhu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela Kell
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dennis J Dietzen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole Y Farhat
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - An Ngoc Dang Do
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - Janine Reunert
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Thorsten Marquardt
- Klinik und Poliklinik für Kinder- und Jugendmedizin - Allgemeine Pädiatrie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149 Münster, Germany
| | - Roberto Giugliani
- Department of Genetics, UFRGS, Medical Genetics Service, HCPA, BioDiscovery Laboratory, HCPA, Hospital de Clínicas de Porto Alegre, National Institute of Population Medical Genetics - INAGEMP, Porto Alegre, RS 90035-903, Brazil
| | - Charles M Lourenço
- Faculdade de Medicina - Centro Universitario Estácio de Ribeirão Preto, Rua Abrahão Issa Halach, 980 - Ribeirânia, Ribeirão Preto, - SP, Brazil
| | - Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA; Department of Pediatrics, University of California-Irvine School of Medicine, Orange, CA 92868, USA
| | - Nina Movsesyan
- Research Institute, CHOC Children's Hospital, Orange, CA 92868, USA
| | - Ellen Plummer
- Asante Pediatric Hematology and Oncology, Medford, OR, 97504, USA
| | - Jean E Schaffer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
19
|
Recent advances in the treatment of Niemann pick disease type C: A mini-review. Int J Pharm 2020; 584:119440. [PMID: 32428546 DOI: 10.1016/j.ijpharm.2020.119440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
Abstract
Niemann Pick disease Type C (NPC) is a recessive rare disease caused by the mutation on NPC1 and/or NPC2 genes changing the processing of the Low-density proteins (LDL) resulting in an accumulation of lipids in the cells. Until today there is not a cure, the current treatment is based on palliative affairs to reduce the symptoms and prevent its appearance. Among all the treatments proposed the use of cyclodextrins (CDs), nanocarriers which can complex cholesterol, is one of the most useful alternatives. Indeed, for several years 2-hydroxypropyl-β-CD (HPβ-CD) is approved as orphan drug for FDA and EMA to the treatment. However, different CDs based materials are created each year to improve the cholesterol uptake. This review is focused on the novelty of CD based materials for NPC treatment.
Collapse
|
20
|
Gurda BL, Vite CH. Large animal models contribute to the development of therapies for central and peripheral nervous system dysfunction in patients with lysosomal storage diseases. Hum Mol Genet 2020; 28:R119-R131. [PMID: 31384936 DOI: 10.1093/hmg/ddz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and β- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Poswar FDO, Vairo F, Burin M, Michelin-Tirelli K, Brusius-Facchin AC, Kubaski F, Souza CFMD, Baldo G, Giugliani R. Lysosomal diseases: Overview on current diagnosis and treatment. Genet Mol Biol 2019; 42:165-177. [PMID: 31067291 PMCID: PMC6687355 DOI: 10.1590/1678-4685-gmb-2018-0159] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
Lysosomal diseases (LDs), also known as lysosomal storage diseases (LSDs), are a heterogeneous group of conditions caused by defects in lysosomal function. LDs may result from deficiency of lysosomal hydrolases, membrane-associated transporters or other non-enzymatic proteins. Interest in the LD field is growing each year, as more conditions are, or will soon be treatable. In this article, we review the diagnosis of LDs, from clinical suspicion and screening tests to the identification of enzyme or protein deficiencies and molecular genetic diagnosis. We also cover the treatment approaches that are currently available or in development, including hematopoietic stem cell transplantation, enzyme replacement therapy, small molecules, and gene therapy.
Collapse
Affiliation(s)
- Fabiano de Oliveira Poswar
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Filippo Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Maira Burin
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Francyne Kubaski
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Guilherme Baldo
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Postgraduate Program in Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Physiology and Pharmacology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
22
|
Fog CK, Kirkegaard T. Animal models for Niemann-Pick type C: implications for drug discovery & development. Expert Opin Drug Discov 2019; 14:499-509. [PMID: 30887840 DOI: 10.1080/17460441.2019.1588882] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Niemann-Pick type C (NPC) is a neurovisceral, progressively detrimental lysosomal storage disease with very limited therapeutic options and no approved treatment available in the US. Despite its rarity, NPC has seen increased drug developmental efforts over the past decade, culminating in the completion of two potential registration trials in 2018. Areas covered: This review highlights the many available animal models that have been developed in the field and briefly covers classical and new cell technologies. This review provides a high-level evaluation and prioritization of the various models with regard to efficient and clinically translatable drug development, and briefly discusses the relevant developments and opportunities pertaining to this. Expert opinion: With a number of in vitro and in vivo models available, and with having several drugs, all with various mechanisms of action, either approved or in late stage development, the NPC field is in an exciting time. One of the challenges for researchers and developers will be the ability to make use of the lessons learnt from existing late-stage programs as well as the incorporation not only of the opportunities but also the limitations of the many models into successful drug discovery and translational development programs.
Collapse
|
23
|
Belekhova MG, Kenigfest NB, Chernigovskaya EV, Chmykhova NM. Evolutionary Origins of Transventricular Transmission of Hypothalamic Hormones and Neuromodulatory Substances. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Pineda M, Walterfang M, Patterson MC. Miglustat in Niemann-Pick disease type C patients: a review. Orphanet J Rare Dis 2018; 13:140. [PMID: 30111334 PMCID: PMC6094874 DOI: 10.1186/s13023-018-0844-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Niemann-Pick disease type C (NP-C) is a rare, autosomal recessive, neurodegenerative disease associated with a wide variety of progressive neurological manifestations. Miglustat is indicated for the treatment of progressive neurological manifestations in both adults and children. Since approval in 2009 there has been a vast growth in clinical experience with miglustat. The effectiveness of miglustat has been assessed using a range of measures. METHODS Comprehensive review of published data from studies of cellular neuropathological markers and structural neurological indices in the brain, clinical impairment/disability, specific clinical neurological manifestations, and patient survival. RESULTS Cranial diffusion tensor imaging and magnetic resonance spectroscopy studies have shown reduced levels of choline (a neurodegeneration marker), and choline/N-acetyl aspartate ratio (indicating increased neuronal viability) in the brain during up to 5 years of miglustat therapy, as well as a slowing of reductions in fractional anisotropy (an axonal/myelin integrity marker). A 2-year immunoassay study showed significant reductions in CSF-calbindin during treatment, indicating reduced cerebellar Purkinje cell loss. Magnetic resonance imaging studies have demonstrated a protective effect of miglustat on cerebellar and subcortical structure that correlated with clinical symptom severity. Numerous cohort studies assessing core neurological manifestations (impaired ambulation, manipulation, speech, swallowing, other) using NP-C disability scales indicate neurological stabilization over 2-8 years, with a trend for greater benefits in patients with older (non-infantile) age at neurological onset. A randomized controlled trial and several cohort studies have reported improvements or stabilization of saccadic eye movements during 1-5 years of therapy. Swallowing was also shown to improve/remain stable during the randomized trial (up to 2 years), as well as in long-term observational cohorts (up to 6 years). A meta-analysis of dysphagia - a potent risk factor for aspiration pneumonia and premature death in NP-C - demonstrated a survival benefit with miglustat due to improved/stabilized swallowing function. CONCLUSIONS The effects of miglustat on neurological NP-C manifestations has been assessed using a range of approaches, with benefits ranging from cellular changes in the brain through to visible clinical improvements and improved survival.
Collapse
Affiliation(s)
- Mercè Pineda
- Fundacio Hospital Sant Joan de Déu, Barcelona, Spain. .,Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu No. 2, Esplugues, 8950, Barcelona, Spain.
| | - Mark Walterfang
- Florey Institute of Neuroscience and Mental Health, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
25
|
Cougnoux A, Movassaghi M, Picache JA, Iben JR, Navid F, Salman A, Martin K, Farhat NY, Cluzeau C, Tseng WC, Burkert K, Sojka C, Wassif CA, Cawley NX, Bonnet R, Porter FD. Gastrointestinal Tract Pathology in a BALB/c Niemann-Pick Disease Type C1 Null Mouse Model. Dig Dis Sci 2018; 63:870-880. [PMID: 29357083 PMCID: PMC6292218 DOI: 10.1007/s10620-018-4914-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Niemann-Pick disease, type C (NPC) is a rare lysosomal storage disorder characterized by progressive neurodegeneration, splenomegaly, hepatomegaly, and early death. NPC is caused by mutations in either the NPC1 or NPC2 gene. Impaired NPC function leads to defective intracellular transport of unesterified cholesterol and its accumulation in late endosomes and lysosomes. A high frequency of Crohn disease has been reported in NPC1 patients, suggesting that gastrointestinal tract pathology may become a more prominent clinical issue if effective therapies are developed to slow the neurodegeneration. The Npc1 nih mouse model on a BALB/c background replicates the hepatic and neurological disease observed in NPC1 patients. Thus, we sought to characterize the gastrointestinal tract pathology in this model to determine whether it can serve as a model of Crohn disease in NPC1. METHODS We analyzed the gastrointestinal tract and isolated macrophages of BALB/cJ cNctr-Npc1m1N/J (Npc1-/-) mouse model to determine whether there was any Crohn-like pathology or inflammatory cell activation. We also evaluated temporal changes in the microbiota by 16S rRNA sequencing of fecal samples to determine whether there were changes consistent with Crohn disease. RESULTS Relative to controls, Npc1 mutant mice demonstrate increased inflammation and crypt abscesses in the gastrointestinal tract; however, the observed pathological changes are significantly less than those observed in other Crohn disease mouse models. Analysis of Npc1 mutant macrophages demonstrated an increased response to lipopolysaccharides and delayed bactericidal activity; both of which are pathological features of Crohn disease. Analysis of the bacterial microbiota does not mimic what is reported in Crohn disease in either human or mouse models. We did observe significant increases in cyanobacteria and epsilon-proteobacteria. The increase in epsilon-proteobacteria may be related to altered cholesterol homeostasis since cholesterol is known to promote growth of this bacterial subgroup. CONCLUSIONS Macrophage dysfunction in the BALB/c Npc1-/- mouse is similar to that observed in other Crohn disease models. However, neither the degree of pathology nor the microbiota changes are typical of Crohn disease. Thus, this mouse model is not a good model system for Crohn disease pathology reported in NPC1 patients.
Collapse
Affiliation(s)
- Antony Cougnoux
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Miyad Movassaghi
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Jaqueline A Picache
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - James R Iben
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Fatemeh Navid
- Department of Health and Human Services, National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, 20892, USA
| | - Alexander Salman
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kyle Martin
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Nicole Y Farhat
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Celine Cluzeau
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Wei-Chia Tseng
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Kathryn Burkert
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Caitlin Sojka
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Christopher A Wassif
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Niamh X Cawley
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA
| | - Richard Bonnet
- Microbes, Inflammation, Intestin et Susceptibilité de l'Hôte (M2iSH), Inserm U1071, INRA USC2018, Clermont Université, Université d'Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, Center Hospitalier Universitaire, Clermont-Ferrand, France
| | - Forbes D Porter
- Department of Health and Human Services, National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, 20892, USA.
| |
Collapse
|
26
|
Ory DS, Ottinger EA, Farhat NY, King KA, Jiang X, Weissfeld L, Berry-Kravis E, Davidson CD, Bianconi S, Keener LA, Rao R, Soldatos A, Sidhu R, Walters KA, Xu X, Thurm A, Solomon B, Pavan WJ, Machielse BN, Kao M, Silber SA, McKew JC, Brewer CC, Vite CH, Walkley SU, Austin CP, Porter FD. Intrathecal 2-hydroxypropyl-β-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1-2 trial. Lancet 2017; 390:1758-1768. [PMID: 28803710 PMCID: PMC6176479 DOI: 10.1016/s0140-6736(17)31465-4] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Niemann-Pick disease, type C1 (NPC1) is a lysosomal storage disorder characterised by progressive neurodegeneration. In preclinical testing, 2-hydroxypropyl-β-cyclodextrins (HPβCD) significantly delayed cerebellar Purkinje cell loss, slowed progression of neurological manifestations, and increased lifespan in mouse and cat models of NPC1. The aim of this study was to assess the safety and efficacy of lumbar intrathecal HPβCD. METHODS In this open-label, dose-escalation phase 1-2a study, we gave monthly intrathecal HPβCD to participants with NPC1 with neurological manifestation at the National Institutes of Health (NIH), Bethesda, MD, USA. To explore the potential effect of 2-week dosing, three additional participants were enrolled in a parallel study at Rush University Medical Center (RUMC), Chicago, IL, USA. Participants from the NIH were non-randomly, sequentially assigned in cohorts of three to receive monthly initial intrathecal HPβCD at doses of 50, 200, 300, or 400 mg per month. A fifth cohort of two participants received initial doses of 900 mg. Participants from RUMC initially received 200 or 400 mg every 2 weeks. The dose was escalated based on tolerance or safety data from higher dose cohorts. Serum and CSF 24(S)-hydroxycholesterol (24[S]-HC), which serves as a biomarker of target engagement, and CSF protein biomarkers were evaluated. NPC Neurological Severity Scores (NNSS) were used to compare disease progression in HPβCD-treated participants relative to a historical comparison cohort of 21 NPC1 participants of similar age range. FINDINGS Between Sept 21, 2013, and Jan 19, 2015, 32 participants with NPC1 were assessed for eligibility at the National Institutes of Health. 18 patients were excluded due to inclusion criteria not met (six patients), declined to participate (three patients), pursued independent expanded access and obtained the drug outside of the study (three patients), enrolled in the RUMC cohort (one patient), or too late for the trial enrolment (five patients). 14 patients were enrolled and sequentially assigned to receive intrathecal HPβCD at a starting dose of 50 mg per month (three patients), 200 mg per month (three patients), 300 mg per month (three patients), 400 mg per month (three patients), or 900 mg per month (two patients). During the first year, two patients had treatment interrupted for one dose, based on grade 1 ototoxicity. All 14 patients were assessed at 12 months. Between 12 and 18 months, one participant had treatment interrupted at 17 months due to hepatocellular carcinoma, one patient had dose interruption for 2 doses based on caregiver hardship and one patient had treatment interrupted for 1 dose for mastoiditis. 11 patients were assessed at 18 months. Between Dec 11, 2013, and June 25, 2014, three participants were assessed for eligibility and enrolled at RUMC, and were assigned to receive intrathecal HPβCD at a starting dose of 200 mg every 2 weeks (two patients), or 400 mg every two weeks (one patient). There were no dropouts in this group and all 3 patients were assessed at 18 months. Biomarker studies were consistent with improved neuronal cholesterol homoeostasis and decreased neuronal pathology. Post-drug plasma 24(S)-HC area under the curve (AUC8-72) values, an indicator of neuronal cholesterol homoeostasis, were significantly higher than post-saline plasma 24(S)-HC AUC8-72 after doses of 900 mg (p=0·0063) and 1200 mg (p=0·0037). CSF 24(S)-HC concentrations in three participants given either 600 or 900 mg of HPβCD were increased about two fold (p=0·0032) after drug administration. No drug-related serious adverse events were observed. Mid-frequency to high-frequency hearing loss, an expected adverse event, was documented in all participants. When managed with hearing aids, this did not have an appreciable effect on daily communication. The NNSS for the 14 participants treated monthly increased at a rate of 1·22, SEM 0·34 points per year compared with 2·92, SEM 0·27 points per year (p=0·0002) for the 21 patient comparison group. Decreased progression was observed for NNSS domains of ambulation (p=0·0622), cognition (p=0·0040) and speech (p=0·0423). INTERPRETATION Patients with NPC1 treated with intrathecal HPβCD had slowed disease progression with an acceptable safety profile. These data support the initiation of a multinational, randomised, controlled trial of intrathecal HPβCD. FUNDING National Institutes of Health, Dana's Angels Research Trust, Ara Parseghian Medical Research Foundation, Hope for Haley, Samantha's Search for the Cure Foundation, National Niemann-Pick Disease Foundation, Support of Accelerated Research for NPC Disease, Vtesse, Janssen Research and Development, a Johnson & Johnson company, and Johnson & Johnson.
Collapse
Affiliation(s)
- Daniel S Ory
- Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth A Ottinger
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Nicole Yanjanin Farhat
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD USA
| | - Kelly A King
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Xuntian Jiang
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | - Simona Bianconi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD USA
| | - Lee Ann Keener
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD USA
| | | | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Department of Health and Human Services Bethesda, MD, USA
| | - Rohini Sidhu
- Washington University School of Medicine, St Louis, MO, USA
| | | | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Audrey Thurm
- National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Beth Solomon
- Mark O Hatfield Clinical Research Center, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - William J Pavan
- National Human Genome Research Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | - Mark Kao
- Preclinical Development and Safety, Janssen R&D, Raritan, NJ, USA
| | - Steven A Silber
- Global Public Health, Johnson & Johnson, Philadelphia, PA, USA
| | - John C McKew
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Carmen C Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Charles H Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christopher P Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Forbes D Porter
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD USA.
| |
Collapse
|
27
|
Gurda BL, Bradbury AM, Vite CH. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:417-431. [PMID: 28955181 PMCID: PMC5612185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.
Collapse
Affiliation(s)
| | | | - Charles H. Vite
- To whom all correspondence should be addressed: Dr. Charles H. Vite, 209 Rosenthal Building, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, Tel: 215-898-9473, .
| |
Collapse
|
28
|
Sleat DE, Tannous A, Sohar I, Wiseman JA, Zheng H, Qian M, Zhao C, Xin W, Barone R, Sims KB, Moore DF, Lobel P. Proteomic Analysis of Brain and Cerebrospinal Fluid from the Three Major Forms of Neuronal Ceroid Lipofuscinosis Reveals Potential Biomarkers. J Proteome Res 2017; 16:3787-3804. [PMID: 28792770 DOI: 10.1021/acs.jproteome.7b00460] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical trials have been conducted for the neuronal ceroid lipofuscinoses (NCLs), a group of neurodegenerative lysosomal diseases that primarily affect children. Whereas clinical rating systems will evaluate long-term efficacy, biomarkers to measure short-term response to treatment would be extremely valuable. To identify candidate biomarkers, we analyzed autopsy brain and matching CSF samples from controls and three genetically distinct NCLs due to deficiencies in palmitoyl protein thioesterase 1 (CLN1 disease), tripeptidyl peptidase 1 (CLN2 disease), and CLN3 protein (CLN3 disease). Proteomic and biochemical methods were used to analyze lysosomal proteins, and, in general, we find that changes in protein expression compared with control were most similar between CLN2 disease and CLN3 disease. This is consistent with previous observations of biochemical similarities between these diseases. We also conducted unbiased proteomic analyses of CSF and brain using isobaric labeling/quantitative mass spectrometry. Significant alterations in protein expression were identified in each NCL, including reduced STXBP1 in CLN1 disease brain. Given the confounding variable of post-mortem changes, additional validation is required, but this study provides a useful starting set of candidate NCL biomarkers for further evaluation.
Collapse
Affiliation(s)
- David E Sleat
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences , Piscataway, New Jersey 08854, United States
| | - Abla Tannous
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Istvan Sohar
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Jennifer A Wiseman
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Meiqian Qian
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Caifeng Zhao
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States
| | - Winnie Xin
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Rosemary Barone
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Katherine B Sims
- Neurogenetics DNA Diagnostic Laboratory, Department of Neurology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Dirk F Moore
- Department of Biostatistics, School of Public Health, Rutgers - The State University of New Jersey , Piscataway, New Jersey 08854, United States
| | - Peter Lobel
- Center for Advanced Biotechnology and Medicine , Piscataway, New Jersey 08854, United States.,Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences , Piscataway, New Jersey 08854, United States
| |
Collapse
|
29
|
Bobillo Lobato J, Jiménez Hidalgo M, Jiménez Jiménez LM. Biomarkers in Lysosomal Storage Diseases. Diseases 2016; 4:diseases4040040. [PMID: 28933418 PMCID: PMC5456325 DOI: 10.3390/diseases4040040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022] Open
Abstract
A biomarker is generally an analyte that indicates the presence and/or extent of a biological process, which is in itself usually directly linked to the clinical manifestations and outcome of a particular disease. The biomarkers in the field of lysosomal storage diseases (LSDs) have particular relevance where spectacular therapeutic initiatives have been achieved, most notably with the introduction of enzyme replacement therapy (ERT). There are two main types of biomarkers. The first group is comprised of those molecules whose accumulation is directly enhanced as a result of defective lysosomal function. These molecules represent the storage of the principal macro-molecular substrate(s) of a specific enzyme or protein, whose function is deficient in the given disease. In the second group of biomarkers, the relationship between the lysosomal defect and the biomarker is indirect. In this group, the biomarker reflects the effects of the primary lysosomal defect on cell, tissue, or organ functions. There is no “gold standard” among biomarkers used to diagnosis and/or monitor LSDs, but there are a number that exist that can be used to reasonably assess and monitor the state of certain organs or functions. A number of biomarkers have been proposed for the analysis of the most important LSDs. In this review, we will summarize the most promising biomarkers in major LSDs and discuss why these are the most promising candidates for screening systems.
Collapse
Affiliation(s)
- Joaquin Bobillo Lobato
- Servicio de Bioquímica Clínica, Unidad de Gestión Clínica de Laboratorios, Hospital Universitario Nuestra Señora de Valme, 41014-Sevilla, Spain.
| | - Maria Jiménez Hidalgo
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| | - Luis M Jiménez Jiménez
- Servicio de Fisiopatología Celular y Bioenergética, Servicios Centrales de Investigación, Universidad Pablo de Olavide, 41013-Sevilla, Spain.
| |
Collapse
|
30
|
Walkley SU, Davidson CD, Jacoby J, Marella PD, Ottinger EA, Austin CP, Porter FD, Vite CH, Ory DS. Fostering collaborative research for rare genetic disease: the example of niemann-pick type C disease. Orphanet J Rare Dis 2016; 11:161. [PMID: 27903269 PMCID: PMC5131440 DOI: 10.1186/s13023-016-0540-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
Rare disease represents one of the most significant issues facing the medical community and health care providers worldwide, yet the majority of these disorders never emerge from their obscurity, drawing little attention from the medical community or the pharmaceutical industry. The challenge therefore is how best to mobilize rare disease stakeholders to enhance basic, translational and clinical research to advance understanding of pathogenesis and accelerate therapy development. Here we describe a rare, fatal brain disorder known as Niemann-Pick type C (NPC) and an innovative research collaborative known as Support of Accelerated Research for NPC (SOAR-NPC) which illustrates one pathway through which knowledge of a rare disease and its possible treatments are being successfully advanced. Use of the "SOAR" mechanism, we believe, offers a blueprint for similar advancement for many other rare disorders.
Collapse
Affiliation(s)
- Steven U. Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461 USA
| | - Cristin D. Davidson
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461 USA
| | - Jonathan Jacoby
- Hide and Seek Foundation for Lysosomal Disease Research, 6475 East Pacific Coast Highway, Suite 466, Long Beach, CA 90803 USA
| | - Philip D. Marella
- Dana’s Angels Research Trust, 15 East Putnam Ave., #117, Greenwich, CT 06830 USA
| | - Elizabeth A. Ottinger
- Division of PreClinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850 USA
| | - Christopher P. Austin
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20817 USA
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, DHHS, Rm 5-2571, 10CRC, 10 Center Dr, Bethesda, MD 20892 USA
| | - Charles H. Vite
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104 USA
| | - Daniel S. Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, Box 8086, 660 S. Euclid Ave, St. Louis, MO 63110 USA
| |
Collapse
|